I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
2
,
A
p
r
il
201
8
,
p
p
.
8
6
7
~8
7
9
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v8
i
2
.
p
p
8
6
7
-
8
7
9
867
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
ANFIS
used a
s a
M
a
x
im
u
m
P
o
w
er P
o
int
Tra
c
k
ing
A
lg
o
rith
m
for a
P
ho
tov
o
ltaic
Sys
te
m
Dra
g
a
n
M
la
k
ić
1
,
L
j
ub
o
m
ir
M
a
j
da
nd
žić
2
,
Sret
e
Nik
o
lo
v
s
ki
3
1
Distrib
u
ti
o
n
Co
m
p
a
n
y
,
No
v
i
T
ra
v
n
ik
,
El
e
c
tri
c
P
o
w
e
r
Co
m
p
a
n
y
H
Z
-
HB In
c
.
M
o
sta
r,
Bo
s
n
ia an
d
He
rz
e
g
o
v
in
a
2
T
h
e
En
v
iro
n
m
e
n
tal
P
r
o
tec
ti
o
n
a
n
d
En
e
rg
y
Eff
i
c
ien
c
y
F
u
n
d
,
Zag
re
b
,
Cro
a
t
ia
3
P
o
w
e
r
En
g
in
e
e
rin
g
De
p
a
rtm
e
n
t,
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
Co
m
p
u
e
r
sc
ien
c
e
a
n
d
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
,
Un
iv
e
r
sit
y
o
f
Os
ij
e
k
,
Cro
a
ti
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
2
5
,
2
0
1
7
R
ev
i
s
ed
J
an
4
,
2
0
1
8
A
cc
ep
ted
J
an
1
5
,
2
0
1
8
P
h
o
t
o
v
o
lt
a
ic
(
P
V
)
m
o
d
u
les
p
lay
a
n
im
p
o
rtan
t
ro
le
in
m
o
d
e
rn
d
istri
b
u
t
io
n
n
e
tw
o
rk
s;
h
o
w
e
v
e
r,
f
ro
m
th
e
b
e
g
in
n
i
n
g
,
P
V
m
o
d
u
les
h
a
v
e
m
o
stly
b
e
e
n
u
se
d
in
o
r
d
e
r
t
o
p
r
o
d
u
c
e
c
lea
n
,
g
re
e
n
e
n
e
rg
y
a
n
d
to
m
a
k
e
a
p
ro
f
it
.
W
o
rk
in
g
e
ffe
c
ti
v
e
l
y
d
u
rin
g
th
e
d
a
y
,
P
V
sy
ste
m
s
ten
d
to
a
c
h
iev
e
a
m
a
x
i
m
u
m
p
o
we
r
p
o
i
n
t
a
c
c
o
m
p
li
sh
e
d
b
y
in
v
e
rte
rs
w
it
h
b
u
il
t
-
i
n
M
a
x
im
u
m
P
o
w
e
r
P
o
i
n
t
T
ra
c
k
in
g
(M
P
P
T
)
a
lg
o
rit
h
m
s.
T
h
is
p
a
p
e
r
p
re
se
n
ts
a
n
A
d
a
p
ti
v
e
Ne
u
ro
-
F
u
z
z
y
In
f
e
re
n
c
e
S
y
st
e
m
(
A
NFIS
),
a
s
a
m
e
th
o
d
f
o
r
p
re
d
ictin
g
a
n
M
P
P
b
a
se
d
o
n
d
a
ta
o
n
s
o
lar
e
x
p
o
su
re
a
n
d
t
h
e
su
rr
o
u
n
d
in
g
tem
p
e
ra
tu
re
.
T
h
e
a
d
v
a
n
tag
e
s
o
f
th
e
p
ro
p
o
se
d
m
e
th
o
d
a
re
a
fa
st
re
sp
o
n
se
,
n
o
n
-
in
v
a
siv
e
s
a
m
p
li
n
g
,
to
tal
h
a
r
m
o
n
ic
d
isto
rti
o
n
re
d
u
c
ti
o
n
,
m
o
re
e
ff
ic
ien
t
u
sa
g
e
o
f
P
V
m
o
d
u
les
a
n
d
a
si
m
p
le
train
in
g
o
f
th
e
A
NFIS
a
lg
o
rit
h
m
.
T
o
d
e
m
o
n
stra
te
th
e
e
ff
e
c
ti
v
e
n
e
ss
a
n
d
a
c
c
u
ra
c
y
o
f
th
e
AN
F
IS
in
re
latio
n
t
o
t
h
e
M
P
P
T
a
lg
o
rit
h
m
,
a
p
ra
c
ti
c
a
l
sa
m
p
le
c
a
se
o
f
1
0
k
W
P
V
sy
ste
m
a
n
d
it
s
m
e
a
su
re
m
e
n
ts
a
re
u
se
d
a
s
a
m
o
d
e
l
f
o
r
sim
u
latio
n
.
M
o
d
e
ll
i
n
g
a
n
d
sim
u
latio
n
s
a
re
p
e
rf
o
r
m
e
d
u
sin
g
a
ll
a
v
a
il
a
b
le
c
o
m
p
o
n
e
n
ts
p
r
o
v
id
e
d
b
y
tec
h
n
i
c
a
l
d
a
ta.
T
h
e
re
su
lt
s
o
b
tain
e
d
f
ro
m
th
e
sim
u
latio
n
s
p
o
i
n
t
t
o
t
h
e
m
o
re
e
fficie
n
t
u
sa
g
e
o
f
th
e
A
NFIS
m
o
d
e
l
p
ro
p
o
se
d
a
s
a
n
M
P
P
T
a
lg
o
rit
h
m
f
o
r
P
V
m
o
d
u
les
in
c
o
m
p
a
riso
n
to
o
t
h
e
r
e
x
isti
n
g
m
e
th
o
d
s.
K
ey
w
o
r
d
:
A
d
ap
tiv
e
n
e
u
r
o
-
f
u
zz
y
in
f
er
e
n
ce
s
y
s
te
m
A
r
ti
f
icial
i
n
tel
lig
e
n
ce
Ma
x
i
m
u
m
p
o
w
er
o
in
t tr
ac
k
i
n
g
(
MP
PT)
P
V
s
y
s
te
m
s
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sre
te
Nik
o
lo
v
s
k
i,
P
o
w
er
E
n
g
i
n
ee
r
in
g
Dep
ar
t
m
e
n
t,
Facu
lt
y
o
f
E
lectr
ical
E
n
g
in
ee
r
in
g
C
o
m
p
u
er
s
cie
n
ce
an
d
I
n
f
o
r
m
atio
n
T
ec
h
n
o
lo
g
y
,
Un
i
v
er
s
it
y
o
f
O
s
ij
ek
,
C
r
o
atia
.
