Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
6, No. 6, Decem
ber
2016, pp. 2516~
2
525
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
6.1
009
8
2
516
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Environment F
r
iendly Voltage Up
-grad
a
ti
on M
o
del for
Distribution Power Systems
K. N
i
t
h
i
y
anant
h
an
1
, Um
as
ankar
2
1
Department of Electrical
and
Electro
n
i
cs Eng
i
neering, Karp
ag
am College o
f
Eng
i
n
eering
,
Co
imbatore 641032
,
Tam
il Nadu
, Ind
i
a
2
Birla Institu
te o
f
Technolog
y
an
d Scien
c
e (BITS
)
P
ilan
i
, Dubai C
a
m
pus, Dubai, U
n
ited
Arab
Em
irates
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 6, 2016
Rev
i
sed
Ju
l 3
,
2
016
Accepte
d
J
u
l 16, 2016
The m
a
in aim
of this
res
earch
work is
to analyz
e and deve
lop
voltage up
gradation procedure model
for
effective
& eco
nomic power distribution in
urban and suburban area. Voltag
e up gradation fr
om 6.6 KV to 1
1
KV of the
distribution pow
er s
y
stem network ha
s been
considered for th
e proposed
res
earch work.
Electr
i
c po
wer cons
um
ption has
been increas
ing
uninterrup
t
edl
y
,
being th
is incr
ease spec
ia
ll
y a
cce
ler
a
ted
in th
e last f
e
w
ye
ars. Nowada
ys elec
tri
c
lin
es a
r
e satur
a
ted
;
th
e
y
are r
e
a
c
hing
cr
itic
al v
a
lu
es
of am
pere
capa
c
i
t
y
and
s
a
g.
Ther
efore,
build
ing n
e
w lines h
a
s been necessar
y
to provide the
ever incr
easing
consum
ption. The difficulty
to find new
corridors to construct new
distribution
lin
es, undergroun
d cables is
increasing in cities
,
industrial
areas and in m
a
ny
cases it is sim
p
ly
impossible. Th
e construction
of
new
elec
tri
c
li
nes is in
cre
a
sin
g
diffi
cult
y,
thus there is a n
eed to look
at alterna
tives th
at increases th
e po
wer transfer
capa
c
it
y.
Voltag
e
up gradat
ion of the exis
ting
ele
c
tri
c
cab
les
/
l
i
n
es
of the
distribution s
y
stem is the most viable
solution and it stresses on the savings
of power due to a reduction in s
y
stem
losses wh
en the voltage is
high. The
proposed resear
ch work is to devel
op and
an
aly
z
e voltage u
p
gradation
procedures
and
protocols for
co
nverting 6
.
6 KV
network into
11
KV network
in a distr
i
buted s
y
stem
. I
t
a
l
so ta
kes into a
ccoun
t
the exp
e
nses inc
u
rred in th
e
process and
the
various oth
e
r
important constr
ain
t
s.
Keyword:
Cu
rren
t l
o
ss calcu
l
atio
n
Distribution P
o
wer system
s
Distribu
tio
n tran
sfo
r
m
e
r
Po
ck
et su
b
s
tatio
n
R
i
ng m
a
i
n
Sub
s
tatio
n
Tou
c
h vo
ltag
e
Transm
ission lines
Vo
ltag
e
up
grad
atio
n
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
K. Nith
iyan
an
th
an,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
Kar
p
a
g
am
C
o
l
l
ege
of
En
gi
ne
e
r
i
n
g,
C
o
i
m
bat
o
re-6
4
1
03
2,
Tam
i
l
Nadu
I
n
di
a.
E-m
a
il: nithii
eee@yahoo.co.in
1.
INTRODUCTION
Nowa
days power system
s ar
e com
p
lex networks. Th
e
high
density load poses great challenges for
p
r
ov
id
ing
ad
equ
a
te tran
sm
issi
o
n
and
d
i
stribu
tio
n
facilitie
s. Th
ere are a larg
e
n
u
m
b
e
r of g
e
n
e
rating
statio
ns
and loa
d
ce
nters that a
r
e i
n
terconnecte
d
t
h
rough
po
wer tran
sm
issio
n
lin
es. Electricity is g
e
n
e
rated
and
sup
p
l
i
e
d
t
o
co
n
s
um
ers vi
a t
r
a
n
sm
i
ssi
on a
n
d
d
i
st
ri
but
i
o
n
net
w
o
r
k
s
.
Po
we
r
sy
st
em
s of t
h
e
m
odern e
r
a a
r
e
m
o
re
reliable and se
rve c
u
stom
er load
w
ithout any interruption i
n
utility voltage. Gene
ration facilities
shoul
d have
th
e cap
acity t
o
p
r
o
d
u
ce t
h
e requ
ired
po
wer to
m
eet th
e cu
st
o
m
er d
e
man
d
.
It is the resp
on
si
b
ilit
y o
f
t
h
e
distribution
syste
m
to deliver
electricity
to each custom
er’s service
ent
r
ance.
Due t
o
the
gree
nhouse
effect,
the clim
ate
its
elf is changing, there
b
y pu
ttin
g
t
h
e life o
f
plan
ts an
d
an
imal
s at risk. Now the whole worl
d is
t
h
i
nki
ng
ab
o
u
t
red
u
ci
n
g
t
h
e c
a
rb
o
n
em
i
ssi
on fo
r sa
vi
n
g
t
h
e
eart
h
.
Di
ffe
re
nt
m
eans fo
r r
e
duci
n
g
t
h
e e
m
i
ssi
on
of
g
r
een
h
o
u
s
e
gases a
r
e t
h
o
u
ght
o
f
by
di
ffe
rent
a
g
r
eem
ent m
a
de i
n
t
h
i
s
d
i
rect
i
on l
i
k
e
K
y
ot
o
pr
ot
oc
ol
whe
r
e
each nation
ha
s to re
duce em
ission to a
n
e
x
tend.
In t
h
is
ca
se the one of the im
portant a
r
eas is emitted fro
m
p
o
wer g
e
n
e
ratio
n
.
W
ith
i
n
creasin
g
u
s
e
of co
m
p
u
t
ers and
vo
ltag
e
sensitiv
e eq
u
i
p
m
e
n
t, m
o
re and
m
o
re
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
2
517
custo
m
electr
i
i
ndi
r
e
hi
g
h
e
in
vo
l
v
evalu
a
p
rov
i
d
p
rim
a
di
rec
t
u
pgr
a
v
o
lta
g
feede
r
feede
r
cost
i
p
lann
2.
V
S
6.
6
K
subst
a
subst
a
subst
a
with
p
3.
S
th
e t
y
di
st
ri
b
feede
r
consi
s
consi
s
13 n
o
tran
s
f
fr
om
of
f h
a
tran
s
f
tran
s
f
tran
s
f
E
Vo
l.
6
,
N
o
.
m
ers are
de
m
icity
g
e
nerati
e
ctly th
e co
st
o
st load
dens
i
v
es
a st
udy
a
a
ting
several
d
e the
re
qui
r
e
a
rily id
en
tifie
d
t
ly specifies
a
dat
i
o
n pr
oce
d
g
e upg
r
a
d
a
ti
o
r
s, wh
ile,
th
e
r
cu
rr
en
t
a
s
c
i
s, to som
e
e
i
n
g of
di
s
t
ri
b
u
V
OLTAGE
S
UBST
ATI
O
Replacem
K
V to 11
K
V
o
a
tio
n
will p
r
e
a
tio
n th
at
is t
o
a
tio
n
will
b
e
p
r
o
vi
si
on
fo
r
a
S
ELECTIO
N
Selectio
n
y
pe of cus
t
om
e
b
u
tio
n tran
sfo
Fig
u
N
or
m
a
ll
y
r
s. Figure
1 c
o
s
ts th
ree in
co
m
s
ts o
f
two
nu
m
o
s 12 KV
swi
t
f
o
r
m
e
r and a
b
Bu
s A
o
f
Pa
n
a
s bee
n
m
a
d
e
f
o
r
m
e
r. Subst
f
o
r
m
e
r. Subst
f
or
m
e
r
.
6, Decem
ber
2
m
an
d
i
ng
hig
h
on a
nd
di
st
ri
b
o
f pow
er
gen
e
i
ty requ
ireme
n
a
nalysis of
u
p
altern
ativ
e o
p
e
d ca
pacity [
1
d
by t
h
e al
lo
c
th
e len
g
t
h a
n
d
u
r
e m
odel
h
a
o
n pr
o
c
edu
r
e
loss c
o
st is
m
c
on
str
a
i
n
ts n
e
e
xtent, com
p
a
r
u
tion
n
e
twork
UPG
R
A
D
T
I
O
N
ent
of pl
a
n
t
a
t
o
p
e
ratio
n to
g
e
se
nt
si
gni
f
i
c
a
o
be l
o
cated o
n
of a
66/
1
1
K
a
t
h
ird
transf
o
N
OF
TRAN
S
of the n
e
two
r
e
r. Fi
gure
1 s
h
rm
er D
T
a
n
d
u
re 1.
Ty
pi
cal
33 KV
su
bst
a
o
n
s
ists o
f
t
h
r
e
m
in
g
f
e
ed
er
s
m
bers1
0
/
1
5
M
t
ch gea
r
s
whi
c
b
u
s
section.
F
n
el
n
o
10
6.
A
n
e
in
th
e su
b
s
t
ation
SS2 h
a
ation
SS4 h
a
2
016
:
25
16
–
h
er reliab
ility
b
u
tion
is no
e
rat
i
o
n by
re
d
u
n
ts, th
e p
r
op
o
p
gra
d
at
i
o
n
o
p
tion
s
, Weste
r
1
6
]
is to
upg
r
c
at
i
on a
n
d si
z
n
d r
out
e of
a
ve
t
o
be det
e
r
m
o
d
e
l is
re
q
m
in
i
m
ized
a
n
d
e
d to b
e
m
a
i
n
r
ab
le with
t
h
s
are
de
dicate
I
ON
MO
D
E
L
t
th
e ex
istin
g
e
th
e
r
w
i
t
h
in
s
a
nt challenges
n
lan
d
imme
d
V
desi
g
n
wi
t
h
o
rm
er and a t
h
S
MISSIO
N
N
r
k i
s
b
a
sed
o
n
h
ows the sin
g
ou
tgo
i
ng
f
e
e
d
Arrangem
ent
a
tion
co
nsists
e
e in
co
min
g
f
e
(I/C1
, I/C2,
I
M
VA
D
i
str
i
b
u
c
h havi
ng 1
0
n
F
i
g
u
r
e 2 ri
ng
1
n
ot
her e
n
d
o
f
t
at
i
o
n SS
3
fo
r
a
vi
ng 2 x
1
0
0
a
vi
ng 1 x
1
0
0
–
25
25
an
d
qu
ality
exce
ption to
d
uci
n
g
t
he
l
o
s
s
o
se
d
w
o
r
k
i
s
o
f vo
ltag
e
fr
o
r
n P
o
w
e
r has
r
ad
ation
of
o
p
z
i
ng of
di
st
ri
b
MV
and
L
V
rm
ined along
q
ui
re
d t
o
m
i
n
d
t
h
e system
r
n
tain
ed with
i
n
h
e MV netw
o
e
d
to th
e
p
l
an
n
L
IM
P
L
E
M
s
u
bst
a
t
i
on t
o
s
tallin
g
t
r
an
sf
o
s
. The wor
k
w
d
iately ad
j
ace
n
h
t
w
o
33 M
V
h
ird
lin
e at
so
m
N
ET
WORK
n
t
h
e voltag
e
o
g
le lin
e d
i
agr
a
d
ers
.
of
Sing
le
Li
n
of
two in
co
m
e
e
d
er
s
con
n
e
c
I
/C3), bus se
c
u
tion
Tr
a
n
sfo
r
nos o
u
t
g
oi
n
g
of
6.
