I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
3
,
J
u
n
e
201
7
,
p
p
.
1568
~
1
5
7
3
I
SS
N:
2088
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
7
i
3
.
p
p
1
5
6
8
-
1573
1568
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Dy
na
m
ic Mo
delli
ng
of Aer
o
bic
Gr
a
nula
r Sludge Ar
tif
icia
l
Neura
l Ne
tw
o
rk
s
Nura
ziza
h M
a
hm
o
d
1
,
No
rha
liza
Abdu
l Wa
ha
b
2
1,
2
De
p
a
rt
m
e
n
t
o
f
Co
n
tro
l
&
M
e
c
h
a
tro
n
ics
En
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
,
8
1
3
1
0
S
k
u
d
a
i
Jo
h
o
r
Ba
h
ru
,
M
a
lay
s
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Feb
13
,
2
0
1
7
R
ev
i
s
ed
A
p
r
18
,
2
0
1
7
A
cc
ep
ted
Ma
y
2
,
2
0
1
7
A
e
ro
b
ic
G
r
a
n
u
lar
S
l
u
d
g
e
(AG
S
)
tec
h
n
o
lo
g
y
is
a
p
ro
m
isin
g
d
e
v
e
lo
p
m
e
n
t
in
th
e
f
ield
o
f
a
e
ro
b
ic w
a
st
e
w
a
ter t
r
e
a
t
m
e
n
t
s
y
st
e
m
.
A
e
ro
b
ic g
ra
n
u
latio
n
u
su
a
ll
y
h
a
p
p
e
n
e
d
in
se
q
u
e
n
c
in
g
b
a
tch
re
a
c
to
rs
(S
BRs
)
s
y
ste
m
.
M
o
s
t
a
v
a
il
a
b
le
m
o
d
e
ls
f
o
r
th
e
s
y
ste
m
a
re
stru
c
tu
ra
ll
y
c
o
m
p
lex
w
it
h
th
e
n
o
n
l
in
e
a
rit
y
a
n
d
u
n
c
e
rtain
ty
o
f
th
e
s
y
ste
m
m
a
k
e
s
it
h
a
rd
to
p
re
d
ict.
A
re
li
a
b
le
m
o
d
e
l
o
f
AG
S
is
e
ss
e
n
ti
a
l
in
o
rd
e
r
to
p
ro
v
id
e
a
to
o
l
f
o
r
p
re
d
ictin
g
it
s
p
e
rf
o
r
m
a
n
c
e
.
T
h
is
p
a
p
e
r
p
ro
p
o
se
s
a
d
y
n
a
m
i
c
n
e
u
ra
l
n
e
tw
o
rk
a
p
p
ro
a
c
h
to
p
re
d
ict
th
e
d
y
n
a
m
ic
b
e
h
a
v
io
r
o
f
a
e
ro
b
ic
g
ra
n
u
lar
slu
d
g
e
S
BRs
.
T
h
e
d
e
v
e
lo
p
e
d
m
o
d
e
l
w
il
l
b
e
a
p
p
li
e
d
to
p
re
d
ict
t
h
e
p
e
rf
o
rm
a
n
c
e
o
f
AG
S
in
term
s
o
f
th
e
r
e
m
o
v
a
l
o
f
Ch
e
m
ic
a
l
Ox
y
g
e
n
De
m
a
n
d
(COD
).
T
h
e
si
m
u
latio
n
u
se
s
th
e
e
x
p
e
r
im
e
n
tal
d
a
ta
o
b
tain
e
d
f
ro
m
th
e
s
e
q
u
e
n
c
in
g
b
a
tch
r
e
a
c
to
r
u
n
d
e
r
t
h
re
e
d
if
fe
re
n
t
c
o
n
d
i
ti
o
n
s
o
f
te
m
p
e
ra
tu
re
(3
0
˚
C,
4
0
˚C
a
n
d
5
0
˚C
).
T
h
e
o
v
e
ra
ll
re
su
lt
s
in
d
ica
ted
t
h
a
t
th
e
d
y
n
a
m
ic
o
f
a
e
ro
b
ic
g
ra
n
u
lar
slu
d
g
e
S
BR
c
a
n
b
e
su
c
c
e
ss
f
u
ll
y
e
sti
m
a
ted
u
sin
g
d
y
n
a
m
ic
n
e
u
ra
l
n
e
tw
o
rk
m
o
d
e
l,
p
a
rti
c
u
larly
a
t
h
ig
h
tem
p
e
ra
tu
re
.
K
ey
w
o
r
d
:
A
er
o
b
ic
G
r
an
u
lar
S
lu
d
g
e
D
y
n
a
m
ic
Feed
f
o
r
w
ar
d
Neu
r
al
N
et
w
o
r
k
Seq
u
en
ci
n
g
B
atch
R
ea
c
to
r
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
No
r
h
aliza
A
b
d
u
l W
ah
ab
,
Dep
ar
t
m
en
t o
f
C
o
n
tr
o
l &
Me
c
h
atr
o
n
ics E
n
g
in
ee
r
i
n
g
,
Un
i
v
er
s
iti T
ek
n
o
lo
g
i M
ala
y
s
ia
,
8
1
3
1
0
Sk
u
d
ai
J
o
h
o
r
B
ah
r
u
,
Ma
la
y
s
ia.
E
m
ail: a
liza
@
f
k
e.
u
t
m
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
Do
m
esti
c
w
aste
w
a
ter
tr
ea
t
m
e
n
t
i
n
u
r
b
an
ar
ea
s
i
s
o
n
e
o
f
t
h
e
cr
u
cial
ele
m
e
n
ts
to
b
e
co
n
s
id
er
ed
in
th
e
d
ev
elo
p
m
en
t
o
f
a
co
u
n
tr
y
i
n
o
r
d
er
to
s
u
s
tain
i
n
d
iv
id
u
al
’
s
h
e
alth
a
n
d
w
e
lf
ar
e.
U
n
tr
ea
ted
waste
w
ater
ca
n
ca
u
s
e
s
p
r
ea
d
in
g
o
f
d
is
ea
s
e
i
n
t
h
e
f
o
r
m
o
f
s
e
v
er
al
t
y
p
e
s
o
f
e
n
d
e
m
ic
an
d
ep
id
e
m
ic
ill
n
es
s
es
[
1
]
.