E
m
ail: sr
ete.
n
i
k
o
lo
v
s
k
i
@
et
f
o
s
.
h
r
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
ef
f
icie
n
c
y
o
f
P
V
m
o
d
u
les
in
v
ar
io
u
s
s
it
u
atio
n
s
i
s
alr
ea
d
y
k
n
o
w
n
ac
r
o
s
s
in
d
u
s
tr
ie
s
an
d
tr
ad
es.
Ho
w
e
v
er
,
s
in
ce
s
u
n
lig
h
t,
as
th
e
s
o
u
r
ce
f
o
r
g
e
n
er
atin
g
ele
ctr
icit
y
f
r
o
m
P
V
m
o
d
u
le
s
,
d
ep
en
d
s
o
n
w
ea
t
h
er
co
n
d
itio
n
s
,
P
V
m
o
d
u
les
m
a
y
h
av
e
lo
w
er
e
f
f
icac
y
.
T
h
is
r
es
u
lts
i
n
lo
w
elec
tr
icit
y
g
e
n
er
atio
n
f
r
o
m
s
o
lar
p
o
w
er
.
T
h
r
ee
f
ac
to
r
s
af
f
ec
t
t
h
e
ef
f
e
ctiv
e
n
ess
o
f
elec
tr
icit
y
g
e
n
er
atio
n
f
r
o
m
s
o
lar
p
o
w
er
:
s
o
lar
ex
p
o
s
u
r
e
o
f
th
e
m
o
d
u
le,
m
o
d
u
le
te
m
p
er
atu
r
e
an
d
P
V
s
y
s
te
m
p
r
o
p
er
ties
.
T
h
e
f
ir
s
t
t
w
o
f
ac
to
r
s
ar
e
b
ey
o
n
d
h
u
m
an
co
n
tr
o
l
an
d
ar
e
h
ig
h
l
y
u
n
s
tab
le
b
ec
a
u
s
e
t
h
e
y
c
h
a
n
g
e
f
r
o
m
o
n
e
s
ec
o
n
d
to
an
o
th
er
,
d
ep
en
d
in
g
o
n
t
h
e
w
ea
t
h
er
co
n
d
itio
n
s
an
d
s
ea
s
o
n
.
C
o
n
s
eq
u
e
n
tl
y
,
th
ese
p
r
o
p
er
ties
r
esu
lt
in
P
V
s
y
s
te
m
s
b
ei
n
g
a
n
u
n
r
el
iab
le
s
o
u
r
ce
o
f
elec
tr
icit
y
.
T
h
is
p
ap
er
ad
d
r
ess
es
t
h
e
ab
o
v
e
p
r
o
b
lem
a
n
d
p
r
esen
ts
th
e
ANFI
S
m
eth
o
d
u
s
ed
as
t
h
e
MP
PT
alg
o
r
ith
m
f
r
o
m
w
h
ic
h
ar
e
m
a
n
y
p
r
esen
ted
in
p
r
ev
io
u
s
p
ap
er
s
[
2
]
.
I
n
t
h
is
p
ap
er
,
d
ev
elo
p
ed
A
NFI
S
al
g
o
r
ith
m
w
a
s
s
i
m
u
lated
i
n
th
e
ac
t
u
al
P
V
s
y
s
te
m
a
n
d
ap
p
lied
in
p
r
ac
tice
[
4
]
.
A
NFI
S
is
p
r
o
p
o
s
ed
as
th
e
MP
P
T
alg
o
r
it
h
m
a
n
d
m
o
d
elled
i
n
Ma
tlab
.
T
h
e
co
n
tr
o
l
asp
ec
t
o
f
th
e
P
V
s
y
s
te
m
u
s
i
n
g
th
e
A
NFI
S
alg
o
r
ith
m
i
s
ad
d
r
ess
ed
in
th
e
p
ap
er
s
:
co
m
p
ar
i
n
g
it
w
it
h
QU
AR
T
US
I
I
[
2
]
,
m
at
h
e
m
atica
l
m
o
d
el
o
f
P
V
p
an
els
u
s
i
n
g
ANFI
S
[
3
]
,
p
r
o
p
o
s
in
g
A
NFI
S
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
8
6
7
–
8
7
9
868
as
MP
PT
[
4
]
,
p
r
o
p
o
s
itio
n
ANFI
S
as
e
n
er
g
y
lo
s
s
e
s
p
r
ed
ica
m
en
t
[
5
]
,
p
ea
k
lo
ad
p
r
ed
ica
m
en
t
[
6
]
,
an
d
w
i
n
d
p
o
w
er
p
lan
t
MP
P
T
[
8
-
1
1
]
.
Ho
w
e
v
er
,
n
o
n
e
o
f
t
h
e
m
w
a
s
i
m
p
le
m
e
n
ted
in
th
e
ac
t
u
al
P
V
p
lan
t
s
y
s
te
m
.
T
h
er
ef
o
r
e,
n
o
n
e
o
f
t
h
e
m
h
a
v
e
r
esu
l
ts
co
m
p
ar
ed
ag
ai
n
s
t
r
es
u
lts
co
llected
f
r
o
m
P
V
p
lan
t.
Nu
m
er
o
u
s
ar
tic
le
s
h
av
e
d
e
m
o
n
s
tr
ated
th
e
f
le
x
ib
il
it
y
o
f
t
h
e
A
NFI
S
m
e
th
o
d
,
alt
h
o
u
g
h
n
o
t d
ir
ec
tl
y
r
elate
d
to
P
V
s
y
s
te
m
s
,
b
u
t
w
er
e
in
s
tead
:
co
m
p
ar
ed
ag
ai
n
s
t
t
h
e
Neu
r
al
Net
w
o
r
k
i
n
lab
o
r
ato
r
y
co
n
d
itio
n
s
[
7
]
,
u
s
ed
i
n
t
h
e
r
o
l
e
o
f
E
x
p
er
t
s
y
s
te
m
f
o
r
s
teel
g
r
ad
i
n
g
[
8
]
,
an
d
i
n
te
g
r
a
ted
b
id
ir
ec
tio
n
al
s
u
b
s
y
s
te
m
MP
PT
[
1
7
]
.
T
h
e
ar
ticles
th
at
h
av
e
f
o
cu
s
ed
o
n
th
e
co
m
p
ar
is
o
n
o
f
t
h
e
ANFI
S
m
e
th
o
d
w
it
h
s
o
m
e
o
t
h
er
A
r
ti
f
ici
al
I
n
tell
ig
e
n
ce
(
A
I
)
m
et
h
o
d
s
s
u
c
h
a
s
t
h
e
Ne
u
r
al
Net
w
o
r
k
s
(
NN)
,
Gen
etic
A
l
g
o
r
ith
m
(
G
A
)
,
p
r
o
v
ed
th
at
ANFI
S
is
th
e
m
o
s
t
s
u
itab
l
e
f
o
r
u
s
e
in
u
n
ce
r
tai
n
s
y
s
te
m
s
[
1
7
]
an
d
w
it
h
o
u
t
a
d
o
u
b
t
p
r
esen
ted
A
NFI
S
as
t
h
e
m
o
s
t
s
u
itab
le
alg
o
r
it
h
m
f
o
r
M
P
P
tr
ac
k
in
g
.