6 K
V
n
e
f
th
e r
i
ng
,
6.6
r
the system
0
0 KV
A
tra
n
0
0 KV
A
tra
n
o
f
supp
ly.N
o
it. Hen
ce, to
s
es th
rou
gh a
n
s
t
a
ken u
p
.
T
o
m
66/
6.6
K
V
concl
ude
d t
h
a
p
erating
v
o
lta
g
b
u
tio
n transf
o
V
feede
r
s. T
h
with
co
st an
d
n
im
ize the i
n
r
eliab
ility is
m
n
th
e
i
r
s
t
an
d
a
o
rk cost, the
m
n
i
ng
o
f
M
V
n
e
M
EN
TA
T
I
O
N
c
o
nvert t
h
e s
o
rm
ers o
f
hig
h
w
ill involve t
h
n
t to
th
e ex
ist
i
V
A trans
f
orm
e
m
e later d
a
te.
o
f t
h
e circuit,
a
m
of 33 K
V
s
n
e Diagra
m
o
f
m
ing feeders,
b
c
ted
to
33
KV
c
tio
n
(B/S) a
n
r
m
e
rs (DT 1
&
feede
r
s, two
e
tw
or
k. A
t
o
n
KV is feed
in
stab
ility. Su
b
n
sform
e
r. Sub
n
sform
e
r. Sub
o
wad
a
ys it i
s
reduce the
c
n
u
p
grad
atio
n
he Au
stralia
n
V
to
66
/11
K
a
t
t
h
e onl
y
fe
a
g
e. Distributi
o
o
rm
ers. The
l
o
h
e
practical
a
d
t
i
m
e
analys
i
n
vest
m
e
nt
co
s
m
aximized. T
h
a
rd
r
a
ng
e. A
l
t
h
m
ajori
t
y
of t
h
e
t
w
or
ks [1-
1
3
]
FO
R PRI
M
ec
on
dary
s
i
d
e
h
er ca
pacity.
h
e const
r
uct
i
o
i
ng
6
6
.6
/
6
.6
K
e
rs and t
w
o i
n
load on
t
h
e
c
s
u
b
s
tation
wi
t
f
33/
6.
6 KV
S
u
b
us sect
i
o
n
B
bu
s. 4.33
K
V
n
d t
w
o t
r
a
n
sf
o
&
DT
2) c
o
nn
e
n
um
bers 1
1
k
v
n
e
end o
f
t
h
e
r
g
fr
om
Bus
B
b
st
at
i
on SS
1
h
st
at
i
on SS
3
h
st
at
i
on SS
5
h
ISS
N
:
2
s
a
com
p
etit
i
c
os
t
of di
st
ri
b
n
o
f
vol
t
a
ge
,
t
o
n
d
i
st
ri
but
i
o
n
K
V
in
a
n
e
tw
o
a
sib
l
e so
lu
tio
n
o
n
net
w
or
k
p
o
c
a
t
i
on of
t
r
a
a
spects of t
h
i
s. For t
h
is p
u
st of t
r
ansfo
r
h
e vol
t
a
ge d
r
o
t
ho
ug
h t
h
e
L
V
h
e pu
bl
i
s
he
d
].
M
ARY
/SEC
O
e
of
th
e sub
s
t
a
To
co
nve
rt
t
h
o
n of a 6
6
/
1
1
K
V su
bstatio
n
nc
o
m
i
ng l
i
n
e
c
ircu
it, d
e
pen
t
h i
n
com
i
ng
f
u
bstatio
n
B
/S an
d two t
r
V
Bu
s
b
a
r (
B
B
o
rm
er feede
r
s
.
e
cted to Bus
v
bu
s in
co
m
e
s
r
i
ng
, 6.6
K
V
B
of Pan
e
l
no
h
a
v
i
n
g 1
x 1
h
av
i
ng 2
x 1
h
av
i
ng 1
x 1
2
088
-87
08
i
ve wo
rl
d
,
b
u
tion
and
o
meet the
com
p
any
o
rk
. After
n
that will
p
lann
ing
is
a
ns
f
o
rm
ers
h
e vo
ltag
e
u
r
p
o
s
e,
th
e
r
me
r
s
an
d
o
p a
nd t
h
e
V
n
e
tw
ork
pap
e
r
s
i
n
O
N
DARY
a
t
i
on f
r
om
h
e existin
g
K
V
zone
n
. Th
e n
e
w
s in
itially
,
di
ng u
p
o
n
f
eeders IC,
r
ans
f
orm
e
r
B
1 &
B
B
2
)
.
An
d
also
B
ar
1
&
2,
s
fro
m
the
is feed
ing
10
5.
R
i
ng
00
0 K
VA
0
0
0
KVA
0
0
0
KVA
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
E
3.
1.
R
upst
r
e
cable
s
wo
rk
tran
s
p
recon
out
t
h
cable
p
ip
es
,
as m
e
th
e d
r
After
OLT
C
test,
w
HV/
L
cable
Ch
ec
k
status
fr
om
Bu
ch
o
th
e p
r
relay
relay
s
3.
2.
P
R
i
ng
M
repai
r
L
very
c
to
b
e
E
E
n
v
ironmen
t
F
R
epl
a
cem
ent
Ap
pl
y
ou
t
e
am
/
dow
nst
r
e
s
, eart
h
ing'
s,
e
t
o
be ca
r
r
i
e
d
p
ort to
site an
fi
rm
ed in the
h
e
ne
w
DTs e
a
b
ox as
per
t
,
conservator
t
e
nt
i
oned i
n
t
h
e
r
aw
ing
s
fo
un
d
th
e
DT oil te
m
C
a
n
d
co
nd
uc
t
w
i
ndi
ng r
e
si
s
t
L
V power cab
with
n
e
w ca
b
k
oil leakages
s
o
f
t
h
e
D
T
v
a
rem
o
te. Car
r
o
ltz alarm
,
M
r
ot
ect
i
on rel
a
y
operat
i
o
ns,
s
/alar
m
s. Ret
u
P
roce
dur
e to
R
Fi
gu
re 3
s
M
ain
Un
it
(
R
r
and
m
a
in
ten
a
L
oa
d s
p
ari
n
g
c
o
nve
ni
en
t
.
F
o
Fi
gu
re 3.
Ty
p
Poc
k
e
Replacem
t
a
ke
n b
e
fo
r
e
F
ri
dent
l
y
V
o
l
t
Fi
gu
re 2.
T
y
of
Di
s
t
ri
b
u
ti
o
t
a
g
e for the
re
am
circuit br
e
e
tc., and m
a
k
ou
t to
su
it fo
r
d safely posi
t
DT nam
e
pl
a
a
rt
hi
ng
. A
sse
m
t
he s
u
ppl
i
e
d
i
t
an
k, ra
di
a
t
or
s
e
O&M man
u
d
on
th
e n
a
m
e
m
perature ha
s
t
o
il test (th
e
t
ance tests, e
t
les after co
n
d
b
les. Reche
c
k
fr
om
radiato
r
a
lves as
pe
r t
h
r
y ou
t D
T
p
OG alarm
,
a
n
y
s are set co
r
etc. Confi
r
m
u
rn
the
w
o
r
k
p
R
eplace
6.6
K
s
ho
ws a po
c
k
R
MU) is
u
tiliz
e
a
nce. Limite
d
is possi
ble fr
o
u
ndat
i
o
n r
e
q
p
i
cal Arrange
m
e
t Su
bstatio
n
w
ent o
f
Poc
k
et
e
an
d du
r
i
n
g
I
t
age Up
g
r
ad
a
y
pi
cal Arrang
e
o
n Transfor
m
qu
ired DT to
e
a
k
er
s
ar
e
tri
p
k
e ready for r
e
r
th
e n
e
w
DT.
t
i
one
d o
n
a f
o
a
te). Also
con
f
m
bl
y
of
m
a
jo
r
i
nst
r
uct
i
o
ns
.
F
s
etc., as
per t
h
u
al. C
h
eck t
h
e
plate. Carry
o
s
com
e
dow
n
t
BDV
sh
ould
t
c., to ens
u
r
e
d
uct
i
ng M
e
gg
th
e con
t
ro
l/p
r
r
s, valves
,
etc
h
e nam
e
pl
at
e
ro
tectio
n
ch
e
n
d
its trip
o
p
e
r
r
rectly an
d
t
e
m
that alar
m
p
erm
it for
D
T
K
V / 0.4 KV
P
et su
bstatio
n
e
d i
n
st
ead
oi
l
s
p
ace is
req
u
o
m
a co
mm
o
u
ir
e
d
i
s
v
e
r
y
s
m
en
t of
11
-6
.
6
w
ith
SF6
R
M
U
Su
bst
a
t
i
on (
T
th
e wo
rk
as
I
SSN
:
208
8-8
7
a
t
i
on
Mo
del
f
o
e
me
n
t
o
f
a R
i
n
m
er Model
be repl
a
ced.
A
p
pe
d, ke
pt
i
n
t
e
c
ove
ry
. A
r
r
a
.
Id
en
tificatio
n
o
u
ndat
i
o
n. I
n
s
f
irm
th
e DTs
r
access
o
ries
o
F
ix
all th
e a
c
t
he sup
p
l
i
e
d
m
e
ratio
link
s
a
out
DT oi
l
dr
y
to
no
rm
al te
m
be m
o
re t
h
a
n
th
at th
e DT
er testin
g. If
r
ot
ect
i
on wi
ri
n
c
., If o
il leak
a
g
e
d
e
tails. Car
r
e
ck
s lik
e o
il
r
ation
s
. Also
e
sted properl
y
circuits are
ene
r
gization.
P
o
c
k
e
t
Su
bs
t
[15
]
com
p
r
i
s
i
type. Easy fo
r
u
ire
d
. For
eas
y
o
n poi
nt
o
f
s
o
s
i
m
pl
e. Fi
gur
e
6
/0
.4
K
V
U
T
ra
ns
fo
r
m
er
+
pe
r saf
e
t
y
m
7
08
o
r Dist
ributio
n
n
g1
Main
D
i
a
A
v
a
il th
e
req
u
t
est po
sitio
n
/
l
o
a
ng
e to
r
e
cov
e
n
o
f
eq
ui
pm
e
n
s
tall th
e
n
e
w
D
vect
o
r
g
r
ou
p
o
f tr
ans
f
orm
e
c
cessories li
k
m
an
u
a
l. Fill u
p
ar
e fi
xe
d i
n
1
1
y
i
ng o
u
t
pr
oc
m
perature, tak
e
n
60
K
V
).
