Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
5
,
No
. 5, Oct
o
ber
2
0
1
5
,
pp
. 89
6~
90
4
I
S
SN
: 208
8-8
7
0
8
8
96
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Unbalanced Variable Nonlinea
r L
oad Compensat
i
on Usin
g
Multiple Shunt Active Filters
Deep
thi Janyavula*,
Dr
.
S
a
tyendr
a Nath
Saxen
a
**
* Department of
Electrical Eng
i
n
eering
,
Gove
rnm
e
nt Poly
techn
i
c
Sanga
redd
y
,
Telangana, Ind
i
a
** EEE Dep
a
rtment, Gokar
a
ju
Rangaraju Institute of
En
g
i
neer
ing &
Technolog
y
,
H
y
der
a
bad
,
Telang
ana, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
May 7, 2015
Rev
i
sed
Au
g
10
, 20
15
Accepted Aug 26, 2015
The proposed scheme has considered a
three-phase four-wire sy
stem, which
experienced sag
and swell in
source
voltage
for a certain p
e
riod while
feeding
an unbalanced and var
i
able
non-linear load. The
lo
ad has
unequal
resistive and r
e
activ
e elemen
ts in th
e three ph
ases, forming the unbalan
c
ed
com
ponent. A
three-phase silicon
con
t
roll
ed rectifi
e
r
con
v
erter
with
adjustable f
i
ring
angle conn
ected to th
e lo
ad h
a
s formed the v
a
riable non-
linear componen
t
. This has been
consider
ed
, so as to simulate the
unbalan
ced
and variab
le non
-linear nature of
loads
in real-
tim
e power s
y
s
t
em
. The trends
in the to
tal har
m
onic distortion
vari
ation
were obtain
e
d for
th
e proposed
s
y
stem under power factor
correction
and voltag
e
regulation mode operatio
n
when the lo
ad-
s
ide conver
t
er
firing ang
l
es o
f
30°, 60° and
90° were
considered
usin
g MATLAB/SIMULI
NK soft
ware.
Three pulse-width-
modulation methods, namely
,
sinusoi
dal puls
e
-width-modulation, space
vector
modulation and h
y
ster
esis pulse
-width-modulation
hav
e
been used
to
generate pulses
for the voltag
e
source
converter of the shunt activ
e filter
based
on the
ref
e
rence currents
genera
ted
using
s
y
nchronous r
e
f
e
rence fr
ame
theor
y
. I
t
has been demonstrated in
the proposed paper th
at p
o
wer facto
r
correction
,
voltage regu
lation,
bett
er harmonic reduction and
hence
load
compensation
ar
e obtained
simultaneously
b
y
using two SAFs.
Keyword:
Pu
lse-wid
t
h
-
m
o
du
latio
n
Shunt active fil
t
er
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
Unity power fa
ctor
Zero vo
ltag
e
reg
u
l
ation
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Deept
h
i Ja
nyavula,
Depa
rt
m
e
nt
of
El
ect
ri
cal
&
El
ectronics E
ngi
neeri
n
g,
Go
ve
rnm
e
nt
P
o
l
y
t
echni
c,
Sa
nga
re
ddy
,
Telan
g
a
n
a
, India 5
020
01
Em
a
il: d
eep
th
i.b
illla@g
m
a
i
l
.co
m
1.
INTRODUCTION
Po
wer
sy
st
em
s are
becom
i
ng
hi
g
h
l
y
u
n
p
re
d
i
ct
abl
e
due
t
o
t
h
e ra
pi
dl
y
ch
a
ngi
ng
nat
u
re
o
f
t
h
e l
o
ad
s.
Un
bal
a
nce
d
a
n
d
no
nl
i
n
ea
r l
o
a
d
s a
r
e
wi
del
y
pre
v
al
ent
i
n
m
ode
r
n
d
a
y
p
o
w
e
r sy
st
em
s. Un
bal
a
nce
d
l
o
a
d
occ
u
r
main
ly d
u
e
t
o
co
nn
ection
o
f
larg
e sing
le
p
h
a
se lo
ad
s,
phase
-
to-phase l
o
ads
and c
o
nn
ection
o
f
d
i
fferen
t valu
es
o
f
lo
ad
s in
each
ph
ase. Th
is will yie
l
d
ex
cessiv
e
n
e
u
t
ral cu
rren
t and
h
e
atin
g
.
In
th
e presen
ce of no
n-lin
ear
l
o
ad,
t
h
e c
u
r
r
e
n
t
wa
vef
o
rm
get
s
def
o
rm
ed,
whi
c
h
pr
od
uce
s
ha
rm
oni
cs. T
h
i
s
ha
s bec
o
m
e
a m
a
tt
er of c
once
r
n
for th
e p
o
wer u
tilit
ies d
u
e
to
th
e ex
p
e
ditio
u
s
g
r
owth o
f
no
n-lin
ear lo
ad
s in
in
du
strial an
d
d
o
mestic
ap
p
lication
s
.
A det
a
i
l
e
d st
u
d
y
of T
HD
va
ri
at
i
on wi
t
h
re
spect
t
o
seve
ra
l
i
ndust
r
i
a
l
an
d d
o
m
e
st
i
c
appl
i
a
nces has
been
pre
s
ent
e
d
i
n
[1]
,
[2]
.
I
n
t
h
ese pa
pe
rs, a
com
p
rehe
nsi
v
e
expl
a
n
at
i
on
h
a
s been
gi
ve
n
abo
u
t
ha
rm
oni
cs and
their causes a
nd e
ffects on
powe
r syste
m
s
due to the
pr
esence o
f
di
f
f
e
rent
t
y
pes o
f
no
n-l
i
n
ea
r l
o
ads.
A
harm
oni
cs p
o
w
er fl
ow c
ode
fo
r est
i
m
a
t
i
ng
harm
oni
cs wa
s
experi
m
e
nt
ed on
vari
o
u
s
no
n
-
l
i
n
ear l
o
a
d
s f
o
r IEEE
6-
b
u
s an
d
14
-
bus
sy
st
em
s
in [
3
]
;
i
n
w
h
i
c
h, t
h
e i
n
fl
uen
ce of
harm
oni
cs o
n
el
ect
ri
cal
net
w
o
r
ks ha
s be
e
n
est
a
bl
i
s
hed
f
o
r
va
ri
o
u
s c
o
n
d
i
t
i
ons
of
o
p
e
r
at
i
on.
