I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
2
,
A
p
r
il
201
8
,
p
p
.
7
8
0
~7
9
2
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v8
i
2
.
p
p
7
8
0
-
7
9
2
780
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
G
ra
v
itatio
na
l
-
Sea
rch Algo
rith
m
for
O
p
ti
m
a
l
Cont
ro
llers Desig
n
o
f
Do
ubly
-
fe
d Ind
uction
G
enerato
r
Sa
her
Alba
t
ra
n
1
,
M
u
w
a
f
f
a
q
I
.
Alo
m
o
us
h
2
,
A
h
m
ed
M
.
K
o
ra
n
3
1
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
Jo
r
d
a
n
Un
iv
e
rsity
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
Jo
rd
a
n
2
,
3
De
p
a
rtm
e
n
t
o
f
El
e
c
tri
c
a
l
P
o
w
e
r
En
g
in
e
e
rin
g
,
Hijj
a
w
i
F
a
c
u
lt
y
f
o
r
En
g
in
e
e
rin
g
T
e
c
h
n
o
lo
g
y
,
Ya
r
m
o
u
k
Un
iv
e
rsity
,
Jo
rd
a
n
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
2
2
,
2
0
1
7
R
ev
i
s
ed
Dec
2
5
,
2
0
1
7
A
cc
ep
ted
J
an
7
,
2
0
1
8
Re
c
e
n
tl
y
,
th
e
G
ra
v
it
a
ti
o
n
a
l
-
S
e
a
rc
h
A
lg
o
rit
h
m
(
G
S
A
)
h
a
s
b
e
e
n
p
re
se
n
ted
a
s
a
p
ro
m
isin
g
p
h
y
sic
s
-
in
sp
ired
sto
c
h
a
stic
g
lo
b
a
l
o
p
ti
m
iza
ti
o
n
tec
h
n
iq
u
e
.
It
tak
e
s
it
s
d
e
riv
a
ti
o
n
a
n
d
f
e
a
tu
re
s
f
ro
m
law
s
o
f
g
r
a
v
it
a
ti
o
n
.
T
h
is
p
a
p
e
r
a
p
p
li
e
s
t
h
e
G
S
A
to
d
e
sig
n
o
p
ti
m
a
l
c
o
n
tro
ll
e
rs
o
f
a
n
o
n
li
n
e
a
r
s
y
ste
m
c
o
n
sistin
g
o
f
a
d
o
u
b
ly
-
fe
d
in
d
u
c
ti
o
n
g
e
n
e
ra
to
r
(
DFIG
)
d
riv
e
n
b
y
a
w
in
d
tu
rb
i
n
e
.
Bo
t
h
t
h
e
a
c
ti
v
e
a
n
d
th
e
re
a
c
ti
v
e
p
o
w
e
r
a
r
e
c
o
n
tro
ll
e
d
a
n
d
p
ro
c
e
ss
e
d
th
ro
u
g
h
a
b
a
ck
-
to
-
b
a
c
k
c
o
n
v
e
rter.
T
h
e
a
c
ti
v
e
p
o
we
r
c
o
n
tro
l
l
o
o
p
c
o
n
sists
o
f
tw
o
c
a
sc
a
d
e
d
p
ro
p
o
rti
o
n
a
l
in
teg
ra
l
(
P
I)
c
o
n
tro
ll
e
rs.
A
n
o
th
e
r
P
I
c
o
n
tro
l
ler
is
u
se
d
to
se
t
t
h
e
q
-
c
o
m
p
o
n
e
n
t
o
f
th
e
r
o
to
r
v
o
lt
a
g
e
b
y
c
o
m
p
e
n
sa
ti
n
g
th
e
g
e
n
e
ra
ted
re
a
c
ti
v
e
p
o
w
e
r.
T
h
e
G
S
A
is
u
se
d
to
si
m
u
lt
a
n
e
o
u
sly
tu
n
e
th
e
p
a
ra
m
e
ters
o
f
th
e
th
re
e
P
I
c
o
n
tr
o
ll
e
rs.
A
ti
m
e
-
we
ig
h
ted
a
b
so
lu
te
e
rro
r
(
IT
AE
)
is
u
se
d
i
n
th
e
o
b
jec
ti
v
e
f
u
n
c
ti
o
n
to
sta
b
il
ize
th
e
sy
ste
m
a
n
d
i
n
c
re
a
se
it
s
d
a
m
p
in
g
w
h
e
n
su
b
jec
ted
to
d
if
fe
re
n
t
d
istu
r
b
a
n
c
e
s.
S
im
u
latio
n
re
su
lt
s
w
il
l
d
e
m
o
n
stra
te
th
a
t
t
h
e
o
p
ti
m
a
l
G
S
A
-
b
a
se
d
c
o
o
rd
in
a
ted
c
o
n
tro
ll
e
rs
c
a
n
e
ff
icie
n
tl
y
d
a
m
p
s
y
ste
m
o
sc
il
latio
n
s
u
n
d
e
r
se
v
e
re
d
istu
rb
a
n
c
e
s.
M
o
re
o
v
e
r,
sim
u
latio
n
re
su
lt
s
w
il
l
sh
o
w
th
a
t
th
e
d
e
sig
n
e
d
o
p
ti
m
a
l
c
o
n
tro
ll
e
rs
o
b
tain
e
d
u
si
n
g
th
e
G
S
A
p
e
r
f
o
r
m
b
e
tt
e
r
th
a
n
th
e
o
p
ti
m
a
l
c
o
n
tro
l
lers
o
b
tai
n
e
d
u
si
n
g
tw
o
c
o
m
m
o
n
l
y
u
se
d
g
lo
b
a
l
o
p
ti
m
iza
ti
o
n
tec
h
n
iq
u
e
s,
w
h
ich
a
re
th
e
Ge
n
e
ti
c
A
lg
o
rit
h
m
(
GA
)
a
n
d
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iza
ti
o
n
(
P
S
O).
K
ey
w
o
r
d
:
DFI
G
Glo
b
al
o
p
tim
izat
io
n
Gr
av
itatio
n
al
s
ea
r
ch
al
g
o
r
ith
m
Op
ti
m
al
co
n
tr
o
ller
s
W
in
d
en
er
g
y
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sah
er
A
lb
atr
an
,
Dep
ar
t
m
en
t o
f
E
lectr
ical
E
n
g
i
n
ee
r
in
g
,
Facu
lt
y
o
f
E
n
g
i
n
ee
r
i
n
g
,
J
o
r
d
an
Un
iv
er
s
it
y
o
f
Scie
n
ce
a
n
d
T
ec
h
n
o
lo
g
y
,
I
r
b
id
2
2
1
-
1
0
,
J
o
r
d
an
.
E
m
ail: saa
lb
atr
an
@
j
u
s
t.e
d
u
.
j
o
1.
I
NT
RO
D
UCT
I
O
N
Gen
er
ated
elec
tr
ic
p
o
w
er
f
r
o
m
w
i
n
d
is
g
r
o
w
i
n
g
a
t
an
in
cr
ea
s
in
g
a
n
n
u
al
r
ate
w
o
r
ld
w
id
e
in
t
h
e
la
s
t
d
ec
ad
e
as
its
co
s
t
h
a
s
d
ec
r
ea
s
ed
co
n
s
id
er
ab
l
y
.
W
id
esp
r
ea
d
u
s
e
o
f
w
i
n
d
p
o
w
er
ca
n
lar
g
el
y
r
ed
u
ce
p
r
o
d
u
ctio
n
co
s
ts
,
r
ed
u
ce
ca
r
b
o
n
em
i
s
s
io
n
s
,
co
n
tr
ib
u
te
to
r
eso
lv
i
n
g
g
lo
b
al
w
ar
m
in
g
ca
lls
,
a
n
d
r
ed
u
ce
th
e
d
ep
en
d
en
c
y
o
n
f
o
s
s
i
l f
u
els [
1
]
.
W
ith
th
e
r
ec
en
t
d
e
v
elo
p
m
en
ts
in
p
o
w
er
elec
tr
o
n
ics
tec
h
n
o
l
o
g
y
,
DFI
G
d
r
iv
e
n
b
y
a
w
in
d
tu
r
b
in
e
[
2
]
ar
e
b
ec
o
m
i
n
g
v
er
y
p
o
p
u
lar
an
d
th
eir
w
o
r
ld
w
id
e
m
ar
k
e
t
s
h
a
r
e
is
in
cr
ea
s
in
g
q
u
ick
l
y
.
D
FIG
h
as
b
ee
n
w
id
el
y
u
s
ed
in
g
r
id
-
co
n
n
ec
ted
v
ar
iab
le
-
s
p
ee
d
co
n
s
ta
n
t
-
f
r
eq
u
en
c
y
w
i
n
d
en
er
g
y
co
n
v
er
s
io
n
s
y
s
te
m
s
(
W
E
C
S)
d
u
e
to
th
eir
ad
v
a
n
ta
g
eo
u
s
f
ea
t
u
r
es
s
u
c
h
as
h
i
g
h
er
ef
f
icie
n
c
y
,
l
o
w
er
co
s
t,
w
id
e
-
r
an
g
e
o
p
er
atio
n
s
,
ca
p
ab
ilit
y
o
f
p
r
o
d
u
cin
g
r
ea
cti
v
e
p
o
w
er
,
b
etter
en
er
g
y
ca
p
t
u
r
e,
s
m
o
o
t
h
er
o
p
er
atio
n
,
an
d
f
le
x
ib
le
co
n
tr
o
l.