C
o
n
is set in
to
t
h
t
h
e
cab
le len
g
n
gs
. If
not
, c
o
r
g
es are found
,
r
y
out
OL
TC
te
m
p
erature
co
nfi
r
m
fan
s
y
.
C
o
n
duct
f
u
ope
rat
i
n
g e
a
at
io
n wit
h
1
1
i
ng a t
r
a
n
sf
o
r
r
tran
sp
ortati
o
y
rem
oval
an
d
o
urc
e
. F
o
r
t
e
m
e
4 s
h
ow
s a
p
o
Fi
gu
re 4.
Ty
p
KV
P
o
cke
t
+
LVDB + Ri
n
m
anual
.
C
a
r
r
y
n
Po
we
r S
y
s
t
e
a
gram
of
6
.
6
K
u
ired
DT
ou
ta
g
o
ck
e
d
.
D
i
s
c
o
n
e
r the DT
.Pa
r
n
t in
th
e sto
r
e
D
T havi
n
g
a
d
is
as sam
e
as
r
s
u
c
h
a
s
r
a
d
i
e
HV/L
V
b
u
p
the new
DT
1
KV
.
If n
o
t,
e
ss as recom
m
e
th
e o
il sa
m
p
n
duct
t
h
e re
q
u
h
e require
d
r
a
g
th
is in
su
ffi
c
r
rect it as per
,
atten
d
i
m
m
e
operations fr
o
al
arm
,
wind
i
tart/sto
p
op
e
r
u
nc
t
i
onal
che
c
a
ch and eve
r
1
K
V
/
0.
4
K
V
r
m
e
r, rin
g
m
a
o
n. Com
p
act
a
replacem
ent
w
m
p
o
r
ar
y supp
l
o
ck
et su
b
s
tati
o
p
i
cal Arrange
m
t
Sub
s
tatio
n
w
n
g
Main
Un
it
)
y
ou
t a site
v
e
ms (
K
. Ni
th
iy
K
V Net
w
o
r
k
ge. R
e
c
o
n
f
i
r
m
n
ne
ct the HV
/
r
allel civ
il
m
o
e
, c
o
llect the
e
d
ual ratio
(T
h
th
e p
r
ev
iou
s
i
ators
,
conse
r
v
u
sh
in
g
s
, in
ter
c
o
i
l to
th
e req
u
change t
h
e li
n
m
ende
d by
t
h
e
p
les fr
om
t
h
e
m
u
ired
DT
test
s
a
tio. Reco
nn
e
c
ien
t
, ch
an
ge
the approve
d
e
diately. Con
fi
o
m local and
i
ng te
m
p
erat
u
r
at
i
ons. C
o
nfi
r
c
k
s
lik
e CB
o
r
y ti
m
e
.
Res
e
V
Subs
t
ation
a
in
un
it and
L
a
nd l
e
ss wei
g
h
with
ou
t m
a
j
o
r
l
y, po
ck
et su
b
on
with
o
il
R
M
m
en
t of
11
6.6
/
w
ith OIL
RM
U
)
. All safety p
r
v
isit in
adv
a
n
a
nan
tha
n
)
2
518
m
that
DTs
L
V po
we
r
o
difi
cat
i
on
e
qui
pm
ent
,
h
is may b
e
o
n
e.
Carry
v
at
or
tank,
c
on
necting
u
ired
lev
e
l
n
ks as
per
e
sup
p
lier.
m
ai
n t
a
nk
,
s
like ratio
e
ct the old
th
e p
o
wer
dra
w
i
n
gs.
fi
rm
all
th
e
as well
as
u
re al
arm
,
r
m th
at a
ll
o
perat
i
ons
,
e
t a
ll th
e
L
VD
B.
SF6
h
t. Ea
sy
to
r
cha
nge
s.
b
station
is
M
U.
/
0.
4
U
r
ecautions
n
ce
by
the
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
2
519
conc
e
new
e
any
d
mete
r
steps.
not
e
d
p
ha
s
e
3.
3.
P
v
o
lta
g
to
b
e
Proc
e
exec
u
com
m
Co
m
m
show
n
com
m
new
R
di
sco
n
up
c
h
engi
n
b
e fu
r
3.
4.
S
1)
A
s
e
2)
P
3)
E
4)
A
5)
N
v
6)
T
1
t
h
f
e
7)
T
8)
N
9)
N
10
)
C
11
)
E
12
)
E
o
a
E
Vo
l.
6
,
N
o
.
e
rned site eng
i
e
qu
ip
m
e
n
t
w
i
t
d
is
c
r
ep
an
cy.
O
r
d
e
tails of th
R
e
m
ove t
h
e
.
Place the n
e
e
m
a
rkings. N
o
P
roce
dur
e fo
r
R
i
ng m
a
i
n
g
e t
r
ans
f
orm
e
r
tak
e
n bef
o
r
e
e
dure
. C
h
eck
t
u
t
i
o
n of
t
h
e
j
m
i
ssi
oni
ng
p
r
m
issioning E
n
n
i
n
Fi
gu
r
e
5.
Co
mmen
c
m
i
ssi
oni
ng
en
g
R
ing
Main
U
n
n
n
ectin
g, u
n
d
h
eck
list,
b
e
f
o
n
eer. If t
h
e ex
i
r
ni
s
h
e
d
.
S
tep
b
y
Step
P
A
v
a
il th
e
ou
t
a
e
ct
i
on i
n
cl
o
s
e
P
u
t
th
e s
e
co
n
d
E
nergize t
h
e
D
A
vai
l
11
K
V
b
u
N
orm
a
lize the
v
o
ltag
e
s wh
ic
h
T
he out
a
g
e of
1 KV
w
h
ich
i
h
e 11 KV an
d
e
d fr
o
m
th
e
D
T
he sam
e
pr
o
c
N
ow BB
1
is
s
N
ow av
ail th
e
C
hange t
h
e
vo
l
E
ne
r
gize t
h
e
D
E
nergize t
h
e
B
o
ff the BS an
d
a
do
pt
fo
r t
h
e
e
n
6, Decem
ber
2
i
neer in Subs
t
t
h
th
e
d
e
tails
O
b
t
ain
counte
r
e ex
isting
p
o
c
pocket s
u
bst
a
e
w p
o
c
k
et
su
b
o
te do
wn
t
h
e
m
r
Replace
m
e
n
n
u
n
it (RMU
)
r
as single rat
i
e
a
n
d
du
ri
ng
t
h
e
site in
ad
v
j
ob
.
Co
-o
rd
i
n
r
ogr
am
. O
b
t
a
n
gi
neer
. C
h
e
c
Figu
r
c
e di
scon
nect
i
g
i
n
eer. Dis
c
o
n
n
it. Co
nn
ect
e
er
th
e
s
u
p
e
r
v
i
o
re
gi
vi
n
g
cl
e
i
sting
RMU c
P
ro
c
e
d
u
r
e f
o
r
a
ge of DT 1
o
e
d
co
nd
ition
.
d
ar
y vo
ltag
e
o
f
D
T1 tra
n
s
f
or
m
u
s
b
a
r 1 ou
ta
g
bus
ba
r
1 w
h
h
is serv
ing
t
h
the first sec
o
n
i
s connecte
d
t
d
th
e sa
m
e
w
i
D
T1.
c
ess will b
e
fo
ervi
ng
t
h
e e
n
t
outa
g
e fo
r D
T
l
tag
e
ratio fro
D
T
2
and
ch
e
c
k
B
B2
fro
m
D
T
2
d
connect the
n
tire ri
n
g
.
2
016
:
25
16
–
t
atio
n
section
.
m
e
nt
i
oned i
n
r
wo
rk
p
e
r
m
i
t
c
k
e
t sub
s
tati
o
a
tio
n
after dis
c
b
st
at
i
on i
n
p
l
a
m
eter d
e
tails
o
n
t o
f
Ri
n
g
M
a
)
re
place
m
e
n
t
i
o
is to
b
e
rep
l
th
e wor
k
as
v
an
c
e
and
ta
k
n
ate wit
h
th
e
a
in necessa
r
c
k r
i
ng
cab
l
e
s
r
e 5.
Typi
cal
A
i
ng
all th
e ca
b
n
nect earthi
n
g
e
arth
in
g
to
Ri
n
i
sion
of
th
e c
o
e
arance. Sign
ont
ai
ne
d H
V
r
Up
Gr
ad
a
t
i
o
f th
e prim
ar
y
f
DT
1 f
r
o
m
6.
m
er only and c
h
g
e
after cl
osin
g
h
ich
is fed
fr
o
e
en
tire
lo
ad
.
n
dary
s
u
b
s
t
a
t
i
o
th
e
bu
s b
a
r
i
ll rep
eat
un
ti
l
llo
wed
fo
r
t
h
e
t
ire lo
ad wh
ic
h
T
2
an
d bu
s b
a
m
6.
6
K
V
t
o
1
k
th
e stab
ility.
2
. Parallel
th
e
first ring to t
h
–
25
25
. Com
p
are th
e
n
th
e j
o
b
ord
e
t
and
key
(
s
)
f
o
n
.
If a
tem
p
o
connecting e
a
a
ce and re
-co
n
o
f the
ne
w
p
o
a
in Unit
t
i
s
onl
y
req
u
laced with
d
u
pe
r sa
fety
m
k
e necessa
ry
a
e
Co
mmis
s
i
o
r
y co
un
ter
w
s
are
ground
e
A
r
r
an
gem
e
nt
o
b
les, m
a
rk
i
n
g
g
lead
. Dism
a
n
g
Main
Unit
o
m
m
i
ssi
oni
ng
a
nd retu
rn
c
Meter
i
ng
eq
u
i
on
o
f
Vol
t
a
g
y
su
b
s
tation
a
.
6 KV
t
o
1
1
K
h
ec
k the
stabi
g
t
h
e rin
g
of
f
o
m
DT
1.At
p
r
i
on
of ri
n
g
on
1 a
n
d
ne
xt
se
c
l
all the seco
n
e
en
tire ri
n
g
s.
h is 11
K
V
f
e
a
r
2 wh
ich
is
h
11
K
V
of
D
T
BB
1
an
d
B
B
h
e BB2
an
d
r
e
equi
pm
ent
d
e
r. Get
clarifi
c
f
rom
the com
m
o
rary
poc
ket
i
a
rth leads a
n
d
n
nect t
h
e ear
t
cket s
ubstati
o
u
ire
d
wherev
e
u
al ratio
vo
lta
g
m
anual
.
R
i
g
g
e
a
ct
i
on s
o
t
h
at
o
ni
ng a
nd
Pl
a
w
o
r
k perm
i
t
e
d at the
res
p
o
f
SF6
Ring
M
g
the c
o
re
s ca
r
a
n
tle th
e u
n
it
. Reconnect
c
engi
neer
. C
a
r
ou
nt
er w
o
r
k
u
ip
m
e
n
t
, th
en
e
in the
Net
w
a
nd
b
us
ba
r
1
K
V ratio
.
lity.
posi
t
i
on of
t
h
r
esent BB1 i
s
e wi
ll b
e
carr
i
c
o
ndar
y
sub
s
t
n
dary
subst
a
t
i
e
d
i
n
g fr
om
D
h
a
v
i
n
g 6.
