Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
4
,
No
. 3,
J
une
2
0
1
4
,
pp
. 35
1~
35
8
I
S
SN
: 208
8-8
7
0
8
3
51
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Stabilization of Solar-Wind Hybr
id Power System by Using
SMES
S.M. Mohiud
din*,
M.R.I. S
h
eikh
#
Departem
ent
of
Ele
c
tri
cal
and
E
l
ectron
i
c
Engin
e
e
r
ing
Rajshahi Univer
sity
of
Engineering
&
Technolog
y
,
Rajshahi 6204
, Bang
lad
e
sh
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 15, 2014
Rev
i
sed
Ap
r
20
, 20
14
Accepte
d
May 6, 2014
The dep
l
et
ing f
o
s
s
il fuel res
e
rv
es
and in
creas
i
ng concern
tow
a
rds
global
warm
ing creat
ed
the need to s
u
r
g
e for the rene
wable energ
y
s
o
urces
. W
i
nd
and solar power
generation ar
e two of
the most
promising renewable power
generation tech
nologies.
This paper
d
e
a
l
s wit
h
the
sim
u
latio
n of a
Solar-
Photovoltaic
an
d Wind h
y
br
id
power
gener
a
tion s
y
s
t
em equ
i
pped with
Superconducting
Magnetic En
erg
y
Storag
e (SMES)
in
MATLAB/SIMULINK environ
m
ent. Th
e Solar-Photovoltaic
Module an
d
Permanent Mag
n
et S
y
n
c
hronou
s Genera
tor
(PMSG) based wind turbin
e
is
simulated separ
a
tely
. Th
en th
ey
ar
e conn
ected to a dc bus. Since th
e
interm
itt
ent n
a
tu
re of Solar
and
W
i
nd m
a
kes the s
y
st
em
unrel
iabl
e, so a
n
energ
y
stor
age
s
y
stem SMES is intr
oduced to
reduce
output
fluctu
ation
s
.
Var
y
ing wind
speed and solar irradian
ce value are tak
e
n as the input
param
e
ters
. The
sim
u
lation results show
that a s
y
stem
with SMES is m
o
re
reliable th
an a s
y
stem without S
M
ES.
Keyword:
Hybri
d
system
Pho
t
ov
o
ltaic mo
du
le
R
e
newa
bl
e e
n
e
r
gy
SMES
Wi
n
d
T
u
r
b
i
n
e
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M.R.I
.
Sheikh
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
c E
n
gi
nee
r
i
n
g,
R
a
jsha
hi
Uni
v
ersi
t
y
of
En
gi
n
eeri
n
g &
Tec
h
nol
ogy
R
a
jsha
hi
62
0
4
,
B
a
n
g
l
a
des
h
.
Em
a
il: ris_
ru
et
@yaho
o
.co
m
1.
INTRODUCTION
In
n
u
m
e
rous
r
u
ral
a
r
eas a
n
d
i
s
l
a
nds
w
h
er
e gri
d
c
o
n
n
ec
t
i
on i
s
not
ec
on
om
i
cal
ly
or
t
echni
cal
l
y
f
easib
le sm
all-
scale stan
d-
al
o
n
e
pow
er
sy
ste
m
s ar
e b
e
co
m
i
n
g
po
pu
lar. D
i
esel
g
e
n
e
rato
r
s
ar
e
p
opular
in
rem
o
te area p
o
wer system
ap
p
licatio
n
s
for th
eir reliab
ility,
lo
w installatio
n
costs, ease
of starting
,
co
mp
act
p
o
wer
d
e
n
s
ity and
p
o
rtab
ility. B
u
t owing
to
t
h
e
d
i
sad
v
a
n
t
ag
es o
f
d
i
esel
g
e
n
e
rat
o
rs [1
]
ren
e
wab
l
e en
erg
y
sou
r
ces
nee
d
e
d
t
o
be
t
a
ke
n
i
n
t
o
c
o
n
s
i
d
erat
i
on.