A
cu
rre
nt
-
c
ont
rol
l
e
d
v
o
l
t
a
ge s
o
urce
co
nve
rt
er
(
V
SC
)
-
b
ase
d
sh
un
t activ
e filter (SAF) h
a
s b
een
p
r
op
o
s
ed
in
[4
]. In
th
is pap
e
r, a co
m
b
in
atio
n
of un
b
a
lan
ced
an
d
n
on-lin
ear
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
896
–
9
04
89
7
lo
ad
is conn
ected
to
a three-ph
as
e f
o
u
r
-
w
i
r
e di
st
ri
b
u
t
i
o
n
sy
st
em
;
and
t
h
e
o
p
er
at
i
o
n of SA
F has
bee
n
dem
onst
r
at
ed
un
de
r v
o
l
t
a
ge
reg
u
l
a
t
i
on a
n
d
po
we
r fact
or
cor
r
ect
i
o
n
m
odes
of
fu
nct
i
o
ni
n
g
. B
u
t
,
co
n
c
ur
rent
vol
t
a
ge
re
g
u
l
a
t
i
on a
n
d
po
we
r
fact
o
r
c
o
r
r
ect
i
o
n
has
n
o
t
bee
n
e
xpl
ai
ne
d i
n
t
h
e
pri
o
r a
r
t
.
The
pr
o
p
o
s
ed
pape
r
has
dem
onst
r
a
t
ed t
h
e c
onc
u
rre
nt
p
o
we
r f
act
or c
o
r
r
ect
i
o
n an
d
vol
t
a
ge
reg
u
l
a
t
i
on al
on
g
wi
t
h
ha
r
m
oni
c
redu
ction
u
s
ing
m
u
lt
ip
le SAFs; wh
ere, on
e SAF op
erates
i
n
po
wer f
act
or
correct
i
o
n m
ode, an
d t
h
e ot
h
e
r SA
F
ope
rat
e
s i
n
v
o
l
t
age reg
u
l
a
t
i
o
n
m
ode. Sect
i
o
n 2 ex
pl
ai
ns a
b
o
u
t
SA
F an
d i
t
s
pri
o
r art
.
S
ect
i
on 3 e
xhi
b
i
t
s
t
h
e
p
r
op
o
s
ed
system
co
n
f
ig
uration
.
Sectio
n 4
giv
e
s th
e
resu
lts ob
tain
ed under v
a
riou
s cond
itio
n
s
of op
eratio
n
con
s
i
d
ere
d
.
Se
ct
i
on
5 c
oncl
u
des t
h
e
pape
r
b
y
col
l
a
t
i
ng t
h
e
resul
t
s
.
2.
SHUNT ACT
IVE
FILTER
Passiv
e
filters u
s
ed
fo
r power
q
u
a
lity im
p
r
ov
em
en
t h
a
v
e
sev
e
ral
d
i
sadv
an
tag
e
s, su
ch as,
sou
r
ce
l
o
adi
n
g,
b
u
l
k
y
ci
rcui
t
,
fi
xed c
o
m
p
ensat
i
on a
nd l
a
c
k
o
f
i
s
ol
at
i
on bet
w
ee
n i
n
p
u
t
an
d
out
pu
t
.
To
ove
rc
om
e t
h
es
e
d
r
awb
ack
s, p
a
ssiv
e
filters are b
e
ing
rep
l
aced
b
y
activ
e
fi
lters, wh
ich
ov
erco
m
e
m
o
st
o
f
t
h
e drawback
s
o
f
p
a
ssiv
e
filters. Th
e resu
lts o
b
t
ain
e
d
b
y
con
n
ecting
p
a
ssiv
e
and
activ
e filters in
o
r
d
e
r to
redu
ce th
e activ
e
p
o
wer filter ratin
g
were p
r
esen
ted
in
[5
], [6
]. Sev
e
ra
l au
th
ors h
a
v
e
explain
e
d
th
e sign
ifican
ce
o
f
SAF i
n
i
m
p
r
ov
ing
th
e qu
ality o
f
po
wer i
n
p
o
wer system
s ap
p
lication
s
.
A critiq
u
e
of
ex
istin
g approach
es,
classificatio
n
an
d assessm
en
t o
f
activ
e
p
o
wer filters
for
po
wer
q
u
a
lity im
p
r
o
v
e
m
e
n
t
was
g
i
v
e
n
in
[7
], [8
].
Trend
s
in
po
wer co
nd
itio
n
i
n
g
u
s
i
n
g activ
e
filters were
g
i
v
e
n
in [9
]; wh
ere, d
e
tailed an
aly
s
is of
d
i
fferen
t
typ
e
s
of
SA
Fs, t
h
ei
r
con
f
i
g
urat
i
o
ns
,
com
pone
nt
se
l
ect
i
on an
d c
o
nt
r
o
l
st
rat
e
gi
es
was el
uci
d
at
e
d
.
Vari
o
u
s st
ra
t
e
gi
es
for extracting the refe
re
nce currents
of S
A
F
were com
p
are
d
i
n
[1
0]
. A
n
ovel
co
nt
r
o
l
st
rat
e
gy
fo
r SA
F wi
t
h
minim
u
m
current m
easurement
was
de
tailed
i
n
[11
]
,
wh
ich exp
l
ain
e
d abou
t th
e source an
d lo
ad
cu
rren
t
det
ect
i
o
n
m
e
t
h
ods
.
In
t
h
e
p
r
o
pos
ed
w
o
r
k
,
l
o
ad c
u
r
r
ent
det
e
ct
i
on m
e
t
hod
h
a
s bee
n
use
d
.
The
basi
c c
o
n
f
i
g
urat
i
o
n
of
t
h
e si
ngl
e
SA
F
co
nne
ct
ed t
o
t
h
e p
o
i
n
t
o
f
c
o
m
m
on co
upl
i
n
g
(
P
C
C
)
i
s
prese
n
t
e
d
i
n
Fi
gu
re
1. T
h
e
pr
op
ose
d
S
A
F i
s
a VSC
,
co
n
n
ected
in
p
a
rallel to
th
e system
to
b
e
co
m
p
en
sated
at
the PCC using
an inductive i
n
terface, s
u
c
h
a
s
, a trans
f
or
m
e
r, which is
olates the SAF from the re
m
a
ining pa
rt
of the system
.
