Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 2
,
A
p
r
il
201
5, p
p
.
20
5
~
21
2
I
S
SN
: 208
8-8
7
0
8
2
05
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
A Novel Meth
od for Rot
o
r Fi
eld-
Oriented Control of Single-
Phase In
duction Mot
o
r
M.
J
a
nn
a
t
i*,
T. Su
tikn
o*
*,
N.
R.
N. I
d
ris*
,
M.
J.
A.
Az
iz
*
* UTM-PROTON Future Driv
e
Laborator
y
,
Faculty
of
Electr
ical Engin
eering
,
U
n
ivers
iti Teknologi Malay
s
ia, 81
310
Skudai, Johor
Bahru, M
a
lay
s
ia
** Departmen
t
o
f
Electr
i
cal
Engineering
,
Un
iv
ersitas Ahmad Dah
l
an, Yog
y
akarta,
Indonesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 2, 2014
Rev
i
sed
Jan 25, 201
5
Accepte
d
Fe
b 9, 2015
This paper presents a novel rotor
fiel
d-oriented
control (RFOC)
method for
as
y
mmetrical single-phase indu
ction moto
r (SPI
M). It is shown i
n
this paper
that b
y
using
a suitab
l
e
trans
f
orm
a
tion m
a
tri
x
(TM) for sta
t
or curr
ent
variab
les,
the
as
y
m
m
e
tric
al
e
quations of S
P
IM are transf
orm
e
d into
s
y
m
m
e
trica
l
eq
uations.
Based
on this
similarity
,
a nov
el v
e
ctor
conrol
techn
i
que for S
P
IM is presented. Pe
rformance
of the proposed
method is
a
sse
sse
d using MATLAB/SIM
U
LINK soft
ware. Simulation results showed
the excellence
speed and torq
ue responses obtain
e
d using the proposed
techn
i
que.
Keyword:
Dri
v
e system
MATLAB
Ro
to
r f
i
eld-
or
i
e
n
t
ed
con
t
ro
l
Single
-
phase i
n
duction m
o
tor
Transfo
r
m
a
tio
n
m
a
trix
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M. Jann
ati,
UTM
-
PR
OT
O
N
F
u
tu
re
Dri
v
e
Lab
o
rat
o
ry
,
Faculty of Electrical
En
gi
nee
r
i
n
g
,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia,
8
131
0 Sk
ud
ai,
Jo
hor
Bah
r
u
,
Malaysia.
Em
a
il: j
a
n
n
a
ti
m
9
4
@
yah
o
o
.
co
m
1.
INTRODUCTION
Si
ngl
e
-
p
h
ase i
n
d
u
ct
i
o
n m
o
t
o
rs (SP
I
M
s
) a
r
e
bro
a
dl
y
im
pl
em
ent
e
d i
n
l
o
w
-
po
we
r ap
pl
i
cat
i
ons s
u
ch as
su
b fraction
a
l
an
d fractio
n
a
l
h
o
rsep
ower
app
licatio
n
s
for t
h
eir l
o
w-cost an
d sub
s
tan
tial reliab
ility. A SPIM is
fu
n
d
am
ent
a
l
l
y an u
nbal
a
nce
d
IM
si
nce i
t
i
s
const
r
uct
e
d wi
t
h
t
w
o asy
m
m
e
t
r
i
cal
st
at
or
wi
ndi
ng
s (m
ai
n an
d
au
x
iliary wind
in
g
s
) with
a
sq
uirrel-cag
e
ro
t
o
r.
To e
ffect
i
v
el
y
co
nt
r
o
l
t
h
e t
o
r
q
ue a
nd/
or
spee
d,
S
P
IM
is no
rm
ally
fe
d
by power electronics
con
v
e
r
t
e
rs.
Di
f
f
ere
n
t
t
o
p
o
l
o
gi
es of
p
o
we
r c
o
n
v
e
r
t
e
r ha
ve
been
use
d
f
o
r
vari
a
b
l
e
-s
peed
dri
v
es o
f
S
P
I
M
[1]
-
[5]
.
T
w
o-l
e
g
,
t
h
ree-l
e
g, a
n
d
fo
ur
-l
eg c
o
nve
rt
ers are
the t
h
ree m
o
st widely used c
o
nverters for SPIM. In
gene
ral
,
t
h
ree-l
e
g an
d
fo
ur
-l
e
g
co
n
v
erters are
m
o
re efficient as well as
pr
od
uce l
e
ss
har
m
oni
c di
st
ort
i
o
n t
h
a
n
a t
w
o
-
l
e
g c
o
n
v
e
rt
er [
4
]
.
