I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
V
o
l.
7
,
N
o
.
1
,
F
e
b
r
u
ar
y
201
7
,
p
p
.
2
8
9
~
2
9
8
I
SS
N:
2
0
8
8
-
8
7
0
8
,
DO
I
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
1
.
p
p
2
8
9
-
2
9
8
2
8
9
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
G
a
in F
la
tness a
n
d Nois
e F
ig
ur
e
O
pti
m
i
z
a
tion o
f
C
-
Ba
nd EDFA
in
16
-
cha
nnels W
DM
Sys
te
m
using
F
BG
and
G
F
F
Cha
kk
o
ur
M
o
un
ia
1
,
Ag
hzo
ut
O
t
m
a
n
2
, A
it
Ah
m
e
d B
a
dia
a
3
,
Cha
o
ui F
a
hd
4
,
Alej
o
s
Ana
Va
z
qu
ez
5
,
E
l Y
a
kh
lo
ufi
M
o
un
ir
6
1,
3,
4
De
p
a
rtm
e
n
t
o
f
P
h
y
sic
s,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s,
A
b
d
e
lm
a
le
k
Esa
a
d
i
Un
iv
e
rsity
,
T
e
to
u
a
n
,
M
o
ro
c
c
o
,
2
El
e
c
tro
n
ics
&
M
icro
w
a
v
e
G
ro
u
p
,
T
e
lec
o
m
m
u
n
ica
ti
o
n
De
p
a
rtm
e
n
t,
ENS
A
,
T
e
to
u
a
n
,
M
o
ro
c
c
o
5
De
p
a
rtme
n
t
o
f
T
e
o
ría d
e
la S
e
ñ
a
l
y
Co
m
u
n
ica
c
ió
n
,
Un
iv
e
rsit
y
o
f
V
ig
o
,
P
o
n
tev
e
d
ra
,
V
ig
o
,
S
p
a
in
6
Co
n
d
e
n
se
d
M
a
tt
e
r
P
h
y
sic
s
G
ro
u
p
,
F
a
c
u
l
ty
o
f
S
c
ien
c
e
s,
A
b
d
e
l
m
a
l
e
k
Esa
a
d
i
Un
iv
e
rsit
y
,
T
e
to
u
a
n
,
M
o
ro
c
c
o
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
ei
v
e
d
Se
p
2
9
,
2
0
1
6
R
e
v
i
s
ed
N
o
v
1
0
,
2
0
1
6
Acc
ep
te
d
N
o
v
2
5
,
2
0
1
6
In
th
is
p
a
p
e
r,
G
a
in
F
latn
e
ss
a
n
d
N
o
ise
F
ig
u
re
o
f
Erb
iu
m
Do
p
e
d
F
ib
e
r
Am
p
li
f
ier
(EDF
A
)
h
a
v
e
b
e
e
n
in
v
e
stig
a
ted
in
1
6
-
c
h
a
n
n
e
ls
W
a
v
e
len
g
th
Div
isio
n
M
u
lt
i
p
lex
in
g
(W
DM).
F
ib
e
r
Bra
g
g
G
ra
ti
n
g
(F
BG
)
is
u
se
d
in
C
-
b
a
n
d
w
it
h
th
e
a
i
m
to
a
c
h
iev
e
f
lat
EDF
A
o
u
tp
u
t
g
a
in
.
T
h
e
p
ro
p
o
se
d
m
o
d
e
l
h
a
s b
e
e
n
stu
d
ied
in
d
e
tail
to
e
v
a
lu
a
te
a
n
d
t
o
e
n
h
a
n
c
e
t
h
e
p
e
rf
o
rm
a
n
c
e
o
f
th
e
tran
sm
issio
n
s
y
ste
m
in
ter
m
s
o
f
g
a
in
,
n
o
ise
f
ig
u
re
a
n
d
e
y
e
d
iag
ra
m
o
f
th
e
re
c
e
iv
e
d
sig
n
a
ls.
T
o
th
a
t
e
n
d
,
v
a
rio
u
s
d
e
sig
n
p
a
ra
m
e
t
e
rs
h
a
v
e
b
e
e
n
in
v
e
st
ig
a
ted
a
n
d
o
p
ti
m
ize
d
,
su
c
h
a
s
f
re
q
u
e
n
c
y
sp
a
c
in
g
,
EDF
len
g
th
a
n
d
tem
p
e
r
a
tu
re
.
T
o
e
n
h
a
n
c
e
th
e
tran
sm
issio
n
s
y
ste
m
p
e
r
f
o
rm
a
n
c
e
i
n
term
s
o
f
g
a
in
f
latn
e
ss
,
th
e
G
a
in
F
latten
in
g
F
il
ter
(G
F
F
)
h
a
s
b
e
e
n
in
tr
o
d
u
c
e
d
in
th
e
d
e
sig
n
.
T
o
p
ro
v
e
th
e
e
f
f
icie
n
c
y
o
f
th
e
n
e
w
d
e
sig
n
,
t
h
e
o
p
ti
c
a
l
tr
a
n
sm
is
sio
n
s
y
ste
m
w
it
h
o
p
ti
m
ize
d
d
e
sig
n
p
a
r
a
m
e
ters
h
a
s
b
e
e
n
c
o
m
p
a
re
d
w
it
h
a
p
re
v
io
u
s
w
o
rk
s
in
th
e
li
tera
tu
re
.
T
h
e
sim
u
latio
n
re
su
l
ts
sh
o
w
sa
ti
sf
a
c
to
r
y
p
e
rf
o
r
m
a
n
c
e
w
it
h
q
u
a
si
-
e
q
u
a
li
z
e
d
g
a
in
f
o
r
e
a
c
h
c
h
a
n
n
e
l
o
f
th
e
W
DM
tran
sm
issio
n
sy
ste
m
.
K
ey
w
o
r
d
:
E
DFA
FB
G
G
FF
W
D
M
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
C
h
a
k
k
o
u
r
Mo
u
n
ia,
Dep
ar
t
e
m
en
t
o
f
P
h
y
s
ics,
F
ac
u
l
t
y
o
f
Scie
n
ce
s
,
Ab
d
elm
a
le
k
E
s
aa
d
i U
n
i
v
er
s
it
y
,
F
ac
u
lt
y
o
f
T
et
o
u
a
n
,
B
P
.
2
1
2
1
M
e
Ha
n
n
ec
h
I
I
,
9
3
0
3
0
T
et
o
u
a
n
Mo
r
o
cc
o
.
E
m
ail: c
h
a
k
k
o
u
r
m
@
g
m
ail.
c
o
m
1.
I
NT
RO
D
UCT
I
O
N
I
n
th
e
last
d
ec
a
d
e,
r
em
ar
k
a
b
le
c
o
n
tr
ib
u
ti
o
n
s
h
a
v
e
b
ee
n
m
ad
e
b
y
r
e
s
ea
r
ch
er
s
in
u
s
in
g
E
r
b
i
u
m
D
o
p
e
d
Fib
er
s
A
m
p
lifie
r
s
(
E
D
FA)
f
o
r
c
o
n
v
e
n
ti
o
n
al
C
b
a
n
d
o
p
tica
l
c
o
m
m
u
n
icati
o
n
(
1
5
3
0
n
m
-
1
5
6
5
n
m
)
,
s
i
n
ce
E
D
FAs
o
f
f
er
h
i
g
h
ca
p
ac
it
y
,
l
o
n
g
-
life
s
p
a
n
a
n
d
m
u
lt
ip
le
c
o
n
n
ec
ti
o
n
o
f
o
p
tical
c
o
m
m
u
n
ica
ti
o
n
n
et
w
o
r
k
ap
p
l
icati
o
n
s
[
1
2
]
.
E
D
F
As
a
ls
o
ar
e
d
e
s
i
g
n
e
d
t
o
le
s
s
e
n
t
h
e
ef
f
ec
ts
o
f
d
is
p
er
s
i
o
n
an
d
at
ten
u
a
ti
o
n
,
w
h
ich
all
o
ws
im
p
r
o
v
ed
p
er
f
o
r
m
a
n
ce
f
o
r
l
o
n
g
-
h
au
l
o
p
tical
s
y
s
te
m
s
[
3
]
.
H
o
we
v
er
,
t
h
e
u
s
e
o
f
E
D
F
A
i
n
W
D
M
tr
an
s
m
is
s
i
o
n
s
y
s
te
m
s
an
d
th
eir
r
elate
d
o
p
ti
ca
l
n
etw
o
r
k
s
g
e
n
er
ates
u
n
e
v
e
n
o
u
tp
u
t
g
a
in
b
e
twee
n
o
p
t
ical
ch
an
n
el
s
[
4
]
,
[
5
]
.
I
n
l
o
n
g
a
m
p
lifie
r
ch
ai
n
s
,
e
v
e
n
s
m
all
s
p
ec
tr
al
g
a
in
v
ar
iati
o
n
s
ca
n
g
i
v
e
r
is
e
t
o
lar
g
e
d
if
f
er
en
ce
s
in
t
h
e
r
ec
ei
v
e
d
s
i
g
n
al
p
o
wer
,
ca
u
s
i
n
g
lar
g
e
B
E
R
d
i
s
cr
ep
a
n
cies
b
etwe
e
n
r
ec
ei
v
ed
s
i
g
n
als
[
6
]
.
Fo
r
s
o
m
e
o
p
tical
ch
a
n
n
els,
c
o
m
p
lete
p
o
wer
ex
ti
n
cti
o
n
ca
n
o
cc
u
r
at
th
e
s
y
s
t
em
o
u
tp
u
t,
d
u
e
t
o
i
n
s
u
f
f
icien
t
g
ai
n
o
f
f
s
et
al
o
n
g
t
h
e
am
p
lifie
r
ch
ain
[
7
]
,
[
8
]
.