The SAF can
be em
ployed to perform
task
s, suc
h
as, loa
d
balanci
n
g, powe
r factor correction,
vol
t
a
ge
re
g
u
l
a
t
i
o
n
an
d
ha
rm
oni
c re
d
u
ct
i
o
n.
Un
bal
a
nce
d
l
o
ad m
eans that
all the thr
ee phases are
not
e
qually
lo
ad
ed
, wh
ich will in
crease th
e n
e
u
t
ral curren
t sig
n
i
fi
can
tly. SAF
will b
a
lan
ce th
e effect o
f
unb
alan
ced
lo
ad
an
d
redu
ce the n
e
u
t
ral cu
rren
t in
supp
ly t
o
zero
.
Pr
esence o
f
n
o
n
-
lin
ear ele
m
en
ts in
th
e lo
ad
will cau
se
d
e
v
i
ation
of the p
o
wer
factor fro
m
u
n
ity an
d
in
tro
d
u
ce
h
a
rm
o
n
i
cs in
to
th
e system
. Th
e SAF
will redu
ce th
e
harm
onics to t
h
e accepta
ble lim
i
t and ensure the unity powe
r
factor operation. SAF ca
n also aid the sy
ste
m
in
main
tain
in
g
zero vo
ltag
e
regu
latio
n in
ord
e
r to redu
ce
vol
t
a
ge fl
i
c
ke
r,
sa
g a
n
d
s
w
el
l
.
T
h
e
usa
g
e
of
cu
st
om
po
we
r de
vi
ces
fo
r re
d
u
ci
n
g
v
o
l
t
a
ge fl
i
c
ke
r,
sag a
nd s
w
el
l
has b
een
dem
onst
r
at
ed i
n
[
1
2
]
, [1
3]
;
but
, t
h
e
aspect
o
f
p
o
wer
factor co
rrection
h
a
s n
o
t
b
e
en
co
nsid
ered
wh
ile im
p
r
o
v
i
ng
th
e
p
o
wer qu
ality. Un
ity p
o
wer
facto
r
ope
rat
i
o
n of S
A
F i
s
expl
ai
ne
d an
d i
ndi
cat
e
d
as app
r
o
p
r
i
a
t
e
whe
n
t
h
e so
urce v
o
l
t
a
ge h
a
s di
st
ort
i
o
ns i
n
[1
4]
;
but
, t
h
e as
pect
of v
o
l
t
a
ge re
g
u
l
a
t
i
on
was n
o
t
l
ooke
d i
n
t
o
. Hence
,
i
t
has t
o
be
not
e
d
t
h
at
, usi
n
g a si
n
g
l
e
SAF
,
p
o
wer fact
o
r
co
rrectio
n and
vo
ltag
e
regu
latio
n canno
t b
e
ob
tain
ed sim
u
lta
n
e
ou
sly.
Fig
u
re
1
.
Basic con
f
i
g
uration
o
f
a sh
un
t active filter
3.
PROP
OSE
D
SYSTE
M
The propose
d syste
m
is a th
ree-pha
se four-wire
system
,
consisting of
a three-pha
se AC source
connected to
a loa
d
,
which com
p
rises
of unbala
nc
ed
an
d non
-
lin
ear co
m
p
on
en
ts. Th
e so
ur
ce
v
o
ltage
expe
ri
ences
sa
g a
nd
swel
l
of
25
% d
u
r
i
n
g t
h
e i
n
t
e
rv
al
s (
0
.
2
–
0.
3)s
an
d
(0
.6
–
0.
8)s
,
re
sp
ect
i
v
el
y
.
The l
o
ad
i
s
mad
e
up
o
f
a co
m
b
in
atio
n o
f
unb
alance
d a
n
d va
riabl
e
non-linear
el
e
m
en
ts. Resistiv
e and
indu
ctiv
e
com
pone
nts of une
qual value
s
are conn
ected in the t
h
ree
-
pha
ses,
whic
h
w
ill introduce
unbala
nce i
n
the loa
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
U
nba
lan
ced Va
riab
le Non
linea
r Loa
d
Comp
ensa
tion
U
s
ing
Mu
ltip
le Shun
t Active Filters
(Deep
th
i J.)
89
8
Th
e non
-lin
ear lo
ad
is m
a
d
e
u
p
o
f
a three-p
h
a
se silic
o
n
co
n
t
ro
lled
rectifier (SCR) co
nv
erter, who
s
e
firing
angl
e ca
n be m
odi
fi
ed i
n
or
de
r t
o
vary
t
h
e
n
o
n
-
l
i
n
eari
t
y
. Fi
rst, a single SAF is connecte
d
at the PCC by using
a th
ree-ph
ase
two-wi
n
d
i
n
g
star-d
elta tran
sfo
r
m
e
r. A t
h
ree-ph
ase R
-
C filter is also
con
n
ected
at th
e PCC
,
whi
c
h ai
ds i
n
bri
ngi
ng d
o
w
n
t
h
e vol
t
a
ge ha
rm
oni
cs. The p
a
ram
e
t
e
rs of t
h
e schem
e
cons
i
d
ere
d
are pr
es
ent
e
d
in
Tab
l
e 1.
Tabl
e 1. Pr
op
o
s
ed
sy
st
em
par
a
m
e
t
e
rs
Para
m
e
ter Value
Sour
ce RM
S voltage :
415V
Sy
ste
m
fr
equency
:
50Hz
L
i
ne im
pedance
:
(
0
.
01+j0.
626)
Ω
Ripple filter
:
R
f
=5
Ω
, C
f
=5
μ
F
Un
b
a
lan
ced
lo
ad
:
R Phase: 25
Ω
, 1
m
H
Y Phase: 5
Ω
B Phase: 10
Ω
, 5
m
H
Nonlinear
load
:
T
h
r
ee-
phase SCR
conver
t
er
with R=
25
Ω
DC bus voltage
:
700V
DC bus capacitanc
e :
3
m
F
The M
A
TL
AB
/
S
IM
UL
IN
K
m
odel
of t
h
e pro
p
o
sed sy
st
e
m
with a single SAF connected at the PCC
i
s
sho
w
n i
n
Fi
gu
re
2. A
n
i
n
s
u
l
a
t
e
d gat
e
bi
pol
a
r
t
r
an
sistor (IGBT
)
-base
d
VSC is
connected as
SAF in the
propose
d
syste
m
in order to accom
p
lish the loa
d
com
p
ensation. T
h
e
ope
ration of SAF
depe
nds on two
aspects; first one is the cont
rol al
g
o
rith
m
o
f
th
e SAF; and
th
e second
o
n
e
is th
e pu
l
s
e-wi
d
t
h-m
o
d
u
latio
n
m
e
t
hod
use
d
t
o
ge
nerat
e
t
h
e
p
u
l
s
es
fo
r t
h
e
I
G
B
T
s
of
V
S
C
.