T
h
er
ef
o
r
e,
w
ith
t
h
e
in
cr
ea
s
i
n
g
u
til
izatio
n
o
f
w
i
n
d
p
o
w
er
in
t
h
e
in
ter
co
n
n
ec
t
ed
p
o
w
er
n
et
w
o
r
k
,
i
m
p
r
o
v
i
n
g
D
FIG
tr
an
s
ie
n
t
p
er
f
o
r
m
a
n
ce
is
b
ec
o
m
in
g
m
o
r
e
s
ig
n
i
f
ican
t in
p
o
w
er
s
y
s
te
m
o
p
er
atio
n
s
.
T
u
n
in
g
t
h
e
p
ar
a
m
eter
s
o
f
a
class
ica
l
P
I
co
n
tr
o
ller
o
f
a
g
r
id
-
co
n
n
ec
ted
D
FIG
-
b
a
s
ed
W
E
C
S
i
s
co
m
p
lica
ted
d
u
e
to
th
e
h
i
g
h
n
o
n
lin
ea
r
it
y
a
n
d
co
m
p
le
x
it
y
o
f
th
e
s
y
s
te
m
.
Op
ti
m
izat
io
n
tec
h
n
iq
u
es
ar
e
ap
p
lied
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
Gra
vita
tio
n
a
l
-
S
ea
r
ch
A
l
g
o
r
ith
m
fo
r
Op
tima
l Co
n
tr
o
ller
s
De
s
ig
n
o
f D
o
u
b
ly
-
fe
d
….
(
S
a
h
er
A
lb
a
tr
a
n
)
781
to
d
eter
m
i
n
e
t
h
e
o
p
ti
m
al
p
ar
am
eter
s
o
f
a
cla
s
s
ical
P
I
co
n
tr
o
ller
to
e
n
h
a
n
ce
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
W
E
C
S
a
s
its
r
esp
o
n
s
e
ch
a
n
g
e
ce
r
tai
n
l
y
w
it
h
ti
m
e.
I
n
[
3
]
an
ad
ap
tiv
e
f
u
zz
y
g
ain
s
c
h
ed
u
lin
g
o
f
P
I
co
n
tr
o
ller
is
p
r
esen
ted
.
T
h
e
P
I
co
n
tr
o
ller
p
ar
am
eter
s
a
r
e
o
p
tim
ized
o
n
li
n
e
u
s
i
n
g
an
a
d
ap
tiv
e
m
ec
h
an
i
s
m
b
ased
o
n
f
u
zz
y
lo
g
ic.
I
n
[
4
]
a
n
o
n
-
d
o
m
i
n
ated
s
o
r
tin
g
G
A
a
lo
n
g
s
id
e
d
is
cr
ete
Fo
u
r
ier
tr
a
n
s
f
o
r
m
i
s
i
m
p
le
m
e
n
ted
to
q
u
an
ti
f
y
t
h
e
d
a
m
p
i
n
g
ch
ar
ac
ter
is
tic
s
o
f
th
e
r
o
to
r
-
s
i
d
e
cu
r
r
en
t
d
u
e
to
s
y
s
te
m
d
i
s
tu
r
b
an
ce
.
I
n
r
ec
en
t
y
ea
r
s
,
d
if
f
er
e
n
t
e
v
o
lu
t
io
n
alg
o
r
ith
m
s
[
5
]
,
[
6
]
in
clu
d
in
g
m
ea
n
v
ar
ian
ce
o
p
ti
m
iza
tio
n
(
MV
O)
alg
o
r
ith
m
[
7
]
,
GA
[
8
]
,
P
SO
[
9
-
1
2
]
,
b
ac
ter
ia
f
o
r
ag
i
n
g
o
p
ti
m
izatio
n
(
P
FO)
alg
o
r
ith
m
[
1
3
]
,
h
y
b
r
id
ar
tif
icial
n
eu
r
al
n
e
t
w
o
r
k
[
1
4
]
an
d
Gb
e
s
t
g
u
id
ed
ar
tif
icia
l
b
ee
co
lo
n
y
al
g
o
r
ith
m
[
1
5
]
,
[
1
6
]
ar
e
ap
p
lied
to
o
p
tim
ize
t
h
e
p
ar
am
e
ter
s
o
f
th
e
P
I
co
n
tr
o
ller
o
f
th
e
r
o
to
r
s
id
e
co
n
v
er
ter
(
R
S
C
)
an
d
h
e
n
ce
i
m
p
r
o
v
e
th
e
d
a
m
p
i
n
g
o
f
o
s
cil
l
ato
r
y
m
o
d
es
in
DFI
G
-
b
ased
W
E
C
S.
I
n
[
1
7
]
a
P
SO
is
p
r
esen
ted
to
g
en
er
ate
an
o
n
-
o
f
f
co
n
tr
o
ller
to
en
s
u
r
e
r
o
b
u
s
tn
es
s
an
d
q
u
alit
y
o
f
th
e
en
er
g
y
p
r
o
d
u
ce
d
,
w
h
er
ei
n
[
1
8
]
a
n
o
n
lin
ea
r
r
o
to
r
-
s
id
e
co
n
tr
o
ller
is
d
esig
n
ed
b
ased
o
n
H
2
o
p
ti
m
al
co
n
tr
o
l
th
eo
r
y
to
d
em
o
n
s
tr
ate
th
e
s
y
n
t
h
esi
s
o
f
a
m
ax
i
m
u
m
p
o
w
er
p
o
in
t
tr
ac
k
in
g
(
MP
PT
)
alg
o
r
ith
m
.
Au
th
o
r
s
i
n
[
1
9
]
p
r
esen
ted
an
o
p
ti
m
al
tu
n
in
g
o
f
th
e
MP
P
T
alg
o
r
ith
m
an
d
t
h
e
ac
ti
v
e
d
is
t
u
r
b
an
ce
s
r
ej
ec
tio
n
co
n
tr
o
ller
to
r
ed
u
ce
th
e
i
m
p
ac
t
o
f
t
h
e
ch
an
g
e
o
n
t
h
e
ch
ar
ac
ter
is
tic
s
o
f
DFI
G
-
b
ased
W
E
C
S.
I
n
[
2
0
]
,
au
th
o
r
s
p
r
esen
ted
a
co
m
p
u
t
atio
n
al
in
te
lli
g
en
ce
co
n
tr
o
l
m
et
h
o
d
to
o
p
tim
ize
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
b
ac
k
-
to
-
b
ac
k
co
n
v
er
ter
an
d
to
r
eg
u
l
ate
th
e
lo
w
v
o
ltag
e
r
id
e
-
th
r
o
u
g
h
ca
p
ab
ilit
y
o
f
D
F
I
G
-
b
ased
W
E
C
S.
I
n
[
2
1
]
,
th
e
DFI
G
-
b
ased
W
E
C
S
s
m
all
s
i
g
n
al
s
tab
ilit
y
w
a
s
an
al
y
ze
d
an
d
t
h
eir
i
m
p
ac
t
s
o
n
t
h
e
ei
g
en
v
al
u
es
o
f
a
D
FIG
in
a
s
i
n
g
le
m
ac
h
i
n
e
in
f
i
n
i
te
b
u
s
s
y
s
te
m
w
a
s
in
v
e
s
ti
g
ated
.
I
n
[
2
2
]
,
th
e
s
tat
es
o
f
DFI
G
ar
e
u
s
ed
to
o
b
tain
th
e
o
p
ti
m
al
f
ee
d
b
ac
k
co
n
tr
o
l
w
it
h
u
tili
zi
n
g
t
h
e
r
o
to
r
cu
r
r
en
ts
b
esid
e
th
e
r
o
to
r
v
o
ltag
es.
F
u
zz
y
lo
g
ic
n
o
n
li
n
e
ar
co
n
tr
o
ller
an
d
p
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
ar
e
u
s
ed
i
n
[
2
3
]
to
h
an
d
le
th
e
n
o
n
li
n
ea
r
ities
i
n
D
FIG
an
d
to
o
p
ti
m
ize
t
h
e
co
n
tr
o
ller
s
’
g
ain
s
.
I
n
[
2
4
]
,
th
e
au
th
o
r
s
o
p
tim
ized
th
e
p
er
f
o
r
m
an
ce
o
f
th
e
g
r
id
s
id
e
in
v
er
ter
(
GSI
)
an
d
R
S
C
o
f
g
r
id
-
co
n
n
ec
ted
DF
I
G
to
m
i
n
i
m
ize
th
e
tr
ac
k
in
g
er
r
o
r
b
ased
o
n
d
is
cr
ete
-
ti
m
e
P
SO
i
n
v
er
s
e
o
p
ti
m
al
c
o
n
tr
o
ller
.
Dif
f
er
en
tia
l
g
eo
m
etr
y
t
h
eo
r
y
is
u
s
ed
i
n
[
2
5
]
to
co
n
tr
o
l
lin
ea
r
ized
DF
I
G
-
w
i
n
d
tu
r
b
in
e
m
o
d
el
b
ased
o
n
lin
ea
r
q
u
ad
r
atic
r
eg
u
lato
r
.
T
o
en
h
an
ce
t
h
e
DFI
G
d
u
r
in
g
an
d
af
ter
p
o
w
er
s
y
s
te
m
tr
a
n
s
ie
n
t
s
b
y
o
p
ti
m
izi
n
g
t
h
e
P
I
-
co
n
tr
o
ller
s
o
f
t
h
e
R
SC
,
P
SO
is
u
s
ed
in
[
2
6
]
an
d
GA
i
n
[
2
7
]
.
