Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 5
,
O
c
tob
e
r
201
5, p
p
. 1
092
~110
1
I
S
SN
: 208
8-8
7
0
8
1
092
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Study of Data Security Al
gorithms
using Veril
o
g HDL
M. Sum
athi
*
, D. Nirm
ala
**
, R.
I
mma
nuel Ra
jku
m
ar
***
*
Profe
ssor,
**
Assista
n
t Profe
ssor,
***
Assista
n
t Profe
ssor,
Sa
thy
a
ba
ma
Unive
r
sity
,
Chennai-600119
, Tamilnadu
,
Ind
i
a.
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 17, 2015
Rev
i
sed
Ju
l 16
,
20
15
Accepte
d
J
u
l 29, 2015
This pap
e
r des
c
ribes
an over
v
iew of d
a
ta security
algorith
ms and its
perform
ance ev
alua
tion. AES
,
RC5 a
nd SHA
algorithms have been taken
under th
is stud
y
.
Three diff
eren
t
ty
p
e
s of security algor
ithms used to
analy
z
e
the p
e
rform
anc
e
s
t
ud
y.
Th
e
des
i
gns
were
i
m
p
lem
e
nted in
Quartus
-II
software. The r
e
sults obtained
for encr
y
p
tion
and decr
y
p
tion procedures
show a significant improvement
on the per
f
ormance of th
e thr
ee
algorithms
.
In this paper, 128-bit AES, 64-bit of RC5 and 51
2-bit of SHA256
encr
y
p
tio
n
and Decr
y
p
tion
has been made usi
ng Verilog Hardwa
re Descriptio
n
Languag
e
and simulated using
ModelSim.
Keyword:
Cryp
tog
r
ap
y al
g
o
rith
m
s
Data secu
rity
Decry
p
tion
En
cry
p
tio
n
Verilog
HDL
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M. Su
m
a
th
i
Depa
rt
em
ent
of El
ect
r
oni
cs
a
n
d
C
o
nt
r
o
l
E
n
gi
nee
r
i
n
g,
Sath
yab
a
m
a
Un
iv
ersity,
R
a
ji
v
Ga
nd
hi
R
o
ad
, Je
ppi
aa
r
Na
gar
,
C
h
e
n
n
a
i
-
1
1
9
.
Em
a
il: su
m
a
g
o
p
i
20
6@g
m
ai
l.co
m
1.
INTRODUCTION
Th
e r
i
sk
s
f
ound
in
d
i
g
ital commu
n
i
catio
n
syste
m
s ar
e n
on-
au
t
h
or
ized
access, d
e
n
i
al of
ser
v
ice,
d
a
ta
co
rrup
tion
,
leak
ag
e, m
o
n
itoring
attack
s,
au
th
en
tica
t
i
o
n
and t
r
ashi
ng
,
et
c. Th
ese
problem
s
occur while
execut
i
n
g
di
ffe
rent
el
ect
ro
ni
c
ope
rat
i
o
ns suc
h
as vi
deo/
t
e
xt
t
r
ans
f
er,
c
o
m
m
uni
cat
i
o
ns,
online trade
,
etc. Many
pr
oce
d
u
r
es/
a
l
g
ori
t
h
m
st
eps have com
e
out
t
o
re
duce t
h
e
ri
sks.
We can e
m
pl
oy
fi
rewal
l
s
, det
ect
i
on sy
st
em
s,
securi
t
y
vi
a cr
y
p
t
o
g
r
a
phi
c al
go
ri
t
h
m
s
and
ot
he
rs [
1
]
.
T
h
e increasing
need for s
ecure
d data c
o
mm
u
n
ication
has i
n
c
r
ease
d
t
o
de
vel
o
pm
ent
of se
ve
ral
cr
y
p
t
o
g
r
a
phi
c al
go
ri
t
h
m
s
such
as DE
S,
3D
E
S
, A
E
S, R
S
A
,
SH
A,
RC5
, etc., Th
e
b
a
sic id
ea o
f
cryp
to
alg
o
rith
m is to
secu
re th
e d
a
ta wh
ile tran
sm
it
tin
g
in
th
e n
e
two
r
k
.
The d
a
ta
is to be tra
n
smitted from
sender to recei
ver i
n
the
netw
ork
m
u
st be encrypted
usin
g the
encry
p
tion al
gorithm
.
By using
dec
r
yption techni
que, the
receive
r can
view t
h
e
ori
g
inal data
. AES al
gorithm is proved i
n
m
a
ny
p
a
p
e
rs [2
]-[5
]
th
at h
a
v
e
t
o
b
e
efficien
t in both
h
a
rd
wa
re and
so
ft
ware im
p
l
e
m
en
tatio
n
s
.
It can
u
tilize
d
a
ta
o
f
di
ffe
re
nt
l
e
n
g
t
h
say
12
8,
1
9
2
or
2
5
6
bi
t
s
fo
r
pr
ocessi
ng
wi
t
h
a
pri
v
at
e
key
of
sam
e
l
e
ngt
h
.
S
u
b
-
by
t
e
,
Shi
f
t
r
o
w
,
Mix
e
d
C
o
lu
m
n
and
Add
R
o
und
k
e
y are t
h
e
fo
ur
b
a
sic
o
p
e
ra
tio
n
s
carried
ou
t
in
10
, 12
or 1
4
ro
und
s/iteratio
n
s
.
Th
e Mix
e
d
C
o
l
u
m
n
o
p
e
ration
will n
o
t
b
e
carried
ou
t in th
e last roun
d [6
]-[1
5
]
.
Hash
f
unct
i
o
n
s
are cry
p
t
o
g
r
ap
hi
c el
em
en
t
s
used t
o
pr
ovi
de s
o
l
u
t
i
o
n
s
of
dat
a
i
n
t
e
gri
t
y
an
d
au
th
en
ticatio
n
issu
es. It
p
e
rform
s o
p
e
ration
s
in
iterativ
e fa
s
h
i
o
n a
n
d
m
a
ps t
h
e bi
nary
di
gi
t
s
o
f
a
r
bi
t
r
a
r
y
l
e
ngt
h
wi
t
h
s
o
m
e
fi
xed l
e
n
g
t
h
. T
h
e
exi
s
t
i
n
g
al
g
o
r
i
t
h
m
s
for
pe
rf
orm
i
ng ha
sh
f
unct
i
o
ns a
r
e
M
D
5,
S
H
A
-
1
,
SH
A-
2,
Whi
r
l
p
ool
,
H
a
val
an
d R
i
p
e
M
D
-
1
60
an
d s
o
on
. C
u
r
r
ent
l
y
, S
H
A-
2
5
6
al
g
o
ri
t
h
m
becom
e
po
p
u
l
a
r i
n
perform
a
nce because it reducing the c
r
itical path by
re
orderi
ng t
h
e
ope
rations in
each iteration. It is
im
pl
em
ent
e
d
and
val
i
d
at
ed
i
n
t
h
e FPG
A Vi
rt
ex
-
2
Xc
2V
P-
7 [
16]
.
The pe
rf
orm
a
nce of t
h
e
h
a
rd
ware
im
pl
em
ent
a
t
i
o
n o
f
S
H
A
-
25
6
exhi
bi
t
hi
g
h
t
h
ro
u
g
h
p
u
t
an
d e
ffi
ci
ency
. T
h
o
u
g
h
a m
a
ny
hard
ware a
n
d s
o
f
t
ware
i
m
p
l
e
m
en
tatio
n
s
of h
a
sh
functio
n
algo
rithm
s
are rep
o
rted
[1
7
]-[22
] and
still i
t
h
a
s b
e
en
activ
e research
top
i
c
in
bot
h aca
de
mia and i
n
dus
t
ry in
recent
years. The
ha
rdware
arc
h
itectures
re
porte
d
aim
to achie
ve
better
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
109
2
–
11
01
1
093
perform
a
nce by custom
izing hardware elements that co
m
put
e speci
fi
c
fu
nct
i
o
n
s
an
d al
s
o
by
usi
n
g
di
ff
eren
t
t
echni
q
u
es s
u
c
h
as carry
sa
v
e
adde
rs, em
bedde
d m
e
m
o
ries, pi
pel
i
n
i
n
g
,
un
r
o
l
l
i
ng t
ech
ni
q
u
es, et
c. R
C
5 i
s
a
fast symmetric
cryp
t
o
graph
y
alg
o
rith
m
that uses t
h
e sam
e
key for encryp
t
i
on a
n
d
decry
p
t
i
o
n
.