T
h
e
p
u
r
p
o
s
e
o
f
th
i
s
p
ap
er
is
t
o
tr
ea
t
th
is
p
r
o
b
le
m
,
ca
u
s
ed
b
y
E
D
F
A
m
p
l
if
ier
s
i
n
c
o
m
p
le
x
e
d
W
D
M
s
y
s
te
m
s
,
b
y
u
s
i
n
g
F
i
b
er
B
r
a
g
g
Gr
ati
n
g
s
(
FB
G)
a
n
d
Gain
F
latte
n
i
n
g
F
i
lter
(
G
FF
)
.
G
FF
ar
e
t
y
p
icall
y
u
s
e
d
t
o
f
la
tten
a
n
d
s
m
o
o
t
h
o
u
t
u
n
e
q
u
a
l
s
i
g
n
al
i
n
te
n
s
itie
s
o
v
er
a
s
p
ec
if
ied
wa
v
ele
n
g
t
h
r
an
g
e
[
9
]
.
GF
F
is
u
s
e
d
in
c
o
n
ju
n
cti
o
n
wit
h
FB
G
t
o
o
v
er
c
o
m
e
t
h
e
n
o
n
l
in
ea
r
ef
f
ec
ts
g
en
er
ate
d
b
y
t
h
e
u
s
e
o
f
E
D
FA
in
W
D
M
s
y
s
te
m
s
an
d
t
h
e
n
t
o
e
n
s
u
r
e
t
h
at
all
t
h
e
am
p
lifie
d
c
h
an
n
els
h
a
v
e
th
e
s
a
m
e
g
ain
o
u
tp
u
t
[
1
0
],
[
1
1
]
.
T
h
e
p
a
p
er
is
o
r
g
a
n
ize
d
as
f
o
l
l
o
w,
o
n
o
n
e
h
an
d
,
we
p
r
ese
n
t
t
h
e
p
r
o
p
o
s
e
d
m
o
d
el
u
s
i
n
g
FB
G
i
n
s
i
x
tee
n
ch
an
n
el
wa
v
ele
n
g
t
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
IS
S
N:
2
0
8
8
-
8
7
0
8
Ga
in
F
la
tn
ess
a
n
d
N
o
is
e
F
ig
u
r
e
Op
timiz
a
tio
n
o
f C
-
B
a
n
d
E
D
F
A
in
16
-
ch
a
n
n
els W
D
M
…
(
C
h
a
kk
o
u
r
Mo
u
n
ia
)
2
9
0
d
i
v
is
i
o
n
m
u
lt
ip
le
x
i
n
g
s
y
s
te
m
f
o
r
C
-
B
a
n
d
f
r
eq
u
e
n
cie
s
.
T
h
e
d
e
v
el
o
p
ed
m
e
th
o
d
will
b
e
m
o
d
eled
an
d
s
im
u
late
d
t
o
a
s
s
e
s
s
a
n
d
t
o
im
p
r
o
v
e
th
e
tr
an
s
m
i
s
s
i
o
n
s
y
s
te
m
p
er
f
o
r
m
an
ce
i
n
ter
m
s
o
f
E
D
F
g
ai
n
,
g
ain
f
lat
n
ess
,
n
o
i
s
e
f
i
g
u
r
e
a
n
d
e
y
e
d
ia
g
r
a
m
o
f
th
e
r
ec
ei
v
ed
s
i
g
n
al
s
.
Fo
r
t
h
i
s
p
u
r
p
o
s
e,
v
ar
i
o
u
s
d
es
i
g
n
p
ar
am
eter
s
wh
ic
h
i
n
cl
u
d
e
f
r
eq
u
en
c
y
s
p
ac
i
n
g
,
E
D
F
le
n
g
t
h
a
n
d
te
m
p
er
atu
r
e
h
a
v
e
b
ee
n
i
n
v
e
s
ti
g
ate
d
i
n
o
r
d
er
t
o
o
p
ti
m
i
ze
all
s
etti
n
g
s
.
T
h
e
o
p
t
ical
tr
a
n
s
m
i
s
s
i
o
n
s
y
s
te
m
u
n
d
er
s
tu
d
y
w
ith
o
p
t
im
ized
d
e
s
i
g
n
p
ar
a
m
eter
s
h
a
s
b
ee
n
c
o
m
p
ar
e
d
w
ith
a
p
r
e
v
i
o
u
s
m
o
d
el
t
o
p
r
o
v
e
t
h
e
e
f
f
icien
c
y
o
f
th
e
p
r
o
p
o
s
e
d
m
et
h
o
d
.
O
n
t
h
e
o
t
h
er
h
a
n
d
,
th
e
G
ain
f
latte
n
i
n
g
Fil
ter
(
GFF
)
h
as
b
ee
n
a
d
d
ed
t
o
en
h
an
ce
th
e
r
elia
b
ilit
y
o
f
t
h
e
w
h
o
le
m
o
d
el.
T
o
p
r
o
v
e
th
e
ef
f
ic
ien
c
y
o
f
o
u
r
d
es
i
g
n
,
th
e
o
p
tical
tr
an
s
m
is
s
i
o
n
s
y
s
t
em
h
a
s
b
ee
n
ap
p
lie
d
an
d
co
m
p
ar
e
d
with
p
r
e
v
i
o
u
s
w
o
r
k
p
r
o
p
o
s
e
d
in
t
h
e
liter
atu
r
e
[
1
2
]
,
[
1
3
]
.
All
r
esu
lts
ar
e
an
al
y
z
ed
u
s
in
g
O
p
ti
S
y
s
tem
s
i
m
u
lat
o
r
.
T
h
e
s
i
m
u
lati
o
n
r
esu
lts
p
r
o
v
e
t
h
e
h
i
g
h
r
elia
b
ilit
y
o
f
t
h
e
d
e
v
el
o
p
ed
g
ai
n
f
latte
n
i
n
g
m
et
h
o
d
.
2.
WDM
-
E
DF
A
SYST
E
M
USI
NG
UN
I
F
O
RM
F
B
G
2
.
1
.
Sy
s
t
e
m
Desig
n
I
n
f
ir
s
t
p
ar
t,
we
p
r
e
s
en
t
a
d
etailed
s
tu
d
y
o
f
t
h
e
p
r
o
p
o
s
e
d
m
o
d
el
u
s
i
n
g
I
d
ea
l
FB
G
i
n
C
-
B
a
n
d
f
r
eq
u
en
c
y
o
f
s
i
x
tee
n
ch
a
n
n
el
wa
v
elen
g
t
h
d
i
v
i
s
i
o
n
m
u
l
tip
le
x
i
n
g
s
y
s
t
em
.
As
s
h
o
w
n
in
Fi
g
u
r
e
1
th
e
tr
an
s
m
is
s
i
o
n
s
y
s
te
m
u
n
d
er
s
t
u
d
y
c
o
n
s
is
ts
o
f
1
6
i
n
p
u
t
s
i
g
n
als
(
ch
an
n
e
ls
)
,
an
id
ea
l
m
u
lti
p
le
x
er
,
two
i
s
o
la
t
o
r
s
,
a
p
u
m
p
laser
,
er
b
i
u
m
d
o
p
ed
f
i
b
e
r
,
d
em
u
lti
p
le
x
er
,
p
h
o
t
o
d
e
tect
o
r
P
I
N,
l
o
w
p
as
s
B
e
s
s
el
f
ilter
,
3
R
r
e
g
en
er
at
o
r
an
d
B
E
R
a
n
al
y
z
er
.
T
h
e
i
n
p
u
t
o
f
th
e
s
y
s
te
m
i
s
1
6
wa
v
ele
n
g
t
h
m
u
ltip
lex
e
d
s
i
g
n
al
s
wit
h
wa
v
ele
n
g
t
h
s
v
ar
ie
s
f
r
o
m
1
5
4
6
n
m
t
o
1
5
5
8
n
m
.
T
h
e
p
u
m
p
i
n
g
at
9
8
0
n
m
is
u
s
ed
t
o
e
x
cite
t
h
e
er
b
iu
m
d
o
p
e
d
f
i
b
e
r
at
o
m
s
t
o
a
h
i
g
h
er
en
er
g
y
le
v
el.
E
D
F
A
i
s
c
o
m
b
i
n
ed
wit
h
a
d
i
s
p
er
s
i
o
n
c
o
m
p
e
n
s
at
o
r
t
o
o
v
er
c
o
m
e
c
h
r
o
m
atic
d
is
p
er
s
i
o
n
ef
f
ec
ts
.
C
h
r
o
m
a
tic
d
is
p
er
s
i
o
n
o
cc
u
r
s
wh
e
n
d
if
f
er
en
t
wa
v
ele
n
g
th
s
o
f
li
g
h
t
p
u
ls
e
s
ar
e
la
u
n
c
h
e
d
i
n
t
o
t
h
e
o
p
tical
f
i
b
er
.
T
h
ese
p
u
l
s
es
tr
a
v
el
at
d
if
f
er
en
t
s
p
ee
d
s
d
u
e
t
o
t
h
e
v
ar
iati
o
n
o
f
r
ef
r
ac
tiv
e
in
d
e
x
ex
ci
tin
g
t
h
e
er
b
iu
m
d
o
p
e
d
f
ib
er
at
o
m
s
t
o
a
h
i
g
h
er
en
er
g
y
le
v
el
.
T
h
e
o
p
tical
f
ib
er
u
s
e
d
is
s
in
g
le
m
o
d
e
f
i
b
er
b
ec
au
s
e
it
h
as
h
i
g
h
er
d
ata
r
ate
an
d
l
o
n
g
d
is
ta
n
ce
tr
an
s
m
is
s
i
o
n
.