I
n
[
2
8
]
,
th
e
tr
a
n
s
ie
n
ts
o
f
t
h
e
D
FIG
ar
e
o
p
ti
m
ized
b
y
m
i
n
i
m
izi
n
g
th
e
s
u
m
s
q
u
ar
ed
er
r
o
r
d
ev
iatio
n
o
f
t
h
e
d
c
lin
k
v
o
ltag
e
an
d
th
e
g
e
n
er
ato
r
s
p
ee
d
d
ev
iatio
n
.
GS
A
is
o
n
e
o
f
th
e
r
ec
e
n
t
h
e
u
r
is
tic
al
g
o
r
ith
m
s
,
w
h
ic
h
h
as
b
ee
n
in
tr
o
d
u
ce
d
as
a
p
h
y
s
ic
s
-
i
n
s
p
ir
ed
m
et
h
o
d
in
2
0
0
9
[
2
9
]
,
[
3
0
]
.
I
t
tak
es
d
er
i
v
atio
n
an
d
t
h
e
m
ai
n
ch
a
r
ac
ter
is
tic
s
o
f
h
e
u
r
is
tics
f
r
o
m
“
Ne
w
to
n
’
s
la
w
o
f
g
r
a
v
itat
io
n
”;
“
E
v
er
y
p
ar
ticle
in
t
h
e
u
n
i
v
er
s
e
attr
ac
ts
e
v
er
y
o
t
h
er
p
ar
ticle
w
it
h
a
f
o
r
ce
th
at
is
d
ir
ec
tl
y
p
r
o
p
o
r
tio
n
al
to
th
e
p
r
o
d
u
ct
o
f
th
eir
m
as
s
es
an
d
i
n
v
er
s
e
l
y
p
r
o
p
o
r
tio
n
al
to
th
e
s
q
u
ar
e
o
f
th
e
d
is
tan
ce
b
et
w
ee
n
th
e
m
”
[
3
1
]
.
T
h
e
GSA
u
p
d
ates
g
r
av
i
tatio
n
al
a
n
d
in
er
tia
m
a
s
s
es
w
it
h
t
h
e
h
elp
o
f
h
ea
v
y
m
as
s
es
an
d
f
in
d
s
t
h
e
o
p
tim
u
m
[
2
9
-
3
1
]
.
I
n
th
e
last
f
e
w
y
ea
r
s
,
GS
A
h
as
b
ee
n
s
u
cc
es
s
f
u
ll
y
ap
p
lied
to
s
o
lv
e
w
o
r
ld
en
g
in
ee
r
i
n
g
o
p
tim
izatio
n
p
r
o
b
le
m
s
a
n
d
d
em
o
n
s
tr
ate
h
i
g
h
q
u
alit
y
p
er
f
o
r
m
an
ce
i
n
s
o
l
v
i
n
g
t
h
ese
p
r
o
b
lem
s
[
3
2
-
3
5
]
.
I
n
th
i
s
p
ap
er
,
GSA
i
s
u
s
ed
to
d
esig
n
o
p
ti
m
a
l
co
n
tr
o
ller
s
f
o
r
i
m
p
r
o
v
i
n
g
tr
a
n
s
ie
n
t
r
esp
o
n
s
e
o
f
a
n
o
n
li
n
ea
r
DFI
G
-
b
ased
W
E
C
S
.
T
h
e
o
p
tim
al
co
n
tr
o
ller
s
ar
e
t
ested
o
n
d
i
f
f
er
e
n
t
co
m
m
o
n
t
y
p
es
o
f
d
is
t
u
r
b
an
ce
s
.
T
h
e
r
esu
lts
ar
e
co
m
p
ar
ed
to
th
e
r
es
u
lts
o
b
tain
ed
u
s
i
n
g
t
h
e
t
w
o
w
el
l
-
r
ec
o
g
n
ized
g
lo
b
al
o
p
ti
m
izatio
n
alg
o
r
ith
m
s
,
w
h
ich
ar
e
G
A
an
d
P
SO,
to
s
h
o
w
t
h
e
ef
f
ec
ti
v
en
e
s
s
o
f
u
s
i
n
g
GS
A
to
atta
in
a
g
lo
b
al
o
p
tim
al
s
o
lu
tio
n
o
f
th
e
d
es
ig
n
p
r
o
b
lem
u
n
d
er
s
t
u
d
y
.
2.
M
O
DE
L
O
F
T
H
E
DF
I
G
-
B
A
SE
D
W
E
CS
Fig
u
r
e
1
d
ep
icts
a
g
r
id
-
co
n
n
e
cted
DFI
G
-
b
ased
W
E
C
S.
T
h
e
s
y
s
te
m
s
h
o
w
n
in
c
lu
d
es
a
w
i
n
d
tu
r
b
in
e,
an
i
n
d
u
ctio
n
g
en
er
ato
r
,
a
b
ac
k
-
to
-
b
ac
k
co
n
v
er
ter
(
R
S
C
a
n
d
GSI
)
[
3
6
]
,
an
d
th
e
u
tili
t
y
-
g
r
id
.
T
h
e
ac
/d
c
an
d
th
e
d
c/ac
co
n
v
er
s
io
n
s
ar
e
u
s
ed
to
co
n
tr
o
l
th
e
b
id
ir
ec
tio
n
al
p
o
wer
d
eliv
er
ed
f
r
o
m
/to
th
e
r
o
to
r
cir
cu
it
a
n
d
to
/
f
r
o
m
th
e
g
r
id
,
r
esp
ec
tiv
e
l
y
.
T
h
e
d
y
n
a
m
ic
elec
tr
ical
a
n
d
m
ec
h
an
ica
l e
q
u
atio
n
s
ar
e
s
u
m
m
ar
ized
b
elo
w
.
T
h
e
in
d
u
ctio
n
g
e
n
er
ato
r
co
n
s
id
er
ed
in
th
i
s
p
ap
er
is
a
w
o
u
n
d
r
o
to
r
in
d
u
ctio
n
m
ac
h
in
e.
I
f
t
h
e
m
ag
n
etic
b
r
an
ch
is
ass
u
m
ed
lin
ea
r
,
t
h
e
d
y
n
a
m
ic
m
o
d
eli
n
g
o
f
DFI
G
in
ar
b
itra
r
y
r
ef
er
en
ce
f
r
a
m
e
ca
n
b
e
w
r
itte
n
as
s
ee
n
f
r
o
m
t
h
e
s
tato
r
s
id
e
as f
o
llo
w
s
:
qs
p
ds
qs
i
s
r
qs
v
(
1
)
ds
p
qs
ds
i
s
r
ds
v
(
2
)
qr
p
dr
r
qr
i
r
r
qr
v
'
'
)
(
'
'
'
(
3
)
dr
p
qr
r
dr
i
r
r
dr
v
'
'
)
(
'
'
'
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
8
0
–
7
9
2
782
)
'
(
qr
i
qs
i
M
qs
i
ls
L
qs
(
5
)
Fig
u
r
e
1
.
Gen
er
al
co
n
f
ig
u
r
atio
n
o
f
g
r
id
-
co
n
n
ec
ted
DFI
G
-
b
as
ed
W
E
C
S
)
'
(
dr
i
ds
i
M
ds
i
ls
L
ds
(
6
)
)
'
(
'
'
'
qr
i
qs
i
M
qr
i
lr
L
qr
(
7
)
)
'
(
'
'
'
dr
i
ds
i
M
dr
i
lr
L
dr
(
8
)
w
h
er
e
qs
v
,
ds
v
,
qs
i
,
ds
i
,
qs
an
d
ds
ar
e
th
e
s
tato
r
v
o
ltag
es,
cu
r
r
en
t
s
,
an
d
f
l
u
x
li
n
k
ag
e
s
in
q
d
-
r
ef
er
en
c
e
f
r
a
m
e,
r
esp
ec
ti
v
el
y
.
'
qr
v
,
'
dr
v
,
'
qr
i
,
'
dr
i
,
'
qr
an
d
'
dr
ar
e
th
e
r
o
to
r
v
o
ltag
e
s
,
cu
r
r
e
n
ts
,
a
n
d
f
l
u
x
li
n
k
a
g
e
s
in
q
d
r
ef
er
en
ce
f
r
a
m
e,
r
e
s
p
ec
tiv
el
y
.
is
t
h
e
ar
b
itra
r
y
a
n
g
u
lar
s
p
e
ed
,
r
is
t
h
e
elec
tr
ical
a
n
g
u
lar
s
p
ee
d
o
f
th
e
r
o
to
r
,
p
is
th
e
d
er
iv
ati
v
e
o
p
er
ato
r
,
s
r
is
th
e
s
tato
r
w
in
d
i
n
g
s
r
esi
s
tan
ce
,
r
r
'
is
th
e
r
o
to
r
w
i
n
d
in
g
s
r
esis
ta
n
ce
,
ms
L
M
2
3
,
ms
L
is
th
e
s
tato
r
m
a
g
n
et
izin
g
i
n
d
u
ctan
ce
,
'
lr
L
is
th
e
r
o
to
r
leak
a
g
e
in
d
u
cta
n
ce
,
an
d
ls
L
is
th
e
s
tato
r
leak
ag
e
i
n
d
u
c
tan
ce
.