T
h
er
e
ar
e
v
ar
io
u
s
k
in
d
o
f
w
a
s
te
w
ater
tr
ea
t
m
e
n
t
ap
p
licatio
n
s
n
o
w
ad
a
y
s
r
an
g
i
n
g
f
r
o
m
m
o
d
est,
lo
w
p
r
iced
,
an
d
less
ef
f
icie
n
t
p
r
o
ce
s
s
es
to
v
er
y
ad
v
a
n
ce
d
,
h
ig
h
l
y
ef
f
icie
n
t
a
n
d
p
r
icey
o
p
er
atio
n
s
.
A
er
o
b
ic
g
r
an
u
lar
s
lu
d
g
e
(
A
GS)
tech
n
o
lo
g
y
i
s
a
p
r
o
m
i
s
i
n
g
d
e
v
elo
p
m
e
n
t
in
b
io
lo
g
ica
l
w
aste
w
ater
tr
ea
t
m
en
t
[
2
],
[
3
]
.
A
er
o
b
ic
g
r
an
u
les
h
a
v
e
a
r
eg
u
lar
an
d
co
m
p
ac
t
p
h
y
s
ica
l
s
tr
u
ct
u
r
e,
g
o
o
d
s
ettle
ab
ilit
y
,
h
i
g
h
b
io
m
as
s
r
eten
tio
n
,
h
av
e
th
e
ab
ilit
y
to
w
it
h
s
tan
d
s
h
o
ck
lo
ad
o
f
to
x
ic
co
m
p
o
u
n
d
s
co
m
p
ar
ed
w
it
h
ac
tiv
ated
s
lu
d
g
e.
A
er
o
b
ic
g
r
an
u
lat
io
n
u
s
u
al
l
y
h
ap
p
en
ed
in
s
eq
u
en
ci
n
g
b
at
ch
r
ea
cto
r
s
(
SB
R
s
)
.
Ma
n
y
r
esear
ch
er
s
(
r
ef
er
to
[
3
]
-
[
5
]
)
h
av
e
e
x
te
n
s
i
v
el
y
in
v
e
s
ti
g
ated
th
e
f
u
n
d
a
m
en
tals
o
f
ae
r
o
b
ic
g
r
an
u
lar
s
l
u
d
g
e
SB
R
s
.
T
h
e
m
ain
ch
a
llen
g
e
o
f
m
o
d
el
lin
g
a
n
d
co
n
tr
o
l
o
f
an
ae
r
o
b
i
c
g
r
an
u
lar
s
lu
d
g
e
s
y
s
te
m
is
it
in
v
o
lv
ed
co
m
p
le
x
p
h
y
s
ical,
b
io
lo
g
ical
an
d
c
h
e
m
ical
p
r
o
ce
s
s
e
s
w
h
i
ch
i
n
cl
u
d
e
i
n
ter
n
al
i
n
ter
ac
tio
n
s
a
m
o
n
g
p
r
o
ce
s
s
v
ar
iab
les
an
d
s
l
u
d
g
e
ch
ar
ac
ter
is
tics
.
Mo
s
t
o
f
t
h
e
av
ai
lab
le
m
o
d
el
s
f
o
r
th
e
s
y
s
te
m
ar
e
co
m
p
lex
(
m
ath
e
m
at
ical
m
o
d
el)
.
T
h
er
ef
o
r
e,
th
is
p
ap
er
p
r
o
p
o
s
e
s
ar
tif
icial
n
eu
r
al
n
e
t
w
o
r
k
s
(
A
N
N)
m
o
d
ellin
g
w
h
ic
h
u
s
i
n
g
d
y
n
a
m
ic
n
eu
r
al
n
e
t
w
o
r
k
an
d
f
ee
d
-
f
o
r
war
d
n
eu
r
al
n
et
w
o
r
k
(
FF
NN)
a
p
p
r
o
ac
h
to
m
o
d
el
ae
r
o
b
ic
g
r
an
u
lar
s
l
u
d
g
e
SB
R
s
.
C
h
e
m
ical
O
x
y
g
e
n
De
m
a
n
d
(
C
OD)
ef
f
l
u
en
t
i
s
s
elec
ted
as
th
e
o
u
tp
u
t
o
f
t
h
e
m
o
d
el
as
it
is
o
n
e
o
f
th
e
cr
itical
p
ar
am
eter
s
t
h
at
h
as
b
ee
n
m
o
n
ito
r
ed
an
d
r
ev
ea
ls
t
h
e
e
f
f
icie
n
t
o
f
th
e
p
lan
t.
T
h
e
o
b
j
ec
tiv
es
o
f
t
h
is
p
ap
er
ar
e
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
Dyn
a
mic
Mo
d
ellin
g
o
f A
ero
b
ic
Gra
n
u
la
r
S
lu
d
g
e
A
r
tifi
cia
l N
eu
r
a
l
N
etw
o
r
k
(
N
u
r
a
z
iz
a
h
Ma
h
mo
d
)
1569
d
ev
elo
p
a
d
y
n
a
m
ic
n
e
u
r
al
n
et
w
o
r
k
m
o
d
el
a
n
d
a
f
ee
d
-
f
o
r
w
ar
d
n
eu
r
al
n
et
w
o
r
k
m
o
d
el
o
f
AGS
f
o
r
p
r
ed
ictio
n
o
f
C
OD
ef
f
l
u
e
n
t
in
w
a
s
te
w
ater
tr
ea
t
m
en
t
p
la
n
t
(
W
W
T
P
)
.
T
h
e
p
er
f
o
r
m
an
ce
o
f
d
y
n
a
m
ic
n
et
w
o
r
k
an
d
f
ee
d
-
f
o
r
w
ar
d
n
et
w
o
r
k
w
er
e
co
m
p
ar
ed
in
o
r
d
er
to
as
s
es
s
t
h
e
e
f
f
ec
t
iv
en
e
s
s
o
f
t
h
e
m
et
h
o
d
s
i
n
p
r
ed
ictin
g
t
h
e
d
y
n
a
m
ic
b
eh
av
io
u
r
o
f
ae
r
o
b
ic
g
r
an
u
lar
s
lu
d
g
e
SB
R
s
p
ar
tic
u
lar
l
y
at
h
i
g
h
te
m
p
er
atu
r
e.
2.
RE
S
E
ARCH
M
E
T
H
O
D
A
er
o
b
ic
g
r
an
u
lar
s
l
u
d
g
e
(
A
G
S)
u
s
i
n
g
SB
R
s
y
s
te
m
i
s
ch
o
s
en
as
t
h
e
ca
s
e
s
tu
d
y
.