R
e
ne
wa
bl
e ene
r
gy
s
o
ur
ces suc
h
as
s
o
l
a
r ene
r
gy
a
n
d
wi
n
d
energy
have
be
en
deem
ed clean, i
n
exha
ustible
, un
li
m
ited
,
an
d env
i
ron
m
en
tal friend
l
y [2
].
Th
e
p
r
i
n
cip
a
l
p
r
ob
lem
with
t
h
e so
lar en
ergy is th
at
su
n d
o
es not
s
h
i
n
e on
eve
r
y
pa
rt
of
t
h
e pl
anet
with
equ
a
l in
ten
s
ity. Th
e in
ten
s
ity of th
e sun
lig
h
t
also
v
a
r
i
es
at d
i
f
f
e
r
e
n
t
h
our
s o
f
th
e
day. D
a
ily
an
d an
nu
al
flu
c
tu
ation
s
i
n
so
lar irrad
i
atio
n
n
ecessitate ap
pro
p
riat
e control sc
hem
e
s to stabilize
th
e pow
er
ou
tpu
t
fr
om
the
PV system
. The wind power
gene
ration syste
m
(W
TGS)
has its o
w
n
ch
aracteristics th
at are differe
n
t from
the
exi
s
t
i
ng
ge
ner
a
t
i
on sy
st
em
s
suc
h
as t
h
e
wi
nd
de
pen
d
e
n
ce
cause
d i
n
c
ons
i
s
t
e
ncy
i
n
t
h
e
gene
rat
i
o
n o
f
el
ect
ri
c
po
we
r. A
wi
n
d
at
one m
o
m
e
nt
m
a
y
be di
ffere
nt
fr
om
t
h
e wi
nd t
h
a
n
t
h
e secon
d
earl
i
er. Th
us
wi
n
d
po
wer
gene
rat
i
o
n i
n
t
r
od
uces
u
n
ce
rt
ai
nt
y
al
so
i
n
ope
rat
i
n
g
a po
w
e
r
syste
m
an
d it is con
tin
uou
sly v
a
r
i
ab
le and
di
ffi
c
u
l
t
t
o
pre
d
i
c
t
.
Si
nce
wi
n
d
po
we
r
vari
es
ran
d
o
m
l
y
t
h
ere
m
u
st
be a st
an
d s
o
u
r
ce t
o
m
e
et
l
o
ad
dem
a
nd
.
There i
s
n
o
si
ngl
e re
ne
wabl
e ener
gy
so
urc
e
whi
c
h
p
o
i
n
t
s
i
t
s
el
f out
t
o
b
e
t
h
e onl
y
sol
u
t
i
on [
3
]
.
So
,
di
ffe
re
nt
ener
g
y
source
s ha
v
e
t
o
be com
b
i
n
ed
. Hy
b
r
i
d
s
y
st
em
i
s
t
h
e int
e
g
r
at
i
on
of t
w
o
or m
o
re p
o
we
r
g
e
n
e
ration
syste
m
o
n
t
h
e same
grid o
r
b
u
s
. Hyb
r
i
d
power syste
m
s
can
pro
v
i
d
e
h
i
g
h
e
r efficien
cy,
reliab
ility
,
securi
t
y
an
d ensu
re r
o
bust
n
e
ss of t
h
e e
n
er
gy
m
a
nagem
e
nt
sy
st
em
t
o
avoi
d sy
st
em
bl
ack-
o
ut
s wh
en
po
we
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
4, No
. 3,
J
u
ne 2
0
1
4
:
35
1 – 3
5
8
35
2
fr
om
one rene
wabl
e e
n
er
gy
s
o
u
r
ces i
s
n
o
t
a
d
eq
uat
e
t
o
su
pp
ort all lo
ad
s.
Thu
s
, i
n
th
e presen
t stud
y so
l
a
r and
wind e
n
ergies
are c
o
m
b
ined t
o
fo
rm
a hy
bri
d
po
we
r
sy
st
em
.