I
f
in
d
icate
s
n
u
m
b
er
o
f
p
o
les,
t
h
e
elec
tr
o
m
ec
h
an
ica
l d
ev
e
lo
p
ed
to
r
q
u
e
d
T
ca
n
b
e
ex
p
r
ess
ed
as:
)
(
2
2
3
ds
i
qs
qs
i
ds
P
d
T
(
9
)
T
h
e
d
y
n
a
m
ic
s
o
f
t
h
e
m
ec
h
a
n
i
ca
l
s
h
a
f
t
ca
n
b
e
ex
p
r
ess
ed
b
as
ed
o
n
th
e
to
r
q
u
e
ap
p
lied
o
n
th
e
s
h
a
f
t
sh
T
f
r
o
m
b
o
th
t
h
e
g
e
n
er
ato
r
en
d
an
d
th
e
t
u
r
b
in
e
en
d
as
f
o
llo
w
:
dt
m
d
m
J
m
T
dt
d
J
T
sh
T
(
1
0
)
w
h
er
e
T
is
th
e
ap
p
lied
m
ec
h
a
n
ical
to
r
q
u
e
at
th
e
t
u
r
b
in
e
s
i
d
e,
m
T
is
th
e
elec
tr
ical
to
r
q
u
e
s
ee
n
at
t
h
e
g
en
er
ato
r
s
id
e,
J
an
d
m
J
ar
e
th
e
i
n
e
r
tia
o
f
th
e
tu
r
b
in
e
a
n
d
t
h
e
g
e
n
er
ato
r
,
r
esp
ec
tiv
el
y
,
an
d
an
d
m
ar
e
th
e
a
n
g
u
lar
s
p
ee
d
o
f
t
h
e
t
u
r
b
in
e
an
d
t
h
e
g
en
er
ato
r
,
r
esp
ec
ti
v
el
y
.
T
h
e
e
x
is
te
n
ce
o
f
th
e
s
p
ee
d
d
if
f
er
en
ce
o
n
t
h
e
s
h
a
f
t
en
d
s
an
d
th
e
co
m
p
lian
c
e
co
ef
f
icie
n
t
o
f
t
h
e
s
h
a
f
t
sh
K
ca
n
d
eter
m
i
n
e
th
e
s
h
a
f
t
-
to
r
s
io
n
(
g
)
as
i
n
(
1
1
)
:
sh
K
sh
T
dt
m
g
(
1
1
)
DC
L
IN
K
G
RID
S
ID
E
v
dc
Z
g
Z
g
a
r
Z
g
b
r
c
r
G
E
N
E
RA
T
O
R
S
ID
E
D
F
I
G
A
C
G
R
ID
G
E
A
R
B
OX
a
s
b
s
c
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
Gra
vita
tio
n
a
l
-
S
ea
r
ch
A
l
g
o
r
ith
m
fo
r
Op
tima
l Co
n
tr
o
ller
s
De
s
ig
n
o
f D
o
u
b
ly
-
fe
d
….
(
S
a
h
er
A
lb
a
tr
a
n
)
783
As
s
h
o
w
n
i
n
F
ig
u
r
e
2
,
b
o
th
t
h
e
ac
ti
v
e
a
n
d
t
h
e
r
ea
cti
v
e
p
o
w
er
ar
e
co
n
tr
o
lled
th
r
o
u
g
h
t
h
e
b
ac
k
-
to
-
b
ac
k
co
n
v
er
ter
.
T
h
e
ac
tiv
e
p
o
w
er
co
n
tr
o
l
lo
o
p
,
w
h
ich
s
ets
t
h
e
d
-
co
m
p
o
n
e
n
t
o
f
th
e
r
o
to
r
v
o
ltag
e
dr
v
'
,
co
n
s
is
ts
o
f
t
w
o
ca
s
ca
d
ed
P
I
-
co
n
tr
o
ller
s
;
t
h
e
f
ir
s
t
o
n
e
is
u
s
ed
to
r
e
g
u
l
ate
th
e
r
o
to
r
s
p
ee
d
an
d
to
s
et
t
h
e
r
e
f
er
en
ce
ac
tiv
e
p
o
w
er
to
th
e
s
ec
o
n
d
P
I
-
co
n
tr
o
ller
w
h
ic
h
is
u
s
ed
to
co
m
p
e
n
s
ate
th
e
g
e
n
er
ated
ac
tiv
e
p
o
w
er
s
P
.
An
o
th
er
P
I
co
n
tr
o
lle
r
is
u
s
ed
to
s
et
t
h
e
q
-
co
m
p
o
n
e
n
t
qr
v
'
b
y
co
m
p
e
n
s
at
in
g
t
h
e
g
en
er
ated
r
ea
cti
v
e
p
o
w
er
s
Q
.
T
h
e
m
at
h
e
m
a
tical
d
escr
ip
tio
n
o
f
t
h
e
P
I
c
o
n
tr
o
ller
s
is
g
i
v
e
n
b
y
:
Fig
u
r
e
2
.
B
lo
ck
d
iag
r
a
m
o
f
t
h
e
g
r
id
-
co
n
n
ec
ted
DFI
G
-
b
ased
W
E
C
S
w
it
h
its
as
s
o
ciate
d
co
n
tr
o
l s
y
s
te
m
t
d
x
iP
K
t
x
pP
K
t
dr
v
S
S
0
)
(
)
(
)
(
'
(
1
2
)
t
d
g
i
K
t
p
K
t
y
0
)
(
)
(
g
)
(
(
1
3
)
t
d
w
iQ
K
t
pQ
K
t
qr
v
S
S
0
)
(
)
(
w
)
(
'
(
1
4
)
T
h
e
co
n
s
tan
ts
p
K
,
i
K
,
S
pP
K
,
S
iP
K
,
S
pQ
K
,
S
iQ
K
ar
e
th
e
p
r
o
p
o
r
ti
o
n
al
g
ain
s
an
d
in
te
g
r
al
g
ain
s
o
f
t
h
e
P
I
co
n
tr
o
ller
as
s
h
o
w
n
in
Fi
g
u
r
e
2
.
E
ac
h
g
ai
n
o
f
t
h
e
m
is
r
esp
o
n
s
ib
le
f
o
r
d
o
in
g
a
s
p
ec
i
f
ic
tas
k
m
ad
e
o
n
t
h
e
in
p
u
t
d
ev
ia
tio
n
s
i
g
n
al
;
p
r
o
p
o
r
tio
n
al
g
ain
s
(
p
K
,
S
pP
K
,
S
pQ
K
)
ar
e
co
n
ce
r
n
ed
w
i
th
s
y
s
te
m
s
tab
ilit
y
;
t
h
e
i
n
te
g
r
al
g
ai
n
s
(
i
K
,
S
iP
K
,
S
iQ
K
)
ar
e
u
s
ed
o
f
th
e
s
tead
y
-
s
tate
er
r
o
r
.
I
n
o
r
d
er
to
r
estrict
th
e
lev
el
o
f
o
u
tp
u
t
o
f
t
h
e
P
I
co
n
tr
o
lled
s
p
ee
d
f
lu
ct
u
atio
n
d
u
r
i
n
g
tr
an
s
ie
n
t
co
n
d
itio
n
s
,
li
m
it
s
ar
e
i
m
p
o
s
ed
as
s
h
o
wn
in
Fi
g
u
r
e
2
.
T
h
e
p
ar
am
eter
s
o
f
t
h
e
co
n
tr
o
l
s
y
s
te
m
to
b
e
o
p
ti
m
all
y
tu
n
ed
ar
e
th
e
s
ix
P
I
co
n
tr
o
ller
co
n
s
ta
n
t
s
(
p
K
,
i
K
,
S
pP
K
,
S
pQ
K
,
S
iQ
K
)
.
I
n
co
n
tr
o
l
s
y
s
te
m
a
n
al
y
s
i
s
an
d
d
esig
n
,
p
er
f
o
r
m
an
c
e
in
d
ices
ar
e
u
s
ed
to
ass
ess
a
s
y
s
te
m
b
eh
a
v
io
r
.
T
h
is
b
eh
av
io
r
is
j
u
d
g
ed
to
b
e
o
p
tim
al
w
h
e
n
th
e
p
er
f
o
r
m
an
ce
in
d
u
ce
s
r
ea
ch
m
i
n
i
m
u
m
v
al
u
es
a
n
d
all
s
y
s
t
e
m
co
n
s
tr
ain
t
s
ar
e
s
ati
s
f
ied
.
I
n
th
i
s
p
ap
er
,
th
e
in
te
g
r
al
o
f
th
e
ti
m
e
-
w
ei
g
h
ted
ab
s
o
lu
te
er
r
o
r
(
I
TAE
)
m
ea
s
u
r
e
is
u
s
ed
,
w
h
ich
i
s
g
i
v
e
n
as i
n
(
1
5
)
.