H
o
w
e
ver
,
si
nce t
w
o-l
e
g co
nfi
g
uratio
n
is co
st
-effectiv
e th
an
the th
ree-leg
and fou
r
-
leg
,
th
is configu
r
ation
h
a
s b
e
en
assu
m
e
d
in
t
h
is stud
y.
Th
e
co
nfigu
r
ation
o
f
th
e t
w
o-leg
SPIM
driv
e sy
ste
m
is
sho
w
n i
n
Fi
gu
r
e
1
[
4
]
.
Scal
ar co
nt
r
o
l
m
e
t
hod i
s
qu
i
t
e
pop
ul
ar t
e
c
hni
que
f
o
r s
p
e
e
d co
nt
r
o
l
o
f
SPIM
dri
v
e [
6
]
-[8]
.
T
h
i
s
co
n
t
ro
l strategy is si
m
p
le, ec
o
n
o
m
ical, an
d
well i
m
p
l
e
m
en
tab
l
e. Ho
wev
e
r, th
is co
n
t
ro
l st
rateg
y
prov
id
es slow
react
i
on t
o
t
r
a
n
si
ent
an
d can
not
be c
o
n
s
i
d
e
r
ed as an a
p
pr
op
ri
at
e cont
rol
st
rat
e
gy
. No
w
a
day
s
, di
rect
t
o
r
q
ue
cont
rol
(
D
TC
)
[9]
,
[
10]
an
d fi
el
d-
ori
e
nt
e
d
co
nt
r
o
l
(FOC
) [3
]
-[5]
an
d [1
1]
-
[
2
1
]
t
echni
q
u
e
s
have b
een
wi
del
y
ad
op
ted fo
r
SPIM driv
es for app
licatio
n
s
th
at requ
ir
e
hi
gh
pe
rf
orm
a
nce t
o
r
que
co
nt
r
o
l
.
C
o
rrea
et
al
. ha
s
p
r
op
o
s
ed
FOC
strateg
y
u
s
in
g
po
sitiv
e-neg
a
tiv
e d
oub
le
sequ
en
ce cu
rren
t con
t
ro
ll
er [5
].
Alth
ou
gh
t
h
e
pr
o
pose
d
m
e
t
hod
, el
i
m
i
n
at
e the t
o
r
que
p
u
l
s
at
i
on
of
t
h
e
S
P
IM
but
t
h
i
s
m
e
t
hod i
s
com
p
l
e
x,
d
u
e t
o
t
h
e usi
ng
m
a
ny
PI c
ont
r
o
l
l
e
rs.
In
[
1
1]
, dec
o
upl
i
n
g
v
ect
or c
o
nt
rol
m
e
t
hod
wi
t
h
m
a
xim
u
m
t
o
rq
ue
per am
pere
was
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
A No
vel Met
h
od
for Ro
to
r Field
-
Orien
t
ed Con
t
ro
l
o
f
S
i
ng
le-Pha
se
Indu
ction
Mo
to
r
(
M
.
Ja
nn
at
i
)
20
6
pr
o
pose
d
f
o
r v
ect
or c
ont
r
o
l
o
f
SP
IM
.
In [
1
2]
-[
1
5
]
,
St
at
or
FOC
an
d R
o
t
o
r F
O
C
t
ech
ni
que
s f
o
r S
P
IM
usi
n
g
feed
f
o
r
w
ar
d
deco
u
p
l
i
n
g
co
nt
r
o
l
l
e
r ha
ve
been
p
r
ese
n
t
e
d. T
h
e
p
r
esent
e
d c
ont
rol
m
e
tho
d
s i
n
[1
1]
-[
15]
a
r
e
ext
r
em
el
y
depend
s o
n
vari
at
i
ons
o
f
S
P
IM
p
a
ram
e
t
e
rs.
In
[
16]
-
[
20]
, s
o
m
e
m
e
t
hods
f
o
r
F
O
C
o
f
S
P
IM
b
a
sed
on
usi
n
g t
r
an
sf
or
m
a
t
i
on
m
a
t
r
i
c
es (TM
s
) ha
v
e
been p
r
op
os
ed. T
h
ese m
e
tho
d
s are al
s
o
depe
nde
d o
n
m
o
t
o
r
param
e
ters.
