I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l
a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
201
6
,
p
p
.
2
6
2
1
~
2
6
2
8
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
6i
6
.
1
2
1
5
2
2621
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
A Mo
dified
ABC
Alg
o
rith
m
f
o
r
So
lv
ing
Non
-
Co
nv
ex
Dyna
m
ic
Eco
no
m
ic
Dispa
t
ch P
ro
ble
m
s
H
a
rdia
ns
y
a
h
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
T
a
n
ju
n
g
p
u
ra
Un
iv
e
rsity
,
P
o
n
ti
a
n
a
k
,
W
est Ka
li
m
an
ta
n
,
In
d
o
n
e
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
1
2
,
2
0
1
6
R
ev
i
s
ed
No
v
3
,
2
0
1
6
A
cc
ep
ted
No
v
1
7
,
2
0
1
6
In
th
is
p
a
p
e
r,
a
m
o
d
if
ied
a
rti
f
i
c
ial
b
e
e
c
o
lo
n
y
(M
A
BC)
a
lg
o
rit
h
m
is
p
re
se
n
ted
to
so
lv
e
n
o
n
-
c
o
n
v
e
x
d
y
n
a
m
i
c
e
c
o
n
o
m
ic
d
isp
a
tch
(DED)
p
ro
b
lem
s
c
o
n
sid
e
ri
n
g
v
a
lv
e
-
p
o
in
t
e
ff
e
c
ts,
t
h
e
ra
m
p
ra
te
li
m
it
s
a
n
d
tran
sm
iss
io
n
l
o
ss
e
s.
A
rti
f
icia
l
b
e
e
c
o
lo
n
y
a
lg
o
rit
h
m
is
a
re
c
e
n
t
p
o
p
u
lati
o
n
-
b
a
se
d
o
p
ti
m
iza
ti
o
n
m
e
th
o
d
w
h
ich
h
a
s
b
e
e
n
su
c
c
e
ss
f
u
ll
y
u
se
d
in
m
a
n
y
c
o
m
p
lex
p
ro
b
le
m
s.
A
n
e
w
m
u
tatio
n
stra
teg
y
in
sp
ired
f
ro
m
th
e
d
iff
e
re
n
ti
a
l
e
v
o
lu
ti
o
n
(DE)
is
in
tro
d
u
c
e
d
in
o
rd
e
r
to
im
p
ro
v
e
th
e
e
x
p
lo
it
a
ti
o
n
p
r
o
c
e
ss
.
T
h
e
fe
a
sib
il
it
y
o
f
th
e
p
ro
p
o
se
d
m
e
th
o
d
is
v
a
li
d
a
ted
o
n
5
a
n
d
1
0
u
n
it
s
tes
t
sy
ste
m
f
o
r
a
2
4
h
ti
m
e
in
terv
a
l.
T
h
e
re
su
lt
s
a
re
c
o
m
p
a
re
d
w
it
h
th
e
re
su
lt
s
re
p
o
rte
d
i
n
t
h
e
li
tera
tu
re
.
It
is
sh
o
w
n
th
a
t
th
e
o
p
ti
m
u
m
re
su
lt
s
c
a
n
b
e
o
b
tain
e
d
m
o
re
e
c
o
n
o
m
ica
ll
y
a
n
d
q
u
ick
ly
u
sin
g
th
e
p
r
o
p
o
se
d
m
e
th
o
d
in
c
o
m
p
a
riso
n
w
it
h
t
h
e
e
a
rli
e
r
m
e
th
o
d
s.
K
ey
w
o
r
d
:
D
y
n
a
m
ic
ec
o
n
o
m
ic
d
is
p
atc
h
Mo
d
if
ied
ar
tif
icial
b
ee
co
lo
n
y
alg
o
r
ith
m
R
a
m
p
r
ate
li
m
it
s
Valv
e
-
p
o
in
t e
f
f
ec
ts
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Har
d
ian
s
y
ah
,
Dep
ar
t
m
en
t o
f
E
lectr
ical
E
n
g
i
n
ee
r
in
g
,
T
an
j
u
n
g
p
u
r
a
U
n
iv
er
s
it
y
,
J
alan
Ah
m
ad
Yan
i
,
P
o
n
tia
n
ak
-
7
8
1
2
4
,
W
est Ka
lim
a
n
ta
n
,
I
n
d
o
n
esia.
E
m
ail:
h
ar
d
i_
ek
a@
y
a
h
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
A
p
o
w
er
u
ti
lit
y
n
ee
d
s
to
en
s
u
r
e
th
at
th
e
elec
tr
ical
p
o
w
er
is
g
en
er
ated
w
it
h
m
i
n
i
m
u
m
co
s
t.
Hen
ce
,
f
o
r
ec
o
n
o
m
ic
o
p
er
atio
n
o
f
th
e
s
y
s
te
m
,
th
e
to
tal
d
e
m
a
n
d
m
u
s
t
b
e
ap
p
r
o
p
r
iately
s
h
ar
ed
a
m
o
n
g
t
h
e
g
e
n
er
atin
g
u
n
it
s
w
it
h
a
n
o
b
j
ec
tiv
e
to
m
i
n
i
m
ize
th
e
to
tal
g
en
er
at
io
n
co
s
t
o
f
t
h
e
s
y
s
te
m
.
D
y
n
a
m
ic
ec
o
n
o
m
ic
d
is
p
atch
(
DE
D)
is
o
n
e
o
f
i
m
p
o
r
tan
t
p
r
o
b
le
m
s
i
n
p
o
w
er
s
y
s
te
m
o
p
er
atio
n
an
d
co
n
tr
o
l,
w
h
ich
i
s
u
s
ed
to
d
eter
m
in
e
t
h
e
o
p
ti
m
al
s
ch
ed
u
le
o
f
g
e
n
er
at
i
n
g
o
u
tp
u
t
s
o
n
li
n
e
s
o
as
to
m
ee
t
th
e
lo
a
d
d
em
a
n
d
at
th
e
m
i
n
i
m
u
m
o
p
er
atin
g
co
s
t
u
n
d
er
v
ar
io
u
s
s
y
s
te
m
a
n
d
o
p
er
atin
g
co
n
s
tr
ai
n
ts
o
v
er
t
h
e
en
tire
d
is
p
atch
p
er
io
d
s
.
DE
D
is
a
n
ex
te
n
s
io
n
o
f
th
e
co
n
v
e
n
tio
n
al
ec
o
n
o
m
ic
d
is
p
at
ch
(
E
D)
p
r
o
b
lem
th
a
t
ta
k
es
i
n
to
co
n
s
id
er
a
tio
n
t
h
e
li
m
it
s
o
n
t
h
e
r
a
m
p
r
ate
o
f
g
en
er
ati
n
g
u
n
it
s
to
m
ai
n
tai
n
th
e
l
if
e
o
f
g
en
er
atio
n
eq
u
ip
m
e
n
t
[
1
-
2
]
.
Sin
ce
th
e
DE
D
p
r
o
b
le
m
w
as
i
n
tr
o
d
u
ce
d
,
s
e
v
er
al
o
p
ti
m
izatio
n
tec
h
n
iq
u
es
a
n
d
p
r
o
ce
d
u
r
es
h
av
e
b
ee
n
u
s
ed
f
o
r
s
o
lv
in
g
t
h
e
DE
D
p
r
o
b
le
m
w
it
h
co
m
p
lex
o
b
j
ec
tiv
e
f
u
n
ctio
n
s
o
r
co
n
s
tr
ai
n
ts
.
T
h
er
e
w
er
e
a
n
u
m
b
er
o
f
class
ical
m
et
h
o
d
s
th
at
h
a
v
e
b
ee
n
ap
p
lied
to
s
o
lv
e
th
is
p
r
o
b
le
m
s
u
ch
as
g
r
ad
ien
t
p
r
o
j
ec
tio
n
m
et
h
o
d
,
L
ag
r
an
g
e
r
elax
atio
n
,
a
n
d
li
n
ea
r
p
r
o
g
r
am
m
in
g
[
3
-
5
]
.
Mo
s
t
o
f
th
e
s
e
m
et
h
o
d
s
ar
e
n
o
t
ap
p
licab
le
f
o
r
n
o
n
-
s
m
o
o
th
o
r
n
o
n
-
co
n
v
e
x
co
s
t
f
u
n
ct
io
n
s
.
T
o
o
v
er
co
m
e
th
i
s
p
r
o
b
lem
,
m
a
n
y
s
to
ch
ast
ic
o
p
ti
m
izatio
n
m
et
h
o
d
s
h
av
e
b
ee
n
e
m
p
lo
y
ed
to
s
o
l
v
e
t
h
e
DE
D
p
r
o
b
lem
,
s
u
ch
as
g
e
n
etic
al
g
o
r
ith
m
(
G
A
)
[
6
]
,
s
i
m
u
lated
a
n
n
ea
l
in
g
(
S
A
)
[
7
]
,
d
if
f
er
e
n
tial
e
v
o
lu
tio
n
(
DE
)
[
8
]
,
p
ar
ticle
s
w
ar
m
o
p
ti
m
iz
atio
n
(
P
SO)
[
9
]
,
h
y
b
r
id
E
P
an
d
SQP
[
1
0
]
,
d
eter
m
in
i
s
ticall
y
g
u
id
ed
P
SO
[
1
1
]
,
ar
tif
icial
b
ee
co
lo
n
y
(
AB
C
)
alg
o
r
ith
m
[
1
2
]
,
an
d
i
m
p
er
ialis
t
co
m
p
etiti
v
e
alg
o
r
ith
m
(
I
C
A
)
[
1
3
]
.
Ma
n
y
o
f
t
h
ese
tech
n
iq
u
es
h
a
v
e
p
r
o
v
e
n
t
h
eir
e
f
f
ec
ti
v
en
e
s
s
in
s
o
l
v
in
g
t
h
e
DE
D
p
r
o
b
le
m
w
it
h
o
u
t a
n
y
o
r
f
e
w
er
r
estrictio
n
s
o
n
t
h
e
s
h
ap
e
o
f
th
e
co
s
t f
u
n
ctio
n
cu
r
v
es.
S
w
ar
m
i
n
tel
lig
e
n
ce
h
as b
ec
o
m
e
a
r
esear
ch
i
n
ter
est
to
d
if
f
er
en
t d
o
m
ai
n
o
f
r
esear
ch
er
s
in
r
ec
en
t
y
ea
r
s
.
T
h
ese
alg
o
r
ith
m
s
s
i
m
u
late
th
e
f
o
o
d
f
o
r
ag
in
g
b
eh
a
v
io
r
o
f
a
f
lo
ck
o
f
b
ir
d
s
o
r
s
w
ar
m
o
f
b
ee
s
.
Mo
tiv
ated
b
y
t
h
e
f
o
r
ag
i
n
g
b
eh
a
v
io
r
o
f
h
o
n
e
y
b
ee
s
,
r
esear
ch
er
s
h
a
v
e
in
i
tiall
y
p
r
o
p
o
s
ed
ar
tif
icial
b
ee
co
lo
n
y
(
A
B
C
)
alg
o
r
ith
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
2
1
–
2
6
2
8
2622
f
o
r
s
o
lv
in
g
v
ar
io
u
s
o
p
ti
m
izati
o
n
p
r
o
b
lem
s
[
1
4
-
1
5
]
.