θ
m
∑
ω
g
(
t)
ω
m
Q
s
,
r
e
f
Mod
u
l
at
o
r
∑
w
(
t)
K
i
(
Q
s)
K
p
(
Q
s)
R
O
T
O
R
S
I
D
E
L
P
F
b
s
R
E
A
C
T
IV
E
P
OW
E
R
C
ON
T
R
OL
L
P
F
v
s
,
abc
i
s
,
abc
v
dc
G
ENERA
T
OR
S
I
DE
A
C
G
RI
D
D
FIG
a
s
c
s
a
bc
/dq
P
owe
r
C
a
lcula
ti
on
v
s
,
dq
i
s
,
dq
P
s
Q
s
S
T
A
T
O
R
S
I
D
E
L
P
F
L
P
F
v
r
,
abc
i
r
,
abc
a
bc
/dq
P
owe
r
C
a
lcula
ti
on
v
r
,
dq
i
r
,
dq
P
r
Q
r
b
r
a
r
c
r
∫w
(
t)
dt
v'
qr
∑
K
i(
ω
)
K
p(
ω
)
∑
x
(
t)
y
(
t)
∑
K
p
(
Ps)
A
C
T
IV
E
P
OW
E
R
C
ON
T
R
OL
K
i
(
Ps)
∫x
(
t)
dt
∑
∫
ω
g
(
t)
dt
Q
s
P
s
ω
m
,
r
e
f
ω
m
S
PE
E
D
C
ON
T
R
OL
S
pe
e
d
Me
a
sur
e
me
nt
L
P
F
d
θ
/dt
v'
dr
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
8
0
–
7
9
2
784
s
t
0
dt
t
e
t
I
T
A
E
|
)
(
|
(
1
5
)
w
h
er
e
s
t
is
th
e
s
i
m
u
latio
n
ti
m
e,
an
d
)
(
t
e
is
th
e
er
r
o
r
s
ig
n
al
w
h
ic
h
r
ep
r
esen
t
t
h
e
d
if
f
er
e
n
ce
b
et
w
ee
n
a
r
ef
er
en
ce
v
alu
e
a
n
d
a
m
ea
s
u
r
ed
v
ar
iab
le.
T
h
e
er
r
o
r
s
ig
n
al
i
s
s
elec
ted
as
t
h
e
s
p
ee
d
er
r
o
r
s
ig
n
a
l
(
m
r
e
f
m
t
e
,
)
(
).
T
h
e
o
p
ti
m
al
v
al
u
es
o
f
co
n
tr
o
ller
g
ai
n
s
ar
e
o
p
ti
m
al
l
y
t
u
n
ed
s
o
l
v
i
n
g
t
h
e
f
o
llo
w
in
g
g
en
er
alize
d
o
p
tim
izatio
n
p
r
o
b
le
m
:
Min
i
m
ize
)
,
,
,
,
,
(
S
S
S
S
iP
K
pP
K
iQ
K
pQ
K
i
K
p
K
I
T
A
E
(
1
6
)
Su
b
j
ec
t to
ma
x
mi
n
p
p
K
p
K
K
ma
x
mi
n
i
i
K
i
K
K
ma
x
mi
n
S
pQ
S
S
pQ
K
pQ
K
K
ma
x
mi
n
S
S
S
iQ
iQ
K
iQ
K
K
m
a
x
m
i
n
S
pP
S
S
pP
K
pP
K
K
ma
x
mi
n
S
S
S
iP
K
iP
K
iP
K
3.
G
RAV
I
T
AT
I
O
NAL
SE
A
R
CH
AL
G
O
R
I
T
H
M
GS
A
is
a
p
h
y
s
ics
-
i
n
s
p
ir
ed
o
p
ti
m
izat
io
n
m
e
th
o
d
as
it
is
d
er
iv
ed
an
d
tak
es
d
er
iv
a
tio
n
an
d
th
e
m
ai
n
f
ea
t
u
r
es o
f
h
e
u
r
is
tics
f
r
o
m
Ne
w
to
n
'
s
la
w
s
o
f
g
r
a
v
it
y
.
I
t d
ep
en
d
s
o
n
t
h
e
g
r
a
v
it
y
a
n
d
m
a
s
s
i
n
ter
ac
tio
n
s
[
2
9
-
3
6
]
.
B
ased
o
n
Ne
w
to
n
ia
n
t
h
eo
r
y
,
t
h
r
ee
m
ass
e
s
ar
e
a
s
s
i
g
n
ed
to
a
b
o
d
y
,
w
h
ic
h
d
escr
ib
e
it
s
q
u
ite
d
if
f
er
en
t
p
r
o
p
er
ties
;
in
er
tial
m
as
s
(
I
M
)
,
p
ass
i
v
e
g
r
av
itat
io
n
al
m
a
s
s
(
P
M
)
,
an
d
ac
ti
v
e
g
r
av
ita
tio
n
al
m
as
s
(
A
M
)
[
2
9
-
3
1
]
.
T
h
e
m
a
s
s
I
M
is
th
e
q
u
an
t
it
y
p
r
e
s
en
ted
i
n
Ne
w
to
n
's
s
ec
o
n
d
law
,
w
h
ic
h
is
a
m
ea
s
u
r
e
o
f
a
b
o
d
y
's
in
er
tia.
I
t
is
a
m
ea
s
u
r
e
o
f
b
o
d
y
's
r
es
is
ta
n
ce
to
c
h
an
g
e
i
n
m
o
tio
n
w
h
en
a
f
o
r
ce
is
ap
p
lied
o
n
t
h
e
b
o
d
y
,
i.e
.
,
th
e
b
o
d
y
o
p
p
o
s
es
th
a
t
ch
a
n
g
e
t
h
r
o
u
g
h
it
s
i
n
e
r
tial
m
as
s
.
T
h
e
lar
g
er
I
M
,
th
e
h
ar
d
er
it
i
s
to
ac
ce
ler
ate
f
o
r
a
g
iv
e
n
s
tr
en
g
th
o
f
f
o
r
ce
.
P
M
is
a
m
ea
s
u
r
e
o
f
b
o
d
y
'
s
r
ea
c
tio
n
to
a
g
r
av
itatio
n
a
l
f
ie
ld
,
i.e
.
,
it
m
ea
s
u
r
es
a
b
o
d
y
'
s
r
esp
o
n
s
e
to
b
ein
g
p
lace
d
i
n
a
g
r
av
itati
o
n
al
f
ield
,
w
h
ich
i
m
p
lies
t
h
at
i
f
P
M
is
p
lace
d
at
s
o
m
e
p
o
in
t
t
h
at
h
as
g
r
av
ita
tio
n
al
p
o
ten
tia
l,
th
e
n
it
w
ill
e
x
p
er
ien
ce
a
f
o
r
ce
o
n
it.
A
M
is
a
m
ea
s
u
r
e
o
f
b
o
d
y
'
s
s
o
u
r
ce
s
tr
en
g
th
f
o
r
p
r
o
d
u
cin
g
a
g
r
a
v
itatio
n
al
f
ie
ld
b
y
i
t
s
el
f
[
2
9
-
3
2
]
.
Ne
w
to
n
’
s
la
w
o
f
g
r
a
v
it
y
in
d
ic
ates
th
at
th
e
f
o
r
ce
b
et
w
ee
n
t
wo
p
ar
ticles
is
d
ir
ec
tl
y
p
r
o
p
o
r
ti
o
n
al
to
th
e
p
r
o
d
u
ct
o
f
th
eir
m
ass
e
s
an
d
in
v
er
s
el
y
p
r
o
p
o
r
tio
n
al
to
th
e
s
q
u
ar
e
o
f
th
e
d
is
ta
n
ce
b
et
w
ee
n
t
h
e
m
,
w
h
ic
h
ca
n
b
e
w
r
itte
n
as [
2
9
]
:
2
/
2
1
R
M
M
G
F
(
1
7
)
w
h
er
e
F
is
t
h
e
m
ag
n
it
u
d
e
o
f
th
e
g
r
a
v
itatio
n
al
f
o
r
ce
,
G
is
th
e
g
r
a
v
itatio
n
al
co
n
s
tan
t,
1
M
an
d
2
M
ar
e
th
e
m
as
s
es o
f
t
h
e
f
ir
s
t a
n
d
s
ec
o
n
d
p
ar
ticles,
r
esp
ec
tiv
el
y
,
a
n
d
R
is
th
e
d
is
ta
n
ce
b
et
w
ee
n
t
h
e
m
.
Ne
w
to
n
’
s
s
ec
o
n
d
la
w
in
d
icate
s
th
at
a
p
ar
ticle's
ac
ce
ler
atio
n
(
a
)
d
e
p
en
d
s
o
n
th
e
f
o
r
ce
ap
p
lied
to
th
e
p
ar
ticle
an
d
th
e
in
er
tia
l
m
a
s
s
(
I
M
)
o
f
th
e
p
ar
ticle,
w
h
ic
h
is
e
x
p
r
ess
ed
as:
I
M
F
a
/
(
1
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
Gra
vita
tio
n
a
l
-
S
ea
r
ch
A
l
g
o
r
ith
m
fo
r
Op
tima
l Co
n
tr
o
ller
s
De
s
ig
n
o
f D
o
u
b
ly
-
fe
d
….
(
S
a
h
er
A
lb
a
tr
a
n
)
785
As
i
n
t
h
e
ca
s
e
o
f
p
h
y
s
ic
s
w
h
e
r
e
p
er
f
o
r
m
a
n
ce
o
f
o
b
j
ec
ts
(
p
a
r
ticles)
is
m
ea
s
u
r
ed
b
y
t
h
eir
m
as
s
es,
t
h
e
ag
en
t
s
i
n
th
i
s
m
eth
o
d
ar
e
attr
ac
ted
to
ea
ch
o
th
er
b
ased
o
n
g
r
av
ita
tio
n
al
f
o
r
ce
,
an
d
th
eir
t
en
d
en
c
y
is
to
w
ar
d
s
h
ea
v
ier
m
a
s
s
es,
a
n
d
t
h
e
h
ea
v
y
m
a
s
s
e
s
m
o
v
e
i
n
a
m
an
n
er
m
u
c
h
s
lo
w
er
t
h
a
n
t
h
e
li
g
h
ter
o
n
es,
a
n
d
t
h
is
r
ep
r
esen
ts
th
e
e
x
p
lo
itatio
n
b
e
h
av
io
r
.