In t
h
i
s
pape
r i
t
i
s
show
n t
h
a
t
usi
ng s
u
i
t
a
bl
e TM
for st
at
or c
u
r
r
ent
vari
abl
e
s, t
h
e e
q
u
a
t
i
ons o
f
t
h
e
asymm
e
trical
SPIM ca
n be t
r
ans
f
orm
e
d into a struct
ur
e
of equ
a
tio
ns, wh
ich
are
simila
r to
th
e
3
-
p
h
a
se IM
equat
i
o
ns
. B
a
s
e
d
on
t
h
i
s
,
a
n
ovel
a
n
d si
m
p
l
e
R
F
OC
st
rat
e
gy
f
o
r
SP
IM
i
s
de
vel
o
ped
a
n
d t
h
r
o
u
g
h
si
m
u
l
a
t
i
on,
i
s
sho
w
n t
o
gi
ve excel
l
e
nt
dy
nam
i
c perf
orm
a
nce. T
h
e rem
a
i
nde
r of t
h
i
s
p
a
per i
s
o
r
ga
ni
z
e
d as fol
l
o
ws
. The d
-
q
m
o
d
e
l
o
f
t
h
e SPIM is
p
r
esen
ted in
sectio
n 2.
In s
ection
3
,
t
h
e m
a
in
id
ea of
pr
opo
sed
v
ector
co
n
t
r
o
l f
o
r
SPIM
i
s
di
scus
sed an
d su
bse
q
uent
l
y
a nov
el
cont
rol
st
rat
e
g
y
based o
n
R
F
OC
i
s
present
e
d. The ef
fect
i
v
eness
of t
h
e
pr
op
ose
d
m
e
t
hod i
s
ve
ri
fi
ed an
d p
r
es
ent
e
d u
s
i
n
g M
A
TL
AB
/
S
IM
U
L
IN
K so
ft
wa
re
i
n
sect
i
on 4. F
i
nal
l
y
,
concl
u
si
o
n
i
s
p
r
esent
e
d i
n
sec
t
i
on
5.
Fi
gu
re 1.
C
o
nfi
g
u
r
at
i
o
n of
t
h
e t
w
o
-
l
e
g SPIM
dri
v
e
sy
st
em
2.
MAT
H
EM
AT
ICAL
M
O
DE
LING
The S
P
IM
e
q
uation
s
in the
stationary
re
f
e
rence
fram
e
(sup
ersc
ript “
s
”) can
b
e
written
as (1) as
p
r
esen
ted in
[5]:
(1)
In (1
),
v
s
ds
,
v
s
qs
are the stator
d-q axe
s
voltages
i
s
ds
,
i
s
qs
are the stator
d-q a
x
es curre
nts
i
s
dr
,
i
s
qr
are the
rot
o
r d-q
a
x
es currents
λ
s
ds
,
λ
s
qs
are the stator d-q a
x
es fl
uxe
s and
λ
s
dr
,
λ
s
qr
are the rotor
d-q axe
s
fluxes
.
r
ds
,
r
qs
and
r
r
de
not
e
t
h
e st
at
o
r
a
n
d
r
o
t
o
r
d-
q a
x
es
r
e
si
st
ances.
L
ds
,
L
qs
,
L
r
,
M
d
and
M
q
indicate the stator, the
rot
o
r self
and m
u
tual inducta
nces.
r
is th
e m
o
to
r sp
eed
.
e
and
l
are electro
m
a
g
n
e
tic to
rq
u
e
an
d lo
ad to
rqu
e
respectively
.
M
o
re
ove
r,
J
a
nd
F
a
r
e t
h
e
m
o
m
e
nt
of i
n
e
r
t
i
a
and
vi
sco
u
s
friction coe
f
ficient, respecti
v
ely. As
can be see
n
f
r
o
m
(1), t
h
e st
r
u
ct
u
r
e o
f
SP
I
M
equat
i
o
ns i
s
sim
i
l
a
r t
o
t
h
e 3-
pha
se IM
equat
i
o
ns
. I
n
f
act
, by
su
bstitu
tin
g
r
ds
=r
qs
=r
s
,
L
ds
=L
qs
=L
s
and
M
d
=M
q
=M
th
e fam
iliar eq
u
a
tion
s
o
f
3-ph
ase IM
are
o
b
t
ain
e
d
.
3.