AGS
is
a
d
en
s
e
clu
s
ter
o
f
s
y
m
b
io
tic
o
r
g
an
is
m
s
w
it
h
ex
ce
l
len
t
ef
f
icie
n
c
y
in
m
as
s
tr
an
s
f
er
an
d
g
o
o
d
b
io
lo
g
ica
l
ac
ti
v
it
y
p
er
f
o
r
m
a
n
ce
.
T
h
e
i
n
p
u
t
-
o
u
tp
u
t
o
f
t
h
e
e
x
p
er
i
m
e
n
tal
d
ata
o
f
t
h
e
s
y
s
te
m
w
er
e
u
s
ed
i
n
d
ev
elo
p
in
g
d
y
n
a
m
ic
n
eu
r
al
n
e
t
w
o
r
k
m
o
d
el
a
n
d
F
F
NN
m
o
d
el.
T
h
e
tr
ain
i
n
g
d
ata
s
et
is
6
0
%
an
d
an
o
t
h
er
4
0
%
is
u
s
ed
f
o
r
test
i
n
g
d
ata
s
et.
T
h
e
p
er
f
o
r
m
a
n
ce
s
o
f
th
e
m
o
d
els
w
er
e
ev
al
u
ate
d
u
s
in
g
co
ef
f
icie
n
t
o
f
d
eter
m
i
n
atio
n
(
R
²)
,
m
ea
n
s
q
u
ar
e
er
r
o
r
(
MSE
)
an
d
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
(
R
MSE
)
.
Hig
h
v
a
lu
e
o
f
R
²
an
d
lo
w
v
alu
e
s
o
f
MSE
an
d
R
MSE
i
n
d
icate
th
e
m
o
s
t a
cc
u
r
ate
p
r
ed
ictio
n
o
f
th
e
m
o
d
el.
P
r
ev
io
u
s
r
esear
ch
o
n
A
GS
u
s
in
g
SB
R
s
y
s
te
m
h
a
v
e
b
ee
n
c
o
n
d
u
cted
at
a
m
b
ie
n
t
te
m
p
er
at
u
r
e.
T
h
er
e
w
er
e
s
o
m
e
s
t
u
d
ies
o
n
A
G
S
t
h
at
h
a
v
e
b
ee
n
co
n
d
u
c
ted
at
h
i
g
h
te
m
p
er
atu
r
e,
f
u
r
th
er
k
n
o
w
le
d
g
e
o
n
t
h
e
e
f
f
ec
t
o
f
h
ig
h
te
m
p
er
atu
r
e
o
n
ae
r
o
b
ic
g
r
an
u
lat
io
n
is
s
till
co
n
f
i
n
ed
[
6
]
.
2
.
1
.
E
x
peri
m
e
nta
l Set
up
T
h
e
ex
p
er
im
e
n
t
w
a
s
b
ee
n
co
n
d
u
cted
in
Ma
d
in
a
h
cit
y
,
Sa
u
d
i
A
r
ab
ia.
T
h
e
p
u
r
p
o
s
e
o
f
th
e
ex
p
er
i
m
e
n
t
is
to
in
v
es
tig
a
te
t
h
e
g
r
a
n
u
la
t
io
n
p
r
o
ce
s
s
,
s
tab
ilit
y
,
d
en
s
it
y
an
d
p
er
f
o
r
m
a
n
ce
s
o
f
ae
r
o
b
ic
g
r
an
u
les
a
t
h
ig
h
te
m
p
er
atu
r
e
3
0
˚
C
,
4
0
˚
C
,
an
d
5
0
˚
C
.
Slu
d
g
e
co
llected
f
r
o
m
th
e
w
a
s
te
w
ate
r
tr
ea
t
m
en
t
p
la
n
t
i
n
Ma
d
i
n
ah
ci
t
y
,
Sau
d
i
A
r
ab
ia
a
s
s
ee
d
s
l
u
d
g
e
w
a
s
u
s
ed
to
c
u
lti
v
ate
ae
r
o
b
ic
g
r
an
u
lat
io
n
i
n
SB
R
.
D
u
r
in
g
s
u
m
m
er
ti
m
e,
th
e
te
m
p
er
atu
r
e
d
eser
t in
Ma
d
i
n
a
h
d
u
e
to
th
e
cli
m
a
te
is
r
ea
ch
i
n
g
clo
s
e
to
5
0
˚
C
.
T
h
r
ee
d
o
u
b
le
-
w
alled
c
y
li
n
d
r
ic
al
co
lu
m
n
b
io
r
ea
cto
r
s
(
in
ter
n
a
l
d
ia
m
eter
o
f
6
.
5
cm
an
d
to
tal
h
eig
h
t
o
f
1
0
0
cm
)
w
er
e
u
s
ed
i
n
t
h
e
e
x
p
er
i
m
en
t.
T
h
e
w
o
r
k
i
n
g
te
m
p
er
atu
r
es
f
o
r
t
h
e
b
io
r
ea
cto
r
s
w
er
e
co
n
tr
o
lled
u
s
i
n
g
a
th
er
m
o
s
tat
an
d
w
ater
b
ath
s
lee
v
es
w
it
h
o
u
t c
o
n
tr
o
llin
g
t
h
e
p
H
lev
el
an
d
o
x
y
g
e
n
at
3
0
,
4
0
a
n
d
5
0
±
1
°C
.
2
.
2
.
Da
t
a
Co
llect
io
n
T
h
e
in
p
u
ts
v
ar
iab
les
i
n
co
n
s
tr
u
cti
n
g
th
e
m
o
d
els
ar
e
C
h
e
m
ical
O
x
y
g
e
n
De
m
a
n
d
(
C
OD)
,
T
o
tal
Or
g
an
ic
C
ar
b
o
n
(
T
OC
)
,
T
o
tal
P
h
o
s
p
h
o
r
u
s
(
T
P
)
,
T
o
tal
Nitr
o
g
en
(
T
N)
,
Am
m
o
n
ia
Nitr
o
g
e
n
(
A
N)
an
d
Mi
x
ed
L
iq
u
o
r
S
u
s
p
e
n
d
ed
So
lid
(
ML
SS
)
.
T
h
ese
i
n
p
u
ts
ar
e
th
e
in
f
l
u
en
t
s
f
o
r
th
e
p
lan
t
a
n
d
t
h
e
co
n
ce
n
tr
at
io
n
o
f
C
O
D
ef
f
lu
e
n
t i
s
s
elec
ted
as t
h
e
o
u
tp
u
t f
o
r
th
e
m
o
d
el.