T
h
e
pl
ai
n t
e
x
t
and ci
ph
er t
e
xt
are fi
xed
- l
e
ngt
h bi
t
se
que
nces, s
o
i
t
i
s
n
a
m
e
d as bl
oc
k
ci
phe
r.
It
use
s
t
w
o
’
s c
o
m
p
lem
e
nt
ad
d
ition
and
su
b
t
ractio
n
op
eratio
n, b
itwise
ex
clu
s
i
v
e-o
r
op
eration
an
d
left-ri
g
h
t
ro
tation
as primitiv
es in
th
e
alg
o
rith
m
.
It wo
rk
s
well fo
r real-ti
m
e i
m
ag
e en
cryp
tion
b
y
p
a
rtition
i
ng
the i
m
ag
e in
to
m
acro b
l
o
c
k
s
and
the
resul
t
a
nt
hi
st
o
g
ram
of
t
h
e
ci
p
h
er
i
m
age i
s
fa
i
r
l
y
uni
fo
rm
. The
key
feat
ure
of
R
C
5
i
s
t
h
e
u
s
e o
f
dat
a
-
d
e
p
e
nde
nt
ro
tation
s
an
d
to
stud
y th
e
ev
alu
a
tion
o
f
cryp
tog
r
aph
i
c
primitiv
es [23
]-[31
]. It is fast an
d ad
ap
tab
l
e to
pr
ocess
o
rs
of d
i
ffere
nt
wo
rd
-l
engt
hs
a
n
d pr
o
v
i
d
es
hi
gh
sec
u
ri
t
y
.
2.
RELATED WORKS
Ad
va
nced E
n
c
r
y
p
t
i
o
n St
an
da
rd (
A
ES
) al
g
o
r
i
t
h
m
has
been analysed
by
m
a
ny of the researc
h
ers
acros
s the
world. AES algori
thm
is better than its
pr
ece
di
ng al
gorithm
s
because it can
be applied
for
m
o
re
bits of
data. 128-bit data can
be gi
ven as i
n
put to t
h
e AE
S
algorit
hm
a
l
ong
with e
ither 128-bit
or 192-bit or
2
56-
b
it k
e
y. M
a
n
j
esh
et al., hav
e
used
p
i
p
e
li
n
i
ng
r
e
g
i
ster
s af
ter
each
ro
und in
128
-b
it A
E
S alg
o
r
ith
m
in
o
r
d
e
r
t
o
im
pro
v
e t
h
e spee
d of t
h
e al
go
ri
t
h
m
.
They
have
do
ne t
h
e
har
d
ware i
m
plem
ent
a
t
i
on of
AES al
g
o
ri
t
h
m
usi
n
g
pi
pel
i
n
i
n
g
re
gi
st
ers. Fi
nal
l
y
t
h
e
wo
rk
i
s
c
o
ncl
u
ded
t
h
at
u
s
e o
f
pi
pel
i
n
i
n
g re
gi
st
er
m
a
y i
n
crease
t
h
e a
r
ea
of
hardware a
r
chi
t
ecture and t
h
e
r
efore it
need t
o
be use
d
ca
re
fully. Va
nitha
et al., ha
ve
de
veloped an e
f
ficient
VLSI arc
h
itecture for AES algorith
m
.
This arc
h
itecture increases t
h
e th
ro
ugh
pu
t
an
d
security of AES
al
go
ri
t
h
m
and
has
use
d
a
c
o
m
b
i
n
at
i
onal
ci
rcui
t
i
n
s
-
bo
x a
n
d
i
n
verse
s-
bo
x i
n
st
ead
of
l
o
o
k
up
t
a
bl
e f
o
r
red
u
ci
n
g
t
h
e
a
r
ea. R
i
t
u
Pa
ha
l
et
al
., hav
e
use
d
sy
m
m
e
t
r
ic cry
p
t
o
g
r
ap
hi
c t
echni
que
A
E
S al
g
o
ri
t
h
m
havi
ng
20
0
-
bi
t
bl
oc
k a
n
d
t
h
e
key
si
ze
i
s
2
0
0
-
bi
t
.
The
co
nve
n
tion
a
l
1
28-b
it AES al
g
o
rith
m
is i
m
p
l
e
m
en
ted
fo
r
20
0 b
it
AES
al
g
o
ri
t
h
m
usi
n
g
fi
ve
ro
ws a
n
d
fi
ve c
o
l
u
m
n
s of
m
a
t
r
ix.
A
f
t
e
r t
h
e i
m
pl
em
ent
a
t
i
on, t
h
e
pr
o
pos
ed
w
o
r
k
i
s
com
p
ared wi
t
h
12
8-
bi
t
,
1
9
2
-
b
i
t
and 2
5
6
-
b
i
t
AES t
ech
ni
q
u
e
s
on t
w
o
poi
nt
s. These
p
o
i
n
t
s
are exec
ut
i
on
t
i
m
e
and t
h
ro
u
g
h
p
u
t
of enc
r
y
p
t
i
on an
d dec
r
y
p
t
i
on p
r
oce
s
s. Ab
d
u
l
Kar
i
m
,
A
m
er Sht
e
wi
et
.al
,
has
m
a
de
m
odi
fi
cat
i
ons t
o
t
h
e A
d
van
ced E
n
cry
p
t
i
o
n St
an
da
rd t
o
refl
ect
a hi
g
h
l
e
vel
sec
u
ri
t
y
and bet
t
e
r
im
age
encry
p
t
i
on st
a
nda
r
d
s. T
h
e m
odi
fi
cat
i
on i
s
d
one
by
adj
u
st
i
ng t
h
e s
h
i
f
t
r
o
ws p
h
ase. T
h
e
pr
o
pose
d
m
odi
fi
cat
i
o
n
to im
age cryptosystem is highly secu
re from the cryptographic vie
w
poi
n
t.
The
results
also prove that
whe
n
com
p
ared to
original AES
al
g
o
rith
m
;
th
e
m
o
d
i
fied
alg
o
rith
m
g
i
v
e
s b
e
t
t
er en
cry
p
tio
n resu
lts in
term
s
o
f
security agai
ns
t statistical atta
cks.
Fran
cis M. Cro
w
e et al.,
d
e
alt with
th
e h
a
rdware
u
tilizatio
n
ap
pro
ach
fo
r t
h
e SHA-25
6
fun
c
tion
.
Unro
lling
and
p
i
p
e
lin
ing
are
ap
pro
ach
ed
i
n
first tim
e o
f
th
is alg
o
rith
m
.
Th
e
v
a
ri
o
u
s
sizes of unro
lling
meth
od
are desi
gne
d a
nd t
h
e o
u
t
put
r
e
sul
t
i
s
t
a
ken
f
r
om
t
h
e R
TL d
e
si
gn i
n
t
h
e
V
e
ri
l
og
H
D
L. T
h
i
s
sy
st
em
can
sh
o
w
th
e i
m
p
r
ov
em
e
n
t in
th
e critical p
a
th
d
e
lay.
O. Ko
ufop
av
l
o
u,
et
al
, conce
n
t
r
at
ed o
n
va
ri
o
u
s
has
h
i
n
g t
ech
ni
q
u
e
th
at are i
m
p
l
emen
ted
in
d
i
fferen
t m
e
th
o
d
s o
f
o
p
e
ration th
e h
a
rdware u
s
ed
for im
p
l
e
m
en
tatio
n
u
tilized
reduce
d area in term
s of slic
es. Rom
a
in Vaslin et al., de
sc
ri
be
d o
n
va
ri
o
u
s arc
h
i
t
ect
ure
s
t
o
be com
b
i
n
ed i
n
a
single m
odule
to reduce a are
a
and
delay. By im
proving
of this architecture m
odule heat
and loss in dat
a
will
be occ
u
r. Thi
s
m
odule
doe
s not s
u
itable for m
e
m
o
ry
flexibility, and a
r
ea res
ources. T
h
is system
is
im
pl
em
ent
e
d o
n
Al
t
e
ra St
rat
i
x
de
vi
ce. It
ca
n gi
ve t
h
r
o
ug
h
put
l
e
vel
up t
o
50
0m
bps. P
r
o
f
. L
o
h
,
et
al
., a
d
o
p
t
e
d
adde
rs f
unct
i
o
n i
n
t
h
e cry
p
t
o
gra
p
hy
t
echni
q
u
e. The car
ry
save ad
der i
s
t
h
e fast
est
adder
i
n
t
h
e di
gi
t
a
l
adde
r
s
.