Di
f
f
e
r
e
n
t
sy
st
e
m
s can be
use
d
t
o
c
o
nt
r
o
l
ou
put
fl
uct
u
at
i
o
n
s
.
Ho
we
ver
,
w
h
en
t
h
e
sy
st
em
capaci
t
y
i
s
m
o
re th
en
en
erg
y
storag
e is
co
nsid
ered to
b
e
an
e
ffectiv
e
m
ean
s to
i
m
p
r
ov
e th
e co
m
p
etitiv
en
ess of electric
p
o
wer p
r
o
d
u
c
t
i
o
n
syste
m
s
based
on
ren
e
wab
l
e
en
erg
y
reso
urces. Th
e i
n
trin
sic
vo
latility o
f
su
ch energ
y
resources
h
a
s
a n
e
g
a
tiv
e imp
act on
t
h
e qu
ality o
f
th
e electrical en
ergy su
pp
ly, an
d
co
m
p
licates efficien
t
ope
rat
i
o
n.
Thi
s
i
ssue
can
be
s
m
oot
hed t
h
r
o
u
g
h
ene
r
gy
st
o
r
age sy
st
em
s [4
]
.
Ene
r
gy
st
ora
g
e sy
st
em
m
a
kes t
h
e
hy
b
r
i
d
sy
st
em
m
o
re rel
i
a
bl
e and a
f
f
o
rda
b
l
e
. Se
vera
l e
n
ergy storage
technolo
gies
are curre
ntly being
devel
ope
d,
e.
g., C
o
m
p
resse
d Ai
r En
er
gy
St
ora
g
e
(C
A
E
S), B
a
t
t
e
ry
Ener
gy
St
o
r
a
g
e Sy
st
em
(B
ESS)
,
Sup
e
r
c
on
du
ctin
g Magn
etic En
erg
y
St
o
r
ag
e
(
S
MES)
,
Ph
as
e-Cha
nge
Materials (PCM
), and
Flywheel Energy
Sy
stem
(FES
).
O
v
er
view
s
of
different type
s of
ene
r
gy
storage
system
are gi
ven
i
n
[
1
,
5]
.
Al
l
sy
st
em
s ha
ve
so
m
e
m
e
rits as well as so
me d
e
m
e
rits.
In th
is
stud
y
,
a
sup
e
rc
on
d
u
ct
i
n
g m
a
gnet
i
c
e
n
ergy
st
ora
g
e
s
y
st
e
m
(SMES) is
u
s
ed
to con
t
ro
l th
e ou
tpu
t
power flu
c
tu
ation
o
f
t
h
e h
ybrid system
.
Tim
e
response
is a key feature wh
en it comes to select
an ene
r
gy
storage syste
m
for a particular
appl
i
cat
i
o
n. T
h
e t
i
m
e
respon
s
e
of e
n
er
gy
st
o
r
age sy
st
em
s depen
d
s
o
n
t
h
e
phy
si
cal
p
r
inci
ple on which t
h
ey are
base
d. T
h
e s
p
eed t
o
st
ore
o
r
del
i
v
e
r
e
n
er
gy
o
f
SM
ES
sy
st
em
based
on t
h
e el
ect
r
o
m
a
gnet
i
c
p
h
en
om
ena.
SMES has the
capability to provide
bot
h active and reactive power sim
u
lt
an
eously & quickly, so it can be
a
go
o
d
t
ool
f
o
r t
h
e st
abi
l
i
zat
i
on of
po
wer sy
st
em
[1, 6, 7]
.
In [8]
a sim
u
l
a
t
i
on of S
o
l
a
r
-
W
i
n
d hy
b
r
i
d
s
y
st
e
m
equi
ppe
d
wi
t
h
SM
ES has
b
een ex
pl
ai
ne
d,
ho
we
ver
out
put
fl
uct
u
at
i
o
n
cann
o
t
be m
a
i
n
t
a
i
n
ed e
ffec
t
i
v
el
y
.