Figure
2.
Singl
e
SAF c
o
nnect
ed
to three-p
h
ase fo
ur-wire syste
m
Seve
ral
co
nt
r
o
l
t
echni
q
u
es
, s
u
ch
as,
dec
o
u
p
l
e
d c
u
r
r
e
n
t
t
h
eory
,
A
d
al
i
n
e
base
d al
g
o
ri
t
h
m
,
const
a
nt
sou
r
ce i
n
st
a
n
t
a
neo
u
s
po
we
r
st
rat
e
gy
, si
n
u
s
oi
dal
s
o
u
r
ce
cur
r
ent
st
rat
e
g
y
and sy
nc
hr
o
n
o
u
s
refe
rence
fram
e
theo
ry
were
re
po
rted in
[1
5]
,
[1
6]
. I
n
the p
r
e
s
ent
wo
rk
, synch
r
on
ou
s r
e
f
e
ren
ce
fram
e
theory bas
e
d algorithm
is utilized to cont
rol the S
A
F
.
Tech
niques s
u
ch as
ge
netic algorithm
ba
sed and Zigle
r
-Nic
hols m
e
thods
have
b
een repo
rted
in
literatu
re [17
]
, [18
]
in
order to tun
e
t
h
e
PI con
t
ro
ller of th
e con
t
ro
l al
g
o
rith
m
.
Si
m
p
le trial
and er
r
o
r m
e
t
h
od
has bee
n
ap
pl
i
e
d i
n
t
h
e pr
op
ose
d
w
o
r
k
to
tu
n
e
th
e PI co
n
t
ro
ller g
a
i
n
s. Sev
e
ral tran
sfo
r
m
e
r
co
nfigu
r
ation
s
fo
r conn
ecting
t
h
e SAF to
th
e
p
o
wer syst
em
were
al
so
i
nvest
i
g
at
e
d
[1
9]
.
In
t
h
e
p
r
o
pos
ed
work, a star-d
elta tran
sfo
r
m
e
r is u
s
ed
t
o
co
nn
ect
a si
ngle
SAF t
o
the
propose
d
system
at
the PCC.
Hol
t
z
prese
n
t
e
d a
det
a
i
l
e
d s
u
r
v
ey
o
f
p
u
l
s
e-wi
dt
h-m
o
d
u
l
a
t
i
on t
ech
ni
q
u
e
s
i
n
[2
0]
. I
n
t
h
e
pr
op
os
e
d
wo
rk
, si
n
u
s
o
i
d
al
pul
se-
w
i
d
t
h
-m
odul
at
i
on
(
S
P
W
M
)
, sp
ace
vect
or m
odul
at
i
on (S
VM
)
,
and
hy
st
eresi
s
pul
se-
width-m
odulat
ion (HP
W
M
)
have been
utilized
to
ge
ne
rate the
pulses
to t
h
e VSC
of S
A
F
.
The single SAF can be operated
ei
t
h
er i
n
UPF m
ode or
ZVR
m
ode. M
o
re
ove
r, s
o
u
r
ce neut
ral
cur
r
ent
c
o
m
p
ensat
i
o
n,
harm
oni
c el
im
i
n
at
i
o
n
an
d l
o
a
d
bal
a
nci
n
g ca
n al
so
be
obt
ai
ned
b
y
usi
n
g S
A
F
.
Due
t
o
th
e n
o
n
-
li
n
ear
n
a
ture o
f
th
e l
o
ad, th
e vo
ltage an
d
sour
ce cu
rren
t will n
o
t
b
e
in
ph
ase.
Wh
en
th
e SAF op
erates
i
n
UPF m
ode,
sou
r
ce cu
rre
nt
can be m
a
de to be i
n
p
h
ase
with the voltage. Since
t
h
e
so
urce vol
t
a
ge h
a
s
sag
an
d swell, i
n
ZVR m
o
d
e
, th
e lo
ad vo
ltag
e
can
b
e
regu
la
ted
.
Bu
t, th
e sim
u
l
t
an
eou
s
op
eratio
n of
UPF and
ZVR
m
odes cann
o
t
be acc
om
pl
i
s
hed by
usi
n
g a s
i
ngl
e S
A
F.
To
ove
rc
om
e t
h
i
s
dra
w
back
, t
w
o
SAFs
are c
o
n
n
ect
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
896
–
9
04
89
9
t
o
t
h
e
sam
e
sy
st
em
unde
r c
onsi
d
erat
i
o
n
u
s
i
n
g
a t
h
ree-
p
h
ase t
h
ree
-
wi
n
d
i
n
g st
ar
-
d
el
t
a
-del
t
a
t
r
a
n
s
f
o
r
m
e
r, as
depi
ct
ed
i
n
Fi
g
u
re
3
.
Fi
gu
re
3.
Tw
o
SAFs
co
n
n
ect
e
d
t
o
t
h
ree-
pha
s
e
f
o
u
r
-
w
i
r
e
sy
st
em
Th
e
n
e
x
t
sectio
n exp
l
ain
s
the resu
lts ob
tain
ed wh
en
o
n
e
/
t
wo
SAFs
o
p
e
ratin
g in
UPF/ZVR m
o
de
e
m
p
l
o
y
in
g SPWM/SVM/HPWM are ap
p
lied
in
o
r
d
e
r to co
m
p
en
sate an
u
n
b
a
lan
c
ed v
a
riab
le
n
on-lin
ear lo
ad
connected to the proposed three-
phase four-wire
a
rra
ngement.
4.
RESULTS
A
N
D
DI
SC
US
S
I
ON
For
t
h
e sy
st
em
un
de
r co
nsi
d
e
r
at
i
on
wi
t
h
out
SAF
,
so
u
r
ce n
e
ut
ral
cu
rre
nt
i
s
as sh
o
w
n i
n
Fi
gu
re
4. T
h
e
sou
r
ce v
o
l
t
a
ge
, so
urce c
u
r
r
e
n
t
,
l
o
a
d
v
o
l
t
a
g
e
, and l
o
ad c
u
rre
nt
wi
t
h
out
SAF a
r
e gi
ve
n
i
n
Fi
gu
re 5
.