The d
r
aw
bac
k
of t
h
i
s
a
dde
r i
s
t
h
at
t
a
ki
ng m
o
re t
i
m
e t
o
pro
duce t
h
e sum
and ca
rry
o
u
t
p
ut
and
kn
ow t
h
e resul
t
o
f
add
itio
n
at
o
n
ce i
n
a stage, do
n
o
t
k
now abou
t th
e ad
d
ition
o
f
th
e
v
a
lu
e is larg
er o
r
sm
aller for a g
i
v
e
n
dat
a
. H
o
ssam
El
-di
n
H. A
h
m
e
d et
al
., descri
be
d ab
out
R
C
5
i
n
hi
g
h
l
y
secure base
d
on real
-t
i
m
e
im
ag
e
encry
p
t
i
on
by
po
rt
i
o
ni
n
g
im
age i
n
t
o
6
4
bi
t
m
acro bl
oc
ks
and
resul
t
a
nt
h
i
st
ogram
of t
h
e encry
p
t
e
d im
age i
s
fairly u
n
i
form
.
Th
e drawb
a
ck o
f
th
is system
is recon
f
i
gurabilit
y th
at n
o
t
po
ssib
l
e, it leads secu
rity b
ecau
s
e of
si
ngl
e r
o
un
d
of
encry
p
t
i
on
. R
onal
d
L. R
i
ves
t
et
al
., deal
t
wi
t
h
t
h
e hi
g
h
l
y
r
econ
f
i
g
ura
b
l
e
R
C
5
wi
t
h
vari
a
b
l
e
bi
t
si
ze an
d
key
si
zes 1
2
8
,
2
2
4
,
2
5
6
,
a
r
e
pr
op
os
ed.
The
key
sc
hed
u
l
i
n
g a
n
d
p
s
eu
do
ra
nd
om
gene
rat
o
r i
s
us
ed
fo
r
im
pro
v
i
n
g t
h
e
securi
t
y
o
f
t
h
e
al
go
ri
t
h
m
;
di
fferent
pha
ses ar
e use
d
f
o
r sh
u
f
fl
i
ng t
h
e
dat
a
.
The
dra
w
back
of t
h
i
s
sy
st
em
i
s
speed t
h
at
de
pen
d
s
on
w
o
r
d
si
ze a
n
d
p
r
ovi
des
fe
wer
t
h
r
o
ug
h
put
s.
3.
R
E
SEARC
H M
ETHOD
3.
1. AE
S Al
g
o
r
i
t
hm
Th
e Nation
a
l In
stitu
te of Stan
d
a
rd
s and
Tech
no
log
y
(NIST) h
a
v
e
issued
a call fo
r an
Ad
v
a
n
c
ed
Encry
p
t
i
o
n
St
a
nda
r
d
(
A
ES
) a
l
go
ri
t
h
m
whi
c
h ca
n o
v
e
r
com
e
th
e
dr
aw
b
a
ck
s
o
f
3D
E
S
in
the
year 1997. In
t
h
e
spa
n
of
5 years
NIST recei
ve
d 15 al
go
rithms. In the yea
r
2001
,
NIST sele
cted Rijndeal a
s
the propose
d
AE
S
al
go
ri
t
h
m
.
R
i
jndeal
was
p
r
op
ose
d
by
Dr
. J
o
an
Daem
en a
n
d
Dr.Vi
n
cent
Rijm
en. Both of t
h
e
m
are
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
S
t
ud
y o
f
Da
ta S
ecurity
Algo
rith
ms u
s
i
n
g
Verilo
g
HDL
(M. Su
ma
th
i)
1
094
cry
p
t
o
gra
p
hers
from
B
e
l
g
i
u
m
.
The AE
S al
g
o
ri
t
h
m
i
s
havi
ng a bl
oc
k l
e
ngt
h of
12
8 bi
t
wi
t
h
di
ffe
re
nt
ke
y
si
zes
as 1
2
8
b
it, 19
2 b
it an
d
2
5
6
b
i
ts. Th
e 1
2
8
b
i
t
r
e
q
u
i
r
e
s 10
r
o
u
n
d
s
of
op
er
at
io
n
,
1
9
2
b
it r
e
q
u
i
r
e
s 12
r
ound
s of
ope
rat
i
o
n an
d 25
6 bi
t
req
u
i
r
es 14 r
o
u
n
d
s of o
p
e
r
at
i
ons
. AES use
s
a sym
m
e
t
r
i
c
key and a bl
oc
k ci
phe
r
.
Sy
mm
e
t
ric k
e
y is th
e
k
e
y wh
i
c
h
is sam
e
for
en
cry
p
tio
n
and decry
p
tion. Bl
ock cipher
takes a nu
m
b
er
o
f
b
its
an
d
en
cryp
t the
m
as a
sin
g
l
e u
n
it. AES is n
o
t
a feistel st
ru
ct
u
r
e. Infeistel stru
ctu
r
e used
h
a
lf of th
e d
a
ta to
m
o
d
i
f
y
th
e o
t
her
h
a
lf
an
d th
en
th
e h
a
l
v
es are sw
app
e
d. The ov
er
all
A
E
S
str
u
ctur
e is
show
n in
f
i
gu
r
e
1.
Figure 1.
AE
S Struct
ure
There are
four stages
pr
esent
in each round of AES algori
thm
su
ch as Substitute
bytes, Shift
rows,
M
i
x col
u
m
n
s and
Ad
d r
o
un
d key
.
T
h
e st
r
u
ct
u
r
e i
s
sim
p
l
e
. B
o
t
h
e
n
cry
p
t
i
on an
d dec
r
y
p
t
i
on st
a
r
t
s
wi
t
h
ad
d
ro
u
nd
key
.
It
i
s
fol
l
o
we
d by
9
ro
u
nds
w
h
i
c
h c
onsi
s
t
of al
l
t
h
e fo
ur
st
ages a
nd t
h
e l
a
st
ro
u
nd c
o
nsi
s
t
s
o
f
onl
y
3
stag
es. Mi
x
co
lu
m
n
s will no
t
b
e
th
ere i
n
last
roun
d.
3.
1.
1. Subs
titu
te
Bytes
The substitution bytes are t
h
e
first
stage
in each
round of AES
al
gor
ithm. It is also
known as sub
by
t
e
s. A
E
S
de
fi
nes a
1
6
*
1
6
m
a
t
r
i
x
of
by
t
e
val
u
es
,
whi
c
h
i
s
cal
l
e
d s-
bo
x;
i
t
cont
ai
ns
a perm
ut
at
i
on
of al
l
pos
si
bl
e 2
5
6
8
-
bi
t
val
u
es. Eac
h
i
n
di
vi
d
u
al
by
t
e
of st
at
e i
s
m
a
ppe
d i
n
t
o
ne
w
by
t
e
i
n
t
h
e fol
l
owi
ng
way
-
t
h
e l
e
ft
m
o
st 4 bits are
use
d
as
row va
lue and t
h
e
ri
ght m
o
st 4
bits are
used as c
o
lum
n
value.
3.
1.
2. Shi
f
t
Ro
w
s
T
r
ans
f
orm
a
ti
on
In sh
i
f
t rows, th
e
rows are shifted
.
Th
e first ro
w
will n
o
t
b
e
sh
ifted
.
Seco
nd
ro
w
will be
sh
i
f
ted
b
y
one
by
t
e
ci
rcul
arl
y
i
n
ri
ght
di
rect
i
on;
t
h
i
r
d r
o
w i
s
shi
f
t
e
d b
y
t
w
o by
t
e
s ci
rcul
arl
y
ri
gh
t, fo
urth
row is sh
ifted
by
3
by
t
e
s ci
r
c
ul
arl
y
i
n
ri
gh
t
di
rect
i
o
n
.
I
n
i
nve
rse
s
h
ift
rows, t
h
e rows are s
h
if
ted circu
l
arly in
o
p
p
o
s
ite
d
i
rection
.
Th
e
first ro
w
will no
t b
e
sh
ifted. Seco
nd
row is
circu
l
arly sh
ifted
b
y
o
n
e
b
y
te in
left d
i
rection. For
t
h
i
r
d
r
o
w
,
a
2
-
by
t
e
ci
rcul
a
r
ri
ght
shi
f
t
i
s
pe
rf
orm
e
d. F
o
r fourth
row, a
3
-
b
y
te circu
l
ar left
sh
ift is
p
e
rfo
rmed
.