RFO
C
EQ
UATIONS
OF
S
PIM
Si
nce t
h
e
SPI
M
st
udi
e
d
i
s
asym
m
e
t
r
i
cal
, t
h
e use
o
f
co
nve
nt
i
o
nal
F
O
C
m
e
t
hod
fo
r
3-
p
h
ase IM
requ
ires a sp
ecial atten
tio
n
.
Th
is asymmetry
in
SPI
M m
o
del cau
ses oscillatio
n
s
in
t
h
e SPIM electro
m
a
g
n
e
tic
t
o
r
que
[5]
.
In t
h
i
s
pa
per
,
i
t
i
s
sho
w
n u
s
i
n
g a
n
ap
pr
o
p
ri
ate TM
for
stator current va
riab
les, th
is asymmetry can
b
e
rem
o
v
e
d
.
Th
e electro
m
a
g
n
e
tic to
rqu
e
of SPIM can
b
e
written
as:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
23
0 – 2
3
7
2
07
qr
ds
d
dr
qs
q
e
i
i
M
i
i
M
Pole
2
(2)
Using
fo
llowing
su
bstitu
tio
n
s
,
qs
q
d
ds
q
d
QS
qs
ds
DS
i
M
M
i
M
M
j
i
ji
i
i
(3)
Th
e electro
m
a
g
n
e
tic torq
u
e
eq
u
a
tion
can
b
e
written
as
equ
a
tio
n
(4).
qr
DS
d
dr
QS
d
e
i
i
M
i
i
M
Pole
2
(4)
As can be see
n
fr
om
(4), t
h
e SPIM
t
o
r
que
equat
i
o
n bec
o
m
e
s sim
i
l
a
r 3-pha
se IM
t
o
r
q
ue eq
uat
i
o
n
.
Equ
a
tio
n (3
) can
b
e
written
as:
qs
ds
q
d
q
d
QS
DS
i
i
M
M
M
M
j
j
i
i
1
(5)
Using
fo
llowing
su
bstitu
tio
n
s
,
e
qs
qs
s
qs
QS
e
ds
ds
s
ds
DS
e
e
i
i
i
i
i
i
i
i
j
sin
cos
1
(6)
The TM
f
o
r
st
at
or c
u
r
r
e
n
t
va
ri
abl
e
s ca
n
be
ob
t
a
i
n
ed as
eq
uat
i
on
(
7
).
e
qs
e
ds
e
q
d
e
q
d
e
e
s
qs
s
ds
i
i
M
M
M
M
i
i
cos
sin
sin
cos
(7)
The i
nve
rse
of
(7
)
gi
ves
t
h
e
pr
op
ose
d
TM
f
o
r
st
at
or c
u
rre
nt
vari
a
b
l
e
s.
cos
sin
sin
cos
s
qs
s
ds
e
d
q
e
e
d
q
e
s
qs
s
ds
e
is
e
qs
e
ds
i
i
M
M
M
M
i
i
T
i
i
(8)
In (
8
),
θ
e
is t
h
e
angle bet
w
een the stationary
refe
rence
frame and
th
e ro
tatin
g refe
re
nce
fr
am
e. In t
h
is
pape
r s
u
persc
r
i
p
t
“
e
” indicates that the
variables a
r
e in th
e
ro
tatin
g r
e
f
e
r
e
n
c
e fr
ame.
U
s
ing
(8) n
e
w
m
a
t
h
em
at
i
c
al
m
odel
i
s
obt
ained as (
9
)-
(1
1
)
. It
can be
not
ed t
h
at
i
n
t
h
e pr
ocess
of o
b
t
a
i
n
i
ng t
h
ese equat
i
o
n
s
(eq
u
atio
ns
(9
)-
(1
1)
) t
h
e ass
u
m
p
tion
0
,
e
qr
r
e
dr
is con
s
id
ered
.
Ro
to
r flu
x equa
tio
ns:
0
0
0
0
0
0
e
ds
d
r
r
r
e
qr
e
dr
r
r
e
qs
e
ds
d
d
r
i
M
dt
d
T
i
i
L
L
i
i
M
M
(9)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
A No
vel Met
h
od
for Ro
to
r Field
-
Orien
t
ed Con
t
ro
l
o
f
S
i
ng
le-Pha
se
Indu
ction
Mo
to
r
(
M
.