T
h
e
m
ea
s
u
r
e
m
e
n
t
f
o
r
i
n
f
lu
e
n
t
s
an
d
e
f
f
l
u
en
t
f
o
r
6
p
ar
a
m
eter
s
b
ee
n
r
ec
o
r
d
ed
.
T
h
e
ef
f
l
u
en
t r
ea
d
in
g
h
a
s
b
ee
n
r
ec
o
r
d
ed
f
r
o
m
t
h
e
d
a
y
1
o
f
t
h
e
o
p
er
atio
n
u
n
til
d
a
y
6
0
at
in
ter
v
al
o
f
3
d
a
y
s
(
to
tal
2
1
s
a
m
p
les).
T
h
e
to
tal
2
1
s
a
m
p
les
ar
e
u
til
ized
to
d
ev
elo
p
th
e
m
o
d
el
f
o
r
ae
r
o
b
ic
g
r
a
n
u
lar
s
l
u
d
g
e
u
n
d
er
th
r
ee
d
i
f
f
er
en
t
te
m
p
er
atu
r
e
o
f
s
eq
u
en
c
in
g
b
atch
r
ea
cto
r
.
2
.
3
.
Dy
na
m
ic
Ne
ura
l N
et
w
o
rk
M
o
del o
f
Aer
o
bic G
ra
nu
la
r
Sl
ud
g
e
T
h
e
r
ea
l
ex
p
er
i
m
e
n
tal
d
ata
f
r
o
m
t
h
e
SB
R
f
o
r
t
h
r
ee
d
i
f
f
er
e
n
t
te
m
p
er
atu
r
es
ar
e
u
tili
ze
d
to
d
ev
elo
p
t
h
e
m
o
d
el
s
.
T
h
e
n
o
r
m
a
lizatio
n
o
f
th
e
m
ea
s
u
r
ed
d
ata
is
d
o
n
e
b
y
u
s
i
n
g
eq
u
atio
n
(
1
)
.
T
h
e
d
ata
v
al
u
es
h
a
v
e
b
ee
n
s
ca
led
b
et
w
ee
n
ze
r
o
(
0
)
an
d
o
n
e
(
1
)
.
=
(
−
)
(
−
)
(
1
)
w
h
er
e
is
th
e
n
o
r
m
alize
d
d
ata
p
o
in
t,
is
th
e
d
ata
s
am
p
le,
is
th
e
m
i
n
i
m
u
m
v
alu
e
s
a
m
o
n
g
th
e
d
ata
s
a
m
p
les
an
d
is
t
h
e
m
ax
i
m
u
m
v
al
u
e
a
m
o
n
g
t
h
e
d
ata
s
a
m
p
le
.
T
h
e
d
ata
n
o
r
m
aliza
tio
n
f
o
r
n
eu
r
al
n
et
w
o
r
k
is
v
ital
i
n
m
i
n
i
m
izin
g
t
h
e
c
h
a
n
ce
s
o
f
g
e
tti
n
g
s
t
u
ck
i
n
lo
ca
l
m
i
n
i
m
a
an
d
f
aster
co
n
v
er
g
en
ce
.
T
h
e
n
o
r
m
alize
d
d
ata
is
d
iv
id
ed
in
to
6
0
% f
o
r
tr
ain
i
n
g
a
n
d
4
0
% f
o
r
test
i
n
g
s
et
s
.
I
n
th
i
s
ca
s
e,
t
h
e
s
elec
tio
n
o
f
tr
ain
i
n
g
a
n
d
test
i
n
g
d
ata
s
ets h
a
v
e
b
ee
n
d
o
n
e
s
tat
is
ticall
y
a
s
s
u
g
g
ested
i
n
[
7
]
.
T
h
e
m
ain
c
h
alle
n
g
e
i
n
d
ev
e
lo
p
in
g
n
eu
r
al
n
et
w
o
r
k
m
o
d
e
ls
is
f
o
r
d
eter
m
i
n
i
n
g
s
tr
u
ctu
r
e
o
f
th
e
n
et
w
o
r
k
.
I
n
t
h
i
s
w
o
r
k
,
th
e
n
et
w
o
r
k
s
tr
u
ct
u
r
e
w
as
s
e
lecte
d
af
ter
s
ev
er
al
tr
ials
co
n
s
id
er
in
g
t
h
e
r
elatio
n
s
h
ip
p
r
o
p
o
s
ed
b
y
[
8
]
.
I
t
co
n
s
is
t
s
o
f
t
h
r
ee
la
y
er
s
w
h
ic
h
ar
e
i
n
p
u
t
la
y
er
t
h
at
co
n
tai
n
in
g
s
ix
i
n
p
u
ts
v
ar
iab
les
an
d
a
f
ee
d
b
ac
k
w
h
ic
h
m
ad
e
a
to
tal
o
f
s
e
v
e
n
i
n
p
u
t
s
co
n
n
ec
ted
to
h
i
d
d
en
la
y
er
(
h
id
d
en
n
eu
r
o
n
s
)
a
n
d
co
n
n
ec
ted
to
t
h
e
o
u
tp
u
t la
y
er
.
I
n
d
eter
m
i
n
i
n
g
th
e
r
an
g
e
o
f
t
h
e
h
id
d
en
n
e
u
r
o
n
s
,
[
9
]
p
r
o
p
o
s
ed
th
at
t
h
er
e
e
x
is
t
an
u
p
p
er
b
o
u
n
d
f
o
r
t
h
e
n
u
m
b
er
o
f
h
id
d
en
n
e
u
r
o
n
s
i
n
o
r
d
er
t
o
ac
h
iev
e
an
ac
c
u
r
ate
n
eu
r
al
n
et
w
o
r
k
ap
p
r
o
x
i
m
atio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
5
6
8
–
1
5
7
3
1570
Nα
≤
2
Nβ +
1
(
2
)
w
h
er
e
Nα
i
s
t
h
e
n
u
m
b
er
o
f
h
id
d
en
n
eu
r
o
n
an
d
Nβ i
s
th
e
n
u
m
b
er
o
f
in
p
u
ts
.
T
h
e
s
i
m
u
la
tio
n
s
tar
ted
w
ith
o
n
e
h
id
d
en
n
e
u
r
o
n
f
o
llo
w
ed
b
y
2
,
4
,
6
(
in
cr
em
e
n
t
b
y
2
)
u
n
til
1
6
as
it
is
th
e
u
p
p
er
b
o
u
n
d
ar
y
p
r
o
p
o
s
ed
in
[
9
]
.