H
o
w
e
v
e
r, in
th
e pr
esen
t stud
y SMES h
a
ve b
een
con
t
ro
l
l
ed
u
s
ing
PI
with
DC
-DC ch
opp
er, th
us effectiv
e
resul
t
s
ca
n be obt
ai
ne
d.
2.
MODELING OF
THE HYBRID
SYSTE
M
The si
m
u
l
a
t
i
o
n
m
odel
of
t
h
e
pr
o
pose
d
hy
b
r
i
d
sy
st
em
i
s
sh
ow
n
i
n
Fi
g
u
re
1.
SM
ES i
s
c
o
n
n
ect
ed
at
DC b
u
s
.
Figure
1. Hy
brid System
connect
e
d
to
th
e
DC
b
u
s
W
i
th
SM
E
S
The
pr
o
p
o
s
ed
hy
b
r
i
d
sy
st
em
de
pi
ct
s i
n
Fi
gu
re
1.
co
nsi
s
t
s
o
f
t
h
e
f
o
l
l
o
wi
n
g
basi
c c
o
m
ponent
s:
(i
)
W
i
nd
Turb
i
n
e Gen
e
ratio
n
Syste
m
(W
TGS); (ii) Pho
t
o
-
Vo
ltaic (PV) M
o
du
le System;
(iii) SMES En
erg
y
Stora
g
e
System
and (iv)
DC-DC c
h
opper
c
o
ntr
o
l sy
stem
for
the
fo
r t
h
e S
M
ES.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
S
t
ab
iliza
tio
n o
f
So
la
r-Wind
Hyb
r
id Po
wer
System b
y
Using
S
M
ES
(M.R.I. S
h
e
ikh
)
35
3
Fi
gu
re
2
sh
o
w
s t
h
e
m
odel
of
W
i
nd
T
u
r
b
i
n
e
Ge
nerat
i
o
n
S
y
st
em
(
W
TG
S
)
.
The
wi
nd
ge
nerat
o
r
i
s
a
perm
anent
m
a
gnet
sy
nc
hr
on
ous
gene
rat
o
r
(
P
M
S
G
)
.
Vari
a
b
l
e
s
p
eed
wa
s t
a
ken
as t
h
e i
n
p
u
t
t
o
t
h
e
wi
n
d
t
u
r
b
i
n
e
whi
c
h
out
put
was
feed
t
o
t
h
e PM
S
G
t
o
m
odel
t
h
e
WT
G
S
.
In
t
h
i
s
st
ud
y
,
Wi
nd
Tur
b
i
n
e
[9]
a
n
d PM
SM
[
10]
co
n
t
r
o
l
too
l
box
h
a
s
b
een
u
s
ed
i
n
t
h
e w
i
n
d
t
u
rb
in
e m
o
d
e
l.
Th
e
A
c
ou
tpu
t
s fro
m
W
T
G
S
h
a
s b
e
en conver
t
ed to
DC b
y
u
s
i
n
g rectifier.
Th
e
DC
ou
tpu
t
fro
m
th
e
W
T
GS was feed
to th
e
DC
b
u
s
.
Fi
gu
re
3
re
pres
ent
s
t
h
e
P
V
m
o
d
u
l
e
sy
st
em
. Thi
s
m
odel
wa
s de
vel
o
pe
d
us
i
ng t
h
e
Sol
a
r c
e
l
l
bl
oc
ks
of
Si
m
E
lectro
n
i
cs an
d
Sim
u
lin
k
[1
1
]
. To
ex
p
l
o
r
e th
e in
term
itten
t
n
a
tu
re of th
e so
lar energ
y
v
a
riab
le so
lar
irrad
i
an
ce v
a
l
u
e was tak
e
n
as
th
e in
pu
t to
th
e PV Mo
du
le Syste
m
. Th
e o
u
t
p
u
t
fro
m
th
e PV syste
m
was DC so
th
at,
no
rectifier
was
requ
ired
an
d
th
e DC ou
tp
u
t
was
d
i
rectl
y
connected to
the DC
bu
s of
t
h
e H
ybr
id
Syste
m
.
Fi
gu
re
3
.