3.
1.
3.
Mi
x
C
o
l
u
mns T
r
ans
f
o
rmati
on
In
m
i
x
co
lu
m
n
, th
e tran
sformatio
n
is p
e
rformed
o
n
co
l
u
mn
s of th
e
m
a
tri
x
. Th
e
first co
lu
m
n
will n
o
t
b
e
ch
ang
e
d
.
The rem
a
in
in
g
colu
m
n
s will b
e
ch
ang
e
d
in th
e fo
llo
wi
n
g
fo
rm
at.
A’ =
(
A
*0
2)
x
o
r
(B
*0
3)
x
o
r
(
C
*0
1)
x
o
r
(
D
*
0
1
)
(1
)
B’
=
(
A
*0
1)
xo
r (
B
*
0
2
)
xor
(C*
0
3
)
xor
(D*0
1)
(
2
)
C’
=
(
A
*0
1)
xo
r (
B
*
0
1
)
xor
(C*
0
2
)
xor
(D*0
3)
(
3
)
D’ =
(
A
*0
3)
x
o
r
(B
*0
1)
x
o
r
(
C
*0
1)
x
o
r
(
D
*
0
2
)
(4
)
Th
e
m
u
ltip
licatio
n
with
(02) can
b
e
p
e
rfo
rmed
as, 1
b
it
left
sh
ift
of th
e g
i
v
e
n 8 b
it
d
a
ta
an
d th
en
a b
i
t
w
ise
x
o
r
o
p
e
ration
with (0
001
1
011
) if th
e leftm
o
st b
it of t
h
e
o
r
i
g
in
al
v
a
lu
e is 1
b
e
fo
re th
e sh
ift. If th
e leftm
o
st b
it is
n
o
t
1
b
e
fo
re the sh
ift th
en
th
e v
a
lu
e shou
ld
b
e
left as
it
is
after th
e sh
ift.
Th
e m
u
ltip
lica
tio
n
of x
with
(03
)
is
p
e
rf
or
m
e
d
as {x
x
o
r
(
x*0
2)
}.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
109
2
–
11
01
1
095
3.
1.
4. Ad
d Round Key
Tran
sfor
mation
In a
d
d r
o
un
d
key
t
r
an
sf
orm
a
t
i
on, t
h
e 1
2
8
b
i
t
s
are X
O
R
e
d
wi
t
h
12
8
bi
t
s
of t
h
e r
o
un
d
k
e
y
and
the operati
ons
is give
n
in eqn. (5).
S
’
=
S
x
o
r
R
(
5
)
whe
r
e
S’
rep
r
ese
n
t
s
t
h
e st
at
e aft
e
r a
ddi
ng
r
o
un
d
ke
y
S
re
prese
n
t
s
t
h
e st
at
e
bef
o
re
addi
ng
r
o
un
d
k
e
y
an
d R r
e
pr
esents th
e
r
oun
d key
3.
2. R
C
5
Al
go
ri
thms
R
C
5
al
go
ri
t
h
m
i
s
a bl
ock
sy
m
m
e
t
r
i
c
ci
phe
r. It
uses
num
ber
of
vari
a
b
l
e
ro
un
ds
, va
ri
abl
e
key
s
an
d
vari
a
b
l
e
dat
a
b
i
t
s
. In bl
ock ci
phe
r t
h
e sam
e
secret
key
i
s
u
s
ed i
n
t
h
e e
n
cr
y
p
t
i
on a
nd
dec
r
y
p
t
i
o
n. S
o
i
t
sho
u
l
d
pr
o
duce m
o
re
secure
w
h
en c
o
m
p
ared t
o
ot
her al
go
ri
t
h
m
.
Pl
ai
nt
ext
an
d c
i
phe
r t
e
xt
are
f
i
xed l
e
n
g
t
h
se
que
nce
use
d
i
n
t
h
e
bl
o
c
k ci
p
h
e
r
. R
C
5
al
go
ri
t
h
m
has
a t
w
o
w
o
rd
si
ze o
f
i
n
p
u
t
an
d
m
a
ki
ng
o
f
64
bi
t
w
o
r
d
ci
phe
r t
e
x
t
and also sam
e
in dec
r
ypte
d
plain text. The
r
e
are four
types
of pa
ram
e
ters are
used in t
h
e
RC5 algorithm
such
as,
(i) W
o
rd
(
W
)
It
speci
fi
es t
h
e
vari
abl
e
num
ber o
f
w
o
r
d
si
ze
i
n
bi
t
s
. The c
hoi
ces l
i
k
e
16
,
32 a
nd
6
4
are
used i
n
t
h
e
Rc5
algo
rit
h
m
.
(ii) Ro
unds
(r)
It
speci
fi
es t
h
e
vari
abl
e
num
ber of
ro
u
n
d
s
.i
t
use
d
t
o
im
pro
v
e
t
h
e securi
t
y
and s
p
ee
d. T
h
e
num
ber o
f
ro
u
nds
i
s
0, 1,
2, 3…
…2
5
5
.
(iii) By
te (b)
It
i
s
not
hi
n
g
b
u
t
t
h
e vari
abl
e
num
ber of bi
t
s
and secret
ke
y
used i
n
t
h
e encry
p
t
i
on a
nd
decry
p
t
i
o
n
.
That
’s
w
h
y
we
use
d
‘b
’
a
n
d u
s
ed 0,
1
,
2….
2
55
.
(i
v)
Ke
y
(K)
The secret
ke
y array use
d
is K[0], K[1]
…..K[b-1
]. RC5 does not s
ecure
while we dint use a
n
y
num
ber
of c
hoi
ces. It
s
h
o
u
l
d
h
a
ve at
l
east
on
e ro
u
nd t
o
be
u
s
ed. S
o
t
h
e m
i
ni
m
u
m
nu
m
b
er o
f
p
o
ssi
bl
e i
s
gi
ve
n
as, w-
32
, r-
12
an
d k-
16
.Th
e
se ar
e
w
i
d
e
ly used
in th
e RC5 encry
p
tion and it can
pr
ovide m
o
re secure
whi
l
e
usi
n
g t
h
ese c
o
m
b
i
n
at
i
on. T
h
e
r
e are
t
h
ree i
m
po
rt
ant
pri
m
i
t
i
ve
param
e
t
e
rs are
gi
ve
n
bel
o
w:
1. A
d
di
t
i
on:
It
’
s
used t
o
ad
d t
w
o
num
bers a
nd t
a
ki
n
g
a t
w
o’s c
o
m
p
l
i
m
e
n
t
. In re
ver
s
e o
p
e
rat
i
o
n
,
i
t
i
s
use
d
t
o
su
bt
rac
t
t
w
o
n
u
m
b
ers.
2
.
Ex
-OR op
eratio
n
:
It p
e
rform
s
th
e XOR o
p
e
ratio
n
after ad
d
itio
n. Same XOR op
erati
o
n
is u
s
ed
du
ri
n
g
t
h
e decr
y
p
t
i
on si
de fo
r get
t
i
ng
c
o
rrect
com
b
i
n
at
i
on of
t
h
e
i
n
p
u
t
a
n
d
out
put
.
3
.
Sh
ift
op
erati
o
n or Ro
tation
:
Af
ter XOR, it
is u
s
ed
sh
ift operatio
n
and
takin
g
left and
ri
gh
t ro
tatio
n.
While enc
r
yption, righ
t rotation (x<<<y) a
n
d left rotation
(x>>>y) is
use
d
during de
cry
p
tion. Rc5 algorithm
di
vi
de
d i
n
t
o
t
h
ree
part
s.
1. Key
e
xpa
nsi
o
n
2. Enc
r
y
p
t
i
o
n
a
l
go
ri
t
h
m
3. Dec
r
y
p
t
i
o
n al
go
ri
t
h
m
3.
2.
1. Key
E
x
pansi
o
n
Key
ex
pansi
o
n
depe
n
d
s o
n
t
h
e vari
abl
e
num
ber
of r
o
u
nds
. R
a
nd
om
bi
nar
y
di
gi
t
s
are arr
a
nge
d i
n
t
h
e
S t
a
bl
e a
rray
.