P
r
ev
io
u
s
w
o
r
k
al
s
o
p
r
esen
ts
A
NFI
S a
s
m
u
ltil
e
v
el
ca
s
ca
d
e
i
n
v
er
ter
f
o
r
P
V
s
y
s
te
m
s
[
1
8
]
co
n
clu
d
i
n
g
th
e
q
u
alit
y
o
f
th
e
m
et
h
o
d
s
in
p
r
ed
ictin
g
MP
P
in
a
s
i
m
u
lated
en
v
ir
o
n
m
en
t.
I
n
t
h
e
p
ast
f
o
u
r
y
ea
r
s
,
n
u
m
er
o
u
s
ar
ticle
s
an
d
r
ep
o
r
ts
ad
d
r
ess
ed
th
e
s
i
m
u
lati
o
n
s
o
f
P
V
ce
lls
a
n
d
co
n
s
eq
u
e
n
tl
y
o
f
P
V
m
o
d
u
le
s
,
an
d
s
er
v
ed
as
th
e
b
asis
f
o
r
d
ev
elo
p
in
g
au
t
h
e
n
tic
m
o
d
els
f
o
r
f
u
r
th
er
r
e
s
ea
r
ch
.
T
y
p
e
-
2
Fu
zz
y
lo
g
ic
c
o
n
tr
o
ller
[
1
0
]
,
PV
MP
PT
co
n
tr
o
ller
w
it
h
I
-
V
a
n
d
P
-
V
c
u
r
v
e
r
e
s
u
lt
s
[
1
2
]
,
co
m
p
ar
is
o
n
w
it
h
t
h
e
F
u
zz
y
lo
g
ic
co
n
tr
o
ller
[
1
3
]
,
s
tan
d
alo
n
e
co
m
p
le
x
P
V
s
y
s
te
m
w
it
h
MP
P
T
co
n
tr
o
lle
r
[
1
4
]
,
tr
ain
ed
A
NFI
S
an
d
F
u
zz
y
lo
g
ic
co
n
tr
o
ller
ac
co
r
d
in
g
to
P
er
tu
r
b
an
d
Ob
s
er
v
e
(
P
&
O)
al
g
o
r
ith
m
[
1
6
]
.
T
h
e
p
ap
er
s
th
at
d
ea
lt
w
i
th
A
N
FIS
i
n
d
etail,
co
n
s
id
er
in
g
all
la
y
er
s
a
n
d
tr
ain
i
n
g
m
et
h
o
d
s
,
o
p
en
ed
th
e
p
ath
to
u
s
e
A
N
FIS
as
t
h
e
m
et
h
o
d
to
r
eso
lv
e
all
in
s
u
f
f
icie
n
tl
y
d
ef
i
n
ed
p
r
o
b
lem
s
w
it
h
a
h
ig
h
r
ate
o
f
u
n
ce
r
tai
n
t
y
i
n
co
n
c
lu
s
io
n
s
[
2
-
4
]
,
[
2
1
]
.
T
h
e
MP
PT
alg
o
r
ith
m
is
,
i
n
g
en
er
al,
a
lr
ea
d
y
in
te
g
r
ated
in
D
C
-
AC
i
n
v
er
ter
s
,
s
o
th
at
all
al
g
o
r
ith
m
s
f
o
r
m
a
n
ag
i
n
g
co
n
tr
o
l
s
y
s
te
m
s
ar
e
lo
ck
ed
an
d
ca
n
n
o
t
b
e
m
o
d
i
f
ied
,
a
n
d
w
h
ich
ar
e
k
n
o
w
n
:
P
er
tu
r
b
an
d
Ob
s
er
v
e
(
P
&
O)
a
n
d
I
n
cr
e
m
en
ta
l
C
o
n
d
u
ctan
ce
(
I
n
C
o
n
d
)
,
o
r
b
o
th
,
a
r
e
in
s
talled
in
t
h
e
MP
PT
alg
o
r
ith
m
.
Ma
n
y
r
esear
c
h
er
s
h
av
e
e
m
b
ed
d
ed
th
e
A
N
FI
S
alg
o
r
ith
m
i
n
t
h
e
f
iled
-
p
r
o
g
r
a
m
m
ab
le
g
ate
ar
r
a
y
(
FP
GA
)
[
2
]
,
[
6
]
.
T
h
is
p
ap
er
d
ea
ls
w
it
h
A
N
FIS
as a
n
MP
PT
alg
o
r
ith
m
i
n
a
n
ac
tu
al
1
0
k
W
P
V
s
y
s
te
m
u
s
ed
f
o
r
elec
tr
icit
y
g
en
er
atio
n
,
w
h
i
c
h
h
a
s
th
e
r
o
le
o
f
a
d
is
tr
ib
u
ted
g
en
er
atio
n
(
DG)
s
o
u
r
ce
o
f
en
er
g
y
,
i.e
.
it
f
ee
d
s
all
g
e
n
er
ated
en
er
g
y
in
to
th
e
d
is
tr
ib
u
t
io
n
s
y
s
te
m
o
p
er
ato
r
[
1
]
.
T
h
e
s
p
ec
if
icatio
n
s
o
f
t
h
e
ac
tu
a
l
P
V
s
y
s
te
m
i
n
s
talled
o
n
t
h
e
r
o
o
f
,
w
h
ic
h
ar
e
i
m
p
o
r
tan
t
f
o
r
th
e
s
i
m
u
la
tio
n
,
ar
e
p
r
ese
n
ted
in
Sectio
n
2
.
T
ak
in
g
s
a
m
p
les
f
r
o
m
th
e
in
v
er
ter
s
,
„
teac
h
in
g
‟
an
d
tr
ain
i
n
g
th
e
al
g
o
r
ith
m
in
A
N
FIS
s
tr
u
ctu
r
e,
its
b
lo
ck
d
iag
r
a
m
an
d
m
o
d
e
llin
g
o
f
th
e
ac
t
u
al
s
y
s
te
m
is
p
r
esen
ted
i
n
Sectio
n
3
.
B
asics
o
f
A
NFI
S
ar
ch
i
tect
u
r
e
an
d
al
g
o
r
it
h
m
,
s
i
m
u
latio
n
s
w
ith
t
h
e
d
ata
f
r
o
m
th
e
ac
t
u
al
m
ea
s
u
r
e
m
e
n
ts
,
th
e
co
m
p
ar
is
o
n
o
f
t
h
e
o
b
tai
n
ed
r
esu
lt
s
a
n
d
d
is
c
u
s
s
io
n
ar
e
co
n
t
ain
ed
i
n
Sectio
n
4
.