P
hot
o-
Vol
t
a
i
c
(
P
V
)
M
o
d
u
l
e
Si
m
u
lat
i
on.
Ir
reg
u
l
a
ri
t
y
of t
h
e rene
wa
bl
e ener
gy
so
urces
pro
d
u
ces fl
uct
u
at
i
ng
out
put
i
n
t
h
e Hy
b
r
i
d
S
y
st
em
. To
redu
ce t
h
at fluctu
atio
n and to prov
id
e a reliab
l
e
p
o
wer su
pply SMES
is con
n
ected
i
n
p
a
rallel to
th
e DC
b
u
s
o
f
t
h
e Hy
bri
d
Sy
s
t
em
. Fi
gu
re
4
d
e
pi
cts the
control system
of
SMES.
Fi
g
u
re
2.
W
i
nd
Tu
rbi
n
e
Gene
r
a
t
i
on Sy
st
em
(WT
GS)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
4, No
. 3,
J
u
ne 2
0
1
4
:
35
1 – 3
5
8
35
4
Fi
gu
re
4
.
SM
E
S
Sy
st
em
bl
ock m
odel
.
An a
p
p
r
op
ri
at
e cont
r
o
l
sy
st
em
was req
u
i
r
e
d
t
o
co
nt
r
o
l
t
h
e char
gi
n
g
an
d
di
scha
rgi
ng se
que
nce
of t
h
e
SMES. T
h
is was accom
p
lished by
using PI cont
roller
ba
s
e
d DC
-DC c
h
oppe
r
as shown in Fi
gure
5. If the
out
put
of t
h
e
H
y
bri
d
Sy
st
em
is l
e
ss t
h
an t
h
e
refe
rence
value
then DC-DC chopper
se
n
d
s signal
ze
ro (0
) to
the
IGB
T
s
w
i
t
c
h;
ot
he
rwi
s
e si
gn
al
one (
1
) wi
l
l
be sent
. Si
g
n
al
zer
o (
0
) i
ndi
cat
es I
G
B
T
swi
t
c
h o
p
e
n
,
SM
ES
di
scha
rgi
ng;
Si
gnal
o
n
e
(1
) i
n
di
cat
es I
G
B
T
s
w
i
t
c
h cl
o
s
e,
S
M
ES cha
r
gi
n
g
.
Fi
gu
re
5
.
DC
-
D
C
c
h
o
p
p
er c
o
nt
r
o
l
bl
ock
m
odel
.
3.
SIMULATION RESULTS
In
th
is sectio
n 3
case
stud
ies h
a
v
e
b
een
co
nsid
er
ed
. In
e
a
c
h
c
a
s
e th
e inpu
t so
la
r
ir
r
a
d
i
an
c
e
and
the
wi
n
d
sp
eed
we
re
consi
d
e
r
e
d
di
ffe
re
nt
. Th
e i
n
p
u
t
s
o
l
a
r i
rra
di
ance a
nd i
n
p
u
t
wi
n
d
s
p
ee
d,
hy
b
r
i
d
sy
st
em
po
we
r
ch
aracteristics with
an
d withou
t SM
ES and
SMES power characteristic
s are plotted for ea
ch case
.
3.
1.
C
a
se St
u
d
y-
I
In th
is case so
lar irrad
i
an
ce was in
creased
fro
m
4
0
0
W
/
m
2
to
120
0
W
/
m
2
and wi
nd
s
p
eed
wa
s
decrease
d
from 25 m/s to 5
m
/
s. The input solar irra
di
ance and the wind spee
d are
shown
in Figure
6 and
Fig
u
re 7 resp
ectiv
ely. For this in
pu
t p
a
rameters th
e
powe
r characteristic
s of the
Hy
b
r
i
d
System
(with
and
with
ou
t SM
ES) an
d SMES
po
wer ch
aracteristics are sh
own
in Fi
g
.
8.