A
r
tif
ic
ia
l
b
ee
co
lo
n
y
(
A
B
C
)
al
g
o
r
ith
m
is
a
r
elativ
e
l
y
n
e
w
m
e
m
b
e
r
o
f
s
w
ar
m
i
n
tel
lig
e
n
c
e.
A
B
C
tr
ies
to
m
o
d
el
n
at
u
r
al
b
eh
av
io
r
o
f
r
ea
l
h
o
n
e
y
b
ee
s
in
f
o
o
d
f
o
r
ag
i
n
g
.
Ho
n
e
y
b
ee
s
u
s
e
s
e
v
er
al
m
ec
h
an
is
m
s
li
k
e
w
a
g
g
le
d
an
ce
to
o
p
tim
a
ll
y
lo
ca
te
f
o
o
d
s
o
u
r
ce
s
an
d
to
s
ea
r
ch
n
e
w
o
n
es.
T
h
is
m
ak
e
s
t
h
e
m
a
g
o
o
d
ca
n
d
id
ate
f
o
r
d
ev
elo
p
in
g
n
e
w
i
n
telli
g
e
n
t
s
ea
r
c
h
al
g
o
r
ith
m
s
.
De
s
p
ite
t
h
e
s
i
m
p
lic
it
y
a
n
d
th
e
s
u
p
er
io
r
ity
o
f
A
B
C
al
g
o
r
ith
m
,
r
ec
e
n
t
s
t
u
d
ies
r
ep
o
r
ted
th
a
t
it
s
u
f
f
er
s
f
r
o
m
a
p
o
o
r
ex
p
lo
itatio
n
p
r
o
ce
s
s
an
d
a
s
l
o
w
co
n
v
er
g
e
n
ce
r
ate.
T
o
o
v
er
co
m
e
t
h
ese
p
it
f
all
s
,
s
o
m
e
r
e
s
ea
r
ch
p
ap
er
s
h
av
e
in
tr
o
d
u
ce
d
m
o
d
if
icatio
n
s
to
th
e
class
ical
A
B
C
alg
o
r
it
h
m
in
o
r
d
er
to
im
p
r
o
v
e
its
p
er
f
o
r
m
a
n
ce
an
d
tac
k
le
m
o
r
e
c
o
m
p
le
x
r
ea
l
-
w
o
r
ld
p
r
o
b
lem
s
[
1
6
-
1
7
]
.
T
h
is
p
ap
er
p
r
esen
ts
a
n
o
v
el
o
p
ti
m
izatio
n
m
et
h
o
d
b
ased
o
n
m
o
d
i
f
ied
ar
ti
f
icial
b
ee
co
lo
n
y
(
MA
B
C
)
alg
o
r
ith
m
ap
p
lied
to
d
y
n
a
m
i
c
ec
o
n
o
m
ic
d
is
p
atc
h
i
n
a
p
r
ac
tical
p
o
w
er
s
y
s
te
m
w
h
i
le
co
n
s
id
er
in
g
s
o
m
e
n
o
n
li
n
ea
r
ch
ar
ac
ter
is
tics
o
f
a
g
en
er
ato
r
s
u
c
h
as
v
alv
e
-
p
o
i
n
t
ef
f
ec
t,
t
h
e
r
a
m
p
r
ate
li
m
i
t
s
,
an
d
tr
an
s
m
i
s
s
io
n
lo
s
s
es.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
test
ed
f
o
r
t
w
o
d
i
f
f
er
en
t
s
y
s
te
m
s
an
d
t
h
e
r
es
u
lts
ar
e
co
m
p
ar
ed
w
it
h
o
t
h
er
m
et
h
o
d
s
r
ep
o
r
ted
in
r
ec
en
t liter
atu
r
e
in
o
r
d
er
to
d
em
o
n
s
tr
ate
its
p
er
f
o
r
m
a
n
ce
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
2
.
1
.
DE
D
P
ro
ble
m
F
o
r
m
ula
t
io
n
T
h
e
o
b
j
ec
tiv
e
o
f
DE
D
p
r
o
b
lem
is
to
f
i
n
d
t
h
e
o
p
ti
m
al
s
ch
ed
u
le
o
f
o
u
tp
u
t
p
o
w
er
s
o
f
o
n
li
n
e
g
en
er
ati
n
g
u
n
i
ts
w
i
th
p
r
ed
icted
p
o
w
er
d
e
m
an
d
s
o
v
er
a
ce
r
tain
p
er
io
d
o
f
ti
m
e
to
m
ee
t
t
h
e
p
o
w
er
d
e
m
an
d
at
m
i
n
i
m
u
m
o
p
er
atin
g
co
s
t.
T
h
e
f
u
el
co
s
t
f
u
n
ctio
n
o
f
t
h
e
g
en
er
ati
n
g
u
n
it
is
e
x
p
r
ess
ed
as
a
q
u
ad
r
atic
f
u
n
ctio
n
o
f
r
ea
l
p
o
w
e
r
g
en
er
atio
n
.
T
h
e
o
b
j
ec
tiv
e
f
u
n
c
tio
n
o
f
t
h
e
DE
D
p
r
o
b
lem
i
s
T
t
N
i
c
P
b
P
a
P
F
F
T
t
N
i
i
t
i
i
t
i
i
T
t
N
i
t
i
t
i
T
,
,
2
,
1
;
,
,
2
,
1
f
o
r
)
(
mi
n
1
1
,
2
,
1
1
,
,
(
1
)
w
h
er
e
F
i,
t
is
t
h
e
f
u
el
co
s
t
o
f
u
n
it
i
at
ti
m
e
in
ter
v
al
t
i
n
$
/h
r
,
a
i
,
b
i
,
an
d
c
i
a
r
e
th
e
co
s
t
co
ef
f
i
cien
ts
o
f
g
e
n
er
atin
g
u
n
i
t
i
,
P
i,
t
is
th
e
r
ea
l
p
o
w
er
o
u
tp
u
t
o
f
g
en
er
ati
n
g
u
n
it
i
at
ti
m
e
p
er
io
d
t
in
MW
,
an
d
N
is
th
e
n
u
m
b
er
o
f
g
en
er
ato
r
s
.
T
i
s
th
e
to
tal
n
u
m
b
er
o
f
h
o
u
r
s
i
n
th
e
o
p
er
atin
g
h
o
r
izo
n
.
T
h
e
v
alv
e
-
p
o
in
t
e
f
f
ec
ts
ar
e
tak
en
in
to
co
n
s
id
er
atio
n
i
n
t
h
e
D
E
D
p
r
o
b
lem
b
y
s
u
p
er
i
m
p
o
s
i
n
g
th
e
b
as
ic
q
u
ad
r
atic
f
u
el
-
co
s
t c
h
ar
ac
ter
is
tics
w
it
h
th
e
r
ec
ti
f
ied
s
i
n
u
s
o
id
co
m
p
o
n
e
n
t a
s
f
o
llo
w
s
[
1
8
]
:
T
t
N
i
t
i
i
i
i
i
t
i
i
t
i
i
T
t
N
i
t
i
t
i
T
P
P
f
e
c
P
b
P
a
P
F
F
1
1
,
m
i
n
,
,
2
,
1
1
,
,
s
i
n
)
(
m
i
n
(
2
)
w
h
er
e
F
T
is
to
tal
f
u
el
co
s
t
o
f
g
en
er
atio
n
i
n
(
$
/h
r
)
in
clu
d
i
n
g
v
alv
e
p
o
in
t
lo
ad
in
g
,
e
i
,
f
i
ar
e
f
u
el
co
s
t
co
ef
f
icie
n
t
s
o
f
u
n
it
i
r
ef
lec
tin
g
v
alv
e
-
p
o
in
t
ef
f
ec
t
s
.
T
h
e
f
u
el
co
s
t is
m
i
n
i
m
ized
s
u
b
j
e
cted
to
th
e
f
o
llo
w
in
g
co
n
s
tr
ain
ts
:
1
)
A
ctiv
e
p
o
w
er
b
alan
ce
eq
u
a
tio
n
Fo
r
p
o
w
er
b
alan
ce
,
a
n
eq
u
alit
y
co
n
s
tr
ai
n
t
s
h
o
u
ld
b
e
s
atis
f
ie
d
.
T
h
e
to
tal
g
en
er
ated
p
o
w
er
s
h
o
u
ld
b
e
th
e
s
a
m
e
as to
tal
lo
ad
d
e
m
an
d
p
lu
s
t
h
e
to
tal
lin
e
lo
s
s
.
t
L
t
D
N
i
t
i
P
P
P
,
,
1
,
(
3
)
w
h
er
e
P
D,
t
an
d
P
L,
t
ar
e
th
e
lo
ad
d
em
a
n
d
an
d
tr
an
s
m
is
s
io
n
lo
s
s
in
MW
at
ti
m
e
i
n
ter
v
a
l
t
,
r
esp
ec
tiv
el
y
.
T
h
e
tr
an
s
m
i
s
s
io
n
lo
s
s
P
L,
t
ca
n
b
e
ex
p
r
ess
ed
b
y
u
s
i
n
g
B
m
atr
i
x
tech
n
iq
u
e
a
n
d
is
d
ef
i
n
ed
b
y
(
4
)
as,
00
,
1
0
,
1
1
,
,
B
P
B
P
B
P
P
t
i
n
i
i
t
j
ij
n
i
n
j
t
i
t
L
(
4
)
w
h
er
e
B
ij
, B
0i
,
an
d
B
00
ar
e
co
ef
f
icie
n
t o
f
tr
a
n
s
m
is
s
io
n
lo
s
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mo
d
ified
A
B
C
A
lg
o
r
ith
m
fo
r
S
o
lvin
g
N
o
n
-
C
o
n
ve
x
Dyn
a
m
ic
E
co
n
o
mic
Dis
p
a
tch
P
r
o
b
lems
(
Ha
r
d
ia
n
s
ya
h
)
2623
2
)
Min
i
m
u
m
a
n
d
m
a
x
i
m
u
m
p
o
w
er
li
m
its
Gen
er
atio
n
o
u
tp
u
t
o
f
ea
ch
g
en
er
ato
r
s
h
o
u
ld
lie
b
et
w
ee
n
m
i
n
i
m
u
m
a
n
d
m
a
x
i
m
u
m
li
m
it
s
.
T
h
e
co
r
r
esp
o
n
d
in
g
in
eq
u
alit
y
co
n
s
tr
ain
t f
o
r
ea
ch
g
e
n
er
ato
r
is
m
a
x
,
,
m
i
n
,
i
t
i
i
P
P
P
(
5
)
w
h
er
e
P
i,
min
an
d
P
i,
max
ar
e
th
e
m
i
n
i
m
u
m
a
n
d
m
a
x
i
m
u
m
r
ea
l
p
o
w
er
o
u
tp
u
t o
f
u
n
it
i
in
MW
,
r
esp
ec
tiv
el
y
.
3)
R
am
p
r
ate
li
m
it
s
T
h
e
ac
tu
al
o
p
er
atin
g
r
an
g
es
o
f
all
o
n
li
n
e
u
n
i
ts
ar
e
r
estricte
d
b
y
th
eir
co
r
r
esp
o
n
d
in
g
r
a
m
p
r
ate
li
m
its
.
T
h
e
r
am
p
-
u
p
an
d
r
a
mp
-
d
o
w
n
co
n
s
tr
ain
ts
ca
n
b
e
w
r
itte
n
as (
6
)
an
d
(
7
)
,
r
esp
ec
tiv
el
y
.
i
t
i
t
i
UR
P
P
1
,
,
(
6
)
i
t
i
t
i
DR
P
P
,
1
,
(
7
)
w
h
er
e
P
i,
t
an
d
P
i,
t
-
1
ar
e
th
e
p
r
e
s
en
t a
n
d
p
r
ev
io
u
s
p
o
w
er
o
u
tp
u
ts
,
r
esp
ec
tiv
el
y
.