T
h
e
f
ib
er
B
r
a
g
g
g
r
ati
n
g
a
n
d
t
h
e
P
h
o
t
o
d
etec
t
o
r
Di
o
d
e
P
o
s
iti
v
e
I
n
tr
i
n
s
ic
Ne
g
at
i
v
e
(
P
I
N)
ar
e
u
s
ed
a
s
th
e
d
i
s
p
er
s
i
o
n
c
o
m
p
en
s
at
o
r
a
n
d
o
p
tical
s
i
g
n
al
tr
a
n
s
lat
o
r
r
es
p
ec
ti
v
e
l
y
.
Fo
r
t
h
e
o
p
er
atin
g
o
p
t
ical
tr
an
s
m
is
s
i
o
n
s
y
s
te
m
,
d
if
f
er
en
t
p
ar
a
m
eter
s
ar
e
ad
eq
u
ate
l
y
c
h
o
s
e
n
,
s
u
c
h
as,
I
n
p
u
t
p
o
wer
-
2
5
d
B
,
r
ef
er
en
ce
wa
v
ele
n
g
t
h
1
5
5
0
n
m
,
f
ib
er
le
n
g
th
5
0
k
m
,
a
n
d
atten
u
ati
o
n
c
o
ef
f
icien
t
o
f
ca
b
le
0
.
2
d
B
/
k
m
.
T
o
ac
h
ie
v
e
a
h
i
g
h
g
ai
n
th
e
f
r
eq
u
en
c
y
s
p
ac
i
n
g
,
p
u
m
p
p
o
wer
,
E
DF
le
n
g
t
h
,
a
n
d
T
e
m
p
er
at
u
r
e
ar
e
c
o
n
s
i
d
er
ed
as
cr
itical
p
ar
am
e
ter
s
f
o
r
th
e
s
tu
d
y
.
Fi
g
u
r
e
1
.
1
6
c
h
an
n
el
s
W
D
M
-
E
DFA
s
y
s
te
m
u
s
i
n
g
FB
G
3.
DE
S
I
G
N
AND
P
E
RF
O
RM
ANCE O
P
T
I
M
I
Z
A
T
I
O
N
O
F
WDM
SYST
E
M
3
.
1
.
Sig
na
l
Q
ua
lity
f
o
r
Dif
f
er
ent
F
re
qu
ency
Sp
a
cing
’
s
F
r
e
q
u
e
n
c
y
s
p
ac
i
n
g
i
s
th
e
s
p
ac
in
g
b
etwe
e
n
tw
o
wa
v
e
len
g
t
h
s
o
r
f
r
eq
u
en
c
ies
in
a
W
D
M
s
y
s
t
em
.
I
t
ca
n
b
e
m
ea
s
u
r
ed
i
n
u
n
i
ts
o
f
wa
v
e
len
g
th
s
o
r
f
r
eq
u
en
c
ies.
Fo
u
r
-
wa
v
e
m
i
x
i
n
g
ef
f
ec
t
is
cr
iticall
y
d
ep
e
n
d
en
t
o
n
th
e
ch
an
n
el
s
p
ac
in
g
a
n
d
f
ib
er
c
h
r
o
m
at
ic
d
is
p
er
s
i
o
n
.
Dec
r
ea
s
in
g
t
h
e
ch
a
n
n
el
s
p
ac
i
n
g
i
n
cr
ea
s
es
t
h
e
f
o
u
r
-
wa
v
e
m
i
x
in
g
ef
f
ec
t,
a
n
d
s
o
d
o
e
s
d
ec
r
ea
s
e
t
h
e
c
h
r
o
m
atic
d
i
s
p
e
r
s
i
o
n
ef
f
ec
ts
.
I
n
g
e
n
er
al,
s
ca
tter
in
g
ef
f
ec
ts
ar
e
ch
ar
ac
ter
ized
b
y
a
g
a
in
c
o
ef
f
icien
t,
m
ea
s
u
r
ed
in
m
eter
s
p
e
r
watt.
T
h
e
g
ai
n
c
o
ef
f
icie
n
t
i
s
a
m
ea
s
u
r
e
o
f
t
h
e
s
tr
en
g
th
o
f
t
h
e
n
o
n
l
in
ea
r
ef
f
ec
t.
T
h
e
g
ain
o
f
d
if
f
er
en
t c
h
a
n
n
e
l h
as
t
o
b
e
e
q
u
alize
d
f
o
r
i
d
e
n
ti
ca
l p
er
f
o
r
m
an
ce
o
f
all
th
e
ch
a
n
n
els
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
J
E
C
E
V
o
l.
7
,
N
o
.
1
,
F
eb
r
u
ar
y
2
0
1
7
:
2
8
9
–
298
2
9
1
0
.
2
n
m
0
.
4
n
m
0
.
6
n
m
0
.
8
n
m
1
n
m
Fi
g
u
r
e
2
.
E
y
e
D
ia
g
r
a
m
s
at
d
if
f
er
en
t
v
al
u
es
o
f
F
r
eq
u
en
c
y
S
p
a
cin
g
Fi
g
u
r
e
2
s
h
o
ws
t
h
e
ef
f
ec
t
o
f
n
o
n
li
n
ea
r
itie
s
o
n
th
e
e
y
e
d
ia
g
r
a
m
s
o
f
t
h
e
r
ec
ei
v
e
d
s
i
g
n
a
ls
.
B
y
c
o
m
p
ar
i
n
g
t
h
e
5
e
y
e
d
ia
g
r
a
m
s
,
it
ca
n
b
e
s
ee
n
t
h
at
t
h
e
e
y
e
o
p
en
in
g
is
h
i
g
h
er
an
d
t
h
e
s
i
g
n
al
q
u
al
it
y
is
b
et
ter
in
0
.
8
n
m
an
d
1
n
m
.
3
.
2
.
G
a
in a
nd
No
is
e
F
ig
ure
f
o
r
D
if
f
er
ent
E
DF
L
eng
t
hs
E
r
b
iu
m
D
o
p
e
d
F
i
b
er
len
g
th
i
m
p
ac
t
o
n
th
e
p
er
f
o
r
m
a
n
ce
o
f
p
r
o
p
o
s
ed
s
y
s
t
em
i
s
als
o
s
tu
d
ied
.
T
h
e
len
g
th
o
f
th
e
E
D
F
d
e
p
e
n
d
s
u
p
o
n
th
e
i
n
p
u
t
s
i
g
n
a
l
p
o
w
er
,
E
r
+3
i
o
n
d
e
n
s
it
y
an
d
th
e
s
i
g
n
al
a
n
d
p
u
m
p
wa
v
ele
n
g
t
h
.
I
n
Fi
g
u
r
e
3
,
we
p
r
esen
t
t
h
e
v
ar
iati
o
n
o
f
g
a
in
an
d
n
o
is
e
f
i
g
u
r
e
f
o
r
d
if
f
er
en
t
E
D
F
le
n
g
t
h
.
I
t
is
clea
r
th
at
f
o
r
4
m
an
d
5
m
th
e
g
ain
a
r
e
lo
w
a
n
d
n
o
i
s
e
f
i
g
u
r
e
ar
e
h
ig
h
,
b
y
a
g
a
in
s
t,
f
o
r
1
0
m
t
h
e
No
is
e
f
i
g
u
r
e
is
h
i
g
h
.
Fo
r
6
.
7
m
an
d
7
.
1
m
,
t
h
e
g
ai
n
i
s
alm
o
s
t
th
e
s
a
m
e,
h
o
we
v
er
f
o
r
a
len
g
t
h
o
f
6
.
7
m
t
h
e
N
o
is
e
f
i
g
u
r
e
i
s
l
o
w,
wh
ic
h
m
ea
n
s
t
h
at
6
.
7
m
is
t
h
e
m
o
s
t p
r
o
p
er
E
D
F
le
n
g
t
h
.
1546
1548
1550
1552
1554
1556
30
31
32
33
34
35
36
37
Gain
(d
B)
Wav
elen
gth
(n
m)
4m
5m
6.7m
7,1m
10m
1546
1548
1550
1552
1554
1556
4
6
8
10
12
14
Noise
Fig
ur
e (
dB)
Wav
elen
gth
(n
m)
4
m
5m
6.
7m
7,
1m
10
m
Fi
g
u
r
e
3
.
Var
iati
o
n
o
f
Gai
n
an
d
N
o
is
e
F
i
g
u
r
e
at
d
if
f
er
en
t
v
al
u
es
o
f
E
D
F
len
g
t
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
IS
S
N:
2
0
8
8
-
8
7
0
8
Ga
in
F
la
tn
ess
a
n
d
N
o
is
e
F
ig
u
r
e
Op
timiz
a
tio
n
o
f C
-
B
a
n
d
E
D
F
A
in
16
-
ch
a
n
n
els W
D
M
…
(
C
h
a
kk
o
u
r
Mo
u
n
ia
)
2
9
2
3
.
3
.
G
a
in a
nd
No
is
e
F
ig
ure
f
o
r
D
if
f
er
ent
T
e
m
pera
t
ure
Va
lues
I
n
th
is
s
ec
ti
o
n
we
p
r
esen
t
t
h
e
ef
f
ec
t
o
f
te
m
p
er
at
u
r
e
o
n
g
ain
a
n
d
n
o
i
s
e
f
i
g
u
r
e
r
es
p
ec
ti
v
el
y
.
F
r
o
m
T
a
b
le
1
a
n
d
T
ab
le
2
we
ca
n
o
b
s
er
v
e
t
h
at
1
0
°C
an
d
2
0
°
C
h
a
v
e
ac
h
ie
v
e
d
th
e
b
e
s
t
Gai
n
Ou
tp
u
t,
an
d
2
0
°
C
a
n
d
5
0
°C
h
a
v
e
o
b
tai
n
e
d
th
e
l
o
we
s
t
N
o
i
s
e
F
i
g
u
r
e.