Sectio
n
5
co
n
tai
n
s
t
h
e
co
n
cl
u
s
io
n
d
r
a
w
n
f
r
o
m
t
h
e
s
i
m
u
latio
n
r
esu
lts
.
2.
SAM
P
L
I
NG
AN
D
SYS
T
E
M
M
O
DE
L
L
I
N
G
2
.
1
.
P
V
S
y
s
t
e
m
T
h
e
p
r
o
p
er
ties
o
f
th
e
P
V
s
y
s
t
e
m
tak
e
n
i
n
to
ac
co
u
n
t
i
n
t
h
e
p
r
o
ce
s
s
o
f
d
esig
n
in
g
t
h
e
m
o
d
el
in
cl
u
d
e
T
HD
U
(
T
o
tal
Har
m
o
n
ic
Dis
to
r
tio
n
o
f
Vo
ltag
e)
,
w
h
ic
h
is
ad
d
r
ess
ed
in
th
e
ar
ticle
r
e
f
er
r
ed
to
u
n
d
er
r
ef
er
en
ce
s
,
DC
Vo
lta
g
e
ch
ar
ac
ter
is
t
ics
b
ased
o
n
P
V
m
o
d
u
les
m
o
d
el
p
r
o
v
id
ed
b
y
in
-
f
ield
m
ea
s
u
r
em
en
t,
P
-
V
an
d
I
-
V
g
r
ap
h
s
p
r
o
v
id
ed
b
y
ca
lcu
latio
n
s
o
f
s
tr
i
n
g
co
n
n
ec
ted
P
V
m
o
d
u
les.
T
HD
is
in
s
talled
in
a
th
r
ee
-
le
v
el
P
W
M
s
ig
n
al
g
e
n
er
ato
r
w
h
er
e
th
e
i
m
p
ac
t
o
n
v
o
lta
g
e
d
is
to
r
tio
n
is
d
ef
in
ed
.
T
h
e
s
et
T
HD
U
is
1
.
4
8
%
p
r
esen
ted
in
Fig
u
r
e
1
f
o
r
v
o
l
tag
e
f
r
eq
u
e
n
c
y
s
ca
n
.
Fig
u
r
e
1
.
T
o
tal
h
ar
m
o
n
ic
v
o
lta
g
e
d
is
to
r
tio
n
-
T
HD
U
.
T
h
e
an
al
y
s
is
o
f
th
e
f
ield
m
e
asu
r
e
m
en
t
s
i
n
t
h
e
P
V
s
y
s
te
m
estab
lis
h
ed
th
at
t
h
er
e
w
as
n
o
r
ea
ctiv
e
p
o
w
er
ex
c
h
an
g
e
b
et
w
ee
n
t
h
e
P
V
s
y
s
te
m
a
n
d
th
e
d
is
tr
ib
u
t
io
n
n
e
t
w
o
r
k
,
s
o
n
o
s
i
m
u
latio
n
o
f
a
r
ea
cti
v
e
p
o
w
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
N
F
I
S
u
s
ed
a
s
a
Ma
ximu
m
P
o
w
er P
o
in
t Tr
a
ck
in
g
A
lg
o
r
ith
m
fo
r
a
P
h
o
to
v
o
lta
ic
S
ystem
(
Dra
g
a
n
Mla
kić)
869
s
o
u
r
ce
(
Q)
w
a
s
u
s
ed
.
T
h
e
m
ea
s
u
r
i
n
g
p
o
in
t
f
r
o
m
w
h
ic
h
t
h
e
d
ata
f
o
r
s
u
b
s
eq
u
en
t
a
n
al
y
s
i
s
w
as
ta
k
en
is
t
h
e
id
en
tical
lo
ca
tio
n
o
f
t
h
e
ac
tu
al
P
V
s
y
s
te
m
at
t
h
e
p
o
in
t
o
f
p
o
w
er
e
x
c
h
an
g
e
b
et
w
ee
n
th
e
P
V
ar
r
ay
an
d
t
h
e
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
.
T
h
e
s
ize
o
f
th
e
s
a
m
p
le
f
o
r
an
al
y
s
i
s
is
T
s
=1
0
-
6
s
o
th
at
th
e
s
i
n
u
s
o
id
is
clea
r
ly
v
is
ib
le
,
as
w
ell
as
all
tr
an
s
ien
t
s
i
n
t
h
e
o
p
er
atio
n
o
f
t
h
e
D
C
-
DC
s
tab
iliz
er
.
A
ll
co
m
p
o
n
en
ts
u
s
ed
i
n
t
h
e
s
i
m
u
lat
io
n
ar
e
s
et
u
p
o
n
t
h
e
b
asi
s
o
f
th
e
ac
tu
al
r
esu
lt
s
o
f
th
e
s
y
s
te
m
o
u
tp
u
t,
s
o
th
at
tr
an
s
ien
t
s
ar
e
p
r
esen
te
d
as
r
ea
lis
tical
l
y
a
s
p
o
s
s
ib
le.
A
s
i
n
Sectio
n
2
,
th
e
m
o
d
u
les
i
n
th
e
s
i
m
u
lat
io
n
ar
e
ar
r
an
g
ed
ac
co
r
d
in
g
l
y
:
in
4
r
o
w
s
f
o
r
ea
ch
in
v
er
ter
an
d
o
f
th
e
s
a
m
e
t
y
p
e
as i
n
th
e
ac
tu
al
P
V
s
y
s
te
m
.
P
-
V
an
d
I
-
V
m
o
d
u
le
s
p
ec
i
f
icatio
n
s
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
2
.
Fig
u
r
e
2
.
P
-
V
an
d
I
-
V
ch
ar
ac
t
er
is
tics
o
f
t
h
e
en
tire
P
V
s
y
s
te
m
I
n
o
r
d
er
t
o
lim
i
t
th
e
in
v
er
ter
p
o
w
er
o
u
tp
u
t,
a
th
r
ee
-
p
h
ase
1
0
k
V
A
A
C
-
AC
tr
an
s
f
o
r
m
er
w
a
s
in
s
talled
o
n
th
e
ar
r
a
y
,
i
m
m
ed
iatel
y
a
t
th
e
o
u
tlet
o
f
th
e
P
V
s
y
s
t
e
m
to
t
h
e
d
i
s
tr
ib
u
tio
n
n
et
wo
r
k
.
T
h
e
co
n
s
u
m
er
r
ep
r
esen
tin
g
th
e
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
as
a
n
en
er
g
y
-
u
s
i
n
g
d
ev
ice
w
as
s
i
m
u
lated
u
s
in
g
th
e
R
L
C
li
n
e
p
ar
a
m
eter
s
P
=
1
5
k
W
,
Q
L
=0
k
V
A
r
,
Q
C
=
0
k
V
A
r
.