6 K
V
2.
2 thr
oug
h th
e
r
un
of
f
to
m
a
k
d
etails of
t
he
e
c
a
t
i
on f
r
o
m
t
h
m
issi
oni
ng e
n
i
s not
re
qui
re
d
cables, afte
r
h
l
i
ng l
ead
s a
n
o
n.
e
r i
t
s
havi
ng
g
e tr
a
n
s
f
or
me
r
e
r
G
r
o
up
to
s
hut
do
w
n
ca
n
a
n
n
i
ng e
ngi
n
from
the
p
ective ends
a
M
ain Unit
r
ef
ul
l
y
, un
de
r
and rem
ove
o
c
ables as per
t
r
r
y
out
al
l
rel
e
p
erm
i
t to
su
b
th
e d
e
tails
o
f
w
or
k
will b
e
fed
f
e
en
tire ri
n
g
s.
s
11
KV
vo
lt
a
i
ed
o
u
t.
Co
nn
t
at
i
o
n out
a
g
e
w
o
n are
conne
c
T
1.
V
supp
ly so
ur
c
B
S
,
check t
h
k
e as
earlier
a
ISS
N
:
2
ex
i
s
t
i
ng eq
ui
p
h
e planning
s
n
gineer. Note
d
, fo
llo
w th
e
t
h
e phase m
a
n
d cables
fol
l
th
e m
e
terin
g
r
. All safety p
r
tran
sport R
M
n
be
av
ailed
f
n
eer fo
r
o
u
ta
g
conce
r
ned
S
a
nd
switch
e
s
r
t
h
e s
upe
r
v
i
s
ou
t
-o
ff
po
siti
t
h
e
m
a
rki
ng
d
e
vant checks/
t
b
st
at
i
on c
o
m
m
f
meter
i
n
g
eq
u
f
ro
m
t
h
e
D
T
2
.
a
ge a
n
d
B
B
2
n
ect the
trans
f
o
w
ill tak
e
and
c
c
t
e
d t
o
11 K
V
c
e.
h
e stab
i
lity an
d
a
nd t
h
e
sam
e
2
088
-87
08
p
me
n
t
a
n
d
s
ectio
n fo
r
do
w
n
t
h
e
fo
llowing
a
r
k
in
g
s
ar
e
l
ow
in
g th
e
un
it with
r
ec
autions
M
U as
p
e
r
f
or
s
m
oot
h
g
e a
s
p
e
r
S
ubstatio
n
lo
ck
e
d
as
i
on o
f
t
h
e
o
n. In
stall
d
one w
h
ile
t
ests & fill
m
i
s
si
oni
n
g
u
ip
m
e
n
t
to
2
with
bu
s
is 6.6
KV
o
rm
er in
to
c
on
nect
t
o
V
wh
ich
is
d
switches
m
et
hod t
o
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
En
vironmen
t
Frid
en
tly Vo
ltage Up
g
r
ad
a
t
i
o
n
Mod
e
l fo
r
Dist
rib
u
tion
Po
wer S
y
stems (
K. Ni
th
iya
nan
tha
n
)
2
520
13
)
No
w t
h
e e
n
t
i
r
e
sy
st
em
i
s
chan
ged
f
r
om
6.
6
K
V
t
o
1
1
K
V
ne
t
w
o
r
k
.
3.
5.
E
q
ui
pme
n
t An
al
ysi
s
M
o
del
For i
m
pl
em
ent
i
ng
up
gra
d
at
i
o
n m
odel
equi
p
m
ent
anal
y
s
i
s
has bee
n
car
ri
e
d
o
u
t
.
T
h
e che
c
k has
bee
n
m
a
de and f
o
un
d t
h
e T
r
an
sfo
r
m
e
r of D
T
1 an
d v
o
l
t
a
ge t
r
ans
f
orm
e
r i
s
si
ngl
e ra
t
i
o
. The Di
st
r
i
but
i
o
n
Tran
sf
orm
e
rs DT
1 o
f
3
3
/
6
.
6
KV
, vect
or
g
r
o
u
p
o
f
Dy
n1
1, ca
paci
t
y
of
10 M
V
A, a
n
d t
h
e t
y
pe
o
f
cool
i
n
g
O
NAN
/ON
A
F. An
d also it has b
e
en
ch
ecked
an
d fou
nd
th
e tr
an
sfor
m
e
r
D
T
2 an
d vo
l
t
ag
e tr
an
sfor
mer
is
sin
g
l
e r
a
tio
. The
D
i
str
i
bu
tion
Tr
ansfo
r
m
e
r
s
D
T
2
of
33
/6
.6
K
V
, v
ecto
r
grou
p
of
D
yn1
1,
cap
acity
o
f
10
MV
A
,
type of cooling ONAN/ONAF.
Hence
,
these are to be replaced with a
dua
l ratio of 3.3/11
-6.6 KV with all
param
e
t
e
rs un
chan
ge
d. T
h
e
equi
pm
ent
anal
y
s
i
s
i
s
t
o
be carrie
d
out before the a
c
tual conversi
on a
n
d
replacem
ent of the e
qui
pm
ents, during the
a
n
alysis it ha
s been
c
o
nfirm
e
d the
suitab
ility
of the substation for
u
pgrad
i
n
g
i
n
to 1
1
KV fo
r th
i
s
p
u
rp
o
s
e t
h
e
fo
llowing
are
ch
eck
ed
in
t
h
e su
bstatio
n
.
Vo
ltag
e
ratio
o
f
th
e
equi
pm
ent. Healthiness of the voltage
. Spa
ce and access
availability of the substa
tion. Am
pere capacity of
th
e cab
le. Similar way An
aly
s
is for
SS1 to
SS5 h
a
s b
e
e
n
carried out.C
h
ecked and
fo
un
d th
e tran
sf
ormer
in
t
h
e SS
1
o
f
t
h
e
ri
n
g
1
an
d
v
o
l
t
a
ge i
s
si
n
g
l
e
rat
i
o.
The
Di
st
ri
bu
t
i
on T
r
a
n
sf
orm
e
rs i
n
t
h
e
SS
1
of
ri
n
g
6
.
6/
0.
4
KV
,
v
ector
gr
oup
of
D
yn11
, cap
acity o
f
1
000
KV
A, and
th
e typ
e
o
f
co
o
l
i
n
g O
N
A
N
. Th
is
tr
an
sf
or
m
e
r
is
to
be
rep
l
aced
with
a
du
al ratio
o
f
1
1
-6
.6
/0
.4
KV
with
all
p
a
r
a
meter
s
un
ch
ang
e
d.
D
u
r
i
ng the an
alysis it
has b
e
en
co
nfirm
e
d
th
e su
itab
ility o
f
th
e su
b
s
tation
for upg
rad
i
ng
in
to
11
KV fo
r th
is purpo
se th
e fo
llo
win
g
are
checke
d
i
n
t
h
e
substation.
4.
ESTIMATION OF TIME
REQUIRE
M
ENT ANALYSIS
Esti
m
a
tin
g
th
e ti
m
e
fo
r p
l
ann
i
n
g
t
h
e wo
rk
p
r
o
p
e
rly to
ob
tain
th
e
o
p
tim
u
m
ti
min
g
so
t
h
at
th
e co
st of
th
e work can be con
t
ro
lled
.
Fo
r li
m
i
t
i
n
g
th
e
su
pp
ly in
terru
ptio
n
for th
e co
nsu
m
er ti
m
e
v
a
lu
e is
requ
ired
.
4.
1. T
i
me
Req
u
i
red f
o
r Pri
m
ar
y Su
bst
a
ti
on
up
Gra
d
a
t
i
o
n
Disconnection
of HV, L
V
and accessories, cables of
the e
x
isting Distri
bution T
r
ans
f
ormers DT of
33/
6.
6 KV
.
R
e
cove
ry
of
t
h
e exi
s
t
i
n
g
t
h
e Di
st
ri
but
i
o
n
Tra
n
sfo
r
m
e
rs
DT o
f
33/
6.
6 KV
. R
ecove
ry
of
e
x
i
s
t
i
n
g
HV a
n
d L
V
c
a
bl
es i
f
not
s
u
i
t
a
bl
e fo
r t
h
e
new
d
u
al
rat
i
o
. Di
st
ri
b
u
t
i
o
n
Tran
sf
orm
e
rs DT
of
33/
11
-
6
.6
KV
.
C
i
vi
l
m
odi
fi
cat
i
on t
o
b
e
car
ri
ed
out
t
o
s
u
i
t
f
o
r t
h
e
new
d
u
a
l
rat
i
o
Di
st
ri
bu
t
i
on T
r
ans
f
orm
e
rs
DT
of
3
3
/
1
1-
6.
6
K
V
.
N
e
w du
al r
a
tio
D
i
str
i
bu
tio
n Tr
an
sf
ormer
s
D
T
of
33
/11
-
6
.
6
KV
sh
ifts, po
sitio
n
i
n
g
,
installatio
n
an
d
accessories fixi
ng. Laying
of
HV, LV ca
bles and eart
h
ing of the ne
w du
al ratio Distributi
on T
r
ansform
e
rs DT
of
33/
11
-6
.6
KV
. C
o
n
n
ect
i
ons
of
HV a
n
d LV ca
bl
es o
f
ne
w d
u
al
rat
i
o
Di
st
ri
b
u
t
i
o
n
Trans
f
o
r
m
e
rs DT of
33/
11
-
6
.
6
KV
.
H
V
bus
hi
ng
fi
xi
n
g
a
n
d oi
l
t
op u
p
i
n
t
h
e
new
d
u
al
rat
i
o
Di
st
ri
b
u
t
i
o
n Tran
sf
orm
e
rs DT of
33/
11
-
6
.
6
K
V
.
Oi
l
dri
e
s
o
u
t
i
n
t
h
e ne
w
dual
rat
i
o
D
i
st
ri
but
i
o
n T
r
a
n
sf
orm
e
rs DT
of
3
3
/
1
1-
6.
6
KV
.
Transfo
r
m
e
r testin
g
,
relay testin
g
&
fun
c
tional ch
eck
s
o
f
t
h
e new
d
u
al
rat
i
o
Di
st
ri
but
i
o
n
Tran
sf
orm
e
rs DT o
f
33/
11
-
6
.
6
K
V
.
Ins
p
ect
i
on a
n
d com
m
i
s
si
oni
ng
of t
h
e
new
dual
rat
i
o
Di
st
ri
b
u
t
i
on T
r
an
sf
orm
e
rs DT o
f
33/
11
-
6.6 KV.
For t
h
e above activities
mini
m
u
m 10 days a
r
e
requi
red
for t
h
e
replacem
ent of exiting singl
e
ratio
tran
sform
e
r with
du
al
ratio
tran
sfo
r
m
e
r.
4.