S
o
we
ca
n
c
o
n
cl
u
d
e
th
at
2
0
°C
lea
d
s
t
o
th
e
b
e
s
t
o
p
ti
m
ize
d
p
er
f
o
r
m
a
n
ce
b
ase
d
o
n
Gai
n
an
d
N
o
is
e
F
i
g
u
r
e.
T
a
b
le
1
.
Var
iati
o
n
o
f
g
a
in
wi
t
h
r
esp
ec
t t
o
c
h
an
n
el
wa
v
ele
n
g
th
at
d
if
f
er
en
t
v
al
u
es
o
f
tem
p
e
r
atu
r
e
W
a
v
e
l
e
n
g
t
h
(
n
m)
G
a
i
n
(
d
B
)
a
t
T
e
mp
e
r
a
t
u
r
e
(
C
)
5
°
C
1
0
°
C
2
0
°
C
5
0
°
C
1
5
4
6
3
4
,
4
3
0
3
4
,
5
7
2
3
4
,
3
9
3
3
4
.
2
6
7
1
5
4
8
3
4
,
6
6
7
3
4
,
6
3
7
3
4
,
5
4
9
3
4
.
3
5
2
1
5
5
0
3
4
,
6
9
8
3
4
,
6
4
7
3
4
,
5
4
6
3
4
.
2
6
6
1
5
5
2
3
4
.
6
2
9
3
4
.
5
7
2
3
4
,
4
6
1
3
4
.
1
7
3
1
5
5
4
3
4
.
6
4
1
3
4
.
5
7
6
3
4
,
4
5
1
3
4
.
1
3
3
1
5
5
6
3
4
.
3
9
2
3
4
.
3
2
6
3
4
,
2
0
1
3
3
.
8
9
5
T
a
b
le
2
.
Var
iati
o
n
o
f
n
o
i
s
e
f
i
g
u
r
e
with
r
es
p
ec
t t
o
ch
a
n
n
el
wa
v
elen
g
t
h
at
d
if
f
er
en
t
v
al
u
es
o
f
tem
p
er
atu
r
e
W
a
v
e
l
e
n
g
t
h
(
n
m)
N
F
(
d
B
)
a
t
T
e
mp
e
r
a
t
u
r
e
(
C
)
5
°
C
1
0
°
C
2
0
°
C
5
0
°
C
1
5
4
6
7
.
3
5
9
7
.
2
3
9
7
.
0
1
6
6
.
4
5
3
1
5
4
8
7
.
1
5
4
7
.
0
4
2
6
.
8
3
6
6
.
3
0
8
1
5
5
0
7
.
0
5
4
6
.
9
3
3
6
.
7
4
2
6
.
0
7
8
1
5
5
2
6
.
7
1
7
6
.
6
2
8
6
.
4
6
1
6
.
0
2
4
1
5
5
4
6
.
5
1
0
6
.
4
3
1
6
.
2
8
4
5
.
8
9
3
1
5
5
6
6
.
2
4
9
6
.
1
8
0
6
.
0
4
8
5
.
8
4
2
Fi
g
u
r
e
4
r
ep
r
ese
n
ts
t
h
e
b
e
h
a
v
i
o
r
o
f
t
h
e
g
ai
n
at
d
if
f
er
en
t
v
al
u
es
o
f
te
m
p
er
at
u
r
e
in
th
e
wa
v
elen
g
th
o
f
o
u
r
in
ter
e
s
t.
I
t
ca
n
b
e
o
b
s
er
v
ed
f
o
r
1
5
4
8
n
m
t
h
at
w
h
e
n
t
h
e
tem
p
er
at
u
r
e
i
n
cr
ea
s
es
th
e
g
ain
v
al
u
e
r
e
m
ai
n
s
alm
o
s
t
th
e
s
a
m
e,
wh
ich
m
ea
n
s
th
a
t
t
h
e
g
a
in
f
lat
n
es
s
v
er
s
u
s
tem
p
er
atu
r
e
ca
n
b
e
c
o
n
s
id
er
e
d
as
a
n
a
d
d
ed
v
al
u
e
f
o
r
o
u
r
w
o
r
k
,
s
i
n
ce
i
n
a
p
r
e
v
i
o
u
s
w
o
r
k
,
t
h
e
g
ai
n
at
1
5
4
8
n
m
d
ec
r
ea
s
es a
s
te
m
p
er
at
u
r
e
in
cr
e
ases
[
9
]
.
5°C
10
°C
20
°C
50
°C
18
20
22
24
26
28
30
32
34
36
Gain (dB)
Tem
perature (C)
Pr
opose
d Mode
l
Pr
evious M
odel
Fi
g
u
r
e
4
.
Gai
n
v
ar
iati
o
n
f
o
r
1
5
4
8
n
m
wa
v
ele
n
g
th
at
d
if
f
er
en
t
v
alu
e
s
o
f
te
m
p
er
atu
r
e
3
.
4
.
Sy
s
t
e
m
Co
m
pa
riso
n
T
h
e
p
r
o
p
o
s
e
d
m
o
d
el
u
n
d
er
s
tu
d
y
wit
h
o
p
ti
m
ize
d
v
al
u
es
o
f
FS
,
E
D
F
len
g
t
h
an
d
T
e
m
p
er
atu
r
e
at
d
if
f
er
en
t
p
u
m
p
p
o
wer
s
h
as
b
e
en
c
o
m
p
ar
e
d
wit
h
a
p
r
e
v
i
o
u
s
m
o
d
el
p
r
o
p
o
s
ed
b
y
o
th
er
au
th
o
r
s
[
1
2
]
.
F
ir
s
tl
y
,
t
h
e
e
y
e
d
ia
g
r
am
s
at
d
ata
r
ec
ei
v
er
s
o
f
b
o
t
h
m
o
d
els
h
a
v
e
b
ee
n
i
n
tr
o
d
u
ce
d
u
s
in
g
th
e
s
a
m
e
i
n
itial
s
etti
n
g
as
s
h
o
w
n
in
Fi
g
u
r
e
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
J
E
C
E
V
o
l.
7
,
N
o
.
1
,
F
eb
r
u
ar
y
2
0
1
7
:
2
8
9
–
298
2
9
3
(
a)
(
b
)
Fi
g
u
r
e
5
.
E
y
e
d
ia
g
r
a
m
o
f
t
h
e
r
ec
ei
v
ed
s
i
g
n
al
s
,
a:
p
r
e
v
i
o
u
s
m
o
d
el
[
1
2
]
,
b
: d
e
v
el
o
p
e
d
m
o
d
el.
B
y
c
o
m
p
ar
i
n
g
t
h
e
2
e
y
e
d
ia
g
r
am
s
,
it
i
s
clea
r
th
at
t
h
e
e
y
e
o
p
en
in
g
i
s
h
i
g
h
er
an
d
t
h
e
s
i
g
n
al
q
u
ali
t
y
i
s
b
etter
.
T
h
e
c
o
m
p
ar
is
o
n
h
as
t
h
en
b
ee
n
ca
r
r
ied
o
u
t
b
ase
d
o
n
Gain
an
d
N
o
i
s
e
Fi
g
u
r
e
at
d
if
f
er
en
t
p
u
m
p
p
o
wer
s
as sh
o
w
n
i
n
T
a
b
le
3
an
d
T
ab
le
4
.
T
a
b
le
3
.
Gai
n
wit
h
d
if
f
er
en
t
C
h
an
n
el
W
a
v
ele
n
g
t
h
W
a
v
e
l
e
n
g
t
h
(
n
m)
G
a
i
n
(
d
B
)
a
t
p
u
mp
p
o
w
e
r
1
0
0
2
0
0
3
0
0
4
0
0
[
1
2
]
O
u
r
mo
d
e
l
[
1
2
]
O
u
r
mo
d
e
l
[
1
2
]
O
u
r
mo
d
e
l
[
1
2
]
O
u
r
mo
d
e
l
1
5
4
6
3
3
.
4
7
4
3
4
.
3
9
3
3
6
.
9
1
7
3
7
.
6
6
1
3
8
.
3
7
1
3
9
.
4
0
2
3
9
.
9
4
5
4
0
.
5
8
4
1
5
4
8
3
3
.
1
6
7
3
4
.
5
4
9
3
6
.
7
3
6
3
7
.
6
8
3
3
8
.
6
0
7
3
9
.
4
4
0
3
9
.
8
7
6
4
0
.
5
9
1
1
5
5
0
3
3
.
0
3
6
3
4
.
5
4
6
3
6
.
6
7
5
3
7
.
5
9
0
3
8
.
5
7
8
3
9
.
2
1
1
3
9
.
8
6
7
4
0
.
3
1
2
1
5
5
2
3
3
.
0
9
2
3
4
.
4
6
1
3
6
.
8
6
0
3
7
.
3
7
2
3
8
.
8
2
8
3
8
.
9
2
3
4
0
.
1
5
7
4
0
.
2
0
5
1
5
5
4
3
3
.
3
4
4
3
4
.
4
5
1
3
6
.
1
7
7
3
7
.
2
8
3
3
9
.
1
6
8
3
8
.
7
9
2
4
0
.
5
0
7
4
0
.
5
3
5
1
5
5
6
3
2
.
7
8
6
3
4
.
2
0
1
3
5
.
7
8
8
3
6
.
9
0
6
3
8
.
8
2
9
3
9
.
1
9
6
3
9
.
9
9
0
4
0
.
1
1
1
T
a
b
le
4.
N
o
is
e
Fi
g
u
r
e
wit
h
d
if
f
er
en
t
C
h
a
n
n
el
W
a
v
ele
n
g
th
W
a
v
e
l
e
n
g
t
h
(
n
m)
N
o
i
se
F
i
g
u
r
e
(
d
B
)
a
t
p
u
m
p
p
o
w
e
r
1
0
0
2
0
0
3
0
0
4
0
0
[
1
2
]
O
u
r
mo
d
e
l
[
1
2
]
O
u
r
mo
d
e
l
[
1
2
]
O
u
r
mo
d
e
l
[
1
2
]
O
u
r
mo
d
e
l
1
5
4
6
1
2
.