T
h
e
GS
A
al
g
o
r
ith
m
d
ep
en
d
s
o
n
t
h
e
f
ac
t
t
h
at
e
v
er
y
m
as
s
(
ag
en
t)
h
a
s
f
o
u
r
s
p
ec
if
ica
tio
n
s
:
p
o
s
itio
n
,
in
er
tial
m
a
s
s
,
ac
ti
v
e
g
r
av
i
tati
o
n
al
m
ass
,
an
d
p
as
s
iv
e
g
r
a
v
it
atio
n
al
m
as
s
.
T
h
e
alg
o
r
it
h
m
u
p
d
ates
g
r
av
i
tatio
n
al
an
d
in
er
tia
m
a
s
s
es
w
i
th
t
h
e
h
elp
o
f
h
ea
v
y
m
a
s
s
e
s
an
d
f
i
n
d
s
th
e
o
p
ti
m
u
m
.
T
h
is
ar
tif
ic
ial
w
o
r
ld
o
f
m
as
s
es
o
b
ey
s
Ne
w
to
n
’
s
la
w
o
f
g
r
a
v
it
y
an
d
m
o
tio
n
.
T
o
p
r
esen
t
th
e
GS
A
al
g
o
r
ith
m
,
c
o
n
s
id
er
a
s
y
s
te
m
w
it
h
N
ag
en
t
s
(
m
a
s
s
e
s
)
.
T
h
e
p
o
s
itio
n
o
f
th
e
it
h
ag
en
t i
s
d
ef
i
n
ed
b
y
[
2
9
]
:
)
...
...
1
(
n
i
x
d
i
x
i
x
i
X
;
N
i
...,
2,
,
1
(
1
9
)
w
h
er
e
d
i
x
is
th
e
p
o
s
i
tio
n
o
f
it
h
a
g
en
t
in
th
e
d
th
d
i
m
e
n
s
io
n
.
T
h
e
f
o
r
ce
ac
tin
g
o
n
m
a
s
s
i
f
r
o
m
m
as
s
j
at
a
s
p
ec
if
ic
ti
m
e
t
,
is
d
ef
in
ed
as
f
o
l
lo
w
s
[
2
9
]
:
))
(
)
(
(
)
(
)
(
)
(
)
(
t
d
j
x
t
d
j
x
t
ij
R
t
Aj
M
t
Pi
M
t
G
d
ij
F
(
2
0
)
w
h
er
e
)
(
t
Pi
M
is
th
e
p
ass
i
v
e
g
r
av
ita
t
io
n
al
m
ass
o
f
a
g
e
n
t
i
,
)
(
t
Aj
M
is
t
h
e
ac
tiv
e
g
r
av
ita
tio
n
al
m
a
s
s
o
f
ag
en
t
j
,
)
(
t
G
is
th
e
g
r
a
v
itatio
n
a
l
co
n
s
ta
n
t
at
ti
m
e
t
,
is
a
s
m
all
co
n
s
ta
n
t,
an
d
)
(
t
ij
R
is
th
e
E
u
clid
ia
n
d
is
tan
ce
b
et
w
ee
n
t
w
o
a
g
e
n
ts
i
an
d
j
[
2
9
]
:
)
(
),
(
)
(
t
j
X
t
i
X
t
ij
R
(
2
1
)
T
h
e
to
tal
f
o
r
ce
th
a
t
ac
ts
o
n
ag
en
t
i
in
a
d
i
m
e
n
s
io
n
d
is
a
r
an
d
o
m
l
y
w
ei
g
h
ted
s
u
m
o
f
t
h
e
d
t
h
co
m
p
o
n
e
n
t
s
o
f
t
h
e
f
o
r
ce
s
e
x
er
ted
b
y
o
th
er
a
g
en
t
s
,
w
h
ic
h
i
s
ex
p
r
ess
ed
as [
2
9
]
:
N
i
j
j
t
d
ij
F
j
ra
n
d
t
d
i
F
,
1
)
(
)
(
(
2
2
)
w
h
er
e
j
ra
n
d
is
a
r
an
d
o
m
n
u
m
b
er
in
th
e
i
n
ter
v
al
1]
[0
,
,
w
h
ich
is
in
tr
o
d
u
ce
d
th
e
eq
u
at
io
n
to
g
i
v
e
a
s
to
ch
asti
c
ch
ar
ac
ter
is
tic
to
th
e
alg
o
r
it
h
m
.
I
f
)
(
t
Ii
M
is
th
e
in
er
tial
m
ass
o
f
ith
-
ag
e
n
t,
th
e
n
b
y
th
e
la
w
o
f
m
o
tio
n
,
th
e
ac
ce
ler
atio
n
in
d
ir
ec
tio
n
d
o
f
th
e
ag
en
t
i
at
ti
m
e
t
,
is
g
iv
e
n
b
y
[
2
9
]
:
)
(
/
)
(
)
(
t
Ii
M
t
d
i
F
t
d
i
a
(
2
3
)
T
h
e
n
ex
t
v
elo
cit
y
o
f
a
n
ag
e
n
t
is
co
n
s
id
er
ed
as
a
f
r
ac
tio
n
o
f
it
s
c
u
r
r
en
t
v
elo
cit
y
ad
d
ed
to
its
ac
ce
ler
atio
n
.
T
h
er
ef
o
r
e,
its
p
o
s
itio
n
a
n
d
its
v
e
lo
cit
y
co
u
ld
b
e
ca
lcu
lated
as
f
o
llo
w
s
[
2
9
]
:
)
(
)
(
)
1
(
t
d
i
a
t
d
i
v
i
r
t
d
i
v
(
2
4
)
)
1
(
)
(
)
1
(
t
d
i
v
t
d
i
x
t
d
i
x
(
2
5
)
w
h
er
e
i
r
is
a
u
n
i
f
o
r
m
r
an
d
o
m
v
ar
iab
le
in
th
e
in
ter
v
al
1]
[0
,
,
w
h
ic
h
is
e
m
p
lo
y
ed
in
th
e
eq
u
a
tio
n
t
o
g
iv
e
a
r
an
d
o
m
ized
ch
ar
ac
ter
i
s
tic
to
t
h
e
s
ea
r
c
h
.
T
h
e
g
r
av
i
tatio
n
al
c
o
n
s
ta
n
t
G
is
a
f
u
n
ctio
n
o
f
t
h
e
i
n
itial
v
alu
e
(
o
G
)
an
d
ti
m
e
(
t
)
,
i.e
.
,
it
i
s
i
n
itial
i
ze
d
at
th
e
s
tar
t
a
n
d
w
ill
b
e
d
ec
r
ea
s
ed
as
ti
m
e
p
as
s
es
to
co
n
tr
o
l
th
e
s
ea
r
c
h
ac
cu
r
ac
y
.
T
h
is
co
n
s
tan
t i
s
ex
p
r
ess
ed
as [
2
9
]
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
8
0
–
7
9
2
786
t
T
e
o
G
t
o
G
G
t
G
)
/
(
)
,
(
)
(
(
2
6
)
w
h
er
e
is
a
co
n
s
tan
t sp
ec
if
ied
b
y
a
u
s
er
,
t
is
cu
r
r
en
t iter
atio
n
an
d
T
is
th
e
to
tal
n
u
m
b
er
o
f
iter
at
io
n
s
.
Fit
n
e
s
s
e
v
alu
at
io
n
is
u
s
ed
in
th
is
al
g
o
r
ith
m
to
ca
lcu
late
g
r
av
itatio
n
al
an
d
in
er
tia
m
as
s
es
.
A
m
o
r
e
ef
f
icien
t
ag
e
n
t
h
a
s
a
h
ea
v
ier
m
as
s
,
w
h
ic
h
i
n
d
icate
s
t
h
at
b
etter
ag
en
t
s
h
a
v
e
h
ig
h
er
attr
a
ctio
n
s
w
it
h
s
lo
w
er
w
al
k
s
.
T
h
e
v
al
u
es
o
f
g
r
av
i
tati
o
n
al
an
d
in
er
tia
m
as
s
es,
w
h
i
c
h
ar
e
ass
u
m
ed
eq
u
al,
ar
e
ca
lcu
lated
u
s
i
n
g
t
h
e
m
ap
o
f
f
it
n
es
s
.
T
h
e
g
r
av
itat
io
n
al
a
n
d
in
er
tial
m
a
s
s
e
s
ar
e
u
p
d
ated
b
y
t
h
e
f
o
llo
w
in
g
E
q
u
atio
n
s
[
2
9
]
:
N
j
t
j
m
t
i
m
t
i
M
1
)
(
/
)
(
)
(
(
2
7
)
))
(
)
(
/(
))
(
)
(
(
)
(
t
W
t
B
t
W
t
i
F
t
i
m
(
2
8
)
i
M
Ii
M
Pi
M
Ai
M
;
N
i
...,
2,
,
1
(
2
9
)
w
h
er
e
)
(
t
i
F
r
ep
r
esen
ts
th
e
f
it
n
es
s
v
alu
e
o
f
th
e
ag
e
n
t
i
at
ti
m
e
t
.