UR
i
an
d
DR
i
a
r
e
th
e
r
a
m
p
-
u
p
an
d
r
a
m
p
-
d
o
w
n
li
m
it
s
o
f
u
n
i
t
i
(
in
u
n
i
ts
o
f
MW
/ti
m
e
p
er
io
d
)
.
T
o
c
o
n
s
id
er
th
e
r
a
m
p
r
ate
li
m
i
ts
an
d
p
o
w
er
o
u
tp
u
t
li
m
it
s
co
n
s
tr
ain
t
s
at
t
h
e
s
a
m
e
ti
m
e,
th
er
e
f
o
r
e,
eq
s
.
(
5
)
,
(
6
)
an
d
(
7
)
ca
n
b
e
r
ew
r
itte
n
as
f
o
llo
w
s
:
}
,
m
i
n
{
}
,
m
a
x
{
1
,
m
a
x
,
,
1
,
m
i
n
,
i
t
i
i
t
i
i
t
i
i
UR
P
P
P
DR
P
P
(
8
)
2
.
2
.
Art
if
icia
l
B
ee
Co
lo
ny
(
AB
C)
Alg
o
rit
h
m
A
r
ti
f
icial
b
ee
co
lo
n
y
is
o
n
e
o
f
th
e
m
o
s
t
r
ec
e
n
tl
y
d
e
f
in
ed
alg
o
r
ith
m
s
b
y
Kar
ab
o
g
a
in
2
0
0
5
,
m
o
ti
v
ated
b
y
t
h
e
in
telli
g
en
t
b
e
h
av
io
r
o
f
h
o
n
e
y
b
ee
s
[
1
4
-
1
5
]
.
I
n
th
e
AB
C
s
y
s
te
m
,
ar
ti
f
icial
b
ee
s
f
l
y
ar
o
u
n
d
in
th
e
s
ea
r
ch
s
p
ac
e,
an
d
s
o
m
e
(
e
m
p
lo
y
ed
an
d
o
n
lo
o
k
er
b
ee
s
)
ch
o
o
s
e
f
o
o
d
s
o
u
r
ce
s
d
ep
en
d
in
g
o
n
th
e
ex
p
er
ien
ce
o
f
th
e
m
s
el
v
es
a
n
d
th
eir
n
est
m
at
es,
an
d
ad
j
u
s
t
th
eir
p
o
s
itio
n
s
.
So
m
e
(
s
co
u
ts
)
f
l
y
a
n
d
ch
o
o
s
e
th
e
f
o
o
d
s
o
u
r
ce
s
r
an
d
o
m
l
y
w
it
h
o
u
t
u
s
i
n
g
ex
p
er
ien
ce
.
I
f
t
h
e
n
ec
t
ar
a
m
o
u
n
t
o
f
a
n
e
w
s
o
u
r
ce
is
h
ig
h
er
t
h
a
n
t
h
at
o
f
t
h
e
p
r
ev
io
u
s
o
n
e
in
t
h
eir
m
e
m
o
r
y
,
th
e
y
m
e
m
o
r
ize
th
e
n
e
w
p
o
s
itio
n
an
d
f
o
r
g
et
th
e
p
r
ev
io
u
s
o
n
e.
T
h
u
s
,
th
e
A
B
C
s
y
s
te
m
co
m
b
i
n
es
lo
ca
l
s
ea
r
ch
m
et
h
o
d
s
,
ca
r
r
ied
o
u
t
b
y
e
m
p
lo
y
ed
an
d
o
n
lo
o
k
er
b
ee
s
,
w
it
h
g
lo
b
al
s
ea
r
ch
m
et
h
o
d
s
,
m
an
a
g
ed
b
y
o
n
lo
o
k
er
s
a
n
d
s
c
o
u
ts
,
atte
m
p
tin
g
to
b
alan
ce
ex
p
lo
r
atio
n
an
d
ex
p
lo
itatio
n
p
r
o
ce
s
s
.
I
n
th
e
A
B
C
al
g
o
r
ith
m
,
t
h
e
co
lo
n
y
o
f
ar
ti
f
icial
b
ee
s
co
n
s
is
ts
o
f
th
r
ee
g
r
o
u
p
s
o
f
b
ee
s
:
e
m
p
l
o
y
ed
b
ee
s
,
o
n
lo
o
k
er
b
ee
s
,
an
d
s
co
u
t b
ee
s
.
T
h
e
m
ai
n
s
tep
s
o
f
th
e
A
B
C
al
g
o
r
ith
m
ar
e
d
escr
ib
ed
as
f
o
llo
w
s
:
a.
I
n
itialize.
b.
R
E
P
E
A
T
.
c.
P
lace
th
e
e
m
p
lo
y
ed
b
ee
s
o
n
th
e
f
o
o
d
s
o
u
r
ce
s
in
t
h
e
m
e
m
o
r
y
;
d.
P
lace
th
e
o
n
lo
o
k
er
b
ee
s
o
n
th
e
f
o
o
d
s
o
u
r
ce
s
in
t
h
e
m
e
m
o
r
y
;
e.
Sen
d
th
e
s
co
u
t
s
to
th
e
s
ea
r
ch
a
r
ea
f
o
r
d
is
co
v
er
in
g
n
e
w
f
o
o
d
s
o
u
r
ce
s
;
f.
Me
m
o
r
ize
th
e
b
est
f
o
o
d
s
o
u
r
ce
f
o
u
n
d
s
o
f
ar
.
g.
UNT
I
L
(
r
eq
u
ir
em
e
n
t
s
ar
e
m
et
)
.
I
n
th
e
A
B
C
al
g
o
r
ith
m
,
ea
c
h
c
y
cle
o
f
th
e
s
ea
r
ch
co
n
s
i
s
ts
o
f
th
r
ee
s
tep
s
:
m
o
v
i
n
g
t
h
e
e
m
p
lo
y
ed
a
n
d
o
n
lo
o
k
er
b
ee
s
o
n
to
th
e
f
o
o
d
s
o
u
r
ce
s
,
ca
lcu
lati
n
g
th
e
ir
n
ec
ta
r
am
o
u
n
ts
r
esp
ec
ti
v
el
y
,
a
n
d
th
en
d
eter
m
i
n
i
n
g
t
h
e
s
co
u
t
b
ee
s
a
n
d
m
o
v
i
n
g
t
h
e
m
r
an
d
o
m
l
y
o
n
to
t
h
e
p
o
s
s
ib
le
f
o
o
d
s
o
u
r
ce
.
Her
e,
a
f
o
o
d
s
o
u
r
ce
s
tan
d
s
f
o
r
a
p
o
ten
tial
s
o
lu
t
io
n
o
f
t
h
e
p
r
o
b
le
m
to
b
e
o
p
tim
ized
.
T
h
e
A
B
C
alg
o
r
it
h
m
i
s
an
iter
ati
v
e
al
g
o
r
ith
m
,
s
tar
ti
n
g
b
y
ass
o
ciati
n
g
all
e
m
p
lo
y
ed
b
ee
s
w
it
h
r
an
d
o
m
l
y
g
e
n
er
ated
f
o
o
d
s
o
lu
tio
n
s
.
T
h
e
in
itial
p
o
p
u
la
tio
n
o
f
s
o
lu
t
io
n
s
i
s
f
illed
w
it
h
S
N
n
u
m
b
er
o
f
r
an
d
o
m
l
y
g
en
er
ated
D
d
i
m
e
n
s
io
n
s
.
L
et
X
i
=
{
x
i
1
,
x
i
2
,
…,
x
iD
}r
ep
r
esen
t
t
h
e
i
t
h
f
o
o
d
s
o
u
r
ce
in
th
e
p
o
p
u
latio
n
,
S
N
is
th
e
n
u
m
b
er
o
f
f
o
o
d
s
o
u
r
ce
eq
u
al
to
th
e
n
u
m
b
er
o
f
t
h
e
e
m
p
lo
y
ed
b
ee
s
an
d
o
n
lo
o
k
er
b
ee
s
.
D
is
th
e
n
u
m
b
er
o
f
o
p
ti
m
izatio
n
p
ar
a
m
e
te
r
s
.
E
ac
h
e
m
p
lo
y
ed
b
ee
x
ij
g
e
n
er
ates
a
n
e
w
f
o
o
d
s
o
u
r
ce
v
ij
i
n
t
h
e
n
ei
g
h
b
o
r
h
o
o
d
o
f
it
s
c
u
r
r
en
tl
y
a
s
s
o
ciate
d
f
o
o
d
s
o
u
r
ce
b
y
(
9
)
,
a
n
d
co
m
p
u
tes
th
e
n
ec
tar
a
m
o
u
n
t
o
f
th
i
s
n
e
w
f
o
o
d
s
o
u
r
ce
as f
o
ll
o
w
s
:
kj
ij
ij
ij
ij
x
x
x
v
(
9
)
w
h
er
e
2
)
5
.
0
r
a
n
d
(
ij
is
a
u
n
i
f
o
r
m
l
y
d
i
s
tr
i
b
u
ted
r
ea
l
r
an
d
o
m
n
u
m
b
er
w
it
h
i
n
t
h
e
r
an
g
e
[
-
1
,
1
]
,
SN
i
,
,
2
,
1
,
1
)
r
a
n
d
i
n
t
(
SN
k
an
d
i
k
,
an
d
D
j
,
,
2
,
1
ar
e
r
an
d
o
m
l
y
ch
o
s
en
in
d
e
x
es.
T
h
e
n
e
w
s
o
lu
tio
n
v
i
w
ill
b
e
ac
ce
p
ted
as
a
n
e
w
b
asic
s
o
lu
tio
n
,
if
t
h
e
o
b
j
ec
tiv
e
f
itn
e
s
s
o
f
v
i
is
s
m
aller
th
an
t
h
e
f
i
tn
e
s
s
o
f
x
i
,
o
th
er
w
i
s
e
x
i
w
o
u
ld
b
e
o
b
tai
n
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
2
1
–
2
6
2
8
2624
w
h
e
n
all
e
m
p
lo
y
ed
b
ee
s
f
i
n
is
h
th
is
p
r
o
ce
s
s
,
an
o
n
lo
o
k
er
b
e
e
ca
n
o
b
tain
th
e
i
n
f
o
r
m
atio
n
o
f
th
e
f
o
o
d
s
o
u
r
ce
s
f
r
o
m
all
e
m
p
lo
y
ed
b
ee
s
an
d
c
h
o
o
s
e
a
f
o
o
d
s
o
u
r
ce
ac
co
r
d
in
g
to
th
e
p
r
o
b
ab
ilit
y
v
al
u
e
as
s
o
ciate
d
w
i
th
th
e
f
o
o
d
s
o
u
r
ce
,
u
s
i
n
g
th
e
f
o
llo
w
i
n
g
e
x
p
r
ess
io
n
:
1
;
)
m
a
x(
i
i
i
f
i
t
f
i
t
p
(
1
0
)
w
h
er
e
fit
i
is
t
h
e
f
it
n
es
s
v
al
u
e
o
f
th
e
s
o
lu
tio
n
i
ev
al
u
ated
b
y
it
s
e
m
p
lo
y
ed
b
ee
.