Ja
nn
at
i
)
20
8
Electromagnet
ic torque e
q
uat
ion:
e
qs
r
r
d
e
i
L
M
Pole
2
(10)
Spee
d
e
q
uat
i
o
n
:
0
)
(
e
qs
d
r
r
e
r
i
M
T
(11)
In (
9
)
T
r
is th
e ro
tor ti
m
e
co
n
s
tan
t
(
T
r
=
L
r
/
r
r
). As can
be se
en usi
ng
(8), t
h
e asymmetric
al equations
of
SPIM
c
h
a
n
ged i
n
t
o
sy
m
m
et
ri
cal
equat
i
ons
. T
h
e c
o
m
p
ari
s
o
n
b
e
t
w
ee
n
t
h
e R
F
OC
e
q
uat
i
o
n
s
o
f
S
P
I
M
and
R
F
OC
e
quat
i
o
ns
of
3
-
p
h
ase
I
M
i
s
gi
ve
n i
n
Tabl
e
1.
Tabl
e
1. T
h
e
c
o
m
p
ari
s
on
bet
w
een
R
F
OC
e
quat
i
o
ns
o
f
S
P
I
M
an
d R
F
OC
equat
i
o
ns
o
f
3-
pha
se IM
3-Phase
IM
SPIM
Flux equation base
d on [2
2]
,
(
9
)
dt
d
T
Mi
r
e
ds
r
1
where:
ms
L
M
2
3
dt
d
T
i
M
r
e
ds
d
r
1
where:
ms
d
L
M
2
3
T
o
r
que equation b
a
sed on [22]
,
(
10)
e
qs
r
r
e
i
L
M
Pole
2
e
qs
r
r
d
e
i
L
M
Pole
2
Speed equation based on [2
2]
,
(
11)
r
r
e
qs
r
e
T
Mi
r
r
e
qs
d
r
e
T
i
M
There
f
ore,
usi
ng s
o
m
e
chan
ges i
n
t
h
e co
n
v
ent
i
o
nal
RF
O
C
bl
oc
k di
a
g
r
a
m
of 3
-
p
h
ase
IM
, vect
or
cont
rol
of
SP
I
M
i
s
p
o
ssi
bl
e.
The
p
r
o
p
o
se
d
bl
oc
k
di
ag
ra
m
of SPIM
ba
sed
on
I
n
di
rec
t
RFOC i
s
s
h
ow
n i
n
Fi
gu
re 2. In F
i
gu
re
2
,
|
λ
r
*
|
and
τ
e
*
re
pres
en
t the refe
re
nce
flux an
d t
o
r
q
ue res
p
ectivel
y
.
In t
h
is Figu
re, the
arrows
show that the cha
n
g
e
s to
th
e conv
en
tio
n
a
l
v
ector
co
n
t
ro
l, t
h
at it can
b
e
app
lied
to
th
e
SPIM
.
In
sum
m
ery
t
h
e com
p
ari
s
on
bet
w
een
t
h
e
p
r
op
ose
d
vect
o
r
c
o
nt
r
o
l
o
f
SPIM
and
c
o
n
v
e
n
t
i
o
nal
vect
or
c
ont
rol
o
f
3-
pha
se IM
i
s
gi
ven
i
n
Tabl
e
2.
Fi
gu
re 2.
Pr
o
p
o
se
d bl
oc
k di
agram
of IRF
O
C
fo
r
S
P
IM
Evaluation Warning : The document was created with Spire.PDF for Python.
ISS
N
:
2088-8708
IJECE V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
23
0 – 2
3
7
2
09
Tabl
e
2. T
h
e
c
o
m
p
ari
s
on
bet
w
een
p
r
op
ose
d
vect
o
r
c
o
nt
rol
of
SP
IM
an
d
c
o
n
v
e
n
t
i
onal
ve
ct
or c
o
nt
rol
o
f
3-
pha
se IM
3-Phase
IM
SPIM
[
T
is
e
]
based on [22]
,
(8
)
cos
sin
sin
co
s
e
e
e
e
e
is
T
co
s
sin
sin
co
s
e
d
q
e
e
d
q
e
e
is
M
M
M
M
T
2 to 2 or
2 to 3
tr
ansform
a
tion for
stator current
var
i
ables
based on [2
2]
s
qs
s
ds
cs
bs
as
i
i
i
i
i
2
3
2
1
2
3
2
1
0
1
3
2
s
qs
s
ds
bs
as
i
i
i
i
1
0
0
1
4.