2. T
i
me
An
a
l
ysi
s
M
o
del
f
o
r Seco
nd
ary
S
ubst
a
ti
on
D
i
sconn
ectio
n an
d
r
e
cov
e
r
y
o
f
150
0, 10
00
, 500
KV
A
tr
an
sf
or
m
e
r
s
a
n
d
r
e
-
i
nstallati
o
n
o
f
n
e
w
t
r
ans
f
o
r
m
e
r of
any
ca
paci
t
y
, l
a
y
i
ng
of
H
V
& L
V
ca
bl
es,
t
e
rm
i
n
at
i
on o
f
ca
bl
es
on
t
r
a
n
sf
orm
e
r an
d
LVD
B
eart
h
i
n
g an
d cl
ear pe
rm
it
for ener
gi
sat
i
on
-6
ho
urs
fr
om
tim
e of col
l
ect
i
ng co
unt
e
r
pe
rm
i
t
.
Di
scon
nect
i
on
a
n
d
reco
very
of
10
00
or
50
0
KV
A Poc
k
et
su
bs
t
a
t
i
on an
d re-i
nst
a
l
l
a
t
i
on o
f
Poc
k
et
su
bst
a
t
i
on
of a
n
y
cap
aci
t
y
,
l
a
y
i
ng o
f
cabl
e
s, t
e
rm
i
n
at
i
on of ca
bl
es & ea
rt
hi
n
g
a
nd cl
ea
r co
u
n
t
e
r
wo
rk
perm
i
t
for e
n
ergi
sat
i
o
n -
6
ho
u
r
s
fr
om
t
i
m
e
of
col
l
ect
i
ng c
o
u
n
t
e
r
perm
i
t
.
Di
sco
nnect
i
o
n,
d
i
sm
ant
l
i
ng an
d re
co
very
of
exi
s
t
i
n
g R
M
U a
n
d
i
n
st
al
l
a
t
i
on an
d re
-i
nst
a
l
l
a
t
i
on o
f
ne
w R
M
U l
a
y
i
ng
of
ne
w/
ex
isting
cab
l
e
s with
re term
in
atio
n
o
f
cab
l
es with
ex
istin
g or
n
e
w term
in
atio
n
k
it, etc. and
clear co
un
ter
p
e
rmit fo
r en
erg
i
satio
n
-9 hou
rs
fro
m
ti
me o
f
co
llectin
g
co
un
ter
p
e
r
m
i
t
. D
i
sconn
ectio
n and
r
ecover
y
of
LV
D
B
and
r
e
-
i
n
s
tallatio
n
o
f
n
e
w LVD
B
, laying
an
d
determ
ination of si
ngle c
o
re
cables & L
V
feeders
,
etc.
and clear counte
r work pe
rm
it for ene
r
gisati
on
-7
ho
u
r
s f
r
om
t
i
m
e
of col
l
ect
i
ng c
o
unt
e
r
w
o
rk
perm
i
t
.
Di
scon
nect
i
o
n an
d rec
ove
ry
o
f
15
0
0
,
10
0
0
,
5
00
K
VA
tran
sform
e
rs with
RMU an
d
re-installatio
n
o
f
n
e
w tran
sf
or
m
e
r
o
f
an
y cap
acity and
RM
U
,
laying
o
f
HV
&
LV ca
bl
es, t
e
r
m
i
n
at
i
on o
f
ca
bl
es o
n
t
r
a
n
s
f
o
r
m
e
r and R
M
U an
d cl
ea
r pe
rm
it
for e
n
er
gi
sat
i
on
-1
0
ho
u
r
s f
r
om
t
i
m
e
of col
l
ecti
ng co
u
n
t
e
r pe
rm
it
. Di
scon
ne
ct
i
on an
d rec
o
very
o
f
1
5
0
0
,
10
0
0
, 5
0
0
K
V
A
t
r
ans
f
orm
e
rs wi
t
h
R
M
U an
d
LV
DB
. R
e
-i
nst
a
l
l
a
t
i
on
of
ne
w t
r
ansf
o
r
m
e
r of a
n
y
capa
c
i
t
y
, R
M
U a
n
d
LV
D
B
, l
a
y
i
ng
o
f
H
V
&
L
V
cabl
e
s, t
e
rm
i
n
at
i
on o
f
ca
bl
es
on t
r
ans
f
orm
e
r, R
M
U an
d L
VDB
.
C
l
ear pe
rm
it
for e
n
er
gi
sat
i
on -
1
1
ho
ur
s fr
om
t
i
m
e
of col
l
ecti
ng co
u
n
t
e
r pe
rm
it
. Di
scon
ne
ct
i
on an
d rec
o
very
o
f
1
5
0
0
,
10
0
0
, 5
0
0
K
V
A
t
r
ans
f
orm
e
rs an
d
LVDB
. R
e
-i
ns
t
a
l
l
a
t
i
on of
n
e
w t
r
a
n
sf
o
r
m
e
r o
f
a
n
y
ca
pa
ci
t
y
and L
V
D
B
, l
a
y
i
ng
of
HV
& L
V
ca
bl
es,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 6, No. 6, D
ecem
ber
2016 :
2516 –
2525
2
521
t
e
rm
i
n
at
i
on o
f
cabl
e
s o
n
t
h
e t
r
ans
f
orm
e
r, an
d LV
DB
. C
l
ear perm
i
t
for en
ergi
sat
i
o
n -
09
ho
u
r
s fr
om
tim
e of
co
llectin
g
cou
n
ter p
e
rm
it.
4.3.
Time Required
for the Actu
al
Co
nv
e
r
si
on of
t
h
e N
e
tw
ork
M
i
nim
u
m
t
w
o ho
u
r
s are re
q
u
i
r
ed
fo
r t
h
e p
r
i
m
ary
di
st
ri
but
i
on t
r
a
n
s
f
o
r
m
e
r for c
h
a
ngi
ng t
h
e t
a
ps l
i
n
ks
fr
om
t
h
e 6.6
KV rat
i
o
t
o
11
KV an
d com
m
i
ssi
oni
ng
. M
i
nim
u
m
30
m
i
nut
es are re
q
u
i
r
ed f
o
r t
h
e sec
o
n
d
a
r
y
di
st
ri
b
u
t
i
on ca
st
resi
n t
r
an
sf
orm
e
r fo
r cha
ngi
ng t
h
e t
a
p
s
l
i
nks f
r
om
t
h
e 6.
6 K
V
r
a
t
i
o
t
o
11
K
V
an
d
com
m
i
ssi
oni
ng
. M
i
ni
m
u
m
15
m
i
nut
es are
re
qui
red
f
o
r t
h
e s
econ
d
a
r
y
di
st
ri
but
i
o
n
oi
l
t
r
a
n
s
f
o
r
m
e
r fo
r ch
a
ngi
ng
t
h
e t
a
ps l
i
nks
f
r
om
t
h
e 6.6 K
V
rat
i
o
t
o
11
K
V
an
d com
m
i
s
si
oni
ng
.F
or car
ry
i
ng
out
re
pl
a
c
em
ent
wor
k
,
vari
ous
approvals like
internal a
n
d external are
re
qui
red. T
h
is
is in
co
m
p
lian
ce with
th
e ex
istin
g
ru
les and
regu
lation
and practices
of the
aut
h
ority. Before im
p
l
emen
tin
g
the mo
d
e
l co
st a
n
alysis has
bee
n
ca
rried out.
4.
4. Minimiz
i
ng the Sup
ply
Interr
upti
o
n
M
i
ni
ni
m
u
m
suppl
y
i
n
t
e
r
r
upt
i
on
has
bee
n
ai
m
e
d t
o
i
m
pl
ement
t
h
e
pr
o
pos
ed w
o
rk
. At
t
h
e su
bst
a
t
i
o
n
,
tran
sform
e
r feed
ing
p
o
wer to th
e co
nsu
m
er,
wh
en
it
h
a
s
be
en
repl
ace
d t
h
i
s
t
r
an
sf
orm
e
r f
o
r
t
h
e sy
st
em
vol
t
a
ge
co
nv
ersion
purpo
se, t
h
e su
pp
ly is in
terrup
ted
to
t
h
e co
n
s
u
m
er. To
min
i
mize th
e in
terru
p
tion
an
d
t
h
e
fol
l
o
wi
n
g
m
e
t
hods
are
ad
o
p
t
e
d
fo
r t
h
e
sam
e
.
4.
4.
1. Primar
y
Subs
tation
Du
ri
n
g
t
h
e t
r
a
n
sf
orm
e
r re
pl
acem
e
nt
i
n
t
h
e
pri
m
ary
subst
a
t
i
on [
1
3]
w
h
er
e po
ssi
bl
e c
o
n
s
i
d
eri
n
g t
h
e
site co
nd
itio
n
an
d system
req
u
i
rem
e
n
t
, th
e
g
e
n
e
rator su
pply is p
r
ov
id
ed
to
th
e co
nsu
m
er wh
en
th
e aux
iliary
trans
f
orm
e
r is
out
of se
rvice
during the
DT
s replacem
ent work. For c
onnecting t
h
e ge
nerat
o
r a
p
proxim
ately
30 m
i
nute power inte
rruption is availed. Sim
i
larly, af
ter the replacem
ent work disc
onnecting the
generat
o
r
an
d conn
ecting th
e tr
an
sf
or
m
e
r
also re
quired
30 m
i
nutes.
4.
4.
2. Seco
nd
a
r
y
S
ubs
ta
ti
on
Du
ri
n
g
t
h
e t
r
a
n
sf
orm
e
r re
pl
a
c
em
ent
i
n
t
h
e
s
econ
d
a
r
y
s
ubst
a
t
i
on
[1
3]
whe
r
e
pos
si
bl
e c
o
n
s
i
d
eri
n
g
t
h
e
site co
nd
itio
n an
d
system
requ
irem
en
t, th
e g
e
n
e
rato
r
su
pp
ly is prov
id
ed
to
t
h
e
co
nsu
m
er when
th
e
tr
an
sf
or
m
e
r
is o
u
t
of
ser
v
ice
d
u
r
i
ng
t
h
e
r
e
p
l
ace
m
e
n
t
wo
rk
. For
con
n
ecting
th
e gen
e
r
a
tor
ap
pr
ox
im
atel
y 30
minute power
interruption is
availed.
Sim
i
la
rly, after the
replacem
ent wo
rk disc
onnecti
n
g the
ge
ne
rator and
co
nn
ecting
th
e tran
sfo
r
m
e
r also
requ
ir
e
d
3
0
m
i
nut
es. He
nce, i
n
st
ea
d t
h
e i
n
t
e
rru
pt
ed t
h
e p
o
we
r 6 t
o
8 hrs.
During the re
placem
ent of the tran
s
f
orm
e
r, interrupt onl
y for one hour. During the poc
ket subs
tation
replacem
ent for the
system conversi
on
purpose, since
LV
board is
re
placed along with tra
n
sformer and
switchgear,
where the gene
rat
o
r connection is not possible.