I
t
’s gi
ven
bel
o
w
t
=
2
(
r
+
1
)
(
6
)
whe
r
e t
de
not
e
s
t
h
e si
ze
o
f
t
h
e t
a
bl
e a
n
d r
d
e
not
es th
e
nu
mb
er of
r
oun
d
s
in
th
e Rc5 algo
rith
m
P
w
=
o
d
d
(
(
e
-
2
)
2
w
)
(
7
)
Qw
=
od
d(
(
φ
-
1
)
2
w
)
(
8
)
W
h
er
e, e =
2
.
71
828
182
845
9… (b
ase
of
n
a
tu
r
a
l l
o
g
a
r
ith
m
s
)
,
Φ
= 1
.
61
8033
988
749
… (g
old
e
n
r
a
tio),
Od
d(
x
)
= o
d
d
i
n
t
e
ge
r nea
r
est
t
o
x
.
F
o
r
w = 1
6
an
d
32 i
n
he
xadeci
m
a
l
for
m
,
t
h
e val
u
es a
r
e P
16 i
s
e
qui
v
a
l
e
nt
t
o
b7e
1,
Q
1
6 i
s
equal
t
o
9e
37
,
P3
2i
s e
q
ual
t
o
b7e
1
5
1
6
3
a
n
d
Q
3
2 i
s
e
q
u
a
l
t
o
9e3
7
7
9
b
9
.
The
t
h
ree st
eps a
r
e
ap
p
lied as, Secret k
e
y con
v
e
rsio
n
fro
m
b
y
tes to
word
s, In
itializatio
n
of array S and
Mi
x
i
ng
o
f
th
e secret
k
e
y.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
S
t
ud
y o
f
Da
ta S
ecurity
Algo
rith
ms u
s
i
n
g
Verilo
g
HDL
(M. Su
ma
th
i)
1
096
3.
2.
2. E
n
cry
pt
i
o
n
Al
g
o
ri
thm
The a
r
chitecture of RC5 en
cr
yp
tio
n is sh
own
in
f
i
g
u
r
e
2
.
The pr
o
c
edu
r
e
is ex
pressed
with
arith
m
e
tic
ope
rat
i
o
ns a
r
e
gi
ve
n.
Fi
gu
re 2.
A
r
chi
t
ect
ure of
R
C
5 Encry
p
t
i
o
n
Tw
o
bi
t
w
o
r
d
s
are
di
vi
de
d i
n
t
o
A a
n
d
B
a
n
d
pr
ocesse
d i
n
e
quat
i
o
ns
A
=
A
+
S
[
0
]
;
(
9
)
B
=
B
+
S
[
1
]
;
(
1
0
)
fo
r i =
1 t
o
r
do
A =
(
(
A
⊕
B
) <<< B
) +
S[
2
* i ];
(11)
B = (( B
⊕
A) <<< A ) + S[
2
* i +
1];
(12)
The
o
u
t
p
ut
val
u
es a
r
e st
ore
d
i
n
t
h
e
re
gi
st
er a
n
d
i
n
p
a
rticu
l
ar ro
und
h
a
lf
o
f
th
e inpu
t is
u
pgrad
ed
.
3.
2.
3. Decr
yp
t
i
on Al
g
o
ri
thm
The
decry
p
t
i
o
n
al
go
ri
t
h
m
can be
deri
ve
d
fr
o
m
encry
p
t
i
on a
l
go
ri
t
h
m
and i
t
s
arc
h
i
t
ect
ure i
s
sh
ow
n i
n
fig
u
re 3 f
o
r
i
=
r d
o
w
n
t
o
1 do
B = ((B – S[2
* i +
1]) >>>
A)
⊕
A
;
(
1
3
)
A =
((A
–S[2 * i] >>> B)
⊕
B
;
(
1
4
)
B
=
B
-
S
[
1
]
;
(
1
5
)
A
=
A
-
S
[
0
]
;
(
1
6
)
The out
put values
are
stored in
the
register in
each round and
t
h
e am
ount of rotation is not
found.
So,
the rounds are diffe
rent
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
109
2
–
11
01
1
097
Fi
gu
re 3.
R
C
5
Decry
p
t
i
o
n
3.
3. SH
A Al
g
o
r
i
t
hms
C
r
y
p
t
o
gra
p
hy
refe
rs t
o
t
h
e sc
i
e
nce of e
n
c
o
m
p
assi
ng t
h
e m
e
t
hod
of co
n
v
ert
i
n
g a g
r
asp
a
bl
e m
e
ssage
i
n
t
o
one t
h
at
u
n
g
r
as
pabl
e a
n
d
reco
n
v
ert
i
n
g t
h
e m
e
ssage ba
ck t
o
i
t
s
ori
g
i
n
al
fo
rm
. In p
r
e
s
ent
day
’
s m
oder
n
electronic ope
r
ations
used
are E-m
a
il,
Internet ba
nk
i
n
g, do
cu
m
e
n
t
tr
an
sf
er
, on
l
i
n
e
sh
opp
ing
,
etc.
Cryp
tog
r
aph
y
h
a
s in
cli
n
ed
a
v
ital ro
le
for safegu
ard
o
f
d
a
ta co
nv
ersion
.
Hash task
m
a
pp
ing
th
e m
e
ssa
g
e
of
erratic leng
th t
o
a string
of
fix
e
d leng
th, cal
led
th
e m
e
ssag
e
Hash
or
d
i
g
e
st. In
20
02
, th
e n
a
tion
a
l institu
te
o
f
sci
e
nce a
n
d
t
echn
o
l
o
gy
(N
IS
T)
pu
bl
i
s
he
d t
h
e S
H
A,
w
h
ich s
p
ecifies t
h
ree ne
w sec
u
re
has
h
algorithm
s
SHA-
22
4,
2
5
6
,
S
H
A-
38
4,
S
H
A
-
5
1
2
.
Has
h
Fu
nct
i
o
ns
(o
r)
t
a
sk
p
r
om
ot
e at
t
h
e o
r
i
g
i
n
o
f
m
a
ny
fam
ous cry
p
t
o
gra
p
hy
app
r
oaches i
n
Di
gi
t
a
l
Si
gnat
u
re St
a
nda
r
d
(
D
SS
), M
e
ssa
g
e
Aut
h
ent
i
cat
i
on C
ode
s (M
A
C
’s), et
c.
, Ha
shi
n
g i
s
th
e bu
ild
ing
blo
c
k
s
o
f
Secrete-k
e
y en
cryp
tio
n. Ot
h
e
r
u
tilizatio
n
o
f
h
a
sh
task
in
cl
u
d
e
s Rand
o
m
No
ise
Gene
rat
i
o
n (R
NG
), fa
st
est
encry
p
t
i
on a
nd
pass
wo
rd
de
po
t
and ve
ri
fi
cat
i
on. T
h
ese a
r
e
wi
del
y
sprea
d
i
n
t
o
Hi
pe
rLA
N
an
d
wi
rel
e
ss
pr
ot
o
c
ol
s
(
W
AP
)
ha
ve m
e
nt
i
one
d
securi
t
y
l
a
y
e
rs
an
d c
r
y
p
t
o
g
r
a
phi
c
schem
e
s.
Hash
task
is
m
a
in
ly
u
s
ed
to
g
u
a
rd
fu
n
c
tion
of pu
ri
ty. Th
ey also
p
r
ov
id
e th
e
g
u
a
rd
o
f
au
th
en
ticatio
n
,
wh
en
th
ey are
u
s
ed
in
co
m
b
in
atio
n
with
d
i
gital sig
n
a
tu
re an
d
MAC
algorith
m
s
. These algorithm
s
are c
onsta
nt and one-way
fu
nct
i
o
ns t
h
at
i
n
p
u
t
m
e
ssage and
out
put
m
e
ssage di
gest
. It
processes the
data in differe
n
t stages (i) message
filler (or)
padding, (ii) m
e
ssage
e
x
tensi
o
n, (i
ii) m
e
ssage squeezing
3.
3.
1
.
Mess
age
Filler (or
)
P
a
dding
The bi
nary
m
e
ssage i
s
t
o
be
pr
ocesse
d,
whi
l
e proce
ssi
n
g
m
e
ssage ap
pen
d
ed
wi
t
h
a “1”
and
pad
d
e
d
wi
t
h
zer
os
u
p
t
o
i
t
s
l
e
ngt
h
44
8 m
odul
o
5
1
2
t
h
at
nam
e
d as M
(M
=5
12
or
10
2
4
)
.
The
has
h
com
put
at
i
o
n
uses a
dat
a
as va
ri
abl
e
, co
nst
a
nt
, al
geb
r
ai
c o
p
e
r
at
i
ons
. S
H
A
-
2
a
l
go
ri
t
h
m
s
appl
i
e
d f
o
r
SH
A-
2
2
4
,
2
5
6
,
5
1
2
.