SIMULATION RESULTS
To
v
e
ri
fy th
e effectiv
en
ess
of th
e
p
r
o
p
o
s
ed
IRFO
C for SPIM, sim
u
lat
i
o
n
s
un
d
e
r
d
i
fferent co
nd
itio
ns
are co
ndu
cted
u
s
ing
M
A
TLAB/SIMU
L
INK
si
m
u
latio
n
p
a
ck
ag
e.
In th
e
sim
u
la
tio
n
s
th
e referen
ce
ro
t
o
r
flux
i
s
set
t
o
1w
b.
A
vect
o
r
c
ont
rol
sy
st
em
,
based
on
Fi
g
u
r
e 2
i
s
use
d
f
o
r
a st
an
dar
d
0.
2
5
HP SPIM
wi
t
h
t
h
e
rat
e
d
val
u
es
an
d
par
a
m
e
t
e
rs as sh
o
w
n
i
n
Tabl
e
3.
Tabl
e
3. Rat
i
n
gs a
n
d
param
e
ters
of
t
h
e si
m
u
l
a
t
e
d SP
IM
Fi
gu
re
3 (a
) sh
ows t
h
e si
m
u
l
a
t
i
o
n res
u
l
t
s
o
f
t
h
e refe
re
nce a
nd act
ual
r
o
t
o
r
spee
d base
d
o
n
p
r
op
ose
d
cont
roller for a
trapez
oidal speed
refe
renc
e
b
e
tween
5
0
0
r
p
m
and -
5
00
rp
m
.
It is evide
n
t
fr
om
Figu
re
3
(a)
that
the real
spee
d
follows t
h
e
reference
m
o
tor s
p
eed e
v
en
at z
e
ro
re
fere
nce
s
p
eed
.
The
electrom
a
gnetic torque
an
d
m
a
in
an
d
au
x
iliary stato
r
cu
rren
t
s fo
r trap
ezo
i
d
al re
feren
ce sp
eed
are sh
ow
n
in
Fi
g
u
re 3
(b
) and
Fi
g
u
re 3
(c)
resp
ectiv
ely. It is sh
own
th
at th
e
propos
ed IR
FO
controller for vect
or
control
of SPIM has a
good
spe
e
d
cont
rol
a
n
d s
u
f
f
i
c
i
e
nt
vect
or
c
ont
rol
c
h
ara
c
t
e
ri
st
i
c
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A No
vel Met
h
od
for Ro
to
r Field
-
O
r
ien
t
ed Con
t
ro
l
o
f
S
i
ng
le-Pha
se
Indu
ction
Mo
to
r
(M. Jan
n
a
ti)
21
0
(a)
(b
)
(c)
Fi
gu
re
3.
Si
m
u
l
a
t
i
on
res
u
l
t
s
of
IRF
O
C f
o
r a
t
r
apez
oi
dal
ref
e
rence
spee
d
Figu
re 4
(a)
sh
ows t
h
e re
fere
nce an
d re
al m
o
to
r sp
ee
d signals with a step
refe
rence s
p
ee
d from
zero
to
th
e rated
v
a
l
u
e at t = 2
s
. A
lo
ad
torqu
e
equ
a
l to
1N
m
is i
n
tro
d
u
c
ed
at t = 9
s
and
rem
o
v
e
d
at t = 11
s.
D
u
e t
o
the accuracy of the torque
c
o
ntrol, the actual speed fo
llows the re
fere
nce even wh
e
n
a load disturba
nce is
i
n
t
r
o
d
u
ced at
t
= 2s.
The c
o
rr
esp
o
n
d
i
n
g m
o
t
o
r t
o
r
que
i
s
sh
ow
n i
n
Fi
g
u
re
4 (
b
)
.
It
ca
n
be
seen t
h
at
t
h
e t
o
r
q
ue
resp
o
n
se rapi
dl
y
wi
t
h
no
p
u
l
s
a
t
i
ons.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISS
N
:
2088-8708
IJECE V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
23
0 – 2
3
7
2
11
(a)
(b
)
Fi
gu
re
4.
Si
m
u
l
a
t
i
on res
u
l
t
s
o
f
IRF
O
C at
n
o
m
i
n
al
refere
nc
e spee
d a
n
d
un
der
l
o
a
d
5.