Si
n
ce
Q
L
a
n
d
Q
C
d
o
n
o
t
p
ar
ticip
ate
in
t
h
e
co
n
s
u
m
p
tio
n
f
r
o
m
t
h
e
P
V
s
y
s
te
m
,
a
s
t
h
er
e
is
n
o
r
ea
ctiv
e
p
o
w
er
ex
c
h
an
g
e,
t
h
eir
v
a
lu
e
w
a
s
s
et
a
s
0
k
V
A
r
.
T
h
e
f
r
eq
u
en
c
y
o
f
t
h
e
P
V
sy
s
te
m
d
u
r
in
g
t
h
e
en
tire
s
i
m
u
l
atio
n
w
as
i
n
th
e
r
a
n
g
e
4
9
.
9
6
Hz
–
5
0
.
0
5
Hz,
w
h
ich
co
m
p
l
i
es
w
ith
t
h
e
H
R
N
E
N
5
0
1
6
0
elec
tr
ic
p
o
w
er
q
u
alit
y
s
tan
d
ar
d
.
A
d
j
u
s
t
m
en
t
to
t
h
e
m
ai
n
s
v
o
lta
g
e
o
f
t
h
e
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
w
as
s
i
m
u
lated
w
it
h
t
h
e
co
n
s
ta
n
t 2
3
0
V
v
o
ltag
e
o
n
t
h
e
i
n
le
t to
th
e
P
W
M
s
ig
n
al
g
en
er
ato
r
.
2
.
2
.
ANF
I
S Alg
o
rit
h
m
Neu
r
o
-
f
u
zz
y
m
et
h
o
d
is
i
m
p
o
r
tan
t
i
n
t
h
e
d
esig
n
i
n
g
o
f
f
u
zz
y
ex
p
er
t
s
y
s
te
m
s
.
I
n
a
n
y
ca
s
e
,
th
e
r
ig
h
t
s
elec
tio
n
o
f
t
h
e
n
u
m
b
er
,
t
y
p
e,
r
u
les
a
n
d
p
ar
a
m
eter
s
o
f
th
e
f
u
zz
y
s
y
s
te
m
Me
m
b
er
s
h
ip
Fu
n
c
tio
n
s
(
M
Fs
)
i
s
v
ital
f
o
r
ac
q
u
ir
in
g
t
h
e
m
i
n
i
m
u
m
p
e
r
f
o
r
m
an
ce
.
T
r
ial
an
d
er
r
o
r
is
th
e
m
e
th
o
d
to
ac
h
ie
v
e
th
e
m
i
n
i
m
u
m
p
er
f
o
r
m
an
ce
.
T
h
is
f
ac
t
e
m
p
h
asize
s
th
e
w
ei
g
h
t
o
f
s
etti
n
g
s
o
f
t
h
e
f
u
zz
y
s
y
s
te
m
s
.
A
N
FIS
is
a
S
u
g
e
n
o
n
et
w
o
r
k
w
it
h
i
n
th
e
ad
ap
tiv
e
s
y
s
te
m
s
f
ac
ilit
ati
n
g
l
ea
r
n
in
g
an
d
tr
ai
n
in
g
.
T
h
at
f
r
a
m
e
w
o
r
k
m
ak
e
s
m
o
d
els
m
o
r
e
s
y
s
te
m
a
tic
an
d
u
s
es
ex
p
er
t
k
n
o
w
led
g
e
s
o
th
at
u
s
er
d
o
es
n
o
t
h
av
e
to
b
e
an
ex
p
er
t.
Fo
r
b
etter
u
n
d
er
s
tan
d
in
g
th
e
A
N
FIS
ar
ch
itect
u
r
e,
co
n
s
id
er
t
h
e
f
o
ll
o
w
i
n
g
f
u
zz
y
s
y
s
te
m
w
h
ic
h
h
as
t
w
o
r
u
les,
t
w
o
i
n
p
u
t
s
,
a
n
d
th
er
e
f
o
r
e
is
a
f
ir
s
t
o
r
d
er
Su
g
en
o
m
o
d
el:
R
u
le
1
:
I
f
(
x
is
A
1
)
an
d
(
y
i
s
B
1
)
th
en
(
f
1
= p
1
x
+
q
1
+ r
1
)
(
1
)
R
u
le
2
:
I
f
(
x
is
A
2
)
a
n
d
(
y
is
B
2
)
th
en
(
f
2
= p
2
x
+
q
2
+ r
2
)
(
2
)
L
iter
at
u
r
e
p
r
o
p
o
s
es sev
er
al
t
y
p
es o
f
r
ea
s
o
n
i
n
g
o
f
Su
g
e
n
o
f
u
zz
y
s
y
s
te
m
s
[
1
1
]
.
B
ased
o
n
ty
p
e
o
f
f
u
zz
y
r
ea
s
o
n
in
g
an
d
i
f
-
th
e
n
r
u
les,
th
er
e
ar
e
th
r
ee
ty
p
es o
f
f
u
zz
y
in
f
er
en
ce
s
y
s
te
m
s
m
o
s
tl
y
u
s
ed
:
a.
Dep
en
d
in
g
o
n
r
u
le
‟
s
s
tr
e
n
g
t
h
,
th
e
o
v
er
all
o
u
tp
u
t
is
t
h
e
w
e
i
g
h
ted
av
er
a
g
e
o
f
ea
ch
r
u
le
‟
s
cr
is
p
o
u
tp
u
t
(
t
h
e
p
r
o
d
u
ct
o
r
m
in
i
m
u
m
o
f
t
h
e
d
eg
r
ee
s
o
f
m
atch
with
t
h
e
p
r
e
m
i
s
e
p
ar
t)
an
d
MFs
.
T
h
e
o
u
tp
u
t
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
u
s
ed
in
th
is
ex
a
m
p
le
i
s
a
m
o
n
o
t
o
n
ic
f
u
n
c
tio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
8
6
7
–
8
7
9
870
b.
T
h
e
o
u
tp
u
t
o
f
f
u
zz
y
s
y
s
te
m
is
o
b
tain
ed
b
y
ap
p
l
y
i
n
g
“m
a
x
i
m
u
m
”
o
p
er
atio
n
to
th
e
ce
r
t
if
ied
f
u
zz
y
o
u
tp
u
ts
(
ea
ch
i
s
eq
u
al
to
th
e
m
in
i
m
u
m
o
f
s
co
r
in
g
r
esu
lt
a
n
d
th
e
o
u
tp
u
t
m
e
m
b
e
r
s
h
ip
f
u
n
ctio
n
o
f
ea
ch
r
u
le)
.