It
di
ffe
rs
m
o
stl
y
in
th
e si
ze of
o
p
e
r
a
nd
s, u
s
i
n
g 64
-b
it wo
rd
s i
n
stead of
3
2
-b
it.
3.
3.
2. Mess
a
g
e
E
x
te
nsi
o
n
SHA-256 algorithm operate
on
32-bit words each 512-bit M
(i)
bl
ock f
r
o
m
t
h
e pre-
pr
oces
si
ng st
age i
s
16
32
-
b
i
t
bl
oc
ks de
n
o
t
e
d M
(i)
is 0< to < 15. The m
e
ssage schedule
r takes each M(i) a
nd e
x
pands it into
64
num
ber
of
32
-
b
i
t
bl
oc
ks
. T
h
e
p
r
oces
s i
s
s
h
o
w
n
i
n
e
q
uat
i
o
n
s
(
1
7
)
-
(
2
6
)
.
(x
0
)=ROT
7
(x
)
xo
r R
O
T
18
(x
) x
o
r
SH
F
3
(
x
)
(
1
7
)
(x
1
)=RO
T
17
(
x
) xor
ROT
19
(
x
) xor
SH
F
10
(
x
)
(
1
8
)
W
t
={X
1
(W
t-2
) + W
t-7
+X
0
(W
t-1
5
) +
W
t
-
1
6
(1
9)
Whe
r
e R
O
T
n
(
x
) de
n
o
t
e
s t
h
e ci
rcul
ar
r
o
t
a
t
i
on
of
x
by
n
p
o
si
t
i
ons
t
o
t
h
e ri
ght
an
d S
H
F
n
(
x
) d
e
not
es t
h
e
righ
t sh
i
f
tin
g of
x
b
y
n po
sition
s
.
Ad
d
ition
s
i
n
th
e SHA-2
56 alg
o
rith
m
are
Mo
du
lo 2
32
.
3.
3.
3. Mess
a
g
e
Squeez
i
n
g
The W
t
words
from
the m
e
s
s
age e
x
tensi
o
n stage a
r
e
pass
ed to SHA squeezi
ng function
(or) SHA
core
. T
h
e c
o
re
use
d
8
n
u
m
b
er
of
3
2
-
bi
t
w
o
rk
i
ng
vari
a
b
l
e
s t
h
at
are
A,
B
,
C
,
D
,
E,
F,
G,
H
.
Tot
a
l
l
y
, 6
4
r
o
un
ds
of the
Squeezi
ng func
tion are
pe
rform
e
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
S
t
ud
y o
f
Da
ta S
ecurity
Algo
rith
ms u
s
i
n
g
Verilo
g
HDL
(M. Su
ma
th
i)
1
098
T
1
=H +
X
1
(E)
+ Ch
(E,
F
,
G
)
+
K
t
+ W
t
(2
0)
T
2
=X
0
(
A
)
+
M
a
j
(
A
,
B
,
C
)
(
2
1
)
The c
o
nstraints
are,
H=
G
G=F
F=
E
E=D+ T
1
D=C
C=B
B=
A
A= T
1
+ T
2
W
h
er
e
Ch(
x
,y,z
)=(
x
AN
D y)
xor (
x
ba
r
AN
D z
)
(22)
Maj
(
x
,
y,z)
=(x
A
N
D
y) xor
(x AN
D z)
xo
r (
y
AN
D z)
(
2
3
)
(x
0
)=RO
T
2
(
x
) xo
r
R
O
T
13
(x
) x
o
r
RO
T
22
(
x
)
(
2
4
)
(x
1
)=RO
T
6
(
x
) xo
r
R
O
T
11
(x
) x
o
r
RO
T
25
(
x
)
(
2
5
)
The
fi
nal
25
6
-
bi
t
o
u
t
p
ut
i
s
f
o
rm
ed by
co
nca
t
enat
i
ng t
h
e
fi
n
a
l
has
h
val
u
e i
s
H
(N)
= H
0
(N)
& H
1
(N)
&
H
2
(N)
&
….H
7
(N)
(2
6)
3.
3.
4. Op
ti
mi
za
ti
on Technique
CSA se
parates
the sum
and carry root and the
ca
rry
pr
opa
gat
i
o
n
t
ech
ni
q
u
e is carried out
for
min
i
mizin
g
th
e d
e
lay. Th
e tech
n
i
q
u
e
s are Unro
lling
an
d Pipelin
in
g
.
(i)
Unro
lling
This unrolling technique
pe
rform
s
m
u
ltiple rounds of t
h
e squeezi
ng
function i
n
c
o
m
b
inational logi
c
,
for co
m
p
u
t
e the h
a
sh
fu
n
c
ti
o
n
it will tak
e
less no
of clo
c
k
cycles. Ex
: core was
u
n
ro
lled
o
n
ce; t
h
e h
a
sh
sh
ou
l
d
be calculated in half of the clock cycles. It decreases
t
h
e cl
ock f
r
e
que
ncy
.
The fast
pi
pel
i
n
i
n
g can be u
s
ed fo
r
reg
i
sters t
o
break
th
e long
cri
tical p
a
th
with
in
th
e SHA
core. Ex
tern
al con
t
ro
l circu
itry
is requ
ired
t
o
en
ab
le
t
h
e re
gi
st
ers
c
o
r
r
ect
l
y
. Pi
pel
i
ned
de
si
g
n
s ac
hi
eve
ve
ry
sh
ort critical p
a
ths, allowing
messag
e
h
a
sh
es
to
be
cal
cul
a
t
e
d at
hi
gh
f
r
eq
ue
nci
e
s
and
hi
gh
dat
a
t
h
r
o
ug
h
put
s.
(ii)
Pip
e
lin
ing
The structure of SHA algor
i
t
h
m
i
s
shown i
n
fi
g
u
re 4
In S
H
A-
25
6 al
g
o
ri
t
h
m
,
t
h
e
m
a
jori
t
y
and ch
oi
ce
fun
c
tion
p
l
ays
a m
a
j
o
r
ro
le. B
o
th
t
h
e
fun
c
tion
s
are co
m
p
ressio
n un
it of
SHA algo
rith
m
.
It
will co
m
p
ress th
e
5
12- b
its to
256
of th
e
ou
tpu
t
with
ciph
er text. Th
e L
FSR co
un
ter
op
er
ates b
a
sed
on
D
-
Flip
f
l
op
s, Seed
v
a
lu
es
and
EX
-OR
o
p
e
rat
i
o
n
,
t
h
e see
d
val
u
e i
s
t
h
e
key
f
o
r
ge
nerat
i
ng t
h
e seq
u
e
n
ce of
dat
a
.
Th
e shi
f
t
re
gi
st
er
st
ore
s
th
e first seed
valu
e, rem
a
in
in
g
reg
i
sters are
zero
con
d
ition
.
In
th
e i
n
itial c
o
nd
itio
n
no
operatio
n
s
p
e
rfo
r
med
i
n
t
h
e regi
st
e
r
s.
The see
d
val
u
e shi
f
t
e
d t
o
ne
xt
regi
st
er
f
o
r
pr
ocess t
h
e
p
s
eu
do
ran
d
o
m
out
put
. T
h
i
s
t
y
pe of
Pseu
do
ra
nd
o
m
generat
o
r i
s
used
f
o
r i
m
prove t
h
e secu
r
ity. Carry Sav
e
Add
e
r is on
e
o
f
th
e
fastest
ad
d
e
rs
a
m
o
n
g
th
e all
o
t
h
e
r add
e
rs in arith
m
e
tic o
p
e
ratio
n
s
.
Add
e
r
will p
r
o
cess t
h
e d
a
ta d
e
p
e
n
d
s o
n
th
e
well b
a
lan
ced
carry save a
d
der. It processes the out
put
until it recei
ves the carry from
previo
us addition output. This
ad
d
ition
took
m
o
re ti
m
e
to
p
r
o
cess th
e en
tire d
a
ta.
Fi
gu
re 4.
S
HA al
go
ri
t
h
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
109
2
–
11
01
1
099
4.