Fo
r
a
m
in
i
m
izatio
n
p
r
o
b
le
m
,
)
(
t
W
an
d
)
(
t
B
ar
e
d
ef
in
ed
as
f
o
llo
w
s
[
2
9
]
:
)
(
mi
n
}
,...,
1
{
)
(
t
j
F
N
j
t
B
(
3
0
)
)
(
ma
x
}
,...,
1
{
)
(
t
j
F
N
j
t
W
(
3
1
)
Fo
r
a
m
a
x
i
m
izatio
n
p
r
o
b
lem
,
)
(
t
W
an
d
)
(
t
B
ar
e
d
ef
in
ed
as f
o
llo
w
s
[
2
9
]
:
)
(
ma
x
}
,...,
1
{
)
(
t
j
F
m
j
t
B
(
3
2
)
)
(
mi
n
}
,...,
1
{
)
(
t
j
F
m
j
t
W
(
3
3
)
E
q
u
atio
n
(
25
)
ca
n
b
e
m
o
d
if
ie
d
b
y
r
ed
u
cin
g
t
h
e
n
u
m
b
er
o
f
ag
en
t
s
w
it
h
lap
s
e
o
f
ti
m
e
to
p
er
f
o
r
m
a
g
o
o
d
co
m
p
r
o
m
is
e
b
et
w
ee
n
e
x
p
lo
r
atio
n
an
d
e
x
p
lo
itatio
n
,
wh
er
e
o
n
l
y
a
s
et
o
f
a
g
e
n
ts
w
it
h
b
ig
g
er
m
a
s
s
ap
p
l
y
th
eir
f
o
r
ce
s
to
th
e
o
th
er
s
.
L
et
B
K
is
t
h
e
s
e
t
o
f
t
h
e
f
ir
s
t
K
ag
en
t
s
w
it
h
t
h
e
b
est
f
it
n
es
s
v
alu
e
s
an
d
b
ig
g
es
t
m
as
s
es,
(
2
5
)
ca
n
b
e
w
r
itten
a
s
[
2
9
]
:
N
i
j
K
j
t
d
ij
F
j
ra
n
d
t
d
i
F
b
,
)
(
)
(
(
3
4
)
T
h
e
f
u
n
ctio
n
b
K
is
a
f
u
n
ct
io
n
o
f
ti
m
e,
w
h
ic
h
h
as
a
n
in
it
ial
v
alu
e
o
f
o
K
at
t
h
e
b
eg
in
n
i
n
g
an
d
d
ec
r
ea
s
es
as
ti
m
e
p
ass
es,
w
h
i
ch
i
m
p
lie
s
th
at
all
ag
e
n
ts
ap
p
l
y
th
e
f
o
r
ce
at
th
e
b
eg
in
n
in
g
,
an
d
as
ti
m
e
p
ass
e
s
b
K
is
d
ec
r
ea
s
ed
lin
ea
r
l
y
.
Fin
a
ll
y
,
j
u
s
t
o
n
e
ag
en
t
w
i
th
t
h
e
b
est
f
itn
es
s
v
al
u
es
a
n
d
b
ig
g
e
s
t
m
as
s
es
ap
p
l
y
f
o
r
ce
to
th
e
o
th
er
s
.
4.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
T
h
is
s
ec
tio
n
p
r
ese
n
ts
t
h
e
s
i
m
u
latio
n
r
es
u
lt
s
o
f
t
h
e
D
FIG
-
b
ased
W
E
C
S
u
s
i
n
g
t
h
e
GS
A
-
b
a
s
ed
co
o
r
d
in
ated
o
p
tim
al
t
u
n
i
n
g
o
f
P
I
co
n
tr
o
ller
s
.
P
er
-
u
n
i
t
s
y
s
te
m
p
ar
am
eter
s
ar
e
s
u
m
m
ar
ized
in
T
ab
le
1
.
I
n
o
r
d
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
Gra
vita
tio
n
a
l
-
S
ea
r
ch
A
l
g
o
r
ith
m
fo
r
Op
tima
l Co
n
tr
o
ller
s
De
s
ig
n
o
f D
o
u
b
ly
-
fe
d
….
(
S
a
h
er
A
lb
a
tr
a
n
)
787
to
in
d
icate
th
e
ef
f
ec
ti
v
en
e
s
s
o
f
th
e
GS
A
to
tu
n
e
th
e
p
ar
a
m
e
t
er
s
o
f
P
I
co
n
tr
o
ller
s
,
th
e
r
esu
lt
s
w
il
l
b
e
co
m
p
ar
ed
w
it
h
t
h
e
r
esu
lt
s
o
b
tain
ed
u
s
i
n
g
GA
an
d
P
SO
as
s
h
o
w
n
T
ab
le
2
.
T
h
e
GA
an
d
P
SO
ar
e
s
elec
ted
in
th
e
p
ap
er
f
o
r
co
m
p
ar
is
o
n
s
as
th
e
y
ar
e
b
ec
o
m
in
g
v
er
y
co
m
m
o
n
f
o
r
s
o
lv
in
g
th
e
o
p
ti
m
iza
tio
n
p
r
o
b
le
m
s
in
d
if
f
er
e
n
t
d
is
cip
lin
es,
e
s
s
e
n
tial
l
y
in
th
e
d
esig
n
o
f
th
e
co
n
tr
o
ller
s
b
ec
a
u
s
e
o
f
b
ein
g
r
o
b
u
s
t
i
n
f
in
d
i
n
g
an
o
p
ti
m
a
l
s
o
l
u
tio
n
an
d
ca
p
ab
le
to
attain
a
n
ea
r
-
o
p
ti
m
al
s
o
lu
tio
n
clo
s
e
to
a
g
lo
b
al
m
i
n
i
m
u
m
.
T
ab
le
1.
P
ar
am
eter
s
o
f
t
h
e
Si
m
u
lated
S
y
s
te
m
S
t
a
t
o
r
w
i
n
d
i
n
g
s
r
e
si
st
a
n
c
e
s
r
0
.
0
5
[
p
.
u
.
]
R
o
t
o
r
w
i
n
d
i
n
g
s re
si
s
t
a
n
c
e
r
r
'
0
.
0
2
[
p
.
u
.
]
S
t
a
t
o
r
m
a
g
n
e
t
i
z
i
n
g
i
n
d
u
c
t
a
n
c
e
ms
L
5
.
0
0
[
p
.
u
.
]
R
o
t
o
r
l
e
a
k
a
g
e
i
n
d
u
c
t
a
n
c
e
'
lr
L
0
.
1
0
[
p
.
u
.
]
S
t
a
t
o
r
l
e
a
k
a
g
e
i
n
d
u
c
t
a
n
c
e
ls
L
0
.
1
0
[
p
.
u
.
]
C
o
mp
l
i
a
n
c
e
c
o
e
f
f
i
c
i
e
n
t
o
f
t
h
e
s
h
a
f
t
sh
K
0
.
4
0
[
p
.
u
.
/
r
a
d
]
I
n
e
r
t
i
a
o
f
t
h
e
t
u
r
b
i
n
e
H
2
.
5
0
[
se
c
]
I
n
e
r
t
i
a
o
f
t
h
e
g
e
n
e
r
a
t
o
r
g
H
0
.
5
0
[
se
c
]
T
w
o
d
is
tu
r
b
an
ce
s
ar
e
d
i
s
cu
s
s
e
d
in
t
h
i
s
p
ap
er
to
s
h
o
w
t
h
e
ad
v
an
ta
g
e
s
o
f
u
s
i
n
g
t
h
e
G
S
A
to
tu
n
e
t
h
e
P
I
co
n
tr
o
ller
o
v
er
t
h
e
o
t
h
er
al
g
o
r
ith
m
s
(
G
A
a
n
d
P
SO)
.
T
w
o
p
e
r
f
o
r
m
an
ce
i
n
d
ices
ar
e
u
s
ed
to
co
m
p
ar
e
b
et
w
ee
n
th
e
r
es
u
lt
s
.
T
h
e
f
ir
s
t
o
n
e
is
t
h
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
(
I
TA
E
)
an
d
t
h
e
s
ec
o
n
d
o
n
e
i
s
t
h
e
s
ettlin
g
t
i
m
e
f
o
r
5
%
cr
iter
io
n
.
T
h
e
co
m
p
ar
is
o
n
s
b
etw
ee
n
th
e
t
h
r
ee
al
g
o
r
ith
m
s
ar
e
lis
ted
in
T
ab
le
2
an
d
T
ab
le
3.
T
ab
le
2.
Op
tim
al
C
o
n
tr
o
ller
P
ar
a
m
eter
s
o
f
G
S
A
,
G
A
,
an
d
P
SO
F
a
u
l
t
D
i
st
u
r
b
a
n
c
e
R
e
f
e
r
e
n
c
e
S
p
e
e
d
D
i
st
u
r
b
a
n
c
e
G
S
A
GA
PSO
G
S
A
GA
PSO
I
T
AE
0
.
1
0
5
8
5
0
.
2
8
6
4
2
0
.
6
1
3
9
9
1
.
3
2
6
5
1
.
3
8
1
8
7
4
.
6
3
4
8
0
K
p
2
0
.
0
0
00
1
6
.
8
8
1
35
1
9
.
1
4
6
40
2
0
.
0
0
0
0
1
8
.
9
5
4
94
1
7
.
6
2
9
59
K
i
2
0
.
0
0
00
1
6
.
3
8
4
74
1
4
.
2
8
9
63
2
0
.
0
0
0
0
1
9
.
0
3
6
54
1
9
.
0
2
7
92
K
pQ
0
.
6
5
9
10
0
.
5
1
5
4
7
0
.
4
8
5
0
1
1
0
.
1
3
1
7
0
.