Ob
v
io
u
s
l
y
,
wh
en
t
h
e
m
a
x
i
m
u
m
v
alu
e
o
f
t
h
e
f
o
o
d
s
o
u
r
ce
d
ec
r
ea
s
es,
t
h
e
p
r
o
b
ab
ilit
y
w
i
th
th
e
p
r
ef
er
r
ed
s
o
u
r
ce
o
f
an
o
n
lo
o
k
er
b
ee
d
ec
r
ea
s
es
p
r
o
p
o
r
tio
n
all
y
.
T
h
en
t
h
e
o
n
l
o
o
k
er
b
ee
p
r
o
d
u
ce
s
a
n
e
w
s
o
u
r
ce
ac
co
r
d
in
g
to
(
9
)
.
T
h
e
n
e
w
s
o
u
r
ce
w
ill
b
e
ev
alu
a
ted
an
d
co
m
p
ar
ed
w
it
h
th
e
p
r
i
m
ar
y
f
o
o
d
s
o
lu
tio
n
,
a
n
d
it
w
il
l
b
e
ac
ce
p
ted
if
i
t
h
as
a
b
etter
n
ec
tar
a
m
o
u
n
t t
h
an
t
h
e
p
r
i
m
ar
y
f
o
o
d
s
o
lu
tio
n
.
Af
ter
all
o
n
lo
o
k
er
s
h
av
e
f
i
n
is
h
ed
th
is
p
r
o
ce
s
s
,
s
o
u
r
ce
s
ar
e
ch
ec
k
ed
to
d
eter
m
in
e
w
h
et
h
er
th
e
y
ar
e
to
b
e
ab
an
d
o
n
ed
.
I
f
t
h
e
f
o
o
d
s
o
u
r
ce
d
o
es
n
o
t
i
m
p
r
o
v
e
a
f
ter
a
d
eter
m
in
ed
n
u
m
b
er
o
f
t
h
e
tr
ai
ls
“
li
m
it”,
th
e
f
o
o
d
s
o
u
r
ce
is
ab
an
d
o
n
ed
.
I
ts
e
m
p
l
o
y
ed
b
ee
w
ill
b
ec
o
m
e
a
s
co
u
t
an
d
th
e
n
w
ill
s
ea
r
c
h
f
o
r
a
f
o
o
d
s
o
u
r
ce
r
an
d
o
m
l
y
as f
o
llo
w
s
:
m
i
n
m
a
x
m
i
n
)
1
,
0
(
r
a
n
d
j
j
j
ij
x
x
x
x
(
1
1
)
w
h
er
e
x
j
min
an
d
x
j
max
ar
e
lo
w
er
an
d
u
p
p
er
b
o
u
n
d
s
f
o
r
th
e
d
i
m
en
s
io
n
j
r
esp
ec
tiv
el
y
.
Af
ter
t
h
e
n
e
w
s
o
u
r
ce
is
p
r
o
d
u
ce
d
,
an
o
th
er
iter
atio
n
o
f
t
h
e
A
B
C
al
g
o
r
ith
m
w
i
ll
b
eg
i
n
.
T
h
e
w
h
o
le
p
r
o
ce
s
s
r
ep
ea
ts
ag
ain
til
l th
e
t
er
m
in
a
tio
n
co
n
d
itio
n
is
m
et.
2
.
3
.
M
o
dified
Art
if
icia
l B
ee
Co
lo
ny
(
M
AB
C)
Alg
o
rit
h
m
Fo
llo
w
i
n
g
th
is
s
p
ir
it,
a
m
o
d
if
ied
A
B
C
al
g
o
r
ith
m
i
n
s
p
ir
e
d
f
r
o
m
d
if
f
er
en
tia
l
ev
o
l
u
tio
n
(
DE
)
to
o
p
tim
ize
t
h
e
o
b
j
ec
tiv
e
f
u
n
ct
io
n
o
f
t
h
e
E
D
p
r
o
b
le
m
s
.
Di
f
f
er
en
tial
e
v
o
l
u
tio
n
is
an
ev
o
l
u
tio
n
ar
y
al
g
o
r
ith
m
f
ir
s
t
in
tr
o
d
u
ce
d
b
y
Sto
r
n
a
n
d
P
r
ice
[
1
9
-
2
0
]
.
Sim
ilar
to
o
th
e
r
ev
o
lu
tio
n
ar
y
al
g
o
r
ith
m
s
,
p
ar
ticu
lar
l
y
g
e
n
etic
alg
o
r
ith
m
,
DE
u
s
es
s
o
m
e
e
v
o
lu
tio
n
ar
y
o
p
er
ato
r
s
lik
e
s
elec
tio
n
r
ec
o
m
b
in
a
t
io
n
a
n
d
m
u
tatio
n
o
p
er
ato
r
s
.
Dif
f
er
en
t
f
r
o
m
g
e
n
etic
al
g
o
r
it
h
m
,
DE
u
s
es
d
is
ta
n
ce
a
n
d
d
ir
ec
tio
n
in
f
o
r
m
a
tio
n
f
r
o
m
t
h
e
c
u
r
r
en
t
p
o
p
u
latio
n
to
g
u
id
e
t
h
e
s
ea
r
ch
p
r
o
ce
s
s
.
T
h
e
cr
u
cial
id
ea
b
eh
in
d
DE
is
a
s
c
h
e
m
e
f
o
r
p
r
o
d
u
cin
g
tr
ial
v
ec
to
r
s
ac
co
r
d
in
g
to
th
e
m
an
ip
u
lati
o
n
o
f
tar
g
et
v
ec
to
r
an
d
d
if
f
er
en
ce
v
ec
to
r
.
I
f
th
e
tr
ail
v
ec
to
r
y
ield
s
a
lo
w
er
f
it
n
e
s
s
th
a
n
a
p
r
ed
eter
m
i
n
ed
p
o
p
u
latio
n
m
e
m
b
er
,
th
e
n
e
w
l
y
tr
ail
v
ec
to
r
will
b
e
ac
ce
p
ted
an
d
b
e
co
m
p
ar
ed
in
t
h
e
f
o
llo
w
i
n
g
g
en
er
atio
n
.
C
u
r
r
en
tl
y
,
th
er
e
ar
e
s
ev
er
al
v
ar
ian
ts
o
f
D
E
.
T
h
e
p
ar
ticu
lar
v
ar
ian
t
u
s
ed
th
r
o
u
g
h
o
u
t
th
i
s
in
v
e
s
ti
g
atio
n
i
s
t
h
e
DE
/r
a
n
d
/
1
s
ch
e
m
e.
T
h
e
d
i
f
f
er
e
n
tial
m
u
tatio
n
s
tr
ate
g
y
is
d
escr
ib
e
d
b
y
t
h
e
f
o
llo
w
in
g
eq
u
atio
n
:
c
b
a
i
x
x
F
x
v
(
1
2
)
w
h
er
e
SN
c
b
a
,
,
ar
e
r
an
d
o
m
l
y
c
h
o
s
e
n
an
d
m
u
t
u
all
y
d
i
f
f
er
en
t
a
n
d
al
s
o
d
if
f
er
e
n
t
f
r
o
m
t
h
e
cu
r
r
en
t
in
d
ex
i
.
)
1
,
0
(
F
is
co
n
s
ta
n
t
ca
l
led
s
ca
li
n
g
f
a
cto
r
w
h
ich
co
n
tr
o
ls
a
m
p
li
f
ic
atio
n
o
f
t
h
e
d
if
f
er
e
n
tial
v
ar
i
atio
n
o
f
cj
bj
x
x
.
B
ased
o
n
DE
an
d
th
e
p
r
o
p
e
r
t
y
o
f
A
B
C
alg
o
r
it
h
m
,
w
e
m
o
d
i
f
y
th
e
s
ea
r
c
h
s
o
l
u
tio
n
d
escr
ib
ed
b
y
(
1
3
)
as
f
o
llo
w
s
:
bj
ij
ij
aj
ij
x
x
x
v
(
1
3
)
T
h
e
n
e
w
s
ea
r
ch
m
et
h
o
d
ca
n
g
en
er
ate
t
h
e
n
e
w
ca
n
d
id
ate
s
o
lu
tio
n
s
o
n
l
y
ar
o
u
n
d
t
h
e
r
an
d
o
m
s
o
lu
tio
n
s
o
f
t
h
e
p
r
ev
io
u
s
iter
atio
n
.
Ak
a
y
an
d
Kar
ab
o
g
a
[
1
6
]
p
r
o
p
o
s
ed
a
m
o
d
i
f
ied
ar
tif
icia
l
b
ee
co
lo
n
y
al
g
o
r
ith
m
b
y
co
n
tr
o
llin
g
th
e
f
r
eq
u
en
c
y
o
f
p
er
t
u
r
b
atio
n
.
I
n
s
p
ir
ed
b
y
th
i
s
al
g
o
r
it
h
m
,
w
e
al
s
o
u
s
e
a
co
n
tr
o
l
p
ar
a
m
eter
,
i.e
.
,
m
o
d
if
icat
io
n
r
at
e
(
MR
)
.
I
n
o
r
d
er
to
p
r
o
d
u
ce
a
ca
n
d
id
ate
f
o
o
d
p
o
s
itio
n
v
ij
f
r
o
m
th
e
cu
r
r
en
t
m
e
m
o
r
ized
x
ij
,
i
m
p
r
o
v
ed
A
B
C
alg
o
r
ith
m
u
s
es t
h
e
f
o
llo
w
in
g
e
x
p
r
ess
io
n
[
1
7
]
:
o
t
h
e
r
w
i
s
e
if
),
(
ij
ij
bj
ij
ij
aj
ij
x
MR
R
x
x
x
v
(
1
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mo
d
ified
A
B
C
A
lg
o
r
ith
m
fo
r
S
o
lvin
g
N
o
n
-
C
o
n
ve
x
Dyn
a
m
ic
E
co
n
o
mic
Dis
p
a
tch
P
r
o
b
lems
(
Ha
r
d
ia
n
s
ya
h
)
2625
w
h
er
e
R
ij
is
a
u
n
if
o
r
m
l
y
d
is
tr
ib
u
ted
r
ea
l
r
an
d
o
m
n
u
m
b
er
w
it
h
i
n
t
h
e
r
a
n
g
e
[
0
,
1
]
.
T
h
e
p
s
eu
d
o
-
co
d
e
o
f
t
h
e
m
o
d
i
f
ied
A
B
C
al
g
o
r
ith
m
is
g
i
v
en
b
elo
w
:
I
n
itialize
t
h
e
p
o
p
u
latio
n
o
f
s
o
lu
tio
n
s
x
ij
,
i
=
1
.
.
.
SN
;
j
=
1
.
.
.