8
0
6
7
.
0
1
6
1
0
.
7
6
8
6
,
6
1
6
1
0
.
0
3
0
6
.
4
7
9
9
.
6
3
0
6
.
4
0
3
1
5
4
8
1
2
.
3
1
4
6
.
8
3
6
1
0
.
3
5
0
6
.
4
5
0
9
.
6
4
6
6
.
3
1
4
9
.
2
6
9
6
.
2
3
7
1
5
5
0
1
1
.
7
4
9
6
.
7
4
2
9
.
8
8
3
6
.
4
0
4
9
.
2
2
4
6
.
2
9
1
8
.
8
7
5
6
.
2
2
8
1
5
5
2
1
1
.
0
9
9
6
.
4
6
1
9
.
3
5
5
6
.
1
2
6
8
.
8
7
5
6
.
0
0
8
8
.
4
3
0
5
.
9
4
0
1
5
5
4
1
0
.
5
4
3
6
.
2
8
4
8
.
9
6
0
5
.
9
8
1
8
.
4
2
5
5
.
8
7
8
8
.
1
4
5
5
.
8
2
0
1
5
5
6
9
.
8
8
4
6
.
0
4
8
8
.
4
8
2
5
.
7
5
0
8
.
0
1
9
5
.
6
4
3
7
.
7
9
7
5
.
5
8
2
T
h
e
o
b
tai
n
e
d
g
ain
in
th
e
p
r
e
v
i
o
u
s
w
o
r
k
a
t
p
u
m
p
p
o
wer
o
f
1
0
0
m
W
i
s
3
3
.
4
7
4
d
B
wit
h
n
o
i
s
e
f
i
g
u
r
e
o
f
1
2
.
8
0
6
d
B
.
W
h
ile
th
e
g
a
in
o
f
t
h
e
m
o
d
el
d
e
v
el
o
p
e
d
in
th
is
w
o
r
k
a
t
s
a
m
e
p
u
m
p
p
o
wer
o
f
1
0
0
m
W
i
s
3
4
.
3
9
3
d
B
with
n
o
i
s
e
f
i
g
u
r
e
o
f
7
.
0
1
6
d
B
,
wh
ic
h
m
ea
n
s
t
h
at
a
b
e
tter
g
ai
n
p
o
wer
&
le
s
s
N
o
is
e
Fi
g
u
r
e
h
a
v
e
b
ee
n
ac
h
ie
v
ed
.
T
h
e
s
im
u
lati
o
n
r
es
u
lt
s
d
e
m
o
n
s
tr
ate
th
e
h
i
g
h
r
elia
b
ili
t
y
o
f
th
e
p
r
o
p
o
s
e
d
m
o
d
el
i
n
c
o
m
p
a
r
is
o
n
wit
h
o
t
h
er
m
o
d
el
s
.
4.
E
DF
A
-
WDM
SYST
E
M
USI
NG
UN
I
F
O
RM
F
B
G
AND
G
F
F
4
.
1
.
P
ro
po
s
ed
M
o
del
w
it
h G
F
F
T
o
e
n
h
a
n
ce
m
o
r
e
an
d
m
o
r
e
th
e
r
eliab
ilit
y
o
f
th
e
n
ew
m
o
d
el,
we
in
tr
o
d
u
ce
th
e
Gai
n
f
latten
in
g
Fil
ter
(
GFF
)
i
n
o
u
r
s
y
s
te
m
as c
a
n
b
e
s
h
o
w
n
in
F
i
g
u
r
e
6
.
T
h
e
G
FF
i
s
p
lace
d
af
ter
t
h
e
FB
G
b
ef
o
r
e
th
e
d
e
m
u
lti
p
lex
i
n
g
p
r
o
ce
s
s
,
s
o
th
e
m
u
lti
p
le
x
ed
s
i
g
n
al
s
ca
n
b
e
f
ilter
e
d
a
u
t
o
m
a
tic
all
y
f
r
o
m
u
n
e
q
u
al
g
ai
n
v
al
u
e
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
IS
S
N:
2
0
8
8
-
8
7
0
8
Ga
in
F
la
tn
ess
a
n
d
N
o
is
e
F
ig
u
r
e
Op
timiz
a
tio
n
o
f C
-
B
a
n
d
E
D
F
A
in
16
-
ch
a
n
n
els W
D
M
…
(
C
h
a
kk
o
u
r
Mo
u
n
ia
)
2
9
4
Fi
g
u
r
e
6
.
1
6
ch
a
n
n
els
W
D
M
-
E
DFA
s
y
s
te
m
u
s
i
n
g
FB
G
a
n
d
G
FF
4
.
2
.
P
er
f
o
r
m
a
nce
Ana
ly
s
i
s
T
h
e
g
ai
n
f
lat
n
es
s
o
f
t
h
e
d
e
v
el
o
p
e
d
m
o
d
el
w
ith
a
n
d
wit
h
o
u
t
G
FF
is
a
n
al
y
z
e
d
f
o
r
d
if
f
er
en
t
f
r
eq
u
en
c
y
s
p
ac
i
n
g
’
s
.
T
a
b
le
5
s
h
o
w
s
th
at,
th
e
Gain
f
lat
n
es
s
h
a
s
in
cr
ea
s
e
d
b
y
th
e
u
s
e
o
f
G
FF
,
es
p
ec
iall
y
f
o
r
th
e
o
p
t
im
ize
d
v
alu
e
o
f
f
r
eq
u
e
n
c
y
s
p
ac
in
g
0
.
8
n
m
,
w
h
ich
we
n
t
d
o
wn
f
r
o
m
0
.
6
4
7
d
B
t
o
0
.
3
0
3
d
B
.
T
a
b
le
5
.
Gai
n
f
latn
e
s
s
at
d
if
f
er
en
t
v
al
u
e
s
o
f
f
r
eq
u
e
n
c
y
s
p
ac
i
n
g
F
r
e
q
u
e
n
c
y
sp
a
c
i
n
g
(
n
m)
G
a
i
n
F
l
a
t
n
e
ss (d
B
)
W
i
t
h
o
u
t
G
F
F
G
a
i
n
F
l
a
t
n
e
ss (d
B
)
W
i
t
h
G
F
F
0
,
2
0
.
2
5
4
0
.
1
5
3
0
,
4
0
.
2
0
7
0
.
2
0
2
0
,
6
0
.
2
6
1
0
.
2
4
2
0
,
8
0
.
6
4
7
0
.
3
0
3
1
2
.
2
8
1
1
.
5
5
5
Fi
g
u
r
e
7
s
h
o
ws
th
e
g
ai
n
f
latn
es
s
o
f
th
e
d
e
v
el
o
p
ed
m
o
d
el
with
G
FF
a
n
d
wit
h
o
u
t
G
FF
b
ased
o
n
d
if
f
er
en
t
E
D
F
len
g
t
h
s
.
R
e
s
u
l
ts
p
r
o
v
e
th
a
t
with
G
FF
we
o
b
ta
in
b
etter
Gain
f
lat
n
es
s
as
c
o
m
p
ar
e
d
t
o
t
h
e
d
e
v
el
o
p
ed
m
o
d
el
wit
h
o
u
t
G
F
F
.
I
t
ca
n
als
o
b
e
n
o
tice
d
th
a
t
6
.
7
m
is
th
e
m
o
s
t
p
r
o
p
er
E
D
F
le
n
g
t
h
s
i
n
ce
we
o
b
ta
in
a
m
i
n
i
m
u
m
v
alu
e
o
f
g
a
in
f
latn
e
s
s
0
.
3
0
3
d
B
.
4
5
6
7
8
9
10
0
1
2
3
4
5
Gain Flatnes
s (dB)
EDF
length (m
)
without GFF
with GFF
Fi
g
u
r
e
7
.
Var
iati
o
n
o
f
Gai
n
F
l
atn
es
s
at
d
if
f
er
en
t
v
al
u
es
o
f
E
D
F
len
g
t
h
T
h
e
Gai
n
F
lat
n
es
s
o
f
th
e
p
r
o
p
o
s
e
d
m
eth
o
d
wit
h
a
n
d
wit
h
o
u
t
G
FF
f
o
r
d
if
f
er
en
t
T
e
m
p
er
atu
r
e
v
al
u
es i
s
d
ep
ic
ted
i
n
F
i
g
u
r
e
8
.
I
t c
a
n
b
e
s
ee
n
t
h
at
t
h
e
u
s
e
o
f
G
FF
o
f
f
er
s
b
etter
Gai
n
F
lat
n
es
s
f
o
r
all
te
m
p
er
at
u
r
e
v
al
u
e
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
J
E
C
E
V
o
l.
7
,
N
o
.
1
,
F
eb
r
u
ar
y
2
0
1
7
:
2
8
9
–
298
2
9
5
0
10
20
30
40
50
0,0
0,2
0,4
0,6
0,8
Gain Flatnes
s (dB)
Tem
perature (C)
without GFF
with GFF
Fi
g
u
r
e
8
.
Var
iati
o
n
o
f
Gai
n
F
l
atn
es
s
at
d
if
f
er
en
t
T
e
m
p
er
atu
r
e
v
a
lu
e
s
T
a
b
le
6
s
h
o
w
s
th
e
c
o
m
p
ar
is
o
n
r
es
u
lt
s
o
f
Gain
F
lat
n
es
s
b
ase
d
o
n
p
u
m
p
p
o
wer
f
o
r
th
e
p
r
o
p
o
s
e
d
m
et
h
o
d
wi
th
G
FF
a
n
d
wit
h
o
u
t
G
FF
.