W
i
th
ou
t SMES
ou
tpu
t
fro
m
th
e Hyb
r
i
d
Syste
m
f
l
u
c
tu
ates b
e
tw
een
20
7W
t
o
229W
b
u
t
w
ith
SM
ES th
e
po
w
e
r
f
l
u
c
tu
ates
b
e
t
w
een 213W
t
o
2
15W
whi
c
h
was
al
m
o
st
negl
i
g
i
b
l
e
. T
h
e
SM
ES
al
t
e
rnat
el
y
cha
r
ges
or
di
sc
ha
rges
t
o
m
a
i
n
t
a
i
n
a c
o
nst
a
nt
out
pu
t
po
we
r.
T
h
e i
n
put
param
e
t
e
rs are
s
h
ow
n
f
o
r
t
h
e
e
n
t
i
r
e
t
i
m
e se
que
nce
but
t
o
i
n
di
cat
e a
cl
ear
di
scri
m
i
nat
i
on
out
put c
h
a
r
acteristics are
dra
w
n
for a
fraction of the
tim
e
seque
nce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
S
t
ab
iliza
tio
n o
f
So
la
r-Wind
Hyb
r
id Po
wer
System b
y
Using
S
M
ES
(M.R.I. S
h
e
ikh
)
35
5
Figure
6. Input
Irra
diance t
o
t
h
e PV m
o
dule.
Fi
gu
re
7
.
W
i
nd
Tu
rbi
n
e In
p
u
t
Spee
d.
Fi
gu
re
8
.
O
u
t
p
ut
P
o
we
r c
h
ara
c
t
e
ri
st
i
c
s fr
om
t
h
e Hy
bri
d
P
o
wer
Sy
st
em
and t
h
e
SM
ES
Sy
st
em
.
3.
2.
C
a
se St
u
d
y-
II
The
PV m
o
d
u
l
e i
nput
i
s
assu
m
e
d t
o
be
dec
r
eased f
r
o
m
1200
W/
m
2
t
o
40
0
W
/
m
2
and wi
nd
spee
d
i
s
a
ram
p
vary
i
n
g
fr
om
5 m
/
s
t
o
25m
/
s
. The
s
e i
n
put
pa
ra
m
e
t
e
rs were
s
h
o
w
n i
n
Fi
g
u
r
e
9
and
Fi
g
u
re
10
r
e
sp
ectiv
ely.
H
y
b
r
i
d
System po
w
e
r
ou
tpu
t
an
d th
e SMES ou
tpu
t
is show
n in Figu
r
e
11. Ou
tpu
t
p
o
wer
fro
m
the Hy
bri
d
Sys
t
e
m
with SME
S
connected
was alm
o
st c
o
n
s
tan
t
21
2W
bu
t
w
ith
ou
t SMES ou
tpu
t
pow
er
v
a
r
i
es
bet
w
ee
n 20
4
W
t
o
22
2
W
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
4, No
. 3,
J
u
ne 2
0
1
4
:
35
1 – 3
5
8
35
6
Figure
9. Input
Irra
diance t
o
t
h
e PV m
o
dule.
Fi
gu
re
1
0
.
W
i
n
d
T
u
r
b
i
n
e
I
n
pu
t
Spee
d.
Fig
u
re 11. Ou
tp
u
t
Power ch
aracteristics from
th
e Hybrid Powe
r System
and the
SMES
Syste
m
.
3.
2.
C
a
se St
u
d
y-
III
In t
h
i
s
case
ra
nd
om
i
nput
pa
ram
e
t
e
rs
ha
ve
been c
o
nsi
d
e
r
ed f
o
r
b
o
t
h
t
h
e PV m
odul
e
sy
st
em
and
WT
GS system. The i
n
put characteristic
s ar
e gi
ve
n i
n
Fi
g
u
re
1
2
and Fi
gu
re
13
res
p
ec
t
i
v
el
y
.