Div
er
s
e
s
ch
e
m
es
h
a
v
e
b
ee
n
p
r
esen
te
d
to
o
b
tain
th
e
f
i
n
al
(
cr
is
p
)
o
u
tp
u
t
b
ased
o
n
th
e
m
a
in
f
u
zz
y
o
u
t
p
u
t;
s
o
m
e
o
f
t
h
e
m
ar
e
ce
n
tr
o
id
o
f
ar
ea
(
C
o
A
)
,
b
is
ec
to
r
o
f
ar
ea
(
B
o
A
)
,
m
ea
n
o
f
m
a
x
(
Mo
M)
,
etc.
[
1
1
]
.
c.
T
ak
ag
i
-
S
u
g
en
o
“
i
f
-
t
h
e”
r
u
le
s
ar
e
u
s
ed
f
o
r
th
e
p
u
r
p
o
s
es
o
f
th
is
p
ap
er
.
L
in
ea
r
co
m
b
in
at
io
n
o
f
f
u
zz
y
in
p
u
t
v
ar
iab
les
p
lu
s
a
co
n
s
ta
n
t
ter
m
ar
e
u
s
ed
f
o
r
o
u
tp
u
t
o
f
ea
ch
r
u
le,
an
d
th
e
u
lti
m
ate
o
u
tp
u
t
is
th
e
a
v
er
ag
e
w
ei
g
h
t
o
f
o
u
tp
u
t
f
r
o
m
e
v
er
y
r
u
le.
On
e
o
f
th
e
A
N
FIS
ar
ch
itect
u
r
es
is
th
e
i
m
p
le
m
en
ta
tio
n
o
f
t
h
ese
t
w
o
r
u
les
as
s
h
o
w
n
i
n
Fi
g
u
r
e
3
.
A
cir
cle
r
ep
r
esen
ts
a
f
i
x
ed
n
o
d
e,
as
p
r
esen
ted
in
Fi
g
u
r
e
3
,
a
s
q
u
ar
e
in
d
icate
s
a
n
ad
ap
tiv
e
n
o
d
e
(
th
e
p
ar
a
m
e
ter
s
ar
e
c
h
an
g
i
n
g
d
u
r
in
g
tr
ain
i
n
g
w
i
th
b
ac
k
p
r
o
p
ag
atio
n
o
r
h
y
b
r
id
m
et
h
o
d
o
f
lear
n
i
n
g
)
.
Fig
u
r
e
3
.
A
NFI
S a
r
ch
itect
u
r
e
L
a
y
er
1
:
No
d
es
in
th
is
la
y
e
r
ar
e
ad
ap
tiv
e
n
o
d
es.
T
h
e
o
u
tp
u
t
o
f
ea
ch
n
o
d
e
is
th
e
d
eg
r
ee
o
f
m
e
m
b
er
s
h
ip
o
f
t
h
e
i
n
p
u
t
o
f
th
e
f
u
zz
y
m
e
m
b
er
s
h
ip
f
u
n
c
tio
n
s
r
ep
r
ese
n
ted
b
y
t
h
e
n
o
d
e.
E
x
p
r
ess
io
n
s
f
o
r
o
b
tain
in
g
th
o
s
e
o
u
tp
u
t
s
ar
e:
O
1,
I
=
µ
Ai
(
x
)
i=1
,
2
(
3
)
O
1,
I
=
µ
Bi
(
x
)
i=3
,
4
(
4
)
w
h
er
e,
A
i
a
n
d
B
i
ar
e
an
y
s
u
ita
b
le
f
u
zz
y
s
ets
in
p
ar
a
m
etr
ic
f
o
r
m
,
a
n
d
O
1,
i
is
th
e
o
u
tp
u
t
o
f
th
e
n
o
d
e
in
t
h
e
i
-
t
h
la
y
er
.
T
h
is
p
ap
er
u
s
es tr
ap
ez
o
id
al
s
h
ap
e
MFs.
L
a
y
er
2
:
T
h
e
n
o
d
es
in
th
is
la
y
er
ar
e
f
ix
ed
(
n
o
t
ad
ap
tiv
e)
an
d
th
er
ef
o
r
e
ar
e
ca
lled
a
Neu
r
al
Net
w
o
r
k
la
y
er
.
T
h
e
y
ar
e
s
i
g
n
ed
w
i
th
Π
to
in
d
icate
t
h
at
t
h
e
y
p
la
y
t
h
e
r
o
le
o
f
a
m
u
l
tip
lier
f
u
n
ctio
n
o
f
i
n
p
u
ts
.
O
u
tp
u
t
s
f
r
o
m
t
h
is
n
o
d
e
ar
e
p
r
esen
ted
in
ex
p
r
ess
io
n
(
5
)
.
O
2,
i
=
W
i
=µ
Ai
(
x
)
µ
Bi
(
y
)
i=1
,
2
(
5
)
L
a
y
er
3
:
T
h
e
n
o
d
es
in
th
is
la
y
er
ar
e
also
f
ix
ed
n
o
d
es.
T
h
ey
ar
e
s
i
g
n
ed
w
it
h
N
to
i
n
d
ica
te
th
at
th
e
y
p
er
f
o
r
m
a
n
o
r
m
aliza
tio
n
o
f
th
e
s
co
r
in
g
s
tr
en
g
t
h
f
r
o
m
t
h
e
p
r
ev
io
u
s
la
y
er
.
Ou
tp
u
t
f
r
o
m
th
is
n
o
d
e
is
g
i
v
e
n
in
(
6
)
.
̅
̅
̅
̅
(
6
)
L
a
y
er
4
:
A
ll
t
h
e
n
o
d
es
i
n
t
h
i
s
la
y
er
ar
e
ad
ap
tiv
e
n
o
d
es,
a
n
d
t
h
er
ef
o
r
e
t
h
is
la
y
er
is
a
F
u
zz
y
lo
g
i
c
la
y
er
.
T
h
e
o
u
tp
u
t
o
f
ea
ch
n
o
d
e
is
s
i
m
p
l
y
t
h
e
p
r
o
d
u
ct
o
f
t
h
e
n
o
r
m
alize
d
s
co
r
in
g
s
tr
e
n
g
t
h
a
n
d
a
f
ir
s
t
o
r
d
er
p
o
ly
n
o
m
ia
l f
u
n
ctio
n
.
O
u
tp
u
t
f
r
o
m
ea
c
h
n
o
d
e
f
r
o
m
t
h
i
s
la
y
er
is
p
r
esen
ted
in
(
7
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
N
F
I
S
u
s
ed
a
s
a
Ma
ximu
m
P
o
w
er P
o
in
t Tr
a
ck
in
g
A
lg
o
r
ith
m
fo
r
a
P
h
o
to
v
o
lta
ic
S
ystem
(
Dra
g
a
n
Mla
kić)
871
O
4,
I
=
f
i
=
(p
i
x
+ q
i
y
+
r
i
)
i=1
,
2
(
7
)
L
a
y
er
5
: T
h
is
la
y
er
h
as o
n
e
n
o
d
e
s
ig
n
ed
w
it
h
S to
i
n
d
icate
s
i
m
p
le
s
u
m
m
ar
izatio
n
in
t
h
i
s
la
y
er
.