O
n
e
ca
n
s
ee
t
h
at
t
h
e
p
r
o
p
o
s
e
d
m
o
d
el
wit
h
G
FF
h
a
s
p
r
o
v
i
d
e
d
th
e
l
o
wes
t
g
ain
f
lat
n
es
s
w
h
ich
r
es
u
lt
s
in
all
o
v
er
b
etter
p
er
f
o
r
m
a
n
ce
.
T
a
b
le
6
.
Gai
n
f
latn
e
s
s
wi
th
d
if
f
er
en
t p
u
m
p
p
o
wer
P
u
mp
P
o
w
e
r
(
mW
)
G
a
i
n
F
l
a
t
n
e
ss (d
B
)
W
i
t
h
o
u
t
G
F
F
G
a
i
n
F
l
a
t
n
e
ss (d
B
)
W
i
t
h
G
F
F
1
0
0
0
.
6
4
7
0
.
3
0
3
2
0
0
1
.
2
2
1
0
.
3
6
1
3
0
0
1
.
5
4
7
0
.
6
9
2
4
0
0
1
.
7
6
8
0
.
7
6
8
5.
P
E
RF
O
RM
ANCE CO
M
P
A
RIS
O
N
I
n
t
h
i
s
p
ar
t,
we
c
o
m
p
ar
e
t
h
e
p
r
o
p
o
s
e
d
m
et
h
o
d
p
er
f
o
r
m
an
c
e
t
o
p
r
o
v
e
t
h
e
ef
f
icien
c
y
o
f
o
u
r
m
et
h
o
d
.
S
o
we
h
a
v
e
a
p
p
lie
d
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
w
ith
E
D
F
a
n
d
G
FF
in
th
e
s
a
m
e
c
o
m
m
u
n
ica
ti
o
n
s
y
s
te
m
[
1
3
]
,
u
s
in
g
th
e
s
a
m
e
i
n
itial
s
e
tti
n
g
:
2
0
°
C
t
em
p
er
at
u
r
e,
7
m
f
ib
er
le
n
g
th
a
n
d
t
h
e
s
i
g
n
al
wa
v
elen
g
t
h
o
f
1
5
4
6
.
8
n
m
as
s
h
o
w
n
in
F
i
g
u
r
e
9
.
Fi
g
u
r
e
9
.
T
h
e
d
esi
g
n
s
y
s
te
m
o
f
E
DF
A
i
n
W
D
M
s
y
s
te
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
IS
S
N:
2
0
8
8
-
8
7
0
8
Ga
in
F
la
tn
ess
a
n
d
N
o
is
e
F
ig
u
r
e
Op
timiz
a
tio
n
o
f C
-
B
a
n
d
E
D
F
A
in
16
-
ch
a
n
n
els W
D
M
…
(
C
h
a
kk
o
u
r
Mo
u
n
ia
)
2
9
6
T
a
b
le
7
s
h
o
ws
th
e
c
o
m
p
ar
is
o
n
r
es
u
lts
i
n
ter
m
s
o
f
g
a
in
a
n
d
th
e
g
ai
n
f
lat
n
es
s
.
I
t
ca
n
b
e
c
l
ea
r
l
y
s
ee
n
th
at
b
e
tter
g
ai
n
v
al
u
e
a
n
d
i
m
p
r
o
v
e
d
g
a
in
f
lat
n
es
s
h
a
v
e
ac
h
ie
v
ed
.
T
a
b
le
7
.
C
o
m
p
ar
is
o
n
p
ar
am
e
t
er
s
with
a
p
r
e
v
i
o
u
s
m
o
d
el
an
d
o
u
r
m
o
d
el
P
a
r
a
me
t
e
r
s
P
r
e
v
i
o
u
s M
o
d
e
l
T
h
e
N
e
w
M
o
d
e
l
W
i
t
h
o
u
t
G
F
F
W
i
t
h
G
F
F
G
a
i
n
28
3
6
.
2
8
3
7
.
1
2
G
a
i
n
F
l
a
t
n
e
ss
1
.
1
4
0
.
8
5
0
.
1
0
6.
CO
NCLU
SI
O
N
I
n
t
h
is
p
ap
er
,
th
e
Gai
n
F
lat
n
ess
an
d
th
e
N
o
is
e
F
i
g
u
r
e
o
f
E
DF
A
m
p
l
if
ier
in
1
6
-
ch
a
n
n
els
W
D
M
s
y
s
te
m
h
a
v
e
b
ee
n
s
t
u
d
ie
d
.
T
h
e
g
ai
n
n
o
n
-
u
n
if
o
r
m
it
y
f
o
r
ea
c
h
ch
a
n
n
el
u
s
i
n
g
F
B
G
an
d
G
F
F
h
as
b
ee
n
c
o
r
r
ec
te
d
in
o
r
d
er
t
o
e
q
u
a
lize
th
e
a
m
p
l
itu
d
e
g
ai
n
i
n
th
e
W
D
M
s
y
s
te
m
.
T
h
e
m
o
s
t
c
o
n
v
e
n
ien
t
d
e
s
i
g
n
p
ar
am
e
ter
s
ar
e
o
p
t
im
ized
t
o
b
e
u
s
e
d
i
n
t
h
e
n
e
w
m
et
h
o
d
.
U
s
ef
u
l
r
esu
lts
s
h
o
w
th
at
0
.
8
n
m
,
6
.
7
m
a
n
d
2
0
°
C
ar
e
th
e
m
o
s
t
p
r
o
p
er
v
alu
e
s
o
f
F
r
e
q
u
e
n
c
y
s
p
ac
i
n
g
,
E
D
F
le
n
g
th
an
d
T
e
m
p
er
atu
r
e
r
esp
ec
ti
v
el
y
.
R
es
u
lts
h
a
v
e
b
ee
n
c
o
m
p
ar
ed
wit
h
p
r
e
v
i
o
u
s
w
o
r
k
s
i
n
ter
m
s
o
f
t
h
e
o
u
t
p
u
t
Gain
an
d
N
o
is
e
F
i
g
u
r
e.
T
h
e
s
i
m
u
l
ati
o
n
r
es
u
lts
p
r
o
v
e
th
at
t
h
e
p
r
o
p
o
s
e
d
m
et
h
o
d
o
f
f
er
s
i
m
p
r
o
v
ed
v
al
u
e
s
o
f
p
er
f
o
r
m
a
n
ce
all
p
ar
a
m
eter
s
.
RE
F
E
R
E
NC
E
S
[1
]
R.
Ra
m
a
s
w
a
m
i,
K.N.
S
iv
a
ra
jan
,
G
.
H.
S
a
sa
k
i,
"
Op
ti
c
a
l
Ne
two
rk
s:
A
Pra
c
ti
c
a
l
Per
sp
e
c
ti
v
e
"
,
T
h
ird
Ed
it
io
n
.
EL
S
EV
IER,
2
0
1
0
.
[2
]
B.
R
M
h
d
i*
,
N.
A
lj
a
b
e
r
,
S
.
M
.
A
lj
w
a
s,
A
.
H.
,
"
Kh
a
li
d
,
De
sig
n
a
n
d
Co
n
stru
c
ti
o
n
o
f
Op
ti
c
a
l
F
ib
e
r
S
e
n
so
r
S
y
ste
m
f
o
r
De
tec
ti
o
n
o
f
th
e
S
tres
s
a
n
d
F
in
e
M
o
ti
o
n
"
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Na
n
o
De
v
ice
s,
S
e
n
so
rs
a
n
d
S
y
st
e
ms
(
IJ
-
Na
n
o
)
,
V
o
l
u
m
e
1
,
No
.
1
,
M
a
y
2
0
1
2
.
[3
]
P
.
S
h
u
k
la,
K.
Ka
u
r
,
"
P
e
rf
o
rm
a
n
c
e
A
n
a
l
y
sis
o
f
EDF
A
f
o
r
Di
ff
e
re
n
t
P
u
m
p
in
g
Co
n
f
ig
u
ra
ti
o
n
s
a
t
Hi
g
h
Da
ta
Ra
te
"
,
Glo
b
a
l
J
o
u
rn
a
l
o
f
Res
e
a
rc
h
e
s
in
En
g
i
n
e
e
rin
g
El
e
c
trica
l
a
n
d
El
e
c
tro
n
ics
E
n
g
i
n
e
e
rin
g
,
V
o
l
u
m
e
1
3
I
ss
u
e
9
V
e
rsio
n
1
.
0
,
2
0
1
3
.
[4
]
M
.
Ch
a
k
k
o
u
r,
A
.
Ha
jaji
a
n
d
O.
Ag
h
z
o
u
t
,
"
De
sig
n
a
n
d
S
tu
d
y
o
f
EDF
A
-
W
DM
Op
ti
c
a
l
T
ra
n
s
m
is
si
o
n
S
y
ste
m
u
sin
g
F
BG
a
t
1
0
G
b
it
s/s
Ch
ro
m
a
ti
c
D
isp
e
rsio
n
C
o
m
p
e
n
sa
ti
o
n
Ef
f
e
c
ts
"
,
M
e
d
it
e
rr
a
n
e
a
n
C
o
n
fer
e
n
c
e
o
n
In
fo
rm
a
t
io
n
&
Co
mm
u
n
ica
ti
o
n
tec
h
n
o
l
o
g
ies
,
M
a
y
2
0
1
5
.
[5
]
M
.
M
.
Ism
a
il
,
M
.
A
.
Oth
m
a
n
,
"
ED
F
A
-
W
DM
Op
ti
c
a
l
N
e
t
w
o
r
k
D
e
si
g
n
S
y
ste
m
"
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
fo
r
L
ig
h
t
a
n
d
El
e
c
tro
n
Op
t
ics
,
o
p
ti
c
(
El
se
v
ier
)
,
v
o
l.
5
3
,
p
p
.
2
9
4
-
3
0
2
,
2
0
1
3
.
[6
]
B.
Rin
d
h
e
,
J.