RESULTS
A
N
D
DI
SC
US
S
I
ONS
The
AES al
g
o
ri
t
h
m
i
s
im
p
l
em
ent
e
d usi
n
g Ve
ri
l
o
g an
d
sim
u
l
a
t
e
d usi
ng M
o
del
Si
m
6.3
g
. T
h
e
sim
u
l
a
t
i
on of
e
n
cry
p
t
i
on a
n
d
decry
p
t
i
on
of
12
8
-
bi
t
AE
S al
go
ri
t
h
m
has be
en d
o
n
e.
SA
TH
YA
BAM
A
i
s
a 1
28
bi
t
dat
a
w
h
i
c
h
i
s
consi
d
ere
d
as t
h
e pl
ai
n t
e
xt
i
n
t
h
i
s
si
m
u
l
a
t
i
on.
A 1
28
bi
t
key
ha
s bee
n
gi
ven
fo
r t
h
i
s
sim
u
l
a
t
i
on. B
o
t
h
t
h
e pl
ai
n t
e
x
t
and key
are g
i
ven as i
n
p
u
t
t
o
t
h
e encry
p
t
i
o
n pr
oce
d
u
r
e. B
o
t
h
t
h
e pl
ai
n t
e
xt
and
the key
will unde
rgo all the
encry
p
tion sta
g
es in
AES
algorithm
.
The s
i
m
u
lation gra
p
h for e
n
c
r
yption
a
nd
decry
p
t
i
on
o
f
AES al
go
ri
t
h
m
i
s
show
n i
n
fi
gu
re
5 an
d fi
gu
re
6. T
h
e out
put
of
en
cry
p
t
i
o
n p
r
oce
d
u
r
e i
s
MTBAO
H
YB
AA
. Th
is tex
t
is g
i
v
e
n
as i
n
pu
t to
th
e d
e
cryp
tio
n alon
g
wi
th
128
-b
it k
e
y. Th
e ci
p
h
e
r tex
t
and
th
e k
e
y
will u
n
d
e
rgo
all th
e decryp
tion
stag
es in
AES al
g
o
rith
m
.
After
d
e
cryp
tion
we can retriev
e
t
h
e
o
r
ig
in
al
pl
ai
n t
e
xt
.
Use
of
pi
pel
i
n
i
n
g
regi
st
ers i
n
cre
a
ses t
h
e
s
p
eed of
AES algorith
m
.
Th
is wil
l
reduce the
powe
r
co
nsu
m
p
tio
n
.
Th
e RC
5
algo
rith
m
is i
m
p
l
e
m
en
ted
in
t
h
e sam
e
p
l
atfo
rm
. Th
e simu
latio
n of the RC5
en
cry
p
tio
n and d
e
cryp
tion
o
f
6
4
b
it is sho
w
n in
figu
re
7
.
Fig
u
re 5
.
AES En
cry
p
tio
n
resu
lt
Fig
u
re 6
.
AES Decry
p
tio
n
resu
lt
Fi
gu
re
7.
Enc
r
y
p
t
i
on a
n
d
Dec
r
y
p
t
i
o
n re
sul
t
o
f
R
C
5
Th
e in
pu
t of th
e 64
b
it p
l
ain tex
t
is ab
cd
efg
h
an
d
it is d
i
v
i
d
e
d
in
to
two 3
2
b
its. In
encryp
tion
,
32
b
l
o
c
k
s
and
1
6
roun
d
s
are u
s
ed
an
d th
e
sam
e
b
l
o
c
k
s
and
rou
n
d
s
are u
s
ed
i
n
th
e
d
e
cryp
tion
,
fo
r g
e
ttin
g
orig
in
al
64
bi
t
pl
ai
n t
e
xt
. Thi
s
al
g
o
ri
t
h
m
i
s
im
p
l
em
ent
e
d i
n
Q
u
art
u
s II V
9
.
0
. The
Hashi
n
g an
d
R
e
hashi
ng
res
u
l
t
are
m
e
nt
i
oned i
n
f
i
gu
re 8 a
nd fi
gu
re 9
,
t
h
e pl
ai
n t
e
xt
of
51
2 -
b
i
t
s
gi
ve
n i
n
t
o
t
h
e i
n
p
u
t
of S
H
A-
25
6, i
n
p
u
t
i
s
pr
ocesse
d
by
8
bl
oc
ks
of
3
2
-
b
i
t
s
u
p
t
o
6
4
i
t
e
rat
i
ons
, a
nd t
h
e d
a
t
a
’s a
r
e t
e
m
pora
r
i
l
y
st
ored i
n
t
o
t
h
e 8
bl
oc
k
s
(A, B
,
C
,
D
,
E, F,
G,
H) t
h
e bl
ock
dat
a
’
s
are com
b
i
n
e
d
t
o
get
h
e
r
t
o
fo
rm
a 256-
bi
t
s
out
p
u
t
o
f
a
SH
A
al
go
ri
t
h
m
.
The sam
e
way
ci
pher t
e
xt
i
s
capt
u
re
d an
d ga
ve t
o
t
h
e i
n
p
u
t
of rehas
h
i
n
g, t
h
e
out
put
o
f
ori
g
i
n
al
t
e
xt
will
app
ear
in
th
e o
u
t
p
u
t
of Reh
a
sh
i
n
g
SHA fun
c
tion
.
Fi
n
a
lly, th
e
orig
i
n
al
p
l
ain
tex
t
is conv
erted
in
t
o
ci
p
h
e
r
t
e
xt
an
d r
e
t
r
i
e
ves t
o
o
r
i
g
i
n
al
pl
ai
n t
e
xt
. T
h
i
s
al
go
r
ith
m
i
m
p
l
em
en
ted
in
Qu
artu
s II
V9.0
an
d Mod
e
lsim
6
.
4
a
fo
r si
m
u
l
a
t
i
ons an
d
per
f
o
r
m
a
nce fact
o
r
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
S
t
ud
y o
f
Da
ta S
ecurity
Algo
rith
ms u
s
i
n
g
Verilo
g
HDL
(M. Su
ma
th
i)
1
100
Fig
u
r
e
8
.
En
cryp
tio
n
r
e
su
lt of SHA
-
25
6
Fi
gu
re
9.
R
e
ha
shi
n
g
o
u
t
p
ut
o
f
SH
A-
2
5
6
5.
CO
NCL
USI
O
N
In t
h
i
s
pape
r, a
soft
wa
re f
r
am
ewo
r
k fo
r t
h
e i
m
pl
em
ent
a
t
i
on of dat
a
sec
u
ri
t
y
al
gori
t
h
m
s
i
s
descri
bed
.
Three
di
ff
ere
n
t
al
gori
t
h
m
s
have bee
n
t
a
ke
n i
n
t
h
i
s
st
udy
a
n
d i
t
s
im
pl
em
ent
a
t
i
ons are anal
y
zed i
n
Qu
art
u
s – I
I
soft
ware
. T
h
e
encry
p
t
i
on a
n
d
decry
p
t
i
o
n
ar
e desi
g
n
e
d
u
s
i
ng
Ve
ri
l
og
H
D
L a
nd
si
m
u
lat
e
d usi
ng M
o
del
S
i
m
.
Am
ong t
h
ese t
h
ree al
go
ri
t
h
m
s
, S
H
A
-
2
5
6
i
s
m
o
re com
p
at
i
b
l
e
fo
r p
r
ocessi
ng
l
e
n
g
t
h
y
dat
a
an
d i
t
p
r
o
v
i
d
es hi
g
h
secu
rity. Th
e
syste
m
sa
tisfies all
th
e requ
irem
en
ts an
d th
e resu
lts prov
en
its reli
ab
ility fo
r th
e d
a
ta
transm
ission.
REFERE
NC
ES
[1]
Manjesh K.N, R.K. Karunavath
i. “Secured High
Throughput Impl
ementation of AES algorithm”.
IJ
A
R
C
S
SE
. 2013;
3: 1193-1198.
[2]
M. Vanitha, R.
Sa
kthivel, Subha. “
Highly
Secur
e
d High Throughput VLSI Architectur
e for AES algorithm”.
I
EEE
.
2012; 1(7): 403-
407.
[3]
Ritu Pah
a
l,
Vika
s Kum
a
r. “
E
ffi
c
i
ent Im
plem
ent
a
tion of AES”.
I
J
ARCSSE
. 2013; 3(
7): 290-295.
[4]
Abdulkarim Amer Shtewi, B
a
haa Eldon
M Has
a
n, Abd El Fatah A Hegazy
.
“
A
n Efficient M
odified Advan
c
ed
Encr
ypt
i
on S
t
an
dard (M
AES
)
A
d
apted
for Im
ag
e Cr
yptos
y
s
t
em
s
”
.