∑
̅
∑
∑
̇
(
8
)
T
h
e
A
N
FIS
ar
ch
i
tectu
r
e
is
n
o
t
u
n
iq
u
e.
C
o
m
b
i
n
atio
n
o
f
s
o
m
e
la
y
er
s
ca
n
b
e
s
t
ill
p
r
o
d
u
ce
t
h
e
s
a
m
e
o
u
tp
u
t
i
n
s
tead
.
I
n
A
NFI
S
ar
ch
itect
u
r
e,
th
er
e
ar
e
t
w
o
ad
ap
ti
v
e
la
y
er
s
(
L
a
y
er
s
1
a
n
d
4
,
Fu
zz
y
la
y
er
s
)
.
L
a
y
er
1
h
as
th
r
ee
alter
ab
le
p
ar
a
m
eter
s
(
a
i
,
b
i
a
n
d
c
i
)
r
e
f
er
r
in
g
to
th
e
i
n
p
u
t
o
f
MF
s
.
T
h
ese
p
ar
a
m
eter
s
ar
e
ca
lled
p
r
em
i
s
e
p
ar
a
m
eter
s
.
L
a
y
er
4
also
h
as
th
r
ee
alter
ab
le
p
ar
am
eter
s
(
p
i
,
q
i
an
d
r
i
)
r
ef
er
r
in
g
to
th
e
f
ir
s
t
o
r
d
er
p
o
ly
n
o
m
ia
l
f
u
n
ctio
n
.
T
h
ese
p
ar
am
eter
s
ar
e
co
n
s
eq
u
e
n
t
p
ar
a
m
eter
s
.
T
h
e
task
o
f
t
h
e
t
r
ain
in
g
o
r
lear
n
i
n
g
alg
o
r
ith
m
f
o
r
th
i
s
ar
ch
itect
u
r
e
is
to
tu
n
e
all
th
e
alter
ab
le
p
ar
am
eter
s
to
m
a
k
e
th
e
A
N
F
I
S
o
u
tp
u
t
m
atc
h
th
e
tr
ain
i
n
g
d
ata
as
m
u
c
h
as t
h
e
y
ca
n
.
3
.
M
P
P
T
WI
T
H
T
H
E
ANF
I
S
AL
G
O
RI
T
H
M
R
ep
r
esen
tat
io
n
o
f
th
e
en
tire
m
o
d
elled
ac
t
u
al
P
V
Sy
s
te
m
p
r
esen
ted
in
Fi
g
u
r
e
4
w
i
th
it
s
co
m
p
o
n
e
n
t
s
m
ar
k
ed
.
Fig
u
r
e
4
.
A
ct
u
al
m
o
d
elled
P
V
s
y
s
te
m
d
ia
g
r
a
m
Ma
r
k
ed
w
i
th
a
r
ed
ellip
s
e
i
s
t
h
e
DC
-
D
C
co
n
v
er
ter
w
it
h
th
e
p
u
r
p
o
s
e
o
f
r
eg
u
la
tin
g
o
u
tp
u
t
DC
v
o
lta
g
e
ac
co
r
d
in
g
to
th
e
ANFI
S M
P
P
T
co
n
tr
o
ller
m
ar
k
ed
w
it
h
a
n
o
t
h
er
r
ed
ellip
s
e.
ANFI
S c
o
n
tr
o
ller
w
o
r
k
s
ac
co
r
d
in
g
to
in
p
u
t
v
a
lu
e
s
o
f
T
em
p
er
at
u
r
e
(
o
C
)
an
d
s
u
n
ir
r
ad
ian
ce
(
W
/
m
2
)
b
ased
o
n
tr
ain
ed
.
f
is
f
ile.
An
o
th
er
d
etail
is
v
o
ltag
e
co
n
tr
o
l
f
o
r
o
u
ts
id
e
v
o
ltag
e
r
eg
u
latio
n
b
ased
o
n
u
s
er
in
p
u
t
w
o
r
k
i
n
g
w
i
th
t
h
e
P
W
M
s
ig
n
al
g
e
n
er
ato
r
.
T
h
e
ab
o
v
e
m
en
tio
n
ed
ar
e
in
p
u
t
f
o
r
DC
/
AC
i
n
v
er
ter
b
ased
o
n
d
io
d
e
s
w
itc
h
in
g
g
ea
r
w
it
h
s
et
u
p
d
ip
an
d
s
w
el
l
v
o
ltag
e
r
e
g
u
la
tio
n
.
T
h
e
n
e
x
t
r
ed
ellip
s
e
is
th
e
AC
/
AC
1
0
k
W
p
o
w
er
tr
an
s
f
o
r
m
er
u
s
ed
f
o
r
p
o
w
er
li
m
i
tin
g
o
u
tp
u
t
a
n
d
v
o
lta
g
e
r
e
g
u
latio
n
o
n
AC
s
id
e.
T
h
e
las
t
t
w
o
r
e
d
ellip
s
es
ar
e
t
h
e
m
ea
s
u
r
e
m
e
n
t
p
lace
f
o
r
o
u
tp
u
t
r
esu
lt
s
a
n
d
th
e
D
is
tr
ib
u
tio
n
n
e
t
w
o
r
k
w
i
th
s
i
m
u
lated
R
L
C
co
n
s
u
m
er
.
T
h
e
ex
p
lan
atio
n
f
o
r
cr
ea
tin
g
an
d
th
e
lev
els
co
m
p
r
i
s
in
g
t
h
e
ANFI
S
co
g
n
iti
v
e
m
et
h
o
d
h
as
b
ee
n
d
escr
ib
ed
in
n
u
m
er
o
u
s
ea
r
lier
ar
ticles
i
n
b
ib
lio
g
r
ap
h
y
[
8
]
,
[
1
0
-
1
3
]
,
[
1
5
]
,
[
1
7
]
an
d
[
1
8
-
2
2
]
.
T
h
e
cr
ea
tio
n
o
f
th
e
A
N
FIS
MP
P
T
alg
o
r
ith
m
w
as
ap
p
lied
w
it
h
t
h
e
d
ata
r
ec
o
r
d
ed
d
ir
ec
tl
y
f
r
o
m
t
h
e
p
o
w
er
e
x
ch
an
g
e
p
o
in
t
b
et
w
ee
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
8
6
7
–
8
7
9
872
th
e
P
V
s
y
s
te
m
a
n
d
th
e
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
.
T
h
e
f
o
llo
w
i
n
g
d
ata
w
er
e
u
s
ed
:
a.
Ho
u
r
s
o
f
s
o
lar
ex
p
o
s
u
r
e
(
ir
r
ad
ian
ce
)
,
b.