T
h
e
f
o
llo
w
i
n
g
r
an
g
e
is
d
ec
id
ed
b
ased
o
n
th
e
E
q
u
atio
n
(
2
)
an
d
it
is
ab
le
to
s
ee
th
e
v
ar
iatio
n
f
a
s
ter
b
y
i
n
cr
e
m
e
n
t o
f
t
w
o
i
n
s
tead
o
f
s
ta
r
tin
g
f
r
o
m
o
n
e
h
id
d
en
n
eu
r
o
n
u
n
t
il si
x
tee
n
(
1
6
)
.
T
h
e
tan
g
e
n
t
-
s
i
g
m
o
id
(
tan
s
ig
)
tr
an
s
f
er
f
u
n
ctio
n
is
ap
p
lied
f
o
r
th
e
h
id
d
en
la
y
er
a
n
d
p
u
r
eli
n
(
p
u
r
elin
)
f
o
r
th
e
o
u
tp
u
t
la
y
er
as
it
i
s
w
i
d
ely
u
s
ed
w
it
h
d
y
n
a
m
ic
n
e
u
r
a
l
n
et
w
o
r
k
an
d
F
FNN.
T
h
e
L
e
v
en
b
er
g
-
Ma
r
q
u
ar
d
t
alg
o
r
ith
m
(
tr
ai
n
l
m
)
an
d
b
ac
k
-
p
r
o
p
ag
atio
n
w
a
s
u
s
ed
to
tr
ai
n
th
e
m
o
d
el.
T
h
e
ac
cu
r
ac
y
o
f
p
r
ed
ictio
n
ab
ilit
y
o
f
th
e
d
ev
elo
p
ed
m
o
d
el
is
b
ased
o
n
th
e
p
er
f
o
r
m
a
n
ce
cr
iter
ia
u
s
in
g
R
²,
MSE
a
n
d
R
MSE
.
T
h
e
d
e
-
n
o
r
m
aliza
tio
n
p
r
o
ce
s
s
is
d
o
n
e
to
s
ca
le
b
ac
k
th
e
v
al
u
es to
it
s
o
r
ig
i
n
al
s
ca
le.
T
h
e
f
o
r
m
u
la
i
s
ex
p
r
ess
ed
i
n
E
q
u
atio
n
(
3
)
.
=
(
−
)
+
(
3)
w
h
er
e
is
d
en
o
r
m
alize
d
d
ata
s
am
p
le,
is
n
o
r
m
al
ized
d
ata
s
am
p
le,
is
th
e
m
i
n
i
m
u
m
v
al
u
e
a
m
o
n
g
th
e
d
ata
s
a
m
p
les a
n
d
is
th
e
m
a
x
i
m
u
m
v
al
u
e
a
m
o
n
g
t
h
e
d
ata
s
a
m
p
le.
T
h
e
s
am
e
e
x
p
er
i
m
e
n
tal
d
ata
w
er
e
u
s
ed
w
h
ic
h
is
6
0
%
u
s
e
d
f
o
r
tr
ain
in
g
s
e
t
an
d
4
0
%
f
o
r
test
in
g
to
d
ev
elo
p
FF
NN
m
o
d
els.
A
l
s
o
,
s
i
m
ilar
p
r
o
ce
d
u
r
e
o
f
d
a
ta
n
o
r
m
aliza
tio
n
to
t
h
e
d
e
-
n
o
r
m
al
iza
tio
n
ap
p
lied
in
to
t
h
e
d
y
n
a
m
ic
n
e
u
r
al
n
et
w
o
r
k
m
o
d
e
llin
g
w
er
e
r
ep
ea
ted
in
FF
NN
m
o
d
el.
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
T
h
e
r
ea
l
ex
p
er
im
e
n
tal
d
ata
o
f
th
e
ae
r
o
b
ic
g
r
an
u
lar
s
l
u
d
g
e
S
B
R
s
y
s
te
m
is
u
s
ed
f
o
r
m
o
d
elin
g
o
f
C
O
D
ef
f
lu
e
n
t
u
s
i
n
g
d
y
n
a
m
ic
n
eu
r
al
n
et
w
o
r
k
m
o
d
el.
T
h
e
s
i
m
u
lat
i
o
n
o
f
C
OD
m
o
d
el
f
o
r
r
ea
cto
r
w
it
h
te
m
p
er
atu
r
e
o
f
3
0
˚
C
s
tar
ted
w
it
h
o
n
e
h
id
d
en
n
eu
r
o
n
s
u
n
ti
l 1
6
n
eu
r
o
n
s
.
T
h
e
b
est
m
o
d
el
f
o
r
ea
ch
n
eu
r
o
n
n
u
m
b
er
i
s
d
eter
m
i
n
ed
u
s
i
n
g
t
h
r
ee
p
ar
a
m
eter
s
w
h
ic
h
ar
e
co
ef
f
icie
n
t
o
f
d
eter
m
i
n
ati
o
n
(
R
²)
,
m
ea
n
s
q
u
ar
e
er
r
o
r
(
MSE
)
an
d
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
(
R
MSE
)
.
Fi
g
u
r
e
1
s
h
o
w
s
th
e
m
ea
s
u
r
ed
a
n
d
p
r
ed
icted
m
o
d
els
o
f
C
OD
at
t
h
e
t
e
m
p
er
atu
r
e
o
f
3
0
˚
C
f
o
r
tr
ain
i
n
g
s
tag
e
w
h
i
le
f
o
r
te
s
tin
g
s
tag
e
a
s
d
ep
icted
in
Fi
g
u
r
e
2
.
Fro
m
Fig
u
r
e
1
,
th
e
p
r
ed
ictio
n
p
er
f
o
r
m
an
ce
o
f
R
²
an
d
MSE
f
o
r
tr
ain
in
g
g
i
v
e
7
7
.
9
8
%
an
d
0
.
0
0
9
4
,
r
esp
ec
tiv
el
y
.
Fo
r
test
i
n
g
,
t
h
e
d
y
n
a
m
ic
m
o
d
el
d
em
o
n
s
tr
ated
b
etter
p
r
ed
ictio
n
w
it
h
R
²
o
f
9
1
.
1
7
% a
n
d
MSE
o
f
0
.
0
0
1
4
.
Fig
u
r
e
1
.