I
J
CSNS
. 2010
; 10(2): 226-232.
[5]
Xinmiao Zhang, Keshab K Parh
i. “High-Speed
VLS
I
Architectu
r
es
for the AES
Algorithm
”
.
IEEE
. 2004; 12(9
)
:
957-967.
[6]
B. Santhi, K.S.
Ravich
andran
, A.P.
Arun, L. Chakkrapani. “A No
vel Cr
y
p
tograph
i
c Key
Gen
e
ration Method Usin
g
Im
age F
eatu
r
es
”
.
Research
Journal of Informatio
n Technolog
y
. 2
012; 4(2): 88-92.
[7]
M
r
. Vikas
T
y
ag
i. “
D
ata Hiding
in Im
age Us
ing
least signif
i
c
a
nt
bit with Cr
ypto
graph
y
”.
I
J
ARC
SSE
. 2012; 2(4):
120-123.
[8]
Mostafa Abd-El-Barr, Altaf Al-
F
arha
n. “
A
Highl
y
Para
lle
l Are
a
Effic
i
ent S-Box Architec
t
ure
for AES Byte-
Substitution”
.
I
A
CSIT Internation
a
l Journal
of En
gineering
and T
echnolog
y
. 2014
; 6(5): 346-350.
[9]
M. Narasimhulu, S. Maha
boob Basha, P. Chand
r
a Sekhar. “Har
dwar
e Implementation of
High Performance
AES
using Minimal R
e
sources”.
IJER
, 2014; 3(2)
: 68-7
2
.
[10]
Mr. Shelke R.B
,
Mrs. Patil A.P, Dr
. Pa.il S.B
.
“VLSI Based Implem
en
tation of
Single Round AES Algorithm
”
.
IOSR Journal of
Electronics
and
Communication Engineering
. 20
09; pp. 63-67.
[11]
P
r
avin Kawle,
Avinas
h Hiwas
e
, Gautam
Bagde
, Ekant T
e
kam
,
Rahul Kalband
e
.
“
M
odified Advanced En
cr
ypt
i
o
n
Standard”.
IJ
S
C
E
. 2014
; 6(1)
: 1
20-129.
[12]
T. R
a
hman, S. Pan, Q. Zh
ang. “
Design of a Hig
h
Throughput 128-bit AES (
R
ijnd
e
al Block Ciph
er
)”. Proceed
ings
of
International Mu
lti Conf
eren
ce of
Engin
eers
and
Com
puter Scien
t
ists. 2010;
2.
[13]
Stallings W
.
Cryptography and N
e
twork S
ecurity
.
Third
Edition, Pearson Edu
c
atio
n, 2003
[14]
Julia
Juremi, Ramlan Mahmod
Salasi
ah Sulaiman Jazrin Ramli. “Enhanc
ing AES
s-box generation
based on Round
key
”
.
Internatio
nal Journal of C
y
ber-
Security an
d Digital Forens
ics
. 2012
, 1(3
)
: 1
83-188.
[15]
M. Gnanambika, S. Adilakshmi,
Dr. F
azal Noorb
a
sha. “AES-128
Bit Algorithm
Using Fully
Pipelined Architecture
for S
ecr
et Com
m
unication
”
.
International Journ
a
l of Engin
eerin
g Research
and
Applica
tions
. 3(
2): 166-169.
[16]
Algredo-Badillo, C.Feregrino-U
r
ib
e, R
.
Cumplido, M. Mo
rales-Sa
ndoval. “FPGA-based
implementatio
n
alternatives for
the inner loop
of the Secur
e
Hash Algorithm SHA-256”.
Journal of Microprocessors an
d
Micr
os
ys
tems
. 2
013; 37: 750-75
7.
[17]
Robert. P,
McE
v
o
y
, Francis
.
M,
Crowe, Colin C
.
Murph
y
and W
illi
am
P. Marna
n
e. “
O
ptim
isatio
n of the SHA-2
Family
o
f
Has
h
Functions o
n
FPGAs”.
International Sym
posium of Em
erging VLSI T
echnolog
ies an
d
Ar
chit
ectur
es
. 2
006.
[18]
M. Zeh
i
d, B. Bouallegue, M.
Machhout, A. B
a
ganne, R
.
Tourki.
“Archit
ectur
al d
e
sign featur
es of
a progr
ammable
high throughput reconfigur
able
SHA-2 processo
r”.
Journal of
in
formation Assurance and security
. 2008; 2: 147-
158.
[19]
O. Koufopavlou. “Implemenati
on of the SHA-2 hash family
standard using FPGA’s”.
The journal of
Supercomputing
. 2005; 31(3)
: 22
7-248.
[20]
S. Duclo
y
er, R
.
Vaslin, G. Gogniat, E.Wand
erly
. “
Hardware implementa
tion of
mu
lti-mode hash architec
t
ure fo
r
MD5, SHA-1 an
d SHA-2
”. Work
shop on Design
and Architectures
for Signal and
Image Processin
g
. 2007
.
[21]
N. Sklavos, O.
Koufopavlou. “
On the hardware implemen
tatio
ns of
the SHA-2
(
256, 384, 512) hash functions
”.
P
r
oceedings
of
I
EEE
Intern
ation
a
l S
y
mposium o
n
Circu
its & S
y
s
t
ems. 2003; pp.
153-156.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
109
2
–
11
01
1
101
[22]
M. Juliato
, C. G
e
boty
s
. “Tailoring a reconf
igurable plat
form to
SHA-256 and HMAC through custom instructio
ns
and peripherals”.
Internationa
l Conference on Recon
figurable
Computing and FPGA’s, IEEE
Computer Society
.
2009: pp. 195-2
00.
[23]
B. Ram
kum
ar, Harish M Kittur.
“
L
ow-Power
and Area Effi
cien
t
Carr
y
Se
le
ct Adder”.
I
EEE T
r
an
sactions on Very
Large Scale Integration (
V
LSI)
S
y
stems
. 2012; 20
(2).
[24]
Y.
Kim,
L.
S.
Kim.
“64-bit carry
select
add
e
r usin
g Single
ripple carr
y
add
e
r,”
Ele
c
tron
Lett
ers
. 20
01; 37(10): 614-
615.
[25]
Y.
He,
C.
H.
Chang,
J.
Gu.
“
An
area efficien
t
64-bit square root
ca
rry select adder for low pow
er applications
”.
P
r
oceedings
of
I
EEE
Intern
ation
a
l S
y
mposium o
n
Circ
u
its and
S
y
stems. 2005
; 4
:
4082-4085.
[26]
K. Chandra Sekhar, K. Sar
ith
a Ra
j. “An Efficient Pseudo
Random Numb
er Gener
a
tor f
o
r Cr
y
p
tog
r
aphic
Applications”.
I
n
ternational jou
r
nal of
Engi
neering and
Advan
c
ed Technolog
y
. 2
014; 4(1).
[27]
Padma Devi, Ashima Gridher, Balwi
nder Sing
h. “Improved C
a
rr
y
Select
Adder with Reduced Area and Lo
w
Power Consump
tion”.
Internatio
nal Journal of
C
o
mputer Applica
tions
. 2010
; 3(4)
.
[28]
Ms.
Arc
h
a
n
a
Ka
kde
,
Ms.
Ma
nisha
Wa
je
.
“Low powe
r
&
Area Effi
cien
t 16 bit Carr
y
Select Adder Based o
n
Adiabatic Logic”.
In
ternational journal
of Engi
neering and
Advan
ced Technolog
y
. 2014;
2(2).
[29]
A. Menezes, P.
van Oo
rchol, S
.
Vanstone. “
Han
dbook of applied
Cryptography
”.
CRC Press, In
c, October
1997
.
[30]
J. Goodman, P.
Chandrasekar
an. “An
energ
y
eff
i
cient
reconf
igur
able public-key
cr
y
p
tograph
y
pr
ocessor”.
IEEE
journal of Solid-
s
tate
circuits
. 20
01; 36(11): 1808
-1820.
[31]
Citavicius, A. Jonavicius. “An I
m
ag
e encr
y
p
tion
using Pseudo-Random Nu
mb
er
Generator based
on Non-Linear
D
y
nam
i
c
Chaot
i
c
S
y
s
t
em
”.
WSEAS Transactions on Communications
. 2009; 8(9): 1022-1031.
Evaluation Warning : The document was created with Spire.PDF for Python.