Dig
g
e
,
S
.
Na
ra
y
a
n
k
h
e
d
k
a
r,
"
I
m
p
le
m
e
n
tatio
n
o
f
Op
ti
c
a
l
OFDM
Ba
se
d
S
y
ste
m
f
o
r
Op
ti
c
a
l
Ne
t
w
o
rk
s
".
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
(
IJ
ECE
)
,
V
o
l.
4
,
No
.
5
,
Oc
t
o
b
e
r
2
0
1
4
.
[7
]
R.
Ka
ler
a
n
d
R
S
Ka
ler,
"
Ga
in
a
n
d
No
ise
F
ig
u
re
P
e
rf
o
rm
a
n
c
e
o
f
Erb
iu
m
Do
p
e
d
F
ib
e
r
Am
p
li
f
ie
rs
(EDF
A
)
a
n
d
Co
m
p
a
c
t
EDF
As
"
,
p
p
.
4
4
0
-
4
4
3
,
El
se
v
ier.2
0
1
1
.
[8
]
J.
Us
m
a
n
S
in
d
h
i,
R
o
h
i
t
B
P
a
tel,
in
ja
l
A
M
e
h
ta
a
n
d
V
iv
e
k
a
n
a
n
d
a
M
ish
ra
,
"
p
e
rf
o
rm
a
n
c
e
a
n
a
l
y
sis
o
f
3
2
-
c
h
a
n
n
e
l
W
DM
s
y
ste
m
u
sin
g
e
rb
iu
m
d
o
p
e
d
f
ib
e
r
a
m
p
li
f
ier
"
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
El
e
c
tro
n
ic
En
g
in
e
e
rin
g
&
T
e
le
c
o
mm
u
n
ica
ti
o
n
s
,
Vo
l.
2
,
No
.
2
,
A
p
ril
2
0
1
3
.
[9
]
R.
A
n
th
o
n
y
,
S
.
Bis
w
a
s
"
T
e
m
p
e
r
a
tu
re
De
p
e
n
d
e
n
t
G
a
in
A
n
a
l
y
sis
o
f
a
Ca
s
c
a
d
e
d
C
-
Ba
n
d
EDF
A
D
WDM
Ne
t
w
o
rk
"
.
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
f
o
r L
i
g
h
t
a
n
d
E
lec
tro
n
O
p
ti
c
s,
o
p
ti
c
(
El
se
v
ier
)
,
P
ro
c
e
d
ia T
e
c
h
n
o
l
o
g
y
,
2
0
1
2
[1
0
]
F
.
Ch
a
o
u
i,
A
.
Ha
jaji,
O.
A
g
h
z
o
u
t,
M
.
Ch
a
k
k
o
u
r,
M
.
El
Ya
k
h
lo
u
f
i,
"
Ch
irp
e
d
Bra
g
g
G
ra
ti
n
g
Disp
e
rsio
n
Co
m
p
e
n
sa
ti
o
n
in
De
n
se
W
a
v
e
len
g
th
Div
isio
n
M
u
lt
i
p
lex
in
g
Op
ti
c
a
l
L
o
n
g
-
Ha
u
l
Ne
t
w
o
rk
s
"
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
M
icr
o
wa
v
e
a
n
d
Op
ti
c
a
l
T
e
c
h
n
o
l
o
g
y
(
IJ
M
OT)
,
Vo
lu
m
e
.
1
0
,
No
.
5
,
S
e
p
tem
b
e
r
2
0
1
5
.
[1
1
]
B.
AL
T
I
NER,
N.
Öz
le
m
ÜN
V
ERDİ,
"
M
o
d
e
ll
i
n
g
-
S
im
u
latio
n
a
n
d
G
a
in
F
latten
in
g
Im
p
ro
v
e
m
e
n
ts
f
o
r
a
n
Erb
i
u
m
Do
p
e
d
F
ib
e
rAm
p
li
f
ier
"
,
IEE
E
,
2
0
0
9
.
[1
2
]
K
Ka
u
r,
K.
S
in
g
h
,
"
P
e
rf
o
rm
a
n
c
e
a
n
a
l
y
sis
o
f
1
6
-
c
h
a
n
n
e
l
W
DM
s
y
ste
m
u
sin
g
Erb
iu
m
Do
p
e
d
F
i
b
e
r
Am
p
li
f
ier
"
,
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
E
n
g
in
e
e
rin
g
a
n
d
I
n
n
o
v
a
ti
v
e
T
e
c
h
n
o
l
o
g
y
(
IJ
EIT
)
,
V
o
l
u
m
e
3
,
Iss
u
e
6
,
De
c
e
m
b
e
r
2
0
1
3
.
[1
3
]
A.
H.M
.
Hu
se
in
a
,
F
.
I.
E
l
-
Na
h
a
l,
"
Op
ti
m
izin
g
th
e
EDF
A
g
a
in
fo
r
W
DM
li
g
h
tw
a
v
e
s
y
st
e
m
w
it
h
tem
p
e
ra
tu
re
d
e
p
e
n
d
e
n
c
y
"
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
f
o
r L
i
g
h
t
a
n
d
E
lec
tro
n
O
p
ti
c
s,
o
p
ti
c
(
El
se
v
ier
)
,
P
r
o
c
e
d
ia T
e
c
h
n
o
lo
g
y
,
2
0
1
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
J
E
C
E
V
o
l.
7
,
N
o
.
1
,
F
eb
r
u
ar
y
2
0
1
7
:
2
8
9
–
298
2
9
7
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
M
o
u
n
ia
C
h
a
k
k
o
u
r
w
a
s
b
o
rn
i
n
T
e
to
u
a
n
,
M
o
rr
o
c
o
.
S
h
e
re
c
e
iv
e
d
th
e
E
n
g
in
e
e
r
De
g
re
e
in
M
e
c
a
tro
n
ics
a
t
th
e
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s
f
ro
m
A
b
d
e
lma
lek
Es
sa
a
d
i
Un
iv
e
rsit
y
,
T
e
to
u
a
n
,
M
o
r
o
c
c
o
in
2
0
1
3
.
S
h
e
isc
u
rre
n
tl
y
w
o
rk
in
g
to
w
a
rd
th
e
P
h
.
D.
d
e
g
re
e
in
T
e
le
c
o
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rin
g
w
it
h
th
e
T
e
lec
o
m
m
u
n
ica
ti
o
n
De
p
a
rtme
n
t
a
t
th
e
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s,
Ab
d
e
lm
a
lek
Es
sa
â
d
i
Un
iv
e
rsit
y
.
He
r
m
a
in
re
se
a
r
c
h
in
tere
sts
Op
ti
c
a
l
c
o
m
m
u
n
ica
ti
o
n
s,
o
p
t
ica
l
se
n
so
r
n
e
tw
o
rk
s,
a
n
d
F
ib
e
r
Bra
g
g
G
ra
ti
n
g
Tec
h
n
o
lo
g
y
.
O
t
m
a
n
Ag
h
z
o
u
tw
a
s
b
o
r
n
in
T
é
to
u
a
n
,
M
o
r
o
c
c
o
.
He
re
c
e
iv
e
d
t
h
e
El
e
c
tro
n
ics
d
e
g
re
e
f
ro
m
A
b
d
e
l
m
a
le
k
Essa
a
d
i
Un
iv
e
rsit
y
,
T
é
to
u
a
n
,
M
o
ro
c
c
o
,
in
1
9
9
5
,
M
.
a
n
d
P
h
.
D.
d
e
g
re
e
s
in
T
e
le
c
o
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rin
g
a
t
th
e
Hig
h
S
c
h
o
o
l
o
f
T
e
lec
o
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rin
g
(ET
S
ITG
C)
o
f
C
a
n
a
r
y
Un
iv
e
rsit
y
,
S
p
a
i
n
i
n
2
0
0
0
a
n
d
Ja
n
u
a
ry
2
0
0
2
,
re
sp
e
c
ti
v
e
ly
.
He
h
a
s
a
lso
b
e
e
n
a
Re
s
e
a
rc
h
e
r
S
tu
d
e
n
t
a
t
th
e
M
icro
w
a
v
e
G
ro
u
p
o
f
th
e
De
p
t.
o
f
El
e
c
tro
n
ics
a
n
d
El
e
c
tro
m
a
g
n
e
ti
s
m
,
Un
iv
e
rsit
y
o
f
S
e
v
il
le
(S
e
v
il
le,
S
p
a
i
n
)
f
ro
m
1
9
9
6
ti
l
l
1
9
9
9
.
In
Ja
n
u
a
ry
2
0
0
2
,
h
e
jo
i
n
e
d
th
e
M
e
d
ica
l
T
e
c
h
n
o
l
o
g
y
Ce
n
ter
(CT
M
)
o
f
th
e
Un
iv
e
rsity
Ho
sp
it
a
l
o
f
G
C,
w
h
e
re
h
e
w
o
rk
e
d
in
M
e
d
ica
l
En
g
i
n
e
e
rin
g
a
p
p
li
c
a
ti
o
n
s
f
o
r
tw
o
y
e
a
rs.
(2
0
0
2
-
2
0
0
4
)
h
a
s
b
e
e
n
a
T
e
a
c
h
e
r
A
s
sista
n
t
o
n
T
e
lec
o
m
m
u
n
ica
ti
o
n
s
E
n
g
in
e
e
rin
g
a
n
d
P
o
st
d
o
c
t
o
ra
l
Re
se
a
rc
h
e
r
a
t
th
e
De
p
a
rtm
e
n
t
o
f
th
e
S
ig
n
a
l
P
ro
c
e
ss
in
g
En
g
i
n
e
e
rin
g
,
Hig
h
S
c
h
o
o
l
o
f
T
E
(ET
S
ITG
C).
F
ro
m
2
0
0
9
u
n
t
il
@)!
6
h
e
jo
in
e
d
th
e
De
p
t.