Mo
d
el
p
r
e
d
ictio
n
d
u
r
in
g
tr
ai
n
i
n
g
f
o
r
r
ea
cto
r
3
0
˚
C
1
2
3
4
5
6
7
8
9
10
50
60
70
80
90
100
110
120
130
140
150
C
O
D
C
o
n
ce
n
t
r
a
t
i
o
n
(
m
g
/
l
)
D
a
t
a
Com
parison
Be
tw
e
e
n Me
asure
d And P
re
dicte
d
Effl
ue
nt CO
D For Tra
ining
Data
- Dy
nam
ic M
ode
l
M
e
a
s
u
r
e
d
C
O
D
P
r
e
d
i
c
t
e
d
C
O
D
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
Dyn
a
mic
Mo
d
ellin
g
o
f A
ero
b
ic
Gra
n
u
la
r
S
lu
d
g
e
A
r
tifi
cia
l N
eu
r
a
l
N
etw
o
r
k
(
N
u
r
a
z
iz
a
h
Ma
h
mo
d
)
1571
Fig
u
r
e
2
.
Mo
d
el
p
r
e
d
ictio
n
d
u
r
in
g
te
s
ti
n
g
f
o
r
r
ea
cto
r
at
3
0
˚
C
Fo
r
r
ea
cto
r
4
0
˚
C
,
th
e
m
o
d
el
p
r
ed
icted
f
o
r
C
OD
d
u
r
in
g
tr
ain
in
g
s
tag
e
g
iv
e
R
²
o
f
9
4
.
2
%
an
d
th
e
MSE
o
f
0
.
0
0
4
as
ill
u
s
tr
ated
in
Fi
g
u
r
e
3
.
I
n
t
h
e
test
i
n
g
m
o
d
el,
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
R
²
i
s
9
1
.
1
4
%
w
it
h
t
h
e
v
al
u
e
o
f
MSE
o
f
0
.
0
0
6
2
as sh
o
w
n
i
n
Fi
g
u
r
e
4
.
Fig
u
r
e
3
.
Mo
d
el
p
r
e
d
ictio
n
d
u
r
in
g
tr
ai
n
i
n
g
f
o
r
r
ea
cto
r
at
4
0
˚
C
Fig
u
r
e
4
.
Mo
d
el
p
r
e
d
ictio
n
d
u
r
in
g
te
s
ti
n
g
f
o
r
r
ea
cto
r
at
4
0
˚
C
1
2
3
4
5
6
7
8
9
50
60
70
80
90
100
110
120
C
O
D
C
o
n
ce
n
t
r
a
t
i
o
n
(
m
g
/
l
)
D
a
t
a
Com
parison
Be
tw
e
e
n Me
asure
d And P
re
dicte
d
Efflu
e
nt CO
D For Te
sting
Data
- Dy
nam
ic M
ode
l
M
e
a
s
u
r
e
d
C
O
D
P
r
e
d
i
c
t
e
d
C
O
D
1
2
3
4
5
6
7
8
9
10
0
20
40
60
80
100
120
140
160
180
C
O
D
C
o
n
ce
n
t
r
a
t
i
o
n
(
m
g
/
l
)
D
a
t
a
Com
parison
Be
tw
e
e
n Me
asure
d And P
re
dicte
d
Efflu
e
nt CO
D For Tra
ining
Data
- Dy
nam
ic M
ode
l
M
e
a
s
u
r
e
d
C
O
D
P
r
e
d
i
c
t
e
d
C
O
D
1
2
3
4
5
6
7
8
9
20
40
60
80
100
120
140
160
180
200
C
O
D
C
o
n
ce
n
t
r
a
t
i
o
n
(
m
g
/
l
)
D
a
t
a
M
e
a
s
u
r
e
d
C
O
D
P
r
e
d
i
c
t
e
d
C
O
D
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
5
6
8
–
1
5
7
3
1572
Fo
r
r
ea
cto
r
5
0
˚
C
,
th
e
p
r
ed
icti
o
n
g
iv
e
R
²
o
f
7
4
.
6
2
%
an
d
M
SE
o
f
0
.
0
2
5
5
d
u
r
in
g
tr
ain
i
n
g
w
h
ile
in
test
i
n
g
,
t
h
e
R
²
o
f
8
9
.
6
4
% a
n
d
MSE
o
f
0
.
0
0
7
7
w
er
e
ac
h
ie
v
ed
as d
ep
icted
in
Fig
u
r
es 5
an
d
6
,
r
esp
ec
tiv
el
y
.
Fig
u
r
e
5
.
Mo
d
el
p
r
e
d
ictio
n
d
u
r
in
g
tr
ai
n
i
n
g
f
o
r
r
ea
cto
r
at
5
0
˚
C
Fig
u
r
e
6
.
Mo
d
el
p
r
e
d
ictio
n
d
u
r
in
g
te
s
ti
n
g
f
o
r
r
ea
cto
r
at
5
0
˚
C
B
ased
o
n
th
e
r
esu
lt
o
b
tain
ed
,
d
y
n
a
m
ic
n
e
u
r
al
n
et
w
o
r
k
is
a
b
le
to
p
r
ed
ict
th
e
d
y
n
a
m
ic
b
e
h
av
io
u
r
o
f
A
G
S
at
t
h
r
ee
d
if
f
er
e
n
t
co
n
d
it
i
o
n
s
o
f
te
m
p
er
atu
r
e.
Ho
w
e
v
er
,
as
th
e
te
m
p
er
at
u
r
e
g
o
es
h
i
g
h
er
,
th
e
ac
c
u
r
ac
y
o
f
th
e
p
r
ed
ictio
n
m
o
d
el
s
h
o
w
e
d
s
o
m
e
d
eter
io
r
ated
s
li
g
h
tl
y
.
I
t
s
h
o
w
ed
th
at
th
e
d
y
n
a
m
i
c
o
f
A
GS
b
eh
a
v
e
n
o
n
li
n
ea
r
a
s
te
m
p
er
atu
r
e
in
cr
ea
s
es.
Mo
r
eo
v
er
,
t
h
e
s
m
all
a
m
o
u
n
t
o
f
s
a
m
p
le
d
ata
u
s
ed
c
o
u
ld
b
e
o
n
e
o
f
th
e
r
ea
s
o
n
s
f
o
r
m
o
d
el
d
eter
io
r
atio
n
.