SM
ES po
we
r
characte
r
istics and the
powe
r
characte
r
is
tics of t
h
e
Hybri
d
Syste
m
are shown
in Figure
14. In t
h
is cas
e it is
also
seen
th
at
SMES m
a
in
tai
n
s a con
s
tan
t
ou
tpu
t
pow
er 218W
in
t
h
e
H
ybr
id
Syste
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
S
t
ab
iliza
tio
n o
f
So
la
r-Wind
Hyb
r
id Po
wer
System b
y
Using
S
M
ES
(M.R.I. S
h
e
ikh
)
35
7
Fig
u
r
e
12. I
npu
t Ir
r
a
d
i
an
ce to th
e PV
m
o
du
le.
Fi
gu
re
1
3
.
W
i
n
d
T
u
r
b
i
n
e
I
n
pu
t
Spee
d.
Fig
u
re 14. Ou
tp
u
t
Power ch
aracteristics from
th
e Hybrid Powe
r System
and the
SMES
Syste
m
.
4.
CO
NCL
USI
O
N
In
t
h
i
s
st
udy
a
sim
u
l
a
t
i
on m
odel
o
f
a
S
o
l
a
r-
W
i
n
d
hy
b
r
i
d
p
o
we
r
sy
st
em
has
been
de
vel
o
ped
an
d t
h
e
appl
i
cat
i
o
n of
SM
ES sy
st
em
i
s
present
e
d i
n
t
h
e de
vel
o
p
e
d m
odel
.
Si
nce t
h
e Sol
a
r a
nd
W
i
n
d
ene
r
gy
are
in
term
i
tten
t
in
n
a
ture, so
d
i
fferen
t irrad
i
ance v
a
lu
e
and
wind s
p
eed are taken as
th
e in
pu
t to
t
h
e
h
ybri
d
syste
m
. Th
e ou
tpu
t
DC vo
ltag
e
of th
e so
lar syste
m
is a
b
ou
t
8
5
V and
W
i
nd
tu
rb
in
e is 7
2
V. As t
h
e two
syste
m
s are connecte
d
in seri
es thro
ugh
contr
o
lled
vo
ltag
e
so
ur
ce so
a
d
c
v
o
ltag
e
o
f
ab
ou
t 14
8V
is ob
tain
ed
from
the hybrid syste
m
. Three cases
have been considered t
o
s
h
ow
the ef
fectiveness of the
propos
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
4, No
. 3,
J
u
ne 2
0
1
4
:
35
1 – 3
5
8
35
8
co
n
t
ro
lled SM
ES system
. It is seen fro
m
th
e si
m
u
latio
n
resu
lts th
at SMES can im
p
r
o
v
e
th
e
q
u
a
lity o
f
o
u
t
p
u
t
flu
c
tu
ation
s
. Th
u
s
in
crease t
h
e reliab
ility o
f
h
ybrid
po
wer syste
m
.
REFERE
NC
ES
[1]
A. Mohammad ,and O. Haruni
“
A
S
t
and-Alone H
y
br
id P
o
wer
S
y
s
t
em
with
E
n
erg
y
S
t
orag
e,
”
A P
h
.D thes
is
,
University
of
Tasmania, Janu
ar
y
,
2013.
[2]
Dihrab, S
.
S
.
and
S
opian,
K. “
E
le
ctri
cit
y
G
e
ner
a
tion of H
y
brid
PV/Wind S
y
stem
s in Iraq
”
,
Renewable Energy
, V
o
l.
35, pp
. 1303-13
07, 2010
.
[3]
“Renewable Energ
y
Focus.” http://
www.renewableenerg
y
f
ocus
.com/view/5
304/six-renewab
l
e-en
erg
y
-sources-
judged-to-b
e-bes
t
-prospect-for-f
u
t
ure-say
s
-report/.
[4]
F. Milano,
and
Z. Raf
a
e
l
“
S
tud
y
of th
e Int
e
rac
tion Between Wind Power Plan
ts a
nd SME
S
Sy
ste
m
s,
”
http://far
aday
1
.
u
c
d.ie/ar
c
hiv
e
/papers/london.pdf
[5]
Yunus, A.M. Sh
iddiq
, Al Ha
rb
y, Yassir
and Siada, A
.