D
,
tr
ia
l
i
=
0
;
tr
ia
l
i
is
th
e
n
o
n
-
i
m
p
r
o
v
e
m
en
t
n
u
m
b
er
o
f
th
e
s
o
lu
tio
n
x
i
,
u
s
ed
f
o
r
ab
an
d
o
n
m
e
n
t
E
v
alu
a
te
th
e
p
o
p
u
latio
n
c
y
cle
=
1
r
ep
ea
t
{
-
-
-
P
r
o
d
u
ce
a
n
e
w
f
o
o
d
s
o
u
r
c
e
p
o
p
u
latio
n
f
o
r
e
m
p
lo
y
ed
b
ee
-
-
-
}
f
o
r
i
=
1
to
SN
do
P
r
o
d
u
ce
a
n
e
w
f
o
o
d
s
o
u
r
ce
v
i
f
o
r
th
e
e
m
p
lo
y
ed
b
ee
o
f
th
e
f
o
o
d
s
o
u
r
ce
x
i
b
y
u
s
i
n
g
(
1
4
)
an
d
ev
alu
ate
its
q
u
alit
y
:
Select
r
an
d
o
m
l
y
i
b
a
o
t
h
e
r
w
i
s
e
if
),
(
ij
ij
bj
ij
ij
aj
ij
x
MR
R
x
x
x
v
A
p
p
l
y
a
g
r
ee
d
y
s
e
lectio
n
p
r
o
ce
s
s
b
et
w
ee
n
v
i
a
n
d
x
i
an
d
s
ele
ct
th
e
b
etter
o
n
e.
I
f
s
o
lu
tio
n
x
i
d
o
es
n
o
t
i
m
p
r
o
v
e
tr
ia
l
i
=
tr
ia
l
i
+
1
,
o
th
er
w
i
s
e
tr
i
a
l
i
= 0
en
d
f
o
r
C
alcu
late
th
e
p
r
o
b
ab
ilit
y
v
a
lu
es
p
i
b
y
(
1
0
)
f
o
r
th
e
s
o
lu
t
io
n
s
u
s
i
n
g
f
it
n
e
s
s
v
alu
e
s
:
1
;
)
m
a
x(
i
i
i
f
i
t
f
i
t
p
{
-
-
-
P
r
o
d
u
ce
a
n
e
w
f
o
o
d
s
o
u
r
c
e
p
o
p
u
lat
io
n
f
o
r
o
n
lo
o
k
er
b
ee
-
-
-
}
t
=
0
,
i
= 1
r
ep
ea
t
if
r
an
d
o
m
<
p
i
th
e
n
P
r
o
d
u
ce
a
n
e
w
v
ij
f
o
o
d
s
o
u
r
ce
b
y
(
1
4
)
f
o
r
th
e
o
n
lo
o
k
er
b
ee
:
Select
r
an
d
o
m
l
y
i
b
a
o
t
h
e
r
w
i
s
e
if
),
(
ij
ij
bj
ij
ij
aj
ij
x
MR
R
x
x
x
v
A
p
p
l
y
a
g
r
ee
d
y
s
elec
tio
n
p
r
o
ce
s
s
b
et
w
ee
n
v
i
an
d
x
i
an
d
s
elec
t
th
e
b
etter
o
n
e.
I
f
s
o
lu
tio
n
x
i
d
o
es
n
o
t
im
p
r
o
v
e
tr
ia
l
i
=
tr
ia
l
i
+
1
,
o
th
er
w
is
e
t
r
ia
l
i
= 0
t
=
t
+ 1
en
d
if
u
n
t
il (
t
=
SN
)
{
-
-
-
Dete
r
m
i
n
e
s
co
u
t b
ee
-
-
-
}
if
m
ax
(
t
r
ia
l
i
)
>
li
m
it t
h
e
n
R
ep
lace
x
i
w
i
th
a
n
e
w
r
an
d
o
m
l
y
p
r
o
d
u
ce
d
s
o
lu
tio
n
b
y
(
1
1
)
m
i
n
m
a
x
m
i
n
)
1
,
0
(
r
a
n
d
j
j
j
ij
x
x
x
x
en
d
if
Me
m
o
r
ize
th
e
b
est s
o
l
u
tio
n
ac
h
iev
ed
s
o
f
ar
c
y
cle
=
c
y
cle+
1
u
n
t
il (
c
y
cle
=
Ma
x
i
m
u
m
C
y
cl
e
Nu
m
b
er
)
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
T
h
e
DE
D
p
r
o
b
lem
w
a
s
s
o
lv
e
d
u
s
in
g
t
h
e
M
A
B
C
al
g
o
r
ith
m
an
d
its
p
er
f
o
r
m
a
n
ce
is
co
m
p
ar
ed
w
it
h
o
th
er
m
et
h
o
d
s
r
ep
o
r
ted
in
r
ec
en
t
liter
at
u
r
e.
T
h
e
p
r
o
p
o
s
ed
t
ec
h
n
iq
u
e
h
as
b
ee
n
ap
p
lied
to
5
an
d
1
0
u
n
i
t
tes
t
s
y
s
te
m
s
.
T
h
e
al
g
o
r
ith
m
w
a
s
i
m
p
le
m
e
n
ted
i
n
M
A
T
L
A
B
7
.
1
o
n
a
P
en
ti
u
m
I
V
p
er
s
o
n
al
C
o
m
p
u
ter
w
it
h
3
.
6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
2
1
–
2
6
2
8
2626
GHz
s
p
ee
d
p
r
o
ce
s
s
o
r
an
d
2
GB
R
A
M.
Fo
r
all
ca
s
es,
t
h
e
d
is
p
atch
h
o
r
izo
n
i
s
s
elec
ted
a
s
o
n
e
d
a
y
w
it
h
2
4
d
is
p
atch
p
er
io
d
s
o
f
ea
ch
o
n
e
h
o
u
r
.
Ca
s
e
1
:
5
-
u
n
it
s
y
s
te
m
T
h
e
f
ir
s
t
te
s
t
s
y
s
te
m
is
a
5
-
u
n
it
test
s
y
s
te
m
.
T
h
e
tech
n
ical
d
ata
o
f
t
h
e
u
n
it
s
ar
e
ta
k
en
f
r
o
m
[
2
1
]
.
I
n
th
is
te
s
t
s
y
s
te
m
,
v
alv
e
-
p
o
in
t
ef
f
ec
t,
th
e
r
a
m
p
r
ate
li
m
it
s
,
an
d
tr
an
s
m
i
s
s
io
n
lo
s
s
es
ar
e
co
n
s
id
er
ed
.
T
h
e
lo
ad
d
em
a
n
d
f
o
r
ea
ch
ti
m
e
i
n
ter
v
al
o
v
er
th
e
s
ch
ed
u
li
n
g
p
er
io
d
is
g
i
v
en
in
T
ab
le
1
.
T
h
e
b
est
r
esu
lts
o
b
tai
n
ed
th
r
o
u
g
h
v
ar
io
u
s
m
et
h
o
s
a
n
d
f
r
o
m
th
e
M
A
B
C
m
et
h
o
d
ar
e
s
h
o
w
n
in
T
ab
le
2
.
I
t
clea
r
f
r
o
m
t
h
e
tab
le
t
h
at
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
p
r
o
d
u
ce
s
m
u
ch
b
etter
r
es
u
lts
co
m
p
ar
ed
t
o
r
ec
en
tl
y
r
ep
o
r
ted
d
if
f
er
en
t
m
et
h
o
d
s
f
o
r
s
o
lv
i
n
g
DE
D
p
r
o
b
lem
.
T
h
e
b
est
to
tal
p
r
o
d
u
ctio
n
co
s
t
o
b
tain
ed
u
s
in
g
p
r
o
p
o
s
ed
m
et
h
o
d
is
$
4
0
1
2
2
.
2
9
5
4
an
d
th
e
co
m
p
u
tatio
n
ti
m
e
ta
k
e
n
b
y
t
h
e
al
g
o
r
ith
m
i
s
4
3
.
7
1
8
s
.
T
h
e
o
p
ti
m
u
m
s
c
h
ed
u
li
n
g
o
f
g
e
n
er
atin
g
u
n
it
s
f
o
r
2
4
h
o
u
r
s
u
s
i
n
g
p
r
o
p
o
s
ed
m
eth
o
d
is
g
i
v
e
n
in
T
ab
le
3
.
T
ab
le
1
.
L
o
ad
D
em
a
n
d
f
o
r
2
4
H
o
u
r
s
(
5
-
U
n
it S
y
s
te
m
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
1
4
1
0
7
6
2
6
13
7
0
4
19
6
5
4
2
4
3
5
8
6
5
4
14
6
9
0
20
7
0
4
3
4
7
5
9
6
9
0
15
6
5
4
21
6
8
0
4
5
3
0
10
7
0
4
16
5
8
0
22
6
0
5
5
5
5
8
11
7
2
0
17
5
5
8
23
5
2
7
6
6
0
8
12
7
4
0
18
6
0
8
24
4
6
3
T
ab
le
2
.
C
o
m
p
ar
is
o
n
o
f
Re
s
u
l
ts
f
o
r
5
-
U
n
it S
y
s
te
m
M
e
t
h
o
d
P
r
o
d
u
c
t
i
o
n
c
o
st
(
$
)
C
o
mp
u
t
i
n
g
t
i
me
(
s)
S
A
[
7
]
4
7
3
5
6
3
5
1
.
9
8
D
E
[
8
]
4
3
2
1
3
3
7
6
P
S
O
[
9
]
5
0
1
2
4
2
5
8
.
0
0
A
B
C
[
1
2
]
4
4
0
4
5
.
8
3
NA
M
A
B
C
4
0
1
2
2
.
2
9
5
4
4
3
.
7
1
8
N
A
d
e
n
o
t
e
s t
h
a
t
t
h
e
v
a
l
u
e
w
a
s n
o
t
a
v
a
i
l
a
b
l
e
i
n
t
h
e
l
i
t
e
r
a
t
u
r
e
.
T
ab
le
3
.
B
est
Sch
e
d
u
l
in
g
o
f
5
-
Un
it S
y
s
te
m
U
s
i
n
g
M
A
B
C
M
et
h
o
d
H
o
u
r
P
1
(
M
W
)
P
2
(
M
W
)
P
3
(
M
W
)
P
4
(
M
W
)
P
5
(
M
W
)
C
o
st
(
$
)
P
l
o
ss
(
M
W
)
1
1
5
.
9
0
0
0
7
4
.
6
1
1
0
6
5
.
3
9
2
6
1
1
3
.
9
8
2
1
1
4
3
.
7
1
2
3
1
2
0
2
.
8
9
6
6
3
.
5
9
8
0
2
1
6
.
4
6
8
9
7
5
.
2
5
3
6
6
8
.
7
3
6
0
1
2
5
.
2
0
2
6
1
5
3
.
3
9
4
3
1
2
6
0
.
0
5
3
9
4
.
0
5
5
4
3
1
8
.
1
8
6
2
8
0
.
6
1
1
7
7
7
.
8
7
9
0
1
4
0
.
3
2
6
6
1
6
2
.
8
2
4
4
1
3
5
2
.
6
3
4
4
4
.
8
2
7
8
4
2
0
.
4
9
3
5
8
6
.
0
7
2
3
9
6
.
6
5
9
9
1
6
0
.
3
5
9
6
1
7
2
.
3
8
6
9
1
4
8
2
.
0
0
6
6
5
.
9
7
2
2
5
2
1
.
5
8
6
4
8
9
.
1
9
9
8
1
0
3
.
9
7
4
3
1
6
6
.
6
4
2
3
1
8
3
.
2
1
0
9
1
5
4
8
.
8
3
2
1
6
.
6
1
3
7
6
2
2
.
7
8
0
0
9
7
.
1
0
0
1
1
0
9
.
2
8
6
5
1
8
7
.
4
7
9
3
1
9
9
.
2
5
4
1
1
6
6
9
.
9
2
8
4
7
.
8
9
9
9
7
2
4
.
9
0
8
3
9
6
.
9
7
2
7
1
2
3
.
1
1
8
2
1
9
3
.
9
1
4
7
1
9
5
.