Hen
c
e, to
min
i
mize
th
e p
o
wer in
terrup
tio
n, in
stall
the te
m
pora
r
y poc
ket substa
tion, whic
h wi
ll feed th
e consum
er during the replacement work. During the
replacem
ent of the pocket substation, generator along wi
t
h
te
m
pora
r
y LVDB also is used to minim
i
ze the
p
o
wer in
terrup
tio
n. By allo
catin
g
th
e work
to
th
e
w
o
rk
gr
oup
s pr
op
er
ly and
w
e
l
l
p
l
an
n
e
d
,
th
en
th
e
replacem
ent job ca
n
be
spee
ded
up, the
r
e
by powe
r inte
rruption is also
reduce
d. Mi
nimize power s
u
pply
i
n
t
e
rr
upt
i
o
n t
o
cust
om
ers by
al
t
e
rnat
e feed
i
ng ar
ra
ngem
e
nt
/
usage
of
m
obi
l
e
generat
o
rs
du
ri
n
g
t
h
e
wo
rk
execut
i
o
n.
Usa
g
e o
f
m
odern t
e
st
equi
pm
ent for faster clea
rance of the circu
it, su
ch
as tran
sform
e
r tu
rns ratio
testin
g
equ
i
p
m
en
t an
d
d
i
g
ital in
su
latio
n
test
ers. By u
s
ing
th
ese equ
i
p
m
e
n
t’s th
e testing
ti
m
e
is
red
u
ced
t
o
25
% o
f
t
h
e t
i
m
e t
a
ken
by
t
h
e co
n
v
ent
i
o
nal
m
e
t
hods.
Du
ri
n
g
t
h
e
w
o
r
k
, t
h
r
o
ug
h t
h
e
usa
g
e
of
m
odern
i
n
st
rum
e
nt
s fo
r t
e
st
i
ng t
h
e equi
pm
ent
,
t
h
e
t
o
t
a
l
durat
i
o
n
of t
h
e s
hut
do
wns
was re
duc
ed. A
g
ai
n t
h
r
o
ug
h a
n
in
no
v
a
tiv
e
way o
f
wo
rk
m
e
t
h
od
,
u
s
ing
temp
orary po
ck
et su
bstatio
n
s
and
g
e
n
e
rat
o
rs, th
e po
wer in
terrup
tion
s
t
o
t
h
e c
o
ns
um
ers
were
m
i
nim
i
zed.
5.
R
E
A
L
TIM
E
C
URR
EN
T
LOSS CA
LCULA
T
ION M
O
D
EL
Th
e cu
rren
t loss calcu
latio
n
m
o
d
e
l h
a
s
b
e
en
im
p
l
e
m
en
ted
and
th
e curren
t
lo
ss of all t
h
e
ring
m
a
in
s
o
f
th
e sub
s
tatio
n has
b
e
en
calcu
l
ated
.
Th
e op
er
ating vo
l
t
ag
e
o
f
6.6 KV
an
d
1
1
KV
. I
t
is
fo
und
that due
u
pgr
ad
ataion
of
th
e vo
ltag
e
for
all r
i
ng
s, cu
rren
t
lo
ss
re
duce
d
by m
o
re tha
n
50%. A sam
p
le calculation model
fo
r ri
n
g
1
o
f
t
h
e
seco
n
d
ary
s
u
b
s
t
a
t
i
on has bee
n
e
xpl
ai
ne
d wi
t
h
t
h
e o
p
erat
i
n
g vol
t
a
ge
o
f
6.
6 KV
an
d 1
1
K
V
.
5.
1. Curre
nt
L
o
ss Cal
c
ul
ati
o
n of
6
.
6
K
V
C
i
rcui
t
o
f
the S
econd
ar
y
S
u
b
s
ta
ti
on
Ri
n
g
-1
Th
e Circu
it is feed
i
n
g
fro
m
t
h
e Switchg
ear Pan
e
l nu
m
b
er 10
6 o
f
t
h
e p
r
i
m
ary
subst
a
t
i
o
n t
o
SS
1 o
f
the Sec
o
nda
r
y
substation. T
h
e distance
b
e
t
w
een th
e
Primary sub
s
tation
s
to
th
e SS1
is
3
.
0
KM as shown in
Fi
gu
re 6.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
E
The
n
The
R
Ω
/K
M
24
0S
q
24
0s
q
The
C
R1
=0
R1
=0
Calc
u
P=Po
w
consi
d
P=50
0
I1=
3
0
I1=
2
6
Loss
=
Sim
i
l
a
b
etw
e
The
n
Loa
d
Sim
i
l
a
b
etw
e
R3
=0
R3
=0
The
n
I3=
1
2
I3=
1
0
Loss
=
Calc
u
calcu
l
The
n
R5
=0
R5
=0
The
n
I5=
2
0
I5=
7
4
Loss
=
Loss
=
Sim
i
l
a
b
etw
e
cable
.
The
n
R4
=0
E
E
n
v
ironmen
t
F
Fi
g
lo
ss Calcu
l
at
i
R
esistan
c
e o
f
H
M
q
m
m
HV
cop
p
q
m
m
HV
Al c
C
ab
le
r
e
sis
t
a
n
.060
1 * 3.0
=
0
.180
3
Ω
u
latin
g
th
e cu
r
w
er c
o
ns
ider
e
d
er
ation fo
r t
h
0
0
KV
A is th
e
0
00
/6.6 *
√
3
6
2.43
A
=
I1
2 R
1
=(
26
2
a
rly for c
a
lc
u
e
en
th
e circu
it
R2
=0
. 075
4
*
in th
e ci
rcu
it
I2=P/
V
I2=
2
40
0/
√
I2=
2
09
.9
4
Loss=
I22
Loss=
(20
9
Loss=
631
4
Loss L2=
3
a
rly th
an
it
c
e
en
th
e circu
it
.125
0 * 2.2
.275
Ω
Lo
a
d
i
it h
a
s been
c
o
2
00
/
√
3
*
6.
6
0
4. 9
7
A
=
I3
2 R
3
L
o
ss
=
u
lated
th
e
lo
ss
e
l
ated from
th
e
th
e curren
t
lo
.060
1 * 5.4
.324
Ω
calculating t
h
0
00
/
√
3
*
6.
6
4
.9
5 A
=
I5
2 R
5
=
(
174
.9
5)2
*
(
a
rly
for calc
u
e
e
n
the circui
t
.
. 07
5
4
* 3.
0
F
ri
dent
l
y
V
o
l
t
g
u
r
e 6.
Ty
pi
c
a
i
o
n
will
b
e
as
H
V cab
le is r
e
p
e
r
ca
ble=0.
0
ab
le =0
.125
0
n
ce [17] bet
w
0
.1
803
Ω
r
re
nt in t
h
e
cir
e
d as 80%
at
h
e powe
r
c
a
lc
u
e
l
o
ad as
pe
r
t
.
4
3)
2 * 0.
1
8
0
3
u
latin
g
th
e cu
r
SS
1 a
n
d S
S
2
*
1.9 R2
=0
. 1
4
is 400
0 KV
A
√
3
*
6.
6
4
A
R2
9
.9
4)2
(
0
.146
3
4
.15
Watts
3
1 K
W
c
an
f
i
nd
ou
t
t
SS
2 a
n
d S
S
3
i
n t
h
e circ
uit
i
o
nsid
er
ed
60
%
=
3
030
. 14
w
a
t
e
s
up to t
h
e
ri
e
swi
t
c
her
pa
n
ss
calculat
i
o
n
h
e c
u
rre
nt i
n
t
h
(
0.324
)
L5=9
9
u
latin
g
th
e c
u
t
SS
5 an
d
S
S
I
t
age Up
g
r
ad
a
a
l Arrang
em
e
n
fo
llo
ws.
e
comm
ended
b
0
75
4
Ω
/K
M
Ω
/KM
w
een s
w
itch
g
c
u
it as.
I1
=P/
V
fu
ll lo
ad
an
d
u
latio
n
t
he
ci
rcui
t
P=
3
3
Ω
=12
417
.
1
r
ren
t
lo
ss in
t
is
1
.
9KM an
d
4
63
Ω
Then 60%
o
f
3
)
t
h
e
lo
ss in
t
h
is
2
.
2 KM a
n
i
s 200
0 KVA
%
of the l
o
ad
i
s
t
ts Loss L
3
=3
n
g of
f
s
u
bst
a
t
n
el
num
ber 1
0
n
will
b
e
as
fo
l
h
e
circ
uit as
I
5
9
17
.5
w
a
tts L
5
u
rren
t lo
ss i
n
S
4 i
s
3. 0
km
I
SSN
:
208
8-8
7
a
t
i
on
Mo
del
f
o
n
t
o
f
a
R
i
ng
1
M
by
t
h
e
m
a
nu
fa
g
ear pa
nel
N
u
V
d
40
% at of
f
3
0
0
0
KV
A
is
1
7 W
a
tts
Lo
ss
t
he ci
rcui
t
b
e
d
the ca
ble i
n
f
the l
o
ad is 2
4
h
e circuit
bet
w
n
d the ca
ble t
h
s
1
200
KVA
T
.3
KW
t
i
on, a
n
d t
h
e
n
0
5 o
f
t
h
e pri
m
l
lo
ws
5
=P/
V
5
=9
.9
KW
th
e circu
it b
e
and the ca
bl
e
7
08
o
r Dist
ributio
n
M
ain Dia
g
ra
m
fa
cture are as
3
u
m
b
er
10
6, i.
e
load, t
h
en a
v
th
e
6
0
%
l
o
ad
L1
=1
2.41
K
W
tween SS1 a
n
t
h
e net
w
o
r
k
i
4
00
KV
A
w
een t
h
e SS
2
h
e circu
it is a
2
T
hen
I
3
=P/
V
si
m
i
larly in
t
h
ary sub
s
tatio
n
e
tween SS5
a
e
in
th
e n
e
tw
o
n
Po
we
r S
y
s
t
e
m
o
f
6.6 KV
N
3
00
Sq
mm
H
V
e
. pr
im
ar
y s
u
v
erage of 60
%
o
f
th
e circu
it
W
n
d SS2 are a
s
s
24
0 s
q
m
m
c
2
and SS3 a
s
2
40
sq
mm
alu
m
h
e sam
e
circu
i
n
t
o
SS5 and
u
a
nd SS4
a
r
e
a
o
r
k
i
s
24
0 s
q
e
ms (
K
. Ni
th
iy
N
e
t
wo
rk
V
coppe
r
cab
l
u
b
s
tatio
n
to
t
h
%
lo
ad
ing
is
I1
=P/V
s
follo
ws. Th
copper cond
u
s
fo
llo
ws.
Th
e
m
i
num
cond
u
u
it feed
ing
los
s
u
p
t
o r
i
ng of
f
s
a
s fo
llows th
q
m
m
coppe
r
a
nan
tha
n
)
2
522
l
e=0
.
06
01
h
e SS1
is.
t
ake
n
int
o
e dis
t
ance
u
ct
or.
e
distance
u
ctor.
s
es will
b
e
s
ub
station.
e
distance
co
n
duct
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 6, No. 6, D
ecem
ber
2016 :
2516 –
2525
2
523
R4
=0.226
Ω
Th
en
calcu
latin
g th
e curren
t
i
n
th
e circu
it as
I4=P/
V
Pow
e
r
P i
n
th
e
cir
c
u
it is 1000
K
VA
It
has
bee
n
c
o
n
s
i
d
er
6
0
%
of
t
h
e l
o
ad on t
h
e ci
rcuit is
600
KVa
I4=
6
00/
√
3
*
6.6
I4=
5
2. 4
8
A
Loss=
I42 R
4
Lo
ss=(
5
2
.