A.
and M
a
soum, M.A.S.
2012 “
Overview
of S
t
orage
Ener
gy
Systems for Ren
e
wable Energy
System App
lica
t
ion
”,
in Proceedings of the 3rd
Makassar Intern
ation
a
l Conf
eren
ce
on Electr
i
cal
En
gineer
ing and
In
formatics (MIC
EEI 2012)
,
Nov
28-Dec 1 2012
.
Makassar, Indon
esia: University
of
Hasanuddin.
[6]
K. E. Nielsen, “
S
upe
rconducting
Magnetic
Energ
y
Stor
age in Po
wer
S
y
stems With Renew
a
ble Energ
y
Sources,”
A
M.Sc.
Thesis, June 2010, http
://www.diva-portal.org/smash/
get/diva2:351906/FULLTEXT01.pdf
[7]
M.R.I. Sheikh
“Stabilization o
f
a Gr
id Connected Wind Far
m
b
y
Using SM
ES”, a Ph.D
thesis, KIT Jap
a
n
,
September 2010
.
[8]
Ng Shean Huei
“Hy
b
rid
Wind and Photovoltaic
Power Ge
neratio
n
S
y
stem with S
uperconducting
Magnetic En
er
g
y
Storage (SMES)
" An undergradu
ate thesis
, EEE
Depa
rtment,Un
i
versiti Tekno
lo
g
i
Malay
s
ia, June
2012.
[9]
MathWorks. (20
12). MATLAB:
Wind Turbine.
[10]
MathWorks. (20
12). MATLAB:
Perman
ent Mag
n
et S
y
nchronous
Machin
e.
[11]
A. Pradesh
“SIMSCAPE MOD
EL OF PHOTOVOLTAIC,” vo
l. 2
,
no
. 5
,
pp
. 17
66–1772, 2013
.
BIOGRAP
HI
ES OF
AUTH
ORS
Sheik Mohammad Mohiuddin w
a
s born in Ch
itt
agong, B
a
nglad
esh on November 01, 1991
. He
rece
ived
the
Ba
chelor
of S
c
ien
ce Degr
ee
in
E
l
ec
tric
al
and
El
ectr
i
ca
l
Engine
e
r
ing from
th
e
Rajshahi Univer
sity
of
Engineering & Techno
log
y
in 2013
. He is
currently
servin
g as a lecturer
in East Delta University
, Chittag
ong.
Dr.
M.
R.
I.
Sheikh
-
rec
e
ived
B.
S
c
. Eng
i
neer
ing
and M
.
S
c
. Eng
i
neering
Degrees from Rajshahi
University
of Engineer
ing & Technolog
y
(R
U
ET), B
a
nglades
h, in 1992
and
2003 respectively
and Doctor of Engineer
ing Degree from
Kitam
i
In
stitute of T
e
chnolog
y
,
Japan,
in Septem
ber,
2010, all in Electrical
and Electr
onic Eng
i
neer
in
g. Currently
, h
e
is working as Professor in the
Ele
c
tri
cal and
Ele
c
troni
c Engi
neering Depar
t
m
e
nt, RUET. His
res
earch int
e
r
e
s
t
s
are, P
o
wer
s
y
s
t
em
s
t
abil
it
y enhanc
em
ent
including wind
generator b
y
us
ing SMES, FAC
T
s devices and
Load Frequen
c
y Control of multi-area power s
y
s
t
em. His biograph
y
has b
een pu
blished in th
e
2011-2012 (11th) Edition of
"World Who'
s Who in
Science and Engin
eerin
g". He published
m
o
re than 100 p
a
pers (in
c
luding
journals
and
co
nferences) and p
ublished a book
“Stabilizatio
n
of a Grid
Conn
ected wind f
a
rm b
y
using SMES”. He
also p
e
rf
orms editorial w
o
rk of a book
“Energ
y
storag
e” and
publishe
d
another
two boo
k chap
ters.
Evaluation Warning : The document was created with Spire.PDF for Python.