4
0
2
7
1
7
1
3
.
7
1
0
5
8
.
3
1
6
7
8
2
5
.
4
6
6
1
9
9
.
4
2
4
0
1
3
2
.
6
3
5
1
1
9
6
.
6
9
5
5
2
0
8
.
8
3
9
7
1
7
8
2
.
7
9
5
9
9
.
0
6
0
5
9
2
7
.
1
9
4
6
1
0
4
.
6
2
2
2
1
4
7
.
4
8
6
8
2
1
0
.
9
7
1
4
2
0
9
.
7
9
4
3
1
8
7
2
.
3
9
0
1
1
0
.
0
6
9
3
10
2
7
.
3
7
9
2
1
0
5
.
0
3
8
2
1
4
7
.
1
7
8
0
2
2
2
.
1
2
1
7
2
1
2
.
7
9
7
8
1
9
0
7
.
5
3
2
5
1
0
.
5
1
4
9
11
2
9
.
2
3
0
8
1
0
7
.
9
7
0
6
1
5
0
.
1
6
2
9
2
2
7
.
9
4
9
9
2
1
5
.
6
9
0
8
1
9
4
7
.
9
0
6
1
1
1
.
0
0
5
0
12
2
9
.
7
3
9
6
1
0
9
.
8
4
5
7
1
5
6
.
8
2
1
5
2
3
0
.
4
6
9
8
2
2
4
.
7
3
7
1
1
9
9
8
.
6
5
4
9
1
1
.
6
1
3
7
13
2
8
.
7
6
1
6
1
0
7
.
6
8
2
4
1
4
9
.
3
1
0
6
2
1
8
.
7
6
0
2
2
0
9
.
9
8
3
2
1
9
0
7
.
5
4
5
8
1
0
.
4
9
7
9
14
2
8
.
1
1
6
7
1
0
5
.
6
2
6
5
1
4
4
.
0
9
2
8
2
0
8
.
6
8
2
9
2
1
3
.
5
5
9
4
1
8
7
2
.
3
9
9
1
1
0
.
0
7
8
3
15
2
6
.
2
0
4
6
1
0
0
.
9
0
8
2
1
3
3
.
5
5
9
2
2
0
1
.
4
1
1
0
2
0
0
.
9
7
9
0
1
7
8
2
.
7
0
4
1
9
.
0
6
1
9
16
2
2
.
5
4
3
9
9
2
.
9
9
9
6
1
0
7
.
7
0
4
5
1
7
6
.
5
4
5
4
1
8
7
.
3
6
3
8
1
6
0
1
.
7
7
1
1
7
.
1
5
7
2
17
2
1
.
6
9
0
0
8
9
.
5
5
3
6
1
0
6
.
5
1
6
0
1
6
9
.
8
2
4
8
1
7
7
.
0
2
0
6
1
5
4
8
.
8
2
9
5
6
.
6
0
4
9
18
2
4
.
3
8
6
0
9
6
.
5
7
7
9
1
1
2
.
6
8
2
4
1
8
8
.
8
7
2
9
1
9
3
.
3
5
6
7
1
6
6
9
.
7
6
2
5
7
.
8
7
5
9
19
2
6
.
2
3
8
4
1
0
1
.
0
0
5
1
1
3
4
.
1
2
5
6
1
9
6
.
7
1
3
8
2
0
4
.
9
6
9
6
1
7
8
2
.
7
3
9
1
9
.
0
5
2
5
20
2
8
.
5
8
9
7
1
0
5
.
6
9
2
9
1
4
5
.
2
7
2
1
2
8
.
6
3
7
1
2
1
6
.
3
2
0
5
1
9
0
7
.
5
1
9
8
1
0
.
5
1
2
3
21
2
6
.
8
8
4
8
1
0
2
.
5
2
9
7
1
4
0
.
0
8
5
1
2
0
6
.
3
4
4
5
2
1
3
.
9
5
0
8
1
8
4
7
.
4
1
0
5
9
.
7
9
4
9
22
2
4
.
1
7
8
2
9
5
.
8
8
5
7
1
1
7
.
3
7
9
7
1
8
2
.
3
8
4
0
1
9
2
.
9
3
7
1
1
6
6
2
.
3
9
6
4
7
.
7
6
4
7
23
1
9
.
2
6
2
5
8
6
.
7
2
4
6
1
0
3
.
5
2
8
8
1
5
1
.
9
3
7
0
1
7
1
.
4
1
9
4
1
4
7
5
.
0
2
4
2
5
.
8
7
2
3
24
1
7
.
6
2
9
9
7
2
.
5
5
8
1
8
1
.
2
3
7
3
1
3
8
.
5
9
3
0
1
5
7
.
5
3
7
4
1
3
2
4
.
8
5
1
0
4
.
5
5
5
7
T
o
t
a
l
g
e
n
e
r
a
t
i
o
n
c
o
st
(
$
)
=
4
0
1
2
2
.
2
9
5
4
;
T
o
t
a
l
p
o
w
e
r
l
o
sse
s (M
W
)
=
1
9
2
.
3
7
5
6
Ca
s
e
2
:
10
-
u
n
it s
y
s
te
m
T
h
e
s
ec
o
n
d
test
s
y
s
te
m
i
s
a
1
0
-
u
n
it
te
s
t
s
y
s
te
m
.
I
n
t
h
is
c
ase,
g
e
n
er
ato
r
ca
p
ac
it
y
li
m
i
ts
,
r
a
m
p
r
ate
co
n
s
tr
ain
ts
,
v
al
v
e
-
p
o
in
t
e
f
f
ec
t
s
an
d
tr
a
n
s
m
i
s
s
io
n
lo
s
s
e
s
ar
e
co
n
s
id
er
ed
.
T
h
e
d
ata
f
o
r
th
i
s
s
y
s
te
m
ca
n
b
e
f
o
u
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mo
d
ified
A
B
C
A
lg
o
r
ith
m
fo
r
S
o
lvin
g
N
o
n
-
C
o
n
ve
x
Dyn
a
m
ic
E
co
n
o
mic
Dis
p
a
tch
P
r
o
b
lems
(
Ha
r
d
ia
n
s
ya
h
)
2627
f
r
o
m
[
1
3
]
,
[
2
1
]
.
T
h
e
lo
ad
d
e
m
an
d
f
o
r
ea
ch
ti
m
e
i
n
ter
v
al
o
v
er
t
h
e
s
c
h
ed
u
li
n
g
p
er
io
d
is
g
iv
en
i
n
T
ab
le
4
.
T
h
e
b
est
s
o
lu
tio
n
o
b
tain
ed
th
r
o
u
g
h
th
e
p
r
o
p
o
s
ed
m
eth
o
d
is
co
m
p
ar
ed
to
th
o
s
e
r
ep
o
r
ted
in
th
e
r
ec
en
t
liter
at
u
r
e
ar
e
s
h
o
w
n
i
n
T
ab
le
5
.
T
h
e
b
est
to
tal
p
r
o
d
u
ctio
n
co
s
t
o
b
tain
ed
u
s
in
g
p
r
o
p
o
s
ed
m
et
h
o
d
is
$
1
0
2
2
2
0
5
.
6
8
4
6
an
d
th
e
co
m
p
u
tatio
n
ti
m
e
ta
k
en
b
y
t
h
e
alg
o
r
ith
m
i
s
4
5
.
6
1
s
.
I
t
clea
r
f
r
o
m
t
h
e
tab
le
th
at
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
p
r
o
d
u
ce
s
m
u
c
h
b
etter
r
es
u
lts
co
m
p
ar
ed
to
r
ec
en
tl
y
r
ep
o
r
ted
d
if
f
er
e
n
t
m
et
h
o
d
s
f
o
r
s
o
l
v
in
g
DE
D
p
r
o
b
lem
.
T
h
e
o
p
ti
m
al
d
is
p
atch
o
f
r
ea
l p
o
w
er
f
o
r
th
e
g
iv
e
n
s
c
h
ed
u
lin
g
h
o
r
izo
n
u
s
in
g
M
A
B
C
al
g
o
r
ith
m
is
g
i
v
en
i
n
T
a
b
le
6
.
T
ab
le
4
.
L
o
ad
Dem
a
n
d
f
o
r
2
4
H
o
u
r
s
(
1
0
-
Un
i
t S
y
s
te
m
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
T
i
me
(
h
)
L
o
a
d
(
M
W
)
1
1
0
3
6
7
1
7
0
2
13
2
0
7
2
19
1
7
7
6
2
1
1
1
0
8
1
7
7
6
14
1
9
2
4
20
2
0
7
2
3
1
2
5
8
9
1
9
2
4
15
1
7
7
6
21
1
9
2
4
4
1
4
0
6
10
2
0
7
2
16
1
5
5
4
22
1
6
2
8
5
1
4
8
0
11
2
1
4
6
17
1
4
8
0
23
1
3
3
2
6
1
6
2
8
12
2
2
2
0
18
1
6
2
8
24
1
1
8
4
T
ab
le
5
.
C
o
m
p
ar
is
o
n
o
f
R
es
u
l
ts
f
o
r
1
0
-
Un
it S
y
s
te
m
M
e
t
h
o
d
P
r
o
d
u
c
t
i
o
n
c
o
st
(
$
)
C
o
mp
u
t
i
n
g
T
i
me
(
s)
G
A
[
1
2
]
1
0
5
2
2
5
1
NA
P
S
O
[
1
2
]
1
0
4
8
4
1
0
NA
A
B
C
[
1
2
]
1
0
4
3
3
8
1
NA
I
C
A
[
1
3
]
1
0
4
0
7
5
8
.
4
2
4
NA
M
A
B
C
1
0
2
2
2
0
5
.
6
8
4
6
4
5
.
6
1
N
A
d
e
n
o
t
e
s t
h
a
t
t
h
e
v
a
l
u
e
w
a
s n
o
t
a
v
a
i
l
a
b
l
e
i
n
t
h
e
l
i
t
e
r
a
t
u
r
e
.
T
ab
le
6
.
B
est
Sc
h
ed
u
l
in
g
o
f
1
0
-
Un
i
t S
y
s
te
m
Usi
n
g
M
A
B
C
Me
th
o
d
H
o
u
r
P
1
(
M
W
)
P
2
(
M
W
)
P
3
(
M
W
)
P
4
(
M
W
)
P
5
(
M
W
)
P
6
(
M
W
)
P
7
(
M
W
)
P
8
(
M
W
)
P
9
(
M
W
)
P
1
0
(
M
W
)
1
1
5
2
.
8
6
9
6
1
3
5
.
0
0
0
0
2
1
5
.
5
6
4
1
6
0
.
0
0
0
0
7
3
.
0
0
0
0
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
2
1
6
9
.
4
8
0
2
1
3
5
.
0
0
0
0
2
7
5
.
0
9
9
9
6
0
.
0
0
0
0
7
3
.
0
0
0
0
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
3
2
5
0
.
1
7
9
1
1
4
1
.
0
6
1
5
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
7
3
.
0
0
0
0
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
4
3
1
0
.
1
3
7
9
1
9
4
.
5
6
6
8
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
1
1
2
.
1
6
3
4
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
5
3
3
8
.
1
7
7
8
2
1
9
.
5
4
3
2
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
1
3
6
.
0
0
8
5
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
6
3
9
4
.
7
8
5
8
2
7
0
.
1
3
9
5
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
1
8
3
.
7
2
2
0
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
7
4
2
3
.
1
9
1
7
2
9
5
.