T
h
e
p
r
ed
ictio
n
p
er
f
o
r
m
a
n
ce
s
o
f
d
y
n
a
m
ic
n
eu
r
al
n
et
w
o
r
k
f
o
r
t
h
e
t
h
r
ee
te
m
p
er
atu
r
es a
r
e
s
u
m
m
ar
ized
as sh
o
w
n
i
n
T
ab
le
1
.
T
ab
le
1
.
Dy
n
a
m
ic
n
e
u
r
al
n
et
wo
r
k
p
r
ed
ictio
n
p
er
f
o
r
m
a
n
ce
s
o
f
C
O
D
ef
f
l
u
en
t
R
e
a
c
t
o
r
T
r
a
i
n
i
n
g
T
e
st
i
n
g
R
² (%)
M
S
E
R
² (%)
M
S
E
3
0
˚
C
7
7
.
9
8
0
.
0
0
9
4
9
1
.
1
7
0
.
0
0
1
4
4
0
˚
C
9
4
.
2
0
0
.
0
0
4
0
9
1
.
1
4
0
.
0
0
6
2
5
0
˚
C
7
4
.
6
2
0
.
0
2
5
5
8
9
.
6
4
0
.
0
0
7
7
1
2
3
4
5
6
7
8
9
10
0
50
100
150
200
250
300
350
400
C
O
D
C
o
n
ce
n
t
r
a
t
i
o
n
(
m
g
/
l
)
D
a
t
a
Com
parison
Be
tw
e
e
n Me
asure
d And P
re
dicte
d
Efflu
e
nt CO
D For Tra
ining
Data
- Dy
nam
ic M
ode
l
M
e
a
s
u
r
e
d
C
O
D
P
r
e
d
i
c
t
e
d
C
O
D
1
2
3
4
5
6
7
8
9
0
50
100
150
200
250
300
350
C
O
D
C
o
n
ce
n
t
r
a
t
i
o
n
(
m
g
/
l
)
D
a
t
a
Com
parison
Be
tw
e
e
n Me
asure
d And P
re
dicte
d
Efflu
e
nt CO
D For Te
sting
Data
- Dy
nam
ic M
ode
l
M
e
a
s
u
r
e
d
C
O
D
P
r
e
d
i
c
t
e
d
C
O
D
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
Dyn
a
mic
Mo
d
ellin
g
o
f A
ero
b
ic
Gra
n
u
la
r
S
lu
d
g
e
A
r
tifi
cia
l N
eu
r
a
l
N
etw
o
r
k
(
N
u
r
a
z
iz
a
h
Ma
h
mo
d
)
1573
4.
CO
NCLU
SI
O
N
T
h
e
d
y
n
a
m
ic
n
e
u
r
al
n
e
t
w
o
r
k
m
o
d
el
s
ar
e
s
u
cc
ess
f
u
ll
y
p
r
ed
icted
th
e
ae
r
o
b
ic
g
r
an
u
lar
s
l
u
d
g
e
SB
R
s
at
d
if
f
er
e
n
t
co
n
d
itio
n
o
f
h
i
g
h
te
m
p
er
at
u
r
e.
D
u
e
to
th
e
n
o
n
li
n
e
ar
it
y
b
eh
a
v
io
u
r
o
f
AGS,
th
e
m
o
d
el
p
r
ed
ictio
n
f
o
r
C
OD
s
h
o
w
ed
m
in
o
r
d
eter
io
r
atio
n
esp
ec
iall
y
d
u
r
i
n
g
h
i
g
h
te
m
p
er
atu
r
e
(
5
0
˚
C
)
.
T
h
is
c
an
b
e
i
m
p
r
o
v
ed
b
y
co
llectin
g
m
o
r
e
d
ata
f
o
r
tr
ai
n
in
g
an
d
test
i
n
g
s
ta
g
e
s
.
T
h
e
m
o
d
els
f
o
r
d
if
f
er
en
t
te
m
p
er
at
u
r
e
ca
n
b
e
u
s
e
f
u
l
f
o
r
p
r
ed
ictio
n
to
o
ls
in
w
a
s
te
w
ater
tr
ea
t
m
e
n
t p
lan
t.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
s
w
o
u
ld
li
k
e
to
t
h
an
k
t
h
e
R
esear
ch
Un
iv
er
s
it
y
Gr
an
t
(
GUP
)
v
o
te
1
3
H7
0
,
Un
i
v
er
s
iti
T
ek
n
o
lo
g
i M
ala
y
s
ia
f
o
r
t
h
e
f
i
n
an
cial
s
u
p
p
o
r
t.
RE
F
E
R
E
NC
E
S
[1
]
M.
A
h
m
a
d
,
e
t
a
l.
,
“
In
d
u
stria
l
e
ff
lu
e
n
t
q
u
a
li
ty
,
p
o
l
lu
ti
o
n
m
o
n
it
o
rin
g
a
n
d
e
n
v
iro
n
m
e
n
tal
m
a
n
a
g
e
m
e
n
t
,”
En
v
iro
n
me
n
ta
l
M
o
n
it
o
rin
g
a
n
d
A
ss
e
ss
m
e
n
t
,
v
o
l/
issu
e
:
1
4
7
(1
-
3
),
p
p
.
2
9
7
-
3
0
6
,
2
0
0
8
.
[2
]
S
.
S
.
A
d
a
v
,
e
t
a
l
.,
“
Hy
d
ra
u
li
c
c
h
a
ra
c
teristics
o
f
a
e
ro
b
ic
g
ra
n
u
les
u
sin
g
siz
e
e
x
c
lu
sio
n
c
h
ro
m
a
to
g
ra
p
h
y
,”
Bi
o
tec
h
n
o
l
.
Bi
o
e
n
g
,
v
o
l/
issu
e
:
99
(4
)
,
p
p
.
7
9
1
–
7
9
9
,
2
0
0
8
.
[3
]
M
.
K.
D
.
Kre
u
k
,
e
t
a
l
.,
“
S
im
u
lt
a
n
e
o
u
s
COD
,
n
it
r
o
g
e
n
,
a
n
d
p
h
o
sp
h
a
te
re
m
o
v
a
l
b
y
a
e
ro
b
ic
g
ra
n
u
lar
slu
d
g
e
,”
Bi
o
tec
h
n
o
l.
Bi
o
e
n
g
,
v
o
l/
issu
e
:
90
(
6
),
p
p
.
7
6
1
–
7
6
9
,
2
0
0
5
.
[4
]
Y.
L
iu
a
n
d
J.
H.