Of
En
g
i
n
e
e
rin
g
T
e
c
h
n
o
lo
g
ies
:
T
e
lec
o
m
m
u
n
ica
ti
o
n
s
a
n
d
M
e
c
a
tro
n
ics
(T
I
T
M
)
a
s
a
n
A
ss
o
c
iate
P
ro
f
e
ss
o
r
o
f
T
e
lec
o
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rin
g
,
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
a
p
p
li
e
d
S
c
ie
n
c
e
s,
UA
E,
T
é
to
u
a
n
,
M
o
ro
c
c
o
.
C
u
rre
n
tl
y
h
e
is
in
tere
ste
d
o
n
p
rin
te
d
m
icro
w
a
v
e
p
a
ss
iv
e
a
n
d
a
c
ti
v
e
c
ircu
it
s,
f
il
ters
a
n
d
a
n
te
n
n
a
d
e
sig
n
s.
B
a
d
ia
a
Ait
Ah
m
e
d
wa
s
b
o
rn
in
Ch
e
f
c
h
a
o
u
e
n
,
M
o
rr
o
c
o
.
He
re
c
e
iv
e
d
th
e
En
g
in
e
e
r
De
g
r
e
e
in
tele
c
o
m
m
u
n
ica
ti
o
n
e
n
g
in
e
e
rin
g
a
t
th
e
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s
f
ro
m
A
b
d
e
lm
a
l
e
k
Essa
a
d
i
Un
iv
e
rsity
,
Teto
u
a
n
,
M
o
ro
c
c
o
2
0
1
4
.
S
h
e
is
c
u
rre
n
tl
y
w
o
rk
in
g
to
w
a
rd
th
e
P
h
.
D.
d
e
g
re
e
in
T
e
lec
o
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
ri
n
g
w
it
h
A
d
v
a
n
c
e
d
S
c
i
e
n
c
e
s&
T
e
c
h
n
o
l
o
g
y
G
ro
u
p
,
T
e
le
c
o
m
m
u
n
ica
ti
o
n
De
p
a
rtm
e
n
t,
ENS
A
,
T
e
to
u
a
n
,
a
t
A
b
d
e
lma
lek
Essa
a
d
i
Un
iv
e
rsity
,
M
o
ro
c
c
o
.
He
r
re
se
a
rc
h
in
tere
sts M
e
tam
a
teria
l
f
il
ters
d
e
sig
n
a
n
d
U
W
B
a
n
ten
n
a
.
Fa
h
d
Ch
a
o
u
i
re
c
e
iv
e
d
th
e
S
tate
En
g
in
e
e
r
De
g
r
e
e
in
M
e
c
h
a
tro
n
ics
fro
m
th
e
N
a
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s,
A
b
d
e
lma
lek
Essa
â
d
i
Un
iv
e
rsit
y
,
T
é
to
u
a
n
,
M
o
ro
c
c
o
,
i
n
2
0
1
3
.
He
is
c
u
rre
n
tl
y
w
o
rk
in
g
to
w
a
rd
th
e
P
h
.
D
d
e
g
re
e
w
it
h
th
e
T
e
lec
o
m
m
u
n
ica
ti
o
n
De
p
a
rtm
e
n
t
a
t
th
e
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s,
A
b
d
e
l
m
a
le
k
Essa
â
d
i
Un
i
v
e
rsit
y
.
His
m
a
in
re
se
a
rc
h
in
tere
sts
Op
ti
c
a
l
c
o
m
m
u
n
ica
ti
o
n
s,
o
p
ti
c
a
l
se
n
so
r
n
e
tw
o
rk
s,
a
n
d
F
i
b
e
r
Bra
g
g
G
r
a
ti
n
g
T
e
c
h
n
o
lo
g
y
.
An
a
Va
z
q
u
e
z
Ale
jo
s
h
a
s
b
e
e
n
w
o
rk
in
g
w
it
h
th
e
De
p
a
rtm
e
n
t
o
f
S
ig
n
a
l
T
h
e
o
ry
a
n
d
Co
m
m
u
n
ica
ti
o
n
s,
Un
iv
e
rsit
y
o
f
V
ig
o
,
a
s
Re
se
a
rc
h
a
n
d
T
e
a
c
h
in
g
sta
ff
.
S
h
e
c
o
m
p
lete
d
h
e
r
P
h
.
D.
th
e
sis
o
n
t
h
e
ra
d
io
c
h
a
n
n
e
l
c
h
a
ra
c
teriz
a
ti
o
n
f
o
r
th
e
m
il
li
m
e
te
rw
a
v
e
f
re
q
u
e
n
c
ies
.
In
2
0
0
9
sh
e
w
a
s
g
ra
n
ted
w
it
h
th
e
a
rie
Cu
rie
In
tern
a
ti
o
n
a
l
Ou
tg
o
in
g
F
e
ll
o
w
sh
ip
,
c
a
rr
y
in
g
o
u
t
th
e
o
u
tg
o
i
n
g
p
h
a
se
in
th
e
Ne
w
M
e
x
ico
S
tate
Un
iv
e
rsit
y
(NM,
US
A
),
w
it
h
a
re
se
a
rc
h
f
o
c
u
se
d
o
n
p
ro
p
a
g
a
ti
o
n
th
ro
u
g
h
d
isp
e
rsiv
e
m
e
d
ia,
a
n
d
ra
d
a
r
wa
v
e
f
o
r
m
g
e
n
e
ra
ti
o
n
.
In
2
0
0
2
,
h
e
r
M
.
S
.
th
e
sisre
c
e
iv
e
d
th
e
Eri
c
c
so
n
A
w
a
r
d
b
y
th
e
S
p
a
n
is
h
A
ss
o
c
iatio
n
o
f
El
e
c
tr
ica
l
En
g
in
e
e
rs,
a
s
th
e
b
e
st
M
u
lt
im
e
d
ia
W
irele
ss
P
ro
jec
t.
He
r
re
se
a
rc
h
w
o
rk
in
c
lu
d
e
s
ra
d
io
p
ro
p
a
g
a
ti
o
n
,
c
o
m
m
u
n
ica
ti
o
n
e
lec
tro
n
ics
,
w
id
e
b
a
n
d
ra
d
i
o
c
h
a
n
n
e
l
m
o
d
e
li
n
g
,
m
u
lt
im
e
d
ia
w
irele
s
s
s
y
ste
m
s,
w
a
v
e
f
o
r
m
a
n
d
n
o
ise
c
o
d
e
d
e
sig
n
,
a
n
d
ra
d
a
r.
A
lejo
s
is
a
Re
v
ie
w
e
r
f
o
r
se
v
e
ra
l
IEE
E
a
n
d
IET
jo
u
r
n
a
ls,
a
n
d
w
o
rk
s f
o
r
th
e
IEE
E
T
M
C
S
p
a
in
C
h
a
p
ter.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
IS
S
N:
2
0
8
8
-
8
7
0
8
Ga
in
F
la
tn
ess
a
n
d
N
o
is
e
F
ig
u
r
e
Op
timiz
a
tio
n
o
f C
-
B
a
n
d
E
D
F
A
in
16
-
ch
a
n
n
els W
D
M
…
(
C
h
a
kk
o
u
r
Mo
u
n
ia
)
2
9
8
M
o
u
n
ir
H.
El
Ya
k
h
l
o
u
fi
w
a
s
b
o
rn
i
n
T
e
to
u
a
n
,
M
o
ro
c
c
o
.
H
e
o
b
tain
e
d
t
h
e
DEUG
in
M
a
th
e
m
a
ti
c
s
-
P
h
y
sic
s
(M
P
)
i
n
1
9
8
7
a
n
d
P
h
y
sic
s
d
e
g
re
e
o
p
ti
o
n
M
a
teria
ls
S
c
ien
c
e
in
1
9
8
9
a
t
th
e
Un
iv
e
rsit
y
A
ll
a
l
Be
n
A
b
d
e
la
h
,
F
e
s,
M
o
r
o
c
c
o
.
He
c
o
n
ti
n
u
e
d
h
is
stu
d
ies
in
F
ra
n
c
e
a
t
th
e
Un
iv
e
rsit
y
o
f
S
a
in
t
Je
ro
m
e
,
M
a
rs
se
il
le.
He
h
a
d
h
is
DEA
o
p
ti
o
n
m
a
teria
l
sc
ien
c
e
s
in
1
9
9
0
a
n
d
h
e
p
re
p
a
re
d
h
is
d
o
c
t
o
ra
te
a
t
M
icro
sc
o
p
y
a
n
d
Diff
r
a
c
ti
o
n
L
a
b
o
ra
to
ry
El
e
c
tro
n
ics
a
t
th
e
Un
iv
e
rsit
y
o
f
S
t.
Je
ro
m
e
th
a
t
h
e
su
sta
in
e
d
i
n
1
9
9
3
.
He
h
a
d
a
d
o
c
t
o
r
a
l
p
o
st
a
t
t
h
e
Un
iv
e
rsity
o
f
S
tJé
rô
m
e
f
o
r
tw
o
y
e
a
rs.
H
e
wa
s
h
ired
a
s
p
ro
f
e
ss
o
r
a
ss
istan
t
a
t
A
b
d
e
l
M
a
lek
Essa
a
id
i
Un
iv
e
rsit
y
in
1
9
9
6
,
T
e
to
u
a
n
,
M
o
ro
c
c
o
.
He
p
re
p
a
re
d
a
n
o
th
e
r
P
h
D
sta
te
th
a
t
h
e
su
sta
i
n
e
d
a
t
2
0
0
2
.
He
is
n
o
w
P
ro
f
e
ss
o
r
o
f
Hig
h
e
r
Ed
u
c
a
ti
o
n
a
t
th
e
F
a
c
u
lt
y
o
f
S
c
ien
c
e
o
f
T
é
to
u
a
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.