I
t
can
clearly be seen from
Figure
4 that th
e so
ur
c
e
neut
ral
cu
rre
nt
i
s
n
o
t
zero
s
i
nce t
h
e l
o
a
d
i
s
un
bal
a
nced
,
whi
c
h
resul
t
s
i
n
a
n
u
nde
si
rabl
e s
o
ur
ce neut
ral
cu
rr
ent
.
M
o
reo
v
e
r
, Figure
5 indicates that there
is a sag and s
w
ell in
the source voltage as elucidat
ed in th
e prev
i
o
u
s
section
.
All th
e wav
e
fo
rm
s co
rrespon
d
t
o
th
e resu
lts o
b
tain
ed
wh
en
t
h
e fi
ring
an
g
l
e
o
f
SC
R co
nv
erter con
n
ected
to th
e
lo
ad
is
30
° and SPW
M
is u
s
ed
to
g
e
n
e
rate
pu
lses to
the VSC
of t
h
e
SAF.
Figure 6 s
h
ows that the source ne
ut
ral current becam
e ze
ro
with SA
F.
The loa
d
is unbalance
d,
but
still th
e so
u
r
ce
n
e
u
t
ral curren
t
is o
b
s
erv
e
d
t
o
b
e
zero
d
u
ring
th
e en
tire
p
e
ri
od
. Fi
g
u
re
7
and Fig
u
re
8
d
e
p
i
ct th
e
wave
f
o
rm
s when
one S
A
F
i
s
used f
o
r
com
p
ensat
i
on
and i
s
co
nt
r
o
l
l
e
d by
SP
WM
i
n
UPF m
ode
o
f
functioning. Fi
gure 7 s
h
ows that the PCC voltage and s
ource curre
n
t are in phase w
ith
respect to each other.
Fi
gu
re 8 sh
o
w
s
t
h
e source
, PC
C
and l
o
ad
vol
t
a
ges i
n
U
PF
m
ode of ope
rat
i
on. M
o
re
ove
r,
i
t
can be det
e
r
m
i
n
ed
f
r
o
m
Fig
u
r
e 8
th
at th
e lo
ad
vo
ltag
e
is n
o
t
r
e
g
u
l
ated, i.e., ZV
R m
o
d
e
o
f
op
er
ation
cannot b
e
o
b
t
ain
e
d
by SA
F
i
n
t
h
e
UP
F m
ode
of
f
unct
i
o
ni
ng
.
Fi
gu
re
4.
S
o
u
r
ce ne
ut
ral
c
u
r
r
e
nt
wi
t
h
o
u
t
S
A
F
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
U
nba
lan
ced Va
riab
le Non
linea
r Loa
d
Comp
ensa
tion
U
s
ing
Mu
ltip
le Shun
t Active Filters
(Deep
th
i J.)
90
0
Fi
gu
re
5.
S
o
u
r
ce an
d l
o
a
d
pa
r
a
m
e
t
e
rs wi
t
h
ou
t
SAF
Fi
gu
re
6.
S
o
u
r
ce ne
ut
ral
c
u
r
r
e
nt
wi
t
h
S
A
F
Fi
gu
re 7.
PC
C
vol
t
a
ge
ve
rs
us sou
r
ce
c
u
rre
nt
i
n
U
PF
m
ode wi
t
h
one
S
A
F
Fi
gu
re
8.
S
o
u
r
ce, PC
C
,
a
n
d l
o
ad
v
o
l
t
a
ges
i
n
UP
F m
ode
wi
t
h
one
S
A
F
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
896
–
9
04
90
1
Fi
gu
re
9 an
d
Fi
gu
re
10
de
p
i
ct
t
h
e wave
fo
rm
s when
one
SAF i
s
use
d
fo
r com
p
ensa
t
i
on an
d i
s
cont
rol
l
e
d
by
SP
W
M
i
n
Z
V
R
m
ode of o
p
e
r
at
i
o
n
.
Fi
g
u
re
9 sh
ow
s t
h
e PC
C
vol
t
a
ge an
d so
urce c
u
r
r
e
n
t
,
w
h
i
c
h
are obse
rve
d
to be out of
pha
s
e
with res
p
ect t
o
each
ot
her,
since the SAF
operates
in ZVR
m
ode. T
h
e
r
efore, it
is clearly ev
id
en
t th
at
UPF
o
p
eratio
n canno
t
b
e
o
b
t
ai
n
e
d wh
en th
e SA
F is op
er
ating in
ZV
R m
o
d
e
.
Figu
r
e
10
sh
ow
s th
e
sour
ce,
PCC and lo
ad vo
ltag
e
s in
ZV
R m
o
de
of
o
p
e
ration. Th
e lo
ad
voltag
e
is fou
nd to
b
e
reg
u
l
a
t
e
d i
n
Z
V
R
m
ode
of
o
p
erat
i
o
n e
v
e
n
i
n
t
h
e
prese
n
ce
of sag and
swe
ll in source
vol
t
age.
It
i
s
cl
earl
y
evi
d
ent
f
r
om
t
h
e wave
fo
rm
s of Fi
gu
re 7
– Fi
gu
re 1
0
t
h
at
t
h
e UPF a
nd Z
V
R
m
odes o
f
ope
rat
i
o
n ca
nn
ot
be
achi
e
ve
d
si
m
u
l
t
a
neousl
y
by
u
s
i
n
g
on
e SA
F.
He
nce
,
t
w
o S
A
Fs
ar
e co
nnect
e
d
t
o
t
h
e
pr
o
pose
d
sy
st
em
i
n
order t
o
o
b
t
a
i
n
UP
F
and ZVR
m
ode
s of
ope
ra
t
i
on, ha
rm
oni
c redu
ct
i
on a
n
d l
o
ad
com
p
ensation
at a tim
e
.
Am
ong t
h
e t
w
o SA
Fs, o
n
e o
p
erat
es i
n
U
P
F
m
ode and t
h
e
ot
he
r i
n
ZVR
m
ode. Fi
gu
re 1
1
an
d Fi
g
u
re
12
de
pict the
wave
form
s when two SAFs
are used
fo
r co
m
p
en
satio
n,
an
d bo
th
are co
n
t
ro
lled
b
y
SPW
M.