6
7
6
6
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
2
0
7
.
8
4
6
2
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
8
4
4
9
.
8
0
8
1
3
1
5
.
7
4
2
0
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
2
2
6
.
4
6
7
4
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
5
9
.
0
3
9
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
9
4
5
8
.
5
4
3
7
4
0
5
.
8
8
1
3
3
4
0
.
0
0
0
0
1
1
6
.
4
5
6
4
2
2
9
.
9
3
7
6
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
5
7
.
0
3
5
9
2
0
.
0
0
0
0
5
5
.
0
0
0
0
10
4
6
8
.
0
0
6
0
4
0
7
.
8
9
7
4
3
4
0
.
0
0
0
0
2
0
5
.
4
0
8
3
2
3
0
.
9
7
3
4
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
9
3
.
9
9
8
5
3
1
.
9
8
8
2
5
5
.
0
0
0
0
11
4
6
6
.
5
0
0
0
4
5
5
.
7
0
8
3
4
0
.
0
0
0
0
1
8
8
.
3
7
0
1
2
2
1
.
3
5
9
8
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
1
5
4
.
6
7
9
1
2
8
.
5
0
9
2
5
5
.
0
0
0
0
12
4
6
9
.
9
6
5
7
4
2
1
.
3
2
2
8
3
4
0
.
0
0
0
0
2
6
9
.
8
6
7
8
2
3
2
.
3
7
6
4
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
1
7
0
.
0
0
0
0
2
4
.
6
1
0
3
5
5
.
0
0
0
0
13
4
6
8
.
0
3
1
2
4
5
2
.
3
1
1
9
3
4
0
.
0
0
0
0
1
3
9
.
4
1
8
6
2
2
4
.
7
5
6
4
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
1
3
4
.
8
8
0
4
2
0
.
0
0
0
0
5
5
.
0
0
0
0
14
4
6
9
.
6
3
4
7
3
9
1
.
2
3
8
5
3
4
0
.
0
0
0
0
9
1
.
5
6
0
4
2
4
1
.
0
8
1
7
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
7
3
.
5
2
8
7
2
0
.
0
0
0
0
5
5
.
0
0
0
0
15
4
4
9
.
4
9
8
4
3
1
4
.
2
5
9
8
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
2
2
8
.
0
2
8
0
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
5
9
.
2
1
7
8
2
0
.
0
0
0
0
5
5
.
0
0
0
0
16
3
6
6
.
4
9
8
4
2
4
4
.
7
2
4
1
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
1
5
9
.
7
6
4
1
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
17
3
3
8
.
2
2
0
3
2
1
9
.
5
8
2
1
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
1
3
5
.
9
2
8
0
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
18
3
9
4
.
8
1
2
5
2
7
0
.
0
2
8
4
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
1
8
3
.
8
0
3
6
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
19
4
4
9
.
1
7
8
1
3
1
5
.
7
0
6
0
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
2
2
7
.
0
2
5
6
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
5
9
.
1
3
8
4
2
0
.
0
0
0
0
5
5
.
0
0
0
0
20
4
6
7
.
6
1
1
9
4
1
8
.
5
1
2
2
3
4
0
.
0
0
0
0
1
5
7
.
3
7
6
2
2
3
5
.
5
6
8
5
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
1
3
7
.
8
9
0
2
2
0
.
0
0
0
0
5
5
.
0
0
0
0
21
4
6
5
.
9
2
6
3
4
1
1
.
1
7
2
7
3
4
0
.
0
0
0
0
7
1
.
9
3
8
2
2
3
5
.
4
9
6
1
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
8
3
.
3
7
0
7
2
0
.
0
0
0
0
5
5
.
0
0
0
0
22
3
9
4
.
8
4
5
0
2
6
9
.
9
8
7
1
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
1
8
3
.
8
1
1
3
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
23
2
8
2
.
2
3
7
4
1
6
9
.
7
0
1
1
3
4
0
.
0
0
0
0
6
0
.
0
0
0
0
8
8
.
4
5
6
1
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
24
2
0
7
.
8
4
5
3
1
3
5
.
0
0
0
0
3
1
2
.
5
1
0
9
6
0
.
0
0
0
0
7
3
.
0
0
0
0
1
6
0
.
0
0
0
0
1
3
0
.
0
0
0
0
4
7
.
0
0
0
0
2
0
.
0
0
0
0
5
5
.
0
0
0
0
T
o
t
a
l
g
e
n
e
r
a
t
i
o
n
c
o
st
(
$
)
=
1
0
2
2
2
0
5
.
6
8
4
6
;
T
o
t
a
l
p
o
w
e
r
l
o
sse
s (M
W
)
=
8
4
6
.
3
4
2
6
4.
CO
NCLU
SI
O
N
I
n
t
h
is
p
ap
er
,
a
m
o
d
if
ied
A
B
C
al
g
o
r
ith
m
i
s
p
r
o
p
o
s
ed
to
s
o
lv
e
t
h
e
n
o
n
-
co
n
v
ex
d
y
n
a
m
ic
ec
o
n
o
m
ic
d
is
p
atch
p
r
o
b
le
m
.
T
h
e
p
r
o
p
o
s
ed
MA
B
C
alg
o
r
it
h
m
e
m
p
lo
y
s
a
n
e
w
m
u
tatio
n
s
tr
ateg
y
in
s
p
ir
ed
f
r
o
m
t
h
e
d
if
f
er
e
n
tial
ev
o
l
u
tio
n
(
DE
)
to
en
h
a
n
ce
th
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
co
n
v
e
n
tio
n
al
A
B
C
alg
o
r
ith
m
.
T
h
e
d
if
f
er
en
tial
m
u
tatio
n
is
d
ev
i
s
ed
to
i
m
p
r
o
v
e
th
e
g
lo
b
al
s
ea
r
ch
i
n
g
ca
p
ab
ili
t
y
a
n
d
to
e
n
h
a
n
ce
t
h
e
ca
p
ab
ilit
y
o
f
escap
i
n
g
f
r
o
m
a
lo
ca
l
m
i
n
i
m
u
m
.
T
h
e
e
f
f
ec
ti
v
en
e
s
s
o
f
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
ill
u
s
tr
ated
b
y
u
s
in
g
a
5
-
u
n
it
a
n
d
1
0
-
u
n
it
test
s
y
s
te
m
s
a
n
d
co
m
p
ar
ed
w
ith
th
e
r
esu
lt
s
o
b
tain
ed
f
r
o
m
o
t
h
er
m
et
h
o
d
.
I
t is ev
id
en
t
f
r
o
m
t
h
e
co
m
p
ar
is
o
n
t
h
at
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
2
1
–
2
6
2
8
2628
p
r
o
p
o
s
ed
tech
n
iq
u
e
p
r
o
v
id
es
b
etter
r
esu
lt
s
t
h
a
n
o
t
h
er
m
et
h
o
d
s
i
n
ter
m
s
o
f
m
i
n
i
m
u
m
p
r
o
d
u
ctio
n
co
s
t
a
n
d
co
m
p
u
tatio
n
ti
m
e.
RE
F
E
R
E
NC
E
S
[1
]
X
.
S
.
Ha
n
,
H.B.
G
o
o
i,
a
n
d
D.S
.
Kirsc
h
e
n
,
“
D
y
n
a
m
ic
Eco
n
o
m
ic
Disp
a
tch
:
f
e
a
sib
le
a
n
d
o
p
t
im
a
l
s
o
lu
ti
o
n
s”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l.
1
6
,
n
o
.
1
,
p
p
.
2
2
-
2
8
,
2
0
0
1
.
[2
]
X
.
X
ia,
a
n
d
A
.
M
.
El
a
iw
,
“
Op
ti
m
a
l
Dy
n
a
m
i
c
Eco
n
o
m
ic
Disp
a
tch
o
f
G
e
n
e
ra
ti
o
n
:
A
re
v
ie
w
”
,
El
e
c
t.
Po
we
r
S
y
st.
Res
.
,
v
o
l.
8
0
,
n
o
.
8
,
p
p
.
9
7
5
-
9
8
6
,
2
0
1
0
.
[3
]
G
.
P
.
G
ra
n
e
ll
i,
P
.
M
a
ra
n
n
in
o
,
M
.
M
o
n
tag
n
a
,
a
n
d
A
.
S
il
v
e
stri
,
“
F
a
st
a
n
d
Eff
icie
n
t
G
ra
d
ien
t
P
ro
jec
ti
o
n
A
lg
o
rit
h
m
f
o
r
D
y
n
a
m
ic
G
e
n
e
ra
ti
o
n
Disp
a
tch
in
g
”
,
IEE
Pro
c
.
Ge
n
.
T
ra
n
s.
Distr.
,
v
o
l.
1
3
6
,
p
p
.
2
9
5
-
3
0
2
,
S
e
p
tem
b
e
r
1
9
8
9
.
[4
]
K.S
.
Hin
d
i
a
n
d
M
.
R.
A
b
d
G
h
a
n
i,
“
D
y
n
a
m
i
c
Eco
n
o
m
ic
Disp
a
tch
f
o
r
L
a
rg
e
S
c
a
le
P
o
w
e
r
S
y
ste
m
s:
A
L
a
g
r
a
n
g
ia
n
Re
lax
a
ti
o
n
A
p
p
ro
a
c
h
”
,
El
e
c
t.
P
o
we
r S
y
st.
Res
.
,
v
o
l.
4
3
,
p
p
.
5
1
-
5
6
,
1
9
9
1
.
[5
]
C.
B.
S
a
m
u
a
h
,
a
n
d
N.
Kh
u
n
a
izi,
“
A
p
p
li
c
a
ti
o
n
o
f
L
in
e
a
r
P
ro
g
ra
m
m
in
g
Re
-
Disp
a
tch
T
e
c
h
n
iq
u
e
to
Dy
n
a
m
i
c
G
e
n
e
r
a
ti
o
n
A
ll
o
c
a
ti
o
n
”
,
IEE
E
T
r
a
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l.
5
,
p
p
.
2
0
-
2
6
,
1
9
9
0
.
[6
]
F
.
L
i,
R.
M
o
rg
a
n
a
n
d
D.
W
il
li
a
m
s,
“
Hy
b
rid
G
e
n
e
ti
c
A
p
p
ro
a
c
h
e
s
t
o
Ra
m
p
in
g
Ra
te
Co
n
stra
i
n
e
d
Dy
n
a
m
ic
Eco
n
o
m
ic
Disp
a
tch
”
,
El
e
c
tric P
o
we
r S
y
ste
m
s R
e
se
a
rc
h
,
v
o
l.
4
3
,
p
p
.
9
7
-
1
0
3
,
1
9
9
7
.
[7
]
C.
K.
P
a
n
ig
ra
h
i,
P
.
K.
C
h
a
tt
o
p
a
d
h
y
a
y
,
R.
N.
Ch
a
k
ra
b
a
rti
a
n
d
M
.
Ba
su
,
“
S
im
u
late
d
A
n
n
e
a
li
n
g
T
e
c
h
n
iq
u
e
f
o
r
D
y
n
a
m
ic E
c
o
n
o
m
ic Disp
a
tch
”
,
El
e
c
tric P
o
we
r Co
mp
o
n
e
n
ts
a
n
d
S
y
ste
ms
,
v
o
l.
3
4
,
p
p
.
5
7
7
-
8
6
,
2
0
0
6
.
[8
]
R.
Ba
lam
u
ru
g
a
n
,
a
n
d
S
.