CO
NCL
USI
O
N
In t
h
i
s
pap
e
r,
a no
vel
m
e
t
hod f
o
r s
p
ee
d co
nt
r
o
l
of S
P
IM
base
d o
n
IRF
O
C has
been
p
r
o
p
osed
. It
i
s
sho
w
n t
h
at
us
i
ng an a
p
p
r
o
p
r
i
a
t
e
t
r
ansf
orm
a
t
i
on m
a
t
r
i
x
(TM
)
fo
r st
at
or
curre
nt
vari
a
b
l
e
s, t
h
e u
nba
l
a
nce
d
SPIM eq
u
a
tions can
b
e
ch
an
ged
in
to
b
a
lan
c
ed
equ
a
tion
s
. Si
m
u
la
tio
n
resu
lts sho
w
ed
th
e ex
cellen
ce sp
eed
and
t
o
r
que
resp
o
n
s
e
s obt
ai
ne
d
usi
n
g t
h
e pr
o
p
o
s
e
d
t
ech
ni
q
u
e. T
h
e d
r
aw
bac
k
o
f
pre
s
ent
e
d m
e
t
h
o
d
i
s
t
h
at
t
h
e
m
o
t
o
r
spee
d o
f
SPIM
m
u
st
be
m
easure
d
,
whi
c
h ne
eds a spee
d se
n
s
or. To
ov
erco
m
e
th
is d
i
fficu
lty, a research
to
b
e
con
d
u
ct
ed a
p
pl
y
i
ng a
n
ovel
m
e
t
h
o
d
fo
r s
p
ee
d se
ns
orl
e
ss
F
O
C o
f
SPIM
.
REFERE
NC
ES
[1]
F
.
Blaabj
e
rg
, et
al.
"Two-phase induction motor drives".
IEEE Trans. Ind. Appl.
Mag
. vol. 10, pp
. 24-32, Jul./Aug
.
2004.
[2]
M. Chomat and T.A. Lipo. "A
djus
table-speed
single-phase IM
drive with reduced number of switches".
IEEE
Trans. Ind. App
l
. vol. 39, pp. 819
-825, May
/
Jun
.
2003.
[3]
M.
Je
mli
, et al.
"Sensorless In
direct Stator
Field Orientation
Speed Control for Single-Phase Induction Moto
r
Drive".
I
EEE
T
r
ans. Power
El
ect
ron
. vol. 24, pp.
1618-1627, Jun.
2009.
[4]
M.R. Correa
, et
al.
"Rotor-flux
-oriented contro
l of a single-ph
ase induction motor drive".
IEEE Trans. Ind.
Ele
c
tron
. vol. 47
, pp
. 832-841
, A
ug. 2000
.
[5]
M.B. de Rossiter Corrêa
, et al
.
"Vector control
strateg
i
es for single-
phase indu
ction motor drive s
y
stems".
IEEE
Transactions on
Indus
trial Electronics
. vo
l. 51, p
p
. 1073-1080
, 2
004.
[6]
N.M. Abdel-Rahim and A.
Shaltout. "An as
y
mmetrical two-
phase i
nduction
motor drive with slip-fr
equen
c
y
control".
IEEE Transactions on
Energy Conversion
. vol. 24
, pp
. 60
8-616, 2009
.
[7]
W.
Piy
a
ra
t
, e
t
al
.
"S
im
ple s
p
eed
control of
an as
y
m
m
e
tr
ic
al
ty
p
e
two-phase indu
ction motor driv
e".
In E
l
e
c
trica
l
Engineering/Electronics Comput
er Telecommunications and Info
rmation Technology (
E
CTI-CON
)
. pp. 274-278,
2010.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A N
o
vel
Met
ho
d f
o
r R
o
t
o
r
Fi
el
d-
Ori
e
nt
ed
C
o
nt
rol
of
Si
n
g
l
e
-
P
h
a
se
In
d
u
ct
i
o
n M
o
t
o
r
(
M
.
Ja
nn
at
i
)
21
2
[8]
B. Zahed
i
and
S. Vaez-Zadeh
.
"E
fficiency
optimization con
t
rol of si
ngle-phase induction moto
r drives".
IEEE
Transactions on
Power Electronics
. vol. 24
, pp
. 1
062-1070, 2009
.
[9]
V.
S.
Fa
ting
, e
t
a
l
.
"Direct torque
control of s
y
mmetrical
a
nd as
y
m
metrical single p
h
ase induction
motor".
In Power
System Techno
lo
gy and I
E
EE
Po
wer India Con
f
erence
. pp. 1-4, 2
008.