Fi
gu
re 1
1
s
h
o
w
s t
h
e PC
C
vo
l
t
a
ge and s
o
urc
e
cur
r
ent
,
w
h
i
c
h are
ob
ser
v
ed
t
o
be i
n
pha
se
wi
t
h
res
p
ect
t
o
eac
h
othe
r, i.e., UPF operation, e
v
entho
ugh
th
e l
o
ad
con
s
ists of n
on-lin
ear
ele
m
ents. Figure
12
shows the s
o
urce,
PC
C
and l
o
a
d
vol
t
a
ge
s w
h
e
n
t
w
o S
A
F
s
are
use
d
. T
h
e l
o
a
d
vo
ltag
e
s are
regu
lated
to
a
co
nstan
t
v
a
l
u
e, i.e.,
ZVR m
ode
operation eve
n
i
n
the
prese
n
ce
of sa
g a
n
d swell in
the sou
r
ce vo
ltag
e
.
Th
erefo
r
e, it can
b
e
obs
er
ved
t
h
at
bot
h
po
we
r fa
ct
or c
o
r
r
ect
i
o
n
an
d
vol
t
a
ge r
e
gul
at
i
o
n ca
n
be at
t
a
i
n
e
d
si
m
u
lt
aneou
s
l
y
by
u
s
i
n
g
two SAFs.
Fi
gu
re 9.
PC
C
vol
t
a
ge
ve
rs
us sou
r
ce
c
u
rre
nt
i
n
Z
V
R
m
ode wi
t
h
one
S
A
F
Fig
u
r
e
10
.
Sour
ce,
PCC, an
d lo
ad vo
ltag
e
s in ZV
R m
o
d
e
w
i
th
on
e
SAF
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
U
nba
lan
ced Va
riab
le Non
linea
r Loa
d
Comp
ensa
tion
U
s
ing
Mu
ltip
le Shun
t Active Filters
(Deep
th
i J.)
90
2
Fi
gu
re
1
1
.
PC
C
v
o
l
t
a
ge
vers
us s
o
urce
cu
rre
nt
wi
t
h
t
w
o S
A
Fs
Fig
u
r
e
12
.
Sour
ce,
PCC, an
d lo
ad vo
ltag
e
s with
tw
o SA
Fs
There
f
ore,
i
t
can
be i
n
fer
r
ed
fr
om
Fi
gures
1
1
a
nd
1
2
t
h
at
UPF a
n
d Z
V
R
m
odes of
o
p
er
at
i
on ca
n
be
obt
ai
ne
d si
m
u
lt
aneo
usl
y
whe
n
t
w
o S
A
Fs ar
e used. T
h
e pe
rf
orm
a
nce of S
A
F i
s
al
so obs
erve
d by
usi
n
g
SVM
an
d HPW
M
instead
o
f
SPWM in
th
e pr
oposed
system
f
o
r
all th
e abov
e cases.
The T
HD
val
u
es of
phase-A
source c
u
rrent
for va
riou
s
fi
ri
n
g
an
gl
es a
n
d co
nt
r
o
l
st
rat
e
gi
es o
f
t
h
e
pr
o
pose
d
sy
st
e
m
are l
i
s
t
e
d i
n
Tabl
e
2.
Fo
r
a fi
ri
n
g
a
n
gl
e of
3
0
°,
6
0
°
an
d
90
°, t
h
e
T
H
D
of
p
h
ase-
A
sou
r
ce
cur
r
ent
i
s
2
0
.
6
6%,
6.
94% a
n
d 5.
4
1
%, r
e
sp
ect
i
v
el
y
.
It
can be i
n
fer
r
ed
f
r
om
t
h
e t
a
bulated values that
, with
SAF
,
t
h
e T
H
D o
f
phas
e
-
A
so
urce c
u
rrent d
ecreased
si
g
n
i
fican
tly, wh
ich
co
m
p
lies
with
th
e
IEEE –
5
19
standa
rd. As
per IEE
E
-
51
9
standa
rd, the a
cceptable level
of T
H
D is
less than
5%.
Wh
en one SAF
ha
s been
use
d
, t
h
e
m
i
nim
u
m
val
u
es of
TH
Ds a
r
e
obt
ai
ned
w
h
en
S
V
M
i
s
u
s
ed
t
o
ge
nerat
e
pul
s
e
s t
o
VSC
of
SAF
i
n
bot
h UP
F an
d ZVR
m
odes of
ope
rat
i
o
n
.
B
u
t
,
whi
l
e
usi
ng t
w
o S
A
Fs
, i
n
w
h
i
c
h,
one
ope
r
a
t
e
s i
n
t
h
e UP
F
m
ode
cont
rol
l
e
d
by
SVM
a
nd t
h
e
ot
he
r i
n
t
h
e
Z
V
R
m
ode co
nt
rol
l
e
d
by
H
P
WM
, t
h
e l
o
we
st
val
u
es
of
T
H
D
,
i
.
e.,
0.
18
%, 0.
2
1
%,
0.
1
9
% ha
ve b
een obt
ai
n
e
d
f
o
r
fi
ri
ng
an
gl
es
o
f
30
°, 6
0
°
a
n
d 90
°, res
p
ect
i
v
el
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
896
–
9
04
90
3
Tabl
e
2. T
H
D
val
u
es
f
o
r
va
ri
ous
c
ont
r
o
l
st
r
a
t
e
gi
es an
d
fi
ri
ng
an
gl
es
Contr
o
l Str
a
tegy
T
HD for
fir
i
ng angle
30°
60°
90°
W
ithout
SAF
20.
66%
6.
94%
5.
41%
With one SAF
UPF – SPWM
2.
98%
4.
8%
4.
8%
Z
V
R – SPWM
3.
67%
1.
76%
1.
86%
UPF – SVM
0.
67%
0.
74%
0.
64%
Z
V
R – SVM
0.
95%
0.
74%
0.
12%
UPF – HPWM
3.
01%
4.
82%
4.
79%
Z
V
R – HPWM
3.
75%
1.
74%
1.
83%
With two S
A
Fs
UPF
&
ZVR – SPW
M
1.
49%
3.
48%
3.
4%
UPF
&
ZVR – SVM
0.
55%
0.
65%
0.
63%
UPF
&
ZVR – HPW
M
2.
9%
4.