S
u
b
ra
m
a
n
ian
,
“
Dif
f
e
r
e
n
ti
a
l
Ev
o
lu
ti
o
n
-
b
a
se
d
Dy
n
a
m
i
c
Eco
n
o
m
ic
Disp
a
tch
o
f
G
e
n
e
ra
ti
n
g
Un
it
s w
it
h
V
a
lv
e
-
P
o
i
n
t
Ef
fe
c
ts”
,
El
e
c
tric P
o
we
r Co
mp
o
n
e
n
ts
a
n
d
S
y
ste
ms
,
v
o
l.
3
6
,
p
p
.
8
2
8
-
4
3
,
2
0
0
8
.
[9
]
G
.
S
re
e
n
iv
a
sa
n
,
C.
H.
S
a
ib
a
b
u
a
n
d
S
.
S
iv
a
n
a
g
a
ra
ju
,
”
S
o
lu
ti
o
n
o
f
D
y
n
a
m
ic
Eco
n
o
m
ic
L
o
a
d
Disp
a
tch
(DEL
D)
P
r
o
b
lem
w
it
h
V
a
lv
e
P
o
i
n
t
L
o
a
d
i
n
g
Eff
e
c
ts
a
n
d
Ra
m
p
Ra
te
L
i
m
it
s
u
sin
g
P
S
O”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
Co
m
p
u
ter
E
n
g
i
n
e
e
rin
g
,
v
o
l.
1
,
n
o
.
1
,
p
p
.
5
9
-
7
0
,
2
0
1
1
.
[1
0
]
P
.
A
tt
a
v
iri
y
a
n
u
p
a
p
,
H.
Kita,
E.
T
a
n
a
k
a
,
a
n
d
J.
Ha
se
g
a
wa
,
”
A
H
y
b
ri
d
E
P
a
n
d
S
Q
P
f
o
r
Dy
n
a
m
ic
E
c
o
n
o
m
ic
Disp
a
tch
w
it
h
No
n
s
m
o
o
th
F
u
e
l
Co
st
F
u
n
c
ti
o
n
”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
m
s
,
v
o
l.
1
7
,
n
o
.
2
,
p
p
.
4
1
1
-
4
1
6
,
M
a
y
2
0
0
2
.
[1
1
]
T
.
A
ru
ld
o
ss
A
lb
e
rt
V
icto
ire,
a
n
d
A
.
Eb
e
n
e
z
e
r
Ja
y
a
k
u
m
a
r,
“
De
ter
m
in
isti
c
a
ll
y
G
u
id
e
d
P
S
O
f
o
r
Dy
n
a
m
ic
Disp
a
tch
Co
n
sid
e
ri
n
g
V
a
lv
e
-
P
o
i
n
t
-
Ef
f
e
c
t,
”
El
e
c
t.
Po
we
r
S
y
st.
Res
.
,
v
o
l
.
7
3
,
n
o
.
3
,
p
p
.
3
1
3
-
3
2
2
,
2
0
0
5
.
[1
2
]
S
.
He
m
a
m
a
li
n
i
a
n
d
S
.
S
im
o
n
,
“
D
y
n
a
m
i
c
Eco
n
o
m
ic
Disp
a
tch
u
sin
g
A
rti
f
icia
l
Be
e
Co
lo
n
y
A
l
g
o
rit
h
m
f
o
r
Un
it
w
it
h
V
a
lv
e
-
P
o
in
t
-
Ef
fe
c
t,
”
Eu
ro
p
e
a
n
T
ra
n
sa
c
ti
o
n
s
o
n
El
e
c
trica
l
P
o
we
r
,
v
o
l.
2
1
,
p
p
.
7
0
-
8
1
,
2
0
1
1
.
[1
3
]
Be
h
n
a
m
M
o
h
a
m
m
a
d
i
-
iv
a
tl
o
o
,
A
b
b
a
s
Ra
b
iee
,
A
li
re
z
a
S
o
ro
u
d
i,
a
n
d
M
e
h
d
i
Eh
sa
n
,
“
Im
p
e
rialist
Co
m
p
e
ti
ti
v
e
A
l
g
o
rit
h
m
f
o
r
S
o
lv
in
g
No
n
-
c
o
n
v
e
x
D
y
n
a
m
ic E
c
o
n
o
m
ic P
o
w
e
r
Disp
a
tch
,
”
En
e
rg
y
,
v
o
l.
4
4
,
p
p
.
2
2
8
-
2
4
0
,
2
0
1
2
.
[1
4
]
D.
Ka
ra
b
o
g
a
a
n
d
B.
Ba
stu
rk
,
“
On
th
e
P
e
rf
o
rm
a
n
c
e
o
f
A
rti
f
i
c
ia
l
Be
e
Co
lo
n
y
(
A
BC)
A
l
g
o
rit
h
m
”
,
Ap
p
li
e
d
S
o
f
t
Co
mp
u
t
in
g
,
v
o
l
.
8
,
n
o
.
1
,
p
p
.
6
8
7
-
6
9
7
,
2
0
0
8
.
[1
5
]
D.
Ka
ra
b
o
g
a
a
n
d
B.
A
k
a
y
,
“
Artif
icia
l
Be
e
Co
lo
n
y
(A
BC),
H
a
r
m
o
n
y
S
e
a
rc
h
a
n
d
Be
e
s
A
l
g
o
rit
h
m
s
o
n
Nu
m
e
rica
l
Op
ti
m
iza
ti
o
n
”
,
Pro
c
e
e
d
in
g
s o
f
IP
ROM
S
2
0
0
9
Co
n
fer
e
n
c
e
,
p
p
.
1
-
6
,
2
0
0
9
.
[1
6
]
B.
A
k
a
y
a
n
d
D.
Ka
ra
b
o
g
a
,
“
A
M
o
d
if
ied
A
rti
f
icia
l
Be
e
Co
lo
n
y
A
lg
o
rit
h
m
f
o
r
Re
a
l
-
P
a
ra
m
e
ter
Op
ti
m
iza
ti
o
n
”
,
In
fo
rm
a
t
io
n
S
c
ien
c
e
s
,
v
o
l
.
1
9
2
,
p
p
.
1
2
0
-
1
4
2
,
2
0
1
2
.
[1
7
]
X
.
T
.
L
i,
X
.
W
.
Zh
a
o
,
J.N.
Wan
g
a
n
d
M
.
H.
Yin
,
“
Im
p
ro
v
e
d
A
rti
f
i
c
ial
Be
e
Co
lo
n
y
f
o
r
D
e
sig
n
o
f
a
Re
c
o
n
f
ig
u
ra
b
le
A
n
ten
n
a
A
rra
y
w
it
h
Disc
re
te
P
h
a
se
S
h
if
ters
”
,
Pro
g
re
ss
in
El
e
c
tr
o
ma
g
n
e
ti
c
s
Res
e
a
rc
h
C
,
v
o
l.
2
5
,
p
p
.
1
9
3
-
2
0
8
,
2
0
1
2
.
[1
8
]
J.B.
P
a
rk
,
K.S
.
L
e
e
,
J.R.
S
h
in
a
n
d
K.Y.
L
e
e
,
“
A
P
a
rti
c
le
S
wa
r
m
Op
ti
m
iza
ti
o
n
f
o
r
Eco
n
o
m
ic
Dis
p
a
tch
w
it
h
No
n
S
m
o
o
th
Co
st
F
u
n
c
ti
o
n
s”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r S
y
ste
ms
,
v
o
l.
2
0
,
n
o
.
1
,
p
p
.
3
4
-
4
2
,
2
0
05.
[1
9
]
R.
S
to
r
n
a
n
d
K.
P
rice
,
“
Dif
f
e
r
e
n
ti
a
l
Ev
o
l
u
ti
o
n
a
S
im
p
le
a
n
d
Ef
f
icie
n
t
He
u
risti
c
f
o
r
G
lo
b
a
l
Op
t
im
iz
a
ti
o
n
o
v
e
r
Co
n
ti
n
u
o
u
s
S
p
a
c
e
s”
,
J
o
u
rn
a
l
o
f
Glo
b
a
l
Op
t
imiza
ti
o
n
,
v
o
l.
1
1
,
n
o
.
4
,
p
p
.
3
4
1
-
3
5
9
,
1
9
9
7
.
[2
0
]
K.
P
rice
,
R.
S
t
o
rn
,
a
n
d
J.A
.
L
a
m
p
in
e
n
,
“
Diff
e
re
n
ti
a
l
Ev
o
lu
ti
o
n
:
A
P
ra
c
ti
c
a
l
A
p
p
ro
a
c
h
to
G
lo
b
a
l
Op
ti
m
iza
ti
o
n
”
,
S
p
rin
g
e
r,
Be
rli
n
,
He
id
e
l
b
e
rg
,
2
0
0
5
.
[2
1
]
R.
Ba
lam
u
ru
g
a
n
,
a
n
d
S
.
S
u
b
ra
m
a
n
ian
,
“
A
n
Im
p
ro
v
e
d
Dif
fe
re
n
ti
a
l
Ev
o
lu
ti
o
n
b
a
se
d
Dy
n
a
m
ic
Eco
n
o
m
ic
Disp
a
tch
w
it
h
No
n
sm
o
o
th
F
u
e
l
Co
st
F
u
n
c
ti
o
n
”
,
J
o
u
rn
a
l
o
f
El
e
c
trica
l
S
y
st
e
ms
,
v
o
l.
3
,
n
o
.
3
,
p
p
.
1
5
1
-
6
1
,
2
0
0
7
.
B
I
O
G
RAP
H
Y
O
F
AUTHO
R
H
a
r
d
ia
n
sy
a
h
wa
s
b
o
rn
o
n
F
e
b
r
u
a
ry
2
7
,
1
9
6
7
in
M
e
m
p
a
wa
h
,
In
d
o
n
e
sia
.
He
re
c
e
iv
e
d
th
e
B.
S
.
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
f
ro
m
th
e
Un
iv
e
rsit
y
o
f
Tan
ju
n
g
p
u
ra
in
1
9
9
2
a
n
d
th
e
M
.
S
.
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
f
ro
m
Ba
n
d
u
n
g
In
stit
u
te
o
f
Tec
h
n
o
lo
g
y
(I
T
B),
In
d
o
n
e
sia
in
1
9
9
6
.
Dr.
En
g
,
d
e
g
re
e
f
ro
m
Na
g
a
o
k
a
Un
iv
e
rsit
y
o
f
Tec
h
n
o
lo
g
y
in
2
0
0
4
.
S
i
n
c
e
1
9
9
2
,
h
e
h
a
s b
e
e
n
w
it
h
De
p
a
rt
m
e
n
t
o
f
El
e
c
tri
c
a
l
E
n
g
in
e
e
rin
g
,
Un
iv
e
rsi
ty
o
f
T
a
n
ju
n
g
p
u
ra
,
P
o
n
t
ian
a
k
,
In
d
o
n
e
sia
.
Cu
rre
n
tl
y
,
h
e
is
a
se
n
io
r
lec
tu
re
r
i
n
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
.
His
c
u
rr
e
n
t
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
p
o
w
e
r
s
y
ste
m
o
p
e
ra
ti
o
n
a
n
d
c
o
n
tro
l,
ro
b
u
st
c
o
n
tro
l,
a
n
d
so
f
t
c
o
m
p
u
ti
n
g
tec
h
n
iq
u
e
s
in
p
o
w
e
r
s
y
ste
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.