T
a
y
,
“
S
tate
o
f
th
e
a
rt
o
f
b
i
o
g
ra
n
u
lati
o
n
tec
h
n
o
lo
g
y
f
o
r
w
a
ste
wa
ter
trea
t
m
e
n
t
,”
Bi
o
tec
h
n
o
l.
Ad
v
.
,
v
o
l/
issu
e
:
2
2
(7
),
p
p
.
5
3
3
–
5
6
3
,
2
0
0
4
.
[5
]
S
u
K
.
Z
.
a
n
d
Yu
H
.
Q.
,
“
F
o
rm
a
ti
o
n
a
n
d
c
h
a
ra
c
teriz
a
ti
o
n
o
f
a
e
ro
b
ic
g
r
a
n
u
les
in
a
se
q
u
e
n
c
in
g
b
a
tch
re
a
c
to
r
trea
ti
n
g
so
y
b
e
a
n
-
p
ro
c
e
ss
in
g
wa
ste
wa
ter
,”
En
v
iro
n
S
c
i
T
e
c
h
n
o
l
,
v
o
l.
39
,
p
p
.
2
8
1
8
–
28
,
2
0
0
5
.
[6
]
D.
H.
Zi
to
m
e
r,
e
t
al
.,
“
T
h
e
rm
o
p
h
il
ic
a
e
ro
b
ic
g
ra
n
u
lar
b
io
m
a
ss
f
o
r
e
n
h
a
n
c
e
d
se
tt
lea
b
il
it
y
,”
W
a
ter
Res
.
,
v
o
l.
4
1
,
p
p
.
819
–
8
2
5
,
2
0
0
7
.
[7
]
M.
El
-
M
a
n
si
a
n
d
C.
Bry
c
e
,
“
F
e
r
m
e
n
tatio
n
m
icro
b
io
lo
g
y
a
n
d
b
io
te
c
k
n
o
lo
g
y
,”
1
st
e
d
it
io
n
,
P
h
i
lad
e
lp
h
ia,
USA
,
T
a
y
lo
r
&
F
ra
n
c
is
In
c
,
1
9
9
1
.
[8
]
L
.
Ro
g
e
rs
a
n
d
F.
Do
w
la,
“
Op
ti
m
iza
ti
o
n
o
f
g
ro
u
n
d
w
a
ter
re
m
e
d
iati
o
n
u
si
n
g
a
rti
f
icia
l
n
e
u
ra
l
n
e
t
w
o
rk
s
w
it
h
p
a
ra
ll
e
l
so
lu
te t
ra
n
s
p
o
rt
m
o
d
e
ll
in
g
,”
W
a
te
r R
e
so
u
rc
e
s R
e
se
a
rc
h
,
v
o
l/
issu
e
:
3
0
(
2
),
p
p
.
4
5
7
-
4
8
1
,
1
9
9
4
.
[9
]
R.
H
.
Nie
lse
n
,
“
Ko
lm
o
g
o
ro
v
’s
M
a
p
p
in
g
Ne
u
ra
l
Ne
tw
o
rk
Ex
ix
ten
c
e
T
h
e
o
re
m
,”
in
Pro
c
e
e
d
in
g
s
o
f
th
e
Fi
rs
t
An
n
u
a
l
IEE
E
In
ter
n
a
ti
o
n
a
l
J
o
in
t
Co
n
fer
e
n
c
e
o
n
Ne
u
ra
l
Ne
tw
o
rk
s
,
S
a
n
Die
g
o
,
CA
,
p
p
.
1
1
-
14
, 1
9
8
7
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
Nu
ra
z
iza
h
M
a
h
m
o
d
re
c
e
iv
e
d
h
e
r
B.
E
n
g
.
Ho
n
s
(E
lec
tri
c
a
l
-
Co
n
tr
o
l
a
n
d
I
n
stru
m
e
n
tatio
n
)
f
ro
m
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
si
a
in
2
0
1
1
t
o
2
0
1
5
.
S
h
e
is
c
u
rre
n
tl
y
w
o
rk
in
g
to
wa
rd
h
e
r
M
S
c
in
p
ro
c
e
ss
c
o
n
tro
l
a
t
F
a
c
u
lt
y
o
f
El
e
c
rica
l
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
.
He
r
cu
rre
n
t
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
m
e
m
b
ra
n
e
f
il
tratio
n
a
n
d
a
p
p
li
c
a
ti
o
n
o
f
so
f
t
c
o
m
p
u
ti
n
g
in
t
h
e
a
re
a
o
f
p
ro
c
e
ss
m
o
d
e
li
n
g
a
n
d
c
o
n
tr
o
l.
Ir.
Dr.
No
r
h
a
li
z
a
A
b
d
u
l
W
a
h
a
b
is
c
u
rre
n
tl
y
a
n
A
ss
o
c
iate
P
ro
f
e
ss
o
r
a
t
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
la
y
sia
(U
T
M
).
S
h
e
is
c
u
rre
n
tl
y
th
e
He
a
d
D
e
p
a
rt
m
e
n
t
o
f
Co
n
tro
l
a
n
d
M
e
c
h
a
tro
n
ics
En
g
in
e
e
rin
g
De
p
a
rtme
n
t
a
t
th
e
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
UT
M
.
S
h
e
c
o
m
p
lete
d
h
e
r
P
h
D
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
m
a
jo
r
in
g
in
Co
n
tr
o
l
in
Ju
ly
2
0
0
9
.
S
h
e
is
a
c
ti
v
e
l
y
in
v
o
lv
e
d
in
re
se
a
rc
h
in
g
a
n
d
tea
c
h
in
g
in
th
e
f
i
e
ld
o
f
in
d
u
strial
p
ro
c
e
ss
c
o
n
tro
l
.
He
r
e
x
p
e
rti
se
is
in
m
o
d
e
ll
in
g
a
n
d
c
o
n
tro
l
o
f
in
d
u
str
ial
p
ro
c
e
ss
p
lan
t.
Re
c
e
n
tl
y
sh
e
h
a
s
w
o
rk
e
d
p
rim
a
ril
y
o
n
d
if
f
e
r
e
n
t
ty
p
e
s
o
f
d
o
m
e
stic
a
n
d
in
d
u
strial
w
a
ste
wa
ter
trea
t
m
e
n
t
tec
h
n
o
l
o
g
y
to
w
a
rd
s
o
p
ti
m
iza
ti
o
n
a
n
d
e
n
e
rg
y
sa
v
in
g
s
y
st
e
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.