7%
4.
73%
UPF– SPW
M
& ZVR – SVM
1.
03%
1.
2%
1.
19%
UPF– SVM
&
ZVR – SPWM
0.
65%
0.
65%
0.
62%
UPF– HPW
M
& ZVR – SVM
2.
01%
2.
66%
2.
65%
UPF– SVM
&
ZVR – HPW
M
0.
18%
0.
21%
0.
19%
UPF – HPWM
&
Z
V
R – SPWM
2.
89%
4.
71%
4.
72%
UPF – SPWM
&
ZVR – HPW
M
2.
89%
4.
71%
4.
72%
5.
CO
NCL
USI
O
N
The pa
pe
r has
expl
ai
ne
d
ho
w
t
w
o S
A
Fs ca
n
be use
d
t
o
ac
h
i
eve t
h
e desi
re
d l
o
a
d
com
p
en
sat
i
on. T
h
e
vol
t
a
ge a
n
d cu
rre
nt
wa
vef
o
r
m
s at
t
h
e sourc
e
and l
o
ad si
de
s have
bee
n
s
h
ow
n i
n
t
h
i
s
pa
per
fo
r a pe
ri
o
d
o
f
o
n
e
second
for a three-pha
se four-wire syst
em
feedi
n
g a com
b
i
n
at
i
on
of
u
nbal
a
nced a
n
d va
riable non-linear load;
and t
h
e TH
D
val
u
es
have
b
een com
p
are
d
for
di
f
f
ere
n
t
cont
rol
sc
hem
e
s usi
n
g o
n
e
SAF a
nd t
w
o
SAFs
connected at
PCC. It ca
n
be noted t
h
at SAF
has
succes
sfully com
p
ensated all the
il
l-effects
of the load.
Furt
her
,
i
t
has been
ob
ser
v
ed t
h
at
UP
F and Z
V
R
m
odes o
f
o
p
erat
i
o
n
,
ha
rm
oni
c red
u
ct
i
on a
n
d l
o
ad
com
p
ensat
i
o
n
have
bee
n
at
t
a
i
n
ed
si
m
u
l
t
a
neousl
y
by
usi
n
g t
w
o
S
A
Fs.
Li
ke
wi
se, i
t
has
be
en
dem
onst
r
at
ed t
h
at
th
e m
i
n
i
m
u
m
v
a
lu
e of THD
is ob
tain
ed when
two SAFs
a
r
e used
, w
h
ere one
i
s
use
d
i
n
UPF
m
ode
c
o
n
t
rol
l
e
d
by
S
V
M
an
d t
h
e ot
he
r i
n
Z
V
R
m
ode co
nt
r
o
l
l
e
d
by
H
P
W
M
.
REFERE
NC
ES
[1]
A. Priy
adharshini, N. De
var
a
jan, A.R
.
Uma Saran
y
a, “Survey
of Harmonics in
Non-linear Lo
ads”,
Int
e
rnation
a
l
Journal of Rece
nt Techno
logy a
nd Engin
eering
,
vol. 1(1)
, pp
. 92
– 97, Apr 2012.
[2]
M. Jawad Ghor
bani and H.
Mokhtari, “Impact of Harmonics o
n
Power
Quality
and Losses in
Power Distribution
S
y
ste
m
s”
,
In
tern
ational Journal of
Electric
al and
Computer Eng
i
neering,
vol. 5(1
)
, pp
.166 –
174,
Feb 2015.
[3]
A. Souli and A.
Hellal, “Design of a
Computer Code to Evaluate the Inf
l
ue
nc
e
of the Harm
onic
s
in the El
ectr
i
c
a
l
Networks”,
In
ter
national Journal
of Electric
al an
d Computer Eng
i
neering
,
vol. 2
(
5), pp
. 681
– 69
0, Oct 2012.
[4]
A. Chandra, Bhim Singh, B.N.
Singh and K. Al-Haddad, “An Improved C
ontrol
Algorithm for Voltag
e
Regulatio
n
,
Harm
onic El
im
ination
,
Power-Factor
Correc
tion
and Ba
lan
c
ing
of Non-Lin
ear
Loads”
,
IEEE Transactions
on
Power
E
l
ec
tr
oni
cs
,
vol. 15(3
)
, pp
. 495-507
, May
2000.
[5]
H. Fujita and H. Akagi, “A Practical Approach to
Ha
rm
onic Compensation in Po
wer S
y
stem
s – Series Connectio
n
of Passive and
Active Filters”,
IEEE T
r
ansactio
ns on Industry Applicat
ions,
vol. 27(6), pp. 1020 – 1025,
Nov/Dec
1991.
[6]
Fang Zheng Peng, H. Akagi and A. Na
bae, “A New Approach to Harmonic Compensation in Power Sy
stems –
A
Combined S
y
stem of Shunt Passi
ve and Ser
i
es
Active Filters”,
IEEE Transacti
ons on Industry Applica
tions
, vo
l.
26(6), pp
. 983
–
990, Nov/Dec 1
990.
[7]
M. El-Habrouk,
M.K. Darwis
h and P. Mehta, “Activ
e Po
wer Filters: A review”,
I
EE Proc
eedings
– Elec
tric Pow
e
r
Applica
tions,
vo
l. 147(5)
, pp
. 40
3 – 413
,
Sept 20
00.
[8]
H. Akagi, “
N
ew
Trends in Ac
ti
ve Filt
ers for Power Condition
i
n
g
”,
IEEE Transactions on Indu
stry Application
s
,
vol. 32(6)
, pp
. 1
312 – 1322
, Nov
/
Dec 1996
.
[9]
Bhim Singh, K.
Al-Haddad a
nd
A. Chandra, “A Review of Activ
e F
ilters for Power Quality
Improvement”,
IEEE
Transactions on
Indus
trial Electronics,
vo
l. 46(5), pp. 960 –
971,
Oct 1999.
[10]
M.I.M. Montero
,
E.R. Cad
a
val
and F.B. Gonzalez, “Com
parison of Contro
l Strateg
i
es for
Shunt Active Power
Filters in
Thr
ee-
Phase Four-W
ire S
y
st
em
s”,
I
E
EE Transactions
on Power
Electr
onics,
vo
l. 22(1)
, pp. 229 –
236,
Jan 2007.
[11]
Y. Kusuma Latha, Ch
. Saibabu
and Y.