48
)2
*
(
0
.226
)
L4
=62
2
. 9
8
w
a
tts
L4
=0.622
kW
The s
u
m
of t
h
e
cu
rre
nt
l
o
sse
s
i
n
t
h
e R
i
ng
1
c
i
rcui
t
i
s
L
11=
(
L
1+L
2
+L
3+L4
+L5)
Th
er
efo
r
e L11=
(1
2.41
+3
.0
3+6
.
3
1
+
0
.
62
+9.1
7)
L11
=
31
. 54
kW
5.
2. Curre
nt
L
o
ss Cal
c
ul
ati
o
n of
1
1
K
V
C
i
rcui
t
o
f
the S
econd
ar
y
S
u
b
s
ta
ti
on
Ri
n
g
-
1
Th
e sam
e
ring1
as shown in
Fig
u
re
6
h
a
s
been
co
nsid
ered of
1
1
KV for l
o
ss Calcu
l
atio
n
will b
e
as
fo
llows.
The Resistance
of HV c
a
ble is
rec
o
mme
nded
by
t
h
e
m
a
nufa
c
t
u
re a
r
e as
3
0
0
S
q
m
m
HV copper cable =0.0601
Ω
/K
M
.
24
0
Sqm
m
HV
co
ppe
r ca
bl
e=
0.
0
7
5
4
Ω
/K
M
24
0 s
q
m
m
HV
Al cable=
0
.
1
2
5
0
Ω
/KM
The C
a
bl
e
re
si
st
ance bet
w
e
e
n swi
t
c
h gea
r
pa
nel
N
u
m
b
er 1
0
6
, i
.
e.
p
r
i
m
ary
subst
a
t
i
on t
o
t
h
e SS
1 i
s
.
R1
=0.060
1 * 3.0
=
0
.
1
803
Ω
R1
=0. 1
803
Ω
Calcu
l
atin
g
th
e curren
t
in
t
h
e
circu
it as.
I1=P/
V
P=Power c
o
ns
idere
d
as 80%
at full load a
nd
40% at of
f load, t
h
en a
v
erage
of
60
%
lo
ad
ing
is tak
e
n
in
t
o
co
nsid
eration fo
r th
e
po
wer calcu
l
atio
n
P=5000KVA i
s
the l
o
ad as
pe
r the
circuit
P=
3
000KVA is the 60% l
o
ad
of t
h
e circu
it I1
=P/V
I1=
3
00
0/
1
1
*
√
3
I1=
1
57
.4
5 A
Lo
ss=I
1
2
R
1
=
(
157
.4
5)
2 * 0.1
803
=446
9.
7
2
W
a
tts
Loss L1=
4.46 KW
Si
m
ilarly fo
r calcu
l
atin
g
t
h
e cu
rren
t l
o
ss i
n
t
h
e circ
uit bet
w
een SS1 and
SS2 a
r
e as
follows.
The
distance
between t
h
e circ
uit SS1 a
n
d
SS
2 i
s
1.
9 M
e
t
e
rs
an
d t
h
e
cabl
e
i
n
t
h
e
net
w
o
r
k i
s
2
4
0
s
q
m
m
cop
p
e
r
co
ndu
ctor
.
The
n
R
2
=0
. 07
5
4
* 1.
9
R2
=0.143
Ω
Lo
ad
in th
e ci
rcu
it is 400
0KVA Th
en
6
0
%
of th
e lo
ad
is240
0KVA
I2=P/
V
I2=
2
40
0/
1
1
*
√
3
I2=
1
25
.9
6 A
Loss=
I22 R
2
Lo
ss=(
125
.9
6)2
(
0
.143
)
Lo
ss=22
68
.8
W
a
tts
Loss L2=
2
.26 KW
Si
m
ilarly
th
an
it h
a
s b
e
en
find
ou
t th
e loss in
th
e circu
it between
th
e
SS2
and
SS3
as
fo
llo
ws. Th
e d
i
stan
ce
bet
w
ee
n t
h
e
ci
r
c
ui
t
SS
2 a
n
d
S
S
3 i
s
2.
2
KM
a
n
d
t
h
e ca
bl
e t
h
e ci
rcui
t
i
s
a
2
4
0
sqm
m
al
u
m
i
num
cond
uct
o
r.
R3
=0.125
0 * 2.2
R
3
=0
. 27
5
Ω
Lo
ad in
th
e cir
c
u
it is 200
0 KVA
The
n
c
onsi
d
ere
d
60%
of t
h
e l
o
ad is1200 KVA T
h
e
n
I3=P/
V
I3=
1
20
0/
1
1
*
√
3
I3=
6
2. 9
8
A
L
o
ss=I
3
2
R
3
Lo
ss=(
6
2
.
98
)2
(
0
.275
)
=
1
090
.7
8
w
a
tts
Loss L3=
1
.09 KW
Calcu
l
ated
th
e
lo
sses
u
p
to
t
h
e ring
o
f
f sub
s
tatio
n
,
and
th
en
si
m
i
larly in
th
e
sam
e
circu
it feed
ing
losses
will b
e
cal
cul
a
t
e
d
fr
o
m
t
h
e swi
t
c
her
pa
nel
num
ber
10
5
o
f
t
h
e
pri
m
ary
su
bst
a
t
i
on t
o
S
S
5
an
d
u
p
t
o
ri
n
g
o
f
f
su
bst
a
t
i
o
n
.
Th
en
th
e curren
t
lo
ss calcu
lat
i
o
n
will b
e
as fo
llo
ws
R5
=0. 0
601
*5
.4
R
5
=0
. 32
4
Ω
Th
en
calcu
latin
g th
e curren
t
i
n
th
e circu
it as
I5
=P/
V
I5=
2
00
0/
1
1
*
√
3
I5=
1
04
. 97
A
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
E
Loss
=
Loss
=
Sim
i
l
a
b
etw
e
The
n
R4
=0
R4
=0
The
n
I4=P/
V
Powe
r
It has
I4=
3
1
Loss
=
The s
u
Ther
e
L11=
main
s
is co
n
envi
r
o
ope
ra
t
net
w
o
curre
n
im
pl
e
6.
C
11/
0.
4
u
tiliz
a
num
b
in
cre
a
dr
o
p
s
red
u
c
t
relate
and
m
p
ow
e
r
This,
b
eco
m
p
o
llu
t
th
e s
y
th
e n
u
cost
r
The
n
E
E
n
v
ironmen
t
F
=
I5
2 R
5
=
(
104
.9
7)2
*
(
0
a
rly
for c
a
lc
u
e
en
th
e circu
it
.075
4 * 3.0
. 22
Ω
calculating t
h
/
V
r
in
th
e
c
i
r
c
u
i
t
b
e
en
cons
id
e
1
. 49 A
L
o
ss=
I
=
(3
1.
4
9
)
2
* (
0
u
m o
f
th
e c
u
r
r
e
fo
r
e
L11=
(4
.
11
.59
kW
F
Fi
gu
re 7
s
s
fo
r 6.
6 K.
V
a
n
si
de
rabl
e
re
d
o
n
m
en
tall
y f
r
t
ing
vo
ltag
e
i
o
r
k
fr
om
6.
6
K
n
t wh
ile
p
o
w
e
e
m
e
n
t
th
e lo
w
C
O
NCL
USI
O
The pr
op
o
4
KV
sub
s
tat
i
a
t
i
on of
t
h
e
e
b
er of
ca
bles
a
ses net
w
or
k
r
of t
h
e
D
i
st
r
i
t
ion
in
the lo
s
d
to power
g
e
m
anpowe
r re
q
r
has bec
o
m
e
i
n
turn, leav
e
m
es less. He
n
t
i
o
n ca
us
ed
b
y
y
st
em
vol
t
a
ge
u
mb
e
r
o
f
s
u
b
s
r
ed
uct
i
o
n and
n
ew system
o
f
F
ri
dent
l
y
V
o
l
t
0
.32
4
)
L5
=3
5
u
latin
g
th
e
c
u
SS
5 a
n
d S
S
4
h
e c
u
rre
nt i
n
t
h
t
is 1
000
KV
A
re
d
60
% i
n
t
h
I
42
R
4
0
.22)
L
4
=218.
r
en
t lo
sses
in
.
46+
2.
2
6
+
1
.
0
9
F
ig
ure 7
.
Cur
r
s
ho
w
s
t
h
e c
o
a
nd
11
K.V
n
d
u
c
tion
in
th
e
r
i
e
ndl
y
m
o
de
l
i
s 35
8.
5
8
K
.
W
K
.V
to 11 K.
V
e
r co
ns
um
pt
i
o
co
s
t
en
e
r
gy t
r
O
N
o
se
d m
odel
i
m
i
ons wi
t
h
out
e
xi
st
i
n
g res
o
u
in
th
e corrid
o
r
eliab
ility. R
e
i
but
i
o
n net
w
o
s
ses, the re
qu
i
e
n
e
ratio
n red
u
q
ui
rem
e
nt
al
s
o
less o
f
th
is
w
e
s m
o
re s
p
ac
n
ce
, the envir
o
y
the
product
i
that resu
lts i
n
s
tatio
n
s
th
at c
a
e
fficiency
r
e
f
fers greate
r
r
e
I
t
age Up
g
r
ad
a
7
0
.
05
watts
L
r
rent l
o
ss in
IS 3.
0 km
an
h
e
circ
uit as
A
h
e circu
it is
6
0
1
5
watts L4
=
0
th
e Ri
n
g
1 ci
r
9
+3
.57
+
0.21
)
r
e
n
t L
o
ss C
o
m
m
p
a
r
i
so
n of
etwork. It ha
s
loss for 11
K
l
to
tal lo
ss
o
c
W
.
I
t
i
s
e
v
i
d
V
. Th
e
p
r
opo
s
o
n i
s
c
onst
a
nt
r
ansm
ission
m
m
prov
es t
h
e
N
the n
e
ed
t
o
l
u
rces, since
t
h
o
r an
d re
d
u
c
i
e
duct
i
o
n i
n
E
n
rk
. R
e
duct
i
o
n
i
rem
e
nt
of p
o
w
u
ce
s, which i
n
o
re
duce c
o
rr
w
ork since the
e
u
nde
rg
r
o
u
n
o
n
m
en
tal i
m
p
i
on
fact
ori
e
s
i
n
t
h
e re
ductio
n
a
n be adde
d
t
o
e
su
lts in
i
m
p
r
o
e
liab
ility at lo
w
I
SSN
:
208
8-8
7
a
t
i
on
Mo
del
f
o
L
5=
3. 5
7
K
W
th
e circu
it b
e
n
d the ca
ble i
n
0
0 KV
a
I
4
=60
0
.2
18
kW
r
cu
it is L1
1
=
(
L
m
pari
so
n i
n
S
e
s
u
m
of
ener
g
s
b
een
fo
und
t
K
.V
d
i
str
i
bu
t
i
c
cu
rre
d is 1
9
d
ent that arou
n
s
ed
r
e
s
e
ar
ch
w
t
. It
has
bee
n
p
m
odel
t
o
save
N
et
work effic
i
l
ay add
itio
na
l
h
e curre
nt
ne
t
i
ng the l
o
ad
p
n
ergy losses
o
n
in
Vo
ltag
e
R
w
e
r
ge
ner
a
t
i
o
n
tu
rn
, re
d
u
c
e
r
esp
o
ndi
ngl
y
.
curre
nt decr
e
n
d. Ag
ai
n
,
th
e
p
act
, by
cons
u
i
s re
duce
d
d
u
n
of
the c
u
rre
o
each circuit
r
ovem
ent of
g
w
er
co
s
t
.