[10]
F.
A.
Neves
, e
t
a
l
.
"Single-ph
ase
induction motor
drives with dir
e
ct torqu
e
contro
l".
In 28th Annua
l Conferen
ce of
the Industria
l Electronics Society
. pp
. 241-246
, 2
002.
[11]
S
.
Reic
y
and S
.
Vaez-Z
a
deh
.
"Vector con
t
rol of s
i
ngle-
phas
e
ind
u
ction m
achin
e with m
a
xim
u
m t
o
rque operat
i
on".
In Proceedings
of th
e I
EEE International
S
y
mposium on Industrial Electronics, I
S
IE 2005
. pp. 92
3-928, 2005
.
[12]
H.
Ben Azza
, et
al.
"Full-Digital
Implementation
of ISFOC for
Si
ngle-Phase Indu
ction Motor Drive Using dSpace
DS 1104 Contro
l Board"
.
International Review
o
f
Electrical Eng
i
neering
. vol. 3
,
pp. 721-729
, 20
08.
[13]
M.
Je
mli
, et
a
l
.
"
R
eal-
tim
e im
ple
m
entation of
IR
FOC for single-
phase induc
tion
m
o
tor drive usin
g dSpace DS 11
04
control board".
S
i
mulation Modelling Practice
an
d
Theory
. vol. 1
7
, pp
. 1071-108
0, 2009
.
[14]
H.
B.
Azza
, et
a
l
.
"High perform
ance s
e
nsorless speed vector con
t
rol of SPIM Drives with on-lin
e stator r
e
sistance
estim
ation".
J
.
S
i
mulat. Practi
ce
Theory
. vol. 19
,
pp. 271-282
, 20
11.
[15]
H.
B.
Azza
, e
t
a
l
.
"Implementatio
n of Sensorlee S
p
eed Con
t
rol fo
r
Two-Phase Ind
u
ction
Motor Dr
ive Using ISFOC
Stra
te
gy
".
Transactions o
f
Electr
ical Engin
eering
. vol. 35
, pp
. 63-
74, Jun. 2011.
[16]
M.
Ja
nna
ti
, et
al.
"Speed Sensorless Direct Rotor
Field-Oriented
Control of Sing
le-Phase Inductio
n Motor Using
Extend
ed Kalm
a
n
Filter".
International Journal of Power El
ectron
ics and Drive Systems (
I
JPEDS)
.
vol. 4, pp. 430-
438, 2014
.
[17]
M.
Ja
nna
ti
, et al.
"A Novel Scheme for Reductio
n of Torque and
Sp
eed Rippl
e in
Rotor F
i
eld Ori
e
nted Con
t
rol o
f
Single Phase Induction Motor Based
on Rotational Tr
ansformations".
Res
e
arch Journal of Applied Sciences,
Engineering and
Technolog
y
. vol. 7
,
pp
. 3405-34
09, 2014
.
[18]
M.
Ja
nna
ti
, et al.
"A Novel Tech
nique for Vector
Control of Si
ng
le-Phase Induction Motors Based on Rotor Field
-
Oriented
Control".
TELKOMNIKA Indonesian
Jo
urnal of
Electrical Eng
i
neering
.
vol. 12
, pp
. 8104
-8113, 2014
.
[19]
M.
Ja
nna
ti
, et al.
"An Exact
Model for Rotor Field-Oriented
Control of Single-Phase Ind
u
ction Motors".
TELKOMNIKA Indonesian Journ
a
l
of Electrical
Engineering
. vol. 12
, pp
. 5110-5
120, 2014
.
[20]
M.
Ja
nna
ti
, et
al.
"A new metho
d
for RFOC of single-ph
ase indu
ction motor
based on rotation
a
l
transformations".
In 2013 IEEE Student Con
f
erence on
Research
a
nd Development
(
S
COReD)
. pp.
215-220, 2013
.
[21]
D.H. Jang. "Pro
blems Incurred in a
Vector-Controlled Single-Ph
ase Induction
Motor, and a Proposal for a Vector-
Controlled Two-
Phase Induction Motor as a Replacem
ent"
.
IEEE
T
r
ans. Power Electron
. vol. 28, pp. 526-536, Jan.
2013.
[22]
P. Vas. "Ve
c
tor
Control of
AC
Machines".
Oxfo
rd scienc
e pub
li
cation
. 1990
.
Evaluation Warning : The document was created with Spire.PDF for Python.