P. Obulesh, “Control Strateg
y
for
Th
ree
Phase Shunt Active Power Filter
with M
i
nim
u
m
Current M
eas
ur
em
ent”,
In
ternational Journal of Electr
ica
l
and
Computer Engin
eering,
vo
l. 1(1)
,
pp. 31
– 42
, Sept 2011.
[12]
S. Sundeep and Dr. G. Madhusudhana Ra
o
,
“Mo
d
elling
and Anal
y
s
is of Custom
Power Devices for Im
prove Power
Qualit
y”
,
Intern
ational Journal of
Electr
ical and
Computer Eng
i
neering,
vol. 1(1
)
, pp
. 43
– 48
, S
e
pt 2011
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
U
nba
lan
ced Va
riab
le Non
linea
r Loa
d
Comp
ensa
tion
U
s
ing
Mu
ltip
le Shun
t Active Filters
(Deep
th
i J.)
90
4
[13]
M. Aredes, J. H
a
fner
and K
.
H
e
um
ann, “Three-Phase
Four-Wire Shunt Activ
e
Filte
r Control Strategi
es”, I
EEE
Transactions on
Po
wer
E
l
ec
tr
oni
cs
,
vol. 12(2
)
, pp
. 311
– 318
,
Mar
1997.
[14]
S. Chandrasekh
a
r, J.
Brahm
m
a
m
and M. Srinu
,
“
M
itiga
ti
on of
Voltag
e
Fli
c
ker
and Redu
ct
ion
in THD b
y
usin
g
ST
AT
COM”
,
In
ternational Jour
nal
of Electrical
and Com
puter Engineering
,
vol.
3(1), pp
. 102
– 1
08, Feb
2013.
[15]
A. Cava
llin
i and
G.C. Mont
anar
i,
“
C
om
pensation
Strategi
es for Sh
unt Activ
e-Filt
er
Control”
,
I
E
EE Transactions
on
Power
E
l
ec
tr
oni
cs
,
vol. 9(6)
, pp.
587 – 593
,
Nov 1994.
[16]
B. Singh and J.
Solanki, “A Co
mparison
of Control Algorithms for DSTATCOM”,
I
EEE Transac
tions on Industri
a
l
Electronics,
vol. 56(7), pp. 2738-
2745, July
2009
.
[17]
B. Singh B
,
P
.
Jay
a
pr
akash
and D.P. Ko
th
ari, “A
T-conn
ected Tr
ansfor
mer and Thr
e
e-Leg VSC Bas
e
d
DSTATCOM fo
r Power Quality Improvement”,
IEEE Transactions on Power
Electronics
, vo
l.
23(6), pp
. 2710
–
2718, Nov 2008
.
[18]
K. Ranjith Kum
a
r and P. Sa
danandam
,
“
G
A for Optim
al PI in DC
Voltage Regulat
ion of DSTATCOM”
,
International Jo
urnal of
Electr
ical and Computer Engin
eering
,
vo
l. 1(2)
, pp
. 110
–
118, Dec 2011.
[19]
B. Singh, P. Jay
a
prakash, T.
R. S
o
may
a
julu and D.P. Kothari, “Redu
ced Rating
VSC
with a Zig-Zag Transfor
mer
for Current Com
p
ens
a
tion in A Three-P
h
as
e F
our-W
ire Dis
t
ribution S
y
s
t
em
”,
IEEE T
r
ansactions on Power
Deliv
er
y,
vol. 24
(1), pp
. 249-259
, Jan 2009
.
[20]
Holtz J, “Pulse Width Modulation – A Survey
”,
IEEE Transacti
ons on I
ndustria
l Ele
c
tronics
,
vol. 39(5), pp
. 410 –
420, Oct 1992.
BIOGRAP
HI
ES OF
AUTH
ORS
Deepthi Jany
a
vula
obtain
e
d h
e
r B.E from Andhra University in 2003, M.Tech from JNTU
H
y
der
a
bad
in 20
09 and is
curren
t
ly
pursuing h
e
r
PhD from JNTU H
y
deraba
d
in
e
x
terna
l
m
ode.
She has about 1
1
y
e
ars of teach
ing exper
i
ence.
Fo
r nearly
10
years, she was on
the faculty
of
Electri
cal
and Electroni
cs Engineer
ing, Padm
asri Dr B V
Raju Institut
e
of Technolo
g
y
.
Subsequently
, sh
e joined th
e Government of A
ndhra Pradesh Roads & Buildings Department as
an As
s
i
s
t
ant Execut
i
ve Engin
e
er. Current
l
y
, s
h
e is
working
as
a Lectur
er a
t
Governm
e
nt
P
o
l
y
t
echni
c, S
a
n
g
aredd
y
, T
e
lang
ana, Indi
a. S
h
e
has published six
papers
in variou
s national and
intern
ation
a
l jou
r
nals and confe
r
ences. Her ar
e
a
s of inte
re
st inc
l
ude
Powe
r S
y
ste
m
s,
Powe
r
Qualit
y and app
l
ica
tions of P
o
wer Elec
tronics to
P
o
wer S
y
stem
s.
S
h
e is a Mem
b
e
r
of IEEE and
l
i
f
e me
mbe
r
of IST
E
.
Saty
e
ndr
a Nath Saxe
na
obtained his B E from
University
of
B
o
mbay
, Ind
i
a, in
1963, M.Tech
from Indian Institute of
Technolog
y
(IIT)
Kharagpur
, India, in
1
966, and
Ph.D f
r
om University
of Tok
y
o, Japan
,
in 1974
.
He has a teach
i
ng experience
of about 27
y
e
ar
s at IIT, NIT and GRIET,
He also has an
experience of in
dustrial r
e
sear
ch
of about 25
y
e
ars while working in Bharat Heav
y
Electr
i
cals
Ltd (BHEL)
, C
o
rporate R
e
s
ear
ch & Dev
e
lop
m
en
t (R&D) Division, H
y
der
a
b
a
d, Ind
i
a, from
where h
e
retir
ed
in 2004
as Gener
a
l Man
a
ger
.
He has a large
number of techn
i
cal papers pub
lish
ed in national and internation
a
l journ
a
ls and
conferen
ces
. Hi
s
areas
of inter
e
s
t
includ
e el
ec
tric
al m
achin
es
,
power elec
tron
ics
and power
s
y
ste
m
s.
Evaluation Warning : The document was created with Spire.PDF for Python.