0
8
2
6
3
0
.
8
6
3
5
0
K
iQ
0
.
0
5
0
00
3
.
9
7
5
1
7
1
7
.
5
9
8
22
2
0
.
0
0
0
0
3
.
7
7
4
9
6
6
.
4
8
4
0
3
K
pP
s
0
.
0
5
0
00
0
.
1
5
8
7
1
0
.
2
9
6
4
6
0
.
0
5
0
0
1
6
.
3
9
6
43
9
.
2
9
1
5
5
K
i
P
s
0
.
6
4
1
30
3
.
1
9
5
6
2
1
4
.
7
6
1
53
1
5
.
9
2
0
4
1
4
.
1
4
3
75
1
8
.
0
9
0
68
T
ab
le
3.
C
alcu
lated
Settli
n
g
t
i
m
e
[
in
s
ec
o
n
d
s
]
F
a
u
l
t
D
i
st
u
r
b
a
n
c
e
R
e
f
e
r
e
n
c
e
S
p
e
e
d
D
i
st
u
r
b
a
n
c
e
G
S
A
GA
PSO
G
S
A
GA
PSO
v
’
qr
0
.
8
2
1
.
1
9
1
.
3
8
2
.
4
0
2
.
7
1
2
.
8
2
v
’
dr
0
.
1
0
0
.
2
3
0
.
8
5
1
.
5
6
1
.
7
9
1
.
8
5
ω
m
0
.
0
4
0
.
0
6
0
.
1
1
1
.
0
4
1
.
4
2
1
.
5
4
P
s
0
.
8
3
0
.
9
6
1
.
1
3
2
.
3
4
2
.
6
2
.
6
8
Q
s
0
.
2
2
0
.
2
9
0
.
9
4
0
.
4
7
0
.
7
2
0
.
7
2
B
y
s
o
lv
i
n
g
th
e
o
p
ti
m
izatio
n
p
r
o
b
lem
u
s
i
n
g
GS
A
,
G
A
a
n
d
P
SO,
th
e
o
p
ti
m
a
l
co
n
tr
o
ller
p
ar
a
m
eter
s
o
f
th
e
s
y
s
te
m
u
n
d
er
s
tu
d
y
ar
e
o
b
tain
ed
an
d
s
u
m
m
ar
ized
i
n
T
ab
le
2
.
A
s
ca
n
b
e
s
ee
n
,
t
h
e
v
al
u
es
o
f
I
TAE
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
8
0
–
7
9
2
788
ass
o
ciate
d
w
it
h
t
h
e
GS
A
-
b
as
ed
o
p
tim
al
co
n
tr
o
ller
s
ar
e
b
et
ter
t
h
a
n
th
o
s
e
o
b
tain
ed
u
s
i
n
g
th
e
G
A
-
b
ased
a
n
d
P
SO
-
b
ased
o
p
tim
a
l
co
n
tr
o
ller
s
.
T
h
is
f
ac
t
w
ill
b
e
r
ef
lecte
d
in
th
e
f
o
llo
w
i
n
g
r
esp
o
n
s
e
s
u
b
s
ec
tio
n
s
,
Fi
g
u
r
es
a
n
d
T
ab
les.
On
ly
f
iv
e
v
ar
iab
les
(
qr
v
'
,
dr
v
'
,
s
P
,
s
Q
an
d
m
)
ar
e
p
r
esen
ted
in
th
is
p
ap
er
w
h
ile
t
h
e
r
esp
o
n
s
e
o
f
th
e
o
th
er
v
ar
iab
le
s
ca
n
b
e
esti
m
ated
f
r
o
m
t
h
e
p
r
esen
ted
r
esu
lts
.
4
.
1
.
T
hree
-
ph
a
s
e
t
o
G
ro
u
nd
F
a
ul
t
T
h
r
ee
-
p
h
ase
to
g
r
o
u
n
d
f
a
u
lt
w
a
s
ap
p
lied
af
ter
t
h
e
s
y
s
te
m
r
ea
ch
es
to
t
h
e
s
tead
y
s
tate
(
t
=1
0
s
)
an
d
clea
r
ed
af
ter
3
0
m
s
.
Fro
m
T
ab
le
2
,
6
0
%
an
d
8
0
%
r
ed
u
ctio
n
o
f
I
TAE
i
s
ac
h
iev
ed
u
s
i
n
g
GS
A
r
elati
v
e
to
G
A
an
d
P
SO,
r
esp
ec
tiv
el
y
.
Fig
u
r
e
3
an
d
T
a
b
le
3
s
h
o
w
t
h
at
dr
v
'
an
d
qr
v
'
ca
n
r
ea
ch
th
e
n
e
w
s
tead
y
s
tate
m
u
c
h
f
aster
w
h
en
G
S
A
is
ad
o
p
ted
.
Fig
u
r
e
4
an
d
T
a
b
le
3
m
an
i
f
e
s
t
th
at
u
s
in
g
GS
A
h
elp
s
t
h
e
r
o
to
r
s
p
ee
d
t
o
d
am
p
in
4
0
m
s
w
h
ich
is
t
w
o
th
ir
d
s
o
f
th
e
ti
m
e
r
eq
u
ir
ed
w
h
en
G
A
is
u
s
ed
an
d
ab
o
u
t
o
n
e
th
ir
d
o
f
t
h
e
s
ett
lin
g
t
i
m
e
n
ee
d
ed
w
h
e
n
P
SO
i
s
u
s
ed
.
Fi
g
u
r
e
5
a
n
d
Fi
g
u
r
e
6
ill
u
s
tr
ate
s
th
e
ad
v
a
n
tag
e
s
o
f
u
s
i
n
g
GS
A
to
co
m
p
en
s
ate
s
P
an
d
s
Q
,
r
esp
ec
tiv
el
y
.
T
h
e
s
ettli
n
g
ti
m
e
f
o
r
th
e
ac
ti
v
e
p
o
w
er
is
at
least
1
3
m
s
f
a
s
ter
w
h
e
n
GS
A
i
s
co
n
s
id
er
ed
.
Fo
r
th
e
r
ea
ctiv
e
p
o
w
er
,
GS
A
r
ed
u
ce
d
th
e
s
ettl
in
g
ti
m
e
b
y
ab
o
u
t 2
5
% a
t le
ast.
(
a)
(
b
)
Fig
u
r
e
3
.
T
h
e
r
o
t
o
r
v
o
ltag
es
wh
en
t
h
r
ee
-
p
h
ase
to
g
r
o
u
n
d
f
a
u
l
t is ap
p
lied
u
s
in
g
G
A
,
P
SO a
n
d
GSA
: (
a)
v
’
dr
an
d
(
b
)
v
’
qr
Fig
u
r
e
4
.
T
h
e
r
o
t
o
r
an
g
u
lar
s
p
ee
d
w
h
e
n
t
h
r
ee
-
p
h
a
s
e
to
g
r
o
u
n
d
f
au
lt i
s
ap
p
lied
u
s
i
n
g
G
A
,
P
SO a
n
d
GS
A
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
Gra
vita
tio
n
a
l
-
S
ea
r
ch
A
l
g
o
r
ith
m
fo
r
Op
tima
l Co
n
tr
o
ller
s
De
s
ig
n
o
f D
o
u
b
ly
-
fe
d
….
(
S
a
h
er
A
lb
a
tr
a
n
)
789
(
a)
(
b
)
Fig
u
r
e
5
.
T
h
e
s
tato
r
ac
tiv
e
an
d
r
ea
ctiv
e
p
o
w
er
w
h
e
n
t
h
r
ee
-
p
h
ase
to
g
r
o
u
n
d
f
au
l
t is ap
p
lied
u
s
i
n
g
G
A
,
P
SO
an
d
GS
A
: (
a)
P
s
an
d
(
b
)
Q
s
(
a)
(
b
)
Fig
u
r
e
6
.
T
h
e
r
o
t
o
r
v
o
ltag
es
wh
en
t
h
e
r
ef
er
e
n
ce
s
p
ee
d
is
ch
a
n
g
ed
u
s
i
n
g
G
A
,
P
SO a
n
d
GS
A
: (
a)
v
dr
(
b
)
v
qr
4
.
2
.
Va
ria
ble
Ref
er
ence
Sp
ee
d
I
n
th
i
s
d
is
tu
r
b
a
n
ce
an
d
as
s
h
o
w
n
in
Fi
g
u
r
e
6
,
th
e
r
ef
er
en
c
e
s
p
ee
d
re
f
m
,
w
a
s
in
i
tiall
y
s
et
to
0
.
7
p
.
u
.
,
af
ter
th
at,
th
e
s
p
ee
d
is
r
e
d
u
ce
d
to
0
.
3
5
p
.
u
.
in
o
n
e
s
ec
o
n
d
.
Nex
t,
th
e
r
ef
er
e
n
ce
s
p
ee
d
s
ta
y
s
co
n
s
tan
t
f
o
r
o
n
e
s
ec
o
n
d
an
d
f
i
n
all
y
i
n
cr
ea
s
es lin
ea
r
l
y
to
th
e
i
n
itial r
e
f
er
en
ce
v
al
u
e.
Fig
u
r
e
7
.
T
h
e
r
o
t
o
r
s
p
ee
d
w
it
h
ch
an
g
i
n
g
t
h
e
r
ef
er
e
n
ce
s
p
ee
d
u
s
i
n
g
G
A
,
P
SO a
n
d
GS
A
Evaluation Warning : The document was created with Spire.PDF for Python.