Th
e
7
08
o
r Dist
ributio
n
e
tween SS5
a
n
n
t
h
e
net
w
o
r
k
i
0/
1
1
*
√
3
L
1+L
2
+L
3+
L
e
co
nd
ar
y Sub
s
g
y lo
ss o
c
cu
r
r
t
hat
f
o
r t
h
e sa
m
i
on net
w
or
k
c
9
0.
4 K
W
c
o
m
n
d 50
%
o
f
e
n
w
or
k wh
ich r
e
p
r
ove
d t
h
at
a
e
ner
g
y
whi
c
h
i
ency and all
o
l
11
K
V
cab
l
t
work cable
u
p
er ring, t
h
is
o
f the
Distrib
u
R
egul
at
i
o
n o
f
o
n re
duces
. H
e
e
t
h
e e
nvi
ro
n
m
The qua
nt
i
t
y
e
ases as the v
o
e
m
a
terials re
u
m
i
ng t
h
e ra
w
e
to th
e
red
u
c
nt p
a
ssing
t
h
r
and acc
or
di
n
g
g
enerating un
i
custom
er ca
n
n
Po
we
r S
y
s
t
e
n
d SS
4 a
r
e
a
i
s 24
0
s
q
m
m
c
L
4+L5
)
s
tation
Ring
M
r
ed in
the
se
c
m
e load c
u
rre
n
c
o
m
pare t
o
6.
m
pared t
o
t
h
e
n
e
r
gy
can
be
s
e
su
lts in
redu
c
l
l th
e d
e
v
e
l
o
p
in
t
u
rn
s
a
v
e
t
o
w
s
hi
ghe
r n
u
l
es. This m
e
a
u
tilizatio
n
in
c
in tu
rn
pro
l
o
u
t
i
on net
w
o
r
k
f
th
e
Distri
b
u
t
e
nce, the usa
g
m
en
tal i
m
p
a
c
t
of cables
re
q
o
ltag
e
in
creas
q
ui
re
d f
o
r
t
h
e
w
ma
t
e
r
i
a
l
s
,
a
c
ed pr
o
duct
i
o
n
r
oug
h, w
h
ich
r
g
l
y
t
h
e num
b
e
i
t. Reduces
u
t
n
also use the
s
e
ms (
K
. Ni
th
iy
a
s fo
llo
ws
Th
c
op
per
co
n
d
u
c
M
ains
c
on
d
a
r
y
subs
t
e
n
t
fr
om
ri
ng1
6 K.
V netw
o
e
co
nve
nt
i
o
na
s
aved by upg
r
ctio
n of th
e
o
p
i
n
g nat
i
o
ns
r
t
he
envi
ro
nm
e
u
m
b
er of con
n
a
ns bet
t
e
r a
n
d
c
r
e
as
e
s
.
D
e
cr
e
o
ngs
the cab
l
k
. R
e
duct
i
o
n
i
u
t
i
o
n net
w
or
k
.
g
e of fuel a
nd
t
. The overall
q
ui
r
e
d t
o
di
s
t
s
e
s
, fo
r the sa
m
e
pr
odu
ctio
n
a
l
s
o bec
o
m
e
s
n
requirem
en
t
r
esults in
an
i
e
r of cust
om
e
r
t
ili
zatio
n
of
n
sa
m
e
cables t
a
nan
tha
n
)
2
524
e di
stance
c
t
o
r cable.
t
at
i
on ri
ng
to
5
t
h
er
e
rk
.
I
n
th
is
l
6.
6
K.
V
r
ad
in
g
the
o
per
a
t
i
onal
e
q
ui
red t
o
e
nt
.
n
ection
s
t
o
d
eff
e
c
tiv
e
e
asing
the
l
e life
and
i
n Vol
t
a
ge
.
Due to
a
em
i
s
si
ons
re
sources
t
rib
u
t
e
the
m
e powe
r
.
of
cab
l
es,
less. The
t
. Increas
e
nc
rea
s
e i
n
r
s. Overall
n
e
w
cable.
o
ad
d n
e
w
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 6, No. 6, D
ecem
ber
2016 :
2516 –
2525
2
525
lo
ad
s.
H
e
n
c
e
th
e d
e
tailed stu
d
y
w
a
s condu
cted
and
r
e
so
ur
ces
r
e
q
u
i
r
e
men
t
an
d time r
e
q
u
i
r
e
m
e
n
t
w
e
re
accessed. This
work was im
pl
e
m
ented
along with
overcom
i
ng a
ll the constraints.
Duri
ng this research
work,
al
l
t
h
e perm
i
s
si
ons a
nd a
p
pr
o
v
al
s ha
ve bee
n
appl
i
e
d a
n
d t
h
e sam
e
was ob
t
a
i
n
ed. T
h
e u
p
gra
d
at
i
o
n m
odel
can
be i
m
pl
em
ent
e
d t
h
r
o
u
g
h
o
u
t
a
n
d
ext
e
nde
d
f
o
r l
a
r
g
e el
ect
ri
c
po
we
r
di
st
ri
b
u
t
i
on
sy
st
em
s.
REFERE
NC
ES
[1]
D.L. Wall, G.L. Thompson,
J
.
E
.
D. North
c
ote-G
r
een,
“
A
n Opti
m
i
zation
Model for Planning
R
a
dial Distribu
tio
n
Networks”,
I
E
EE Transactions
on Power
Apparatus and Systems
, Vol. 98, No. 3
,
May
/
June 1979
, PP. 1061-1068
.
[2]
G.L. Thom
pson, D.L. Wall
, “A Branch and Bo
und
Model for Choosing Optimal Substation L
o
cat
ions”,
IEEE
Transactions on
Power Apparatu
s
and Systems
, Vol. 100
, No
. 5
,
May
1981, PP 2683-2688.
[3]
I.
Sun,
D.
R. Fa
rris,
P.
J.
Cote
,
“Op
tim
al Distribu
ti
on Substati
on an
d Primar
y
Feed
er Planning via th
e Fixed Charg
e
Network Formul
ation
”
,
IEEE Transactions on Power Apparatus and systems
, Vol. 101, No. 3
,
March 1982, PP.
602-609.
[4]
T.H. Fawzi, K.F
.
Ali, S.
M.
El-S
obki, “A New Planning M
odel f
o
r Distribution
S
y
stems”,
IEEE Transactions o
n
Power Apparatu
s
and Systems
, Vol. 102
, No
. 9
,
S
e
ptember 198
3,
PP. 3010-3017.
[5]
M.A. El-Kad
y
,
“
C
omputer-Aided
Planning of
Dis
t
ribution
Substation and Primar
y
Feeders”,
IEEE Transactions
on
Power Apparatu
s
and Systems
, Vol. 103
, No
. 6
,
J
une 1984, PP. 11
83-1189
[6]
Boardm
an, C.
M
eckiff, “
A
Branch and Boun
d F
o
rm
ulati
on to An Electr
i
ci
t
y
Dis
t
ri
bution Planning Problem”,
IEEE
Transactions on Po
wer
Apparatus and Systems
, Vol. 104,
No. 8, August 1
985, PP. 2112-2
118.
[7]
H.K. Youssef, R. Hackam, M.A.
Abu-El-Mag
hd, “Novel Optimization
Model for Long Ran
g
e Distribution
Planning”, I
EEE Transactions
on
Po
wer Apparatu
s and S
y
s
t
ems,
Vol.
104
, No. 11
, ember
1985, PP. 3195-3202.
[8]
T. Gönen, I.J
.
Ram
i
rez-Rosa
do, “
O
ptim
al Multi-
Stage Pla
nning of Powe
r Distribution S
y
stem
s”,
IE
EE
Transactions on
Power Deliver
y
,
Vol. 2
,
No. 2, April 1987
, PP. 51
2-519.
[9]
A.C. Marshall, T.B. Boff
ey
, J.R
.
Green, “Optimal
Design of Electricity
Distribu
tion Networks”,
IEE Proceeding
s
Generation, Transmission and Distribution
, Vol.
138, No. 1, Janu
ar
y
1991, PP. 69
-77.
[10]
E. Miguez, J. Cidras, E. Diaz-D
o
ra
do, “An Imp
r
oved Branch-Exchange Al
gorithm for Large-Scale Distributio
n
Network Plannin
g
”,
I
E
EE Transactions on
Power
Systems
, Vol. 17
, No. 4, November 2002, PP. 931
-936.
[11]
V. Miranda, J.
V. Ranito, L
.
M. Proenca
,
“
G
eneti
c
Algorithm
s
in Optim
al
Multistage Dist
ribution Networ
k
Planning”,
I
EEE Transactions on
Power S
y
stems
,
Vol. 9
,
No. 4, November 1994, PP. 1927-1933.
[12]
S.K. Goswam
i, “
D
istribution S
y
stem
Pla
nning Using Branch Ex
change Techniqu
e”,
I
EEE T
r
ansactions on Power
Systems
, Vol. 12
, No. 2, May
199
7, PP. 718-723
.
[13]
Don Jacob, Nithiy
anan
than.K
,
‘Effectiv
e Meth
ods for Power
Sy
stem Grounding’,
WSEAS Transactions on
Business and Economics
,
USA. 30-642,2008.
[14]
Don Jacob, Nithiy
anan
than.K
, ‘Smart and mi
cro grid
model for renewable ener
gy
ba
se
d p
o
w
e
r
sy
ste
m
’
,
International Jo
urnal of
Engineering Modelling
,
Croatia, EUROPE, 2009
, Vol. 22
, No 1-4
,
pp
. 89-
94.
[15]
Elavenil.
V,
Nithiy
ananthan. K,
‘CYMGRD Bas
e
d E
ffective Earthling Design
Mo
del for Substatio
n
’,
International
Journal for Com
puter App
lica
tio
ns
in Eng
i
neering Sciences Asia
,
2011, Vol. I
,
No
3, pp
. 341-346
[16]
Western power,
“Sub
mission to the Ec
on R
e
gulation Authority
fo
r Major A
ugmen
tation
Proposal”
Australia, 2010
.
[17]
Pratap Nair
and
Nithiy
an
anthan
. K ‘Effectiv
e
cab
le sizing mo
del for building
s
and Industries
’
,
International
Journal of Electrical and
Computer
Eng
i
neer
ing
,
Asia. 2016
, Vol
5, 1
,
pp
1-8.
Evaluation Warning : The document was created with Spire.PDF for Python.