Am
b
ien
t te
m
p
er
at
u
r
e
p
er
h
o
u
r
,
Hu
m
id
it
y
i
s
n
o
t
co
n
s
id
er
ed
in
th
i
s
p
ap
er
.
T
h
e
o
u
tp
u
t
p
o
w
er
f
r
o
m
t
h
e
s
y
s
te
m
w
as
m
ea
s
u
r
ed
w
it
h
r
eg
ar
d
to
th
e
co
llected
v
al
u
es
f
o
r
s
o
lar
e
x
p
o
s
u
r
e
a
n
d
te
m
p
er
at
u
r
e.
T
h
e
i
n
p
u
t
to
t
h
e
A
NFI
S
al
g
o
r
ith
m
co
m
p
r
is
e
s
t
h
e
d
ata
ab
o
u
t
th
e
s
o
lar
ex
p
o
s
u
r
e
o
f
P
V
m
o
d
u
l
es
an
d
a
m
b
ie
n
t
te
m
p
er
at
u
r
e,
an
d
th
e
o
u
tp
u
t
is
a
n
o
n
li
n
ea
r
co
ef
f
icien
t
as
a
co
n
tr
o
l
s
ig
n
al
f
o
r
th
e
DC
-
DC
s
tab
ilizer
w
h
ich
m
ai
n
tai
n
s
v
o
lta
g
e
in
P
V
m
o
d
u
le
s
i
n
th
e
m
a
x
i
m
u
m
e
f
f
icie
n
c
y
r
an
g
e.
T
h
ese
p
o
in
ts
ar
e
in
d
icate
d
in
F
ig
u
r
e
4
.
B
ased
o
n
t
h
e
d
at
a
co
n
ce
r
n
i
n
g
s
o
lar
ex
p
o
s
u
r
e
a
n
d
te
m
p
er
atu
r
e,
t
h
e
A
NFI
S
alg
o
r
it
h
m
w
it
h
its
o
u
t
p
u
t
d
ir
ec
tl
y
t
h
r
o
u
g
h
th
e
DC
-
D
C
s
tab
ilizer
af
f
ec
t
s
th
e
v
o
lta
g
e
in
P
V
m
o
d
u
les,
th
u
s
m
o
d
i
f
y
in
g
th
e
o
u
tp
u
t
p
o
w
e
r
o
f
th
e
P
V
s
y
s
te
m
.
Data
o
n
t
h
e
b
est
s
u
n
lit
d
a
y
s
f
o
r
2
0
1
5
an
d
2
0
1
6
w
er
e
u
s
ed
to
tr
ain
th
e
A
N
FI
S
al
g
o
r
ith
m
,
s
o
th
a
t
all
s
it
u
atio
n
s
i
n
b
et
w
ee
n
ar
e
w
it
h
in
t
h
e
s
co
p
e
o
f
A
NFI
S.
T
r
ain
in
g
w
as
p
er
f
o
r
m
ed
w
it
h
o
u
t
t
h
e
i
m
p
ac
t
o
f
th
e
m
ea
s
u
r
ed
v
alu
e
s
f
r
o
m
th
e
ac
t
u
al
P
V
s
y
s
te
m
;
in
s
tead
,
th
e
s
i
m
u
latio
n
w
a
s
u
s
ed
as
th
e
b
asic
m
o
d
el.
T
r
ain
in
g
w
a
s
p
er
f
o
r
m
ed
u
s
in
g
th
e
f
o
llo
w
i
n
g
p
ar
am
eter
s
:
1
0
tr
ain
in
g
ep
o
ch
s
,
6
tr
ap
ez
o
id
al
m
e
m
b
er
s
h
i
p
f
u
n
c
tio
n
s
.
A
H
y
b
r
id
Op
ti
m
izatio
n
Mo
d
el
w
as
u
s
ed
,
w
it
h
er
r
o
r
E
r
=1
0
-
6
,
s
h
o
w
n
i
n
Fig
u
r
e
7
ar
e
r
es
u
lt
s
o
f
th
e
ANFI
S
MP
PT
alg
o
r
ith
m
tr
ain
i
n
g
.
I
t
ca
n
b
e
n
o
ticed
in
Fi
g
u
r
e
7
t
h
at
t
h
e
g
r
ea
test
le
v
e
l
o
f
e
f
f
icien
c
y
is
w
h
e
n
a
m
b
ien
t
te
m
p
er
at
u
r
e
i
s
in
t
h
e
1
5
o
C
-
20
o
C
r
an
g
e,
w
it
h
s
o
lar
ir
r
ad
iatio
n
o
v
er
9
0
0
W
/m
2
.
I
t i
s
i
m
p
o
r
tan
t
to
n
o
te
th
at
th
e
te
m
p
er
atu
r
e
t
h
at
w
a
s
u
s
ed
as i
n
p
u
t
f
o
r
th
e
tr
ai
n
in
g
o
f
t
h
e
A
NF
I
S
MP
PT
alg
o
r
ith
m
i
s
i
n
f
a
ct
a
m
b
ie
n
t
te
m
p
er
at
u
r
e,
an
d
s
o
lar
ex
p
o
s
u
r
e
i
s
ir
r
ad
iatio
n
ac
co
r
d
in
g
to
t
h
e
wea
th
er
r
ep
o
r
ts
.
T
h
e
o
u
tp
u
t
p
o
w
er
f
r
o
m
t
h
e
P
V
s
y
s
te
m
as
“o
u
tp
u
t”
v
ar
iab
le
i
s
s
h
o
w
n
i
n
Fi
g
u
r
e
5
.
T
h
e
A
NF
I
S
tr
ain
ed
s
y
s
te
m
w
it
h
Su
g
e
n
o
in
f
er
en
ce
al
g
o
r
ith
m
u
s
in
g
t
w
o
-
in
p
u
ts
a
n
d
o
n
e
-
o
u
tp
u
t
i
s
s
h
o
w
n
i
n
Fi
g
u
r
e
6
.
T
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
f
o
r
b
o
th
in
p
u
t
s
a
n
d
o
u
tp
u
t
r
eg
ar
d
in
g
v
a
lu
e
s
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
7
.
On
e
ca
n
n
o
tice
in
Fi
g
u
r
e
7
th
e
s
h
ap
e
o
f
a
tr
ap
ez
o
id
f
o
r
in
d
iv
id
u
al
m
e
m
b
er
s
h
ip
f
u
n
c
tio
n
s
an
d
th
at
is
d
u
e
to
u
s
er
s
‟
c
u
s
to
m
s
h
i
f
ti
n
g
.
I
t‟
s
p
o
s
s
ib
le
to
ch
a
n
g
e
s
h
ap
e
b
u
t
t
h
e
r
es
u
lt
s
ar
e
co
n
s
id
er
ab
l
y
d
if
f
er
e
n
t.
Vie
w
w
ith
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
o
f
tr
ain
ed
s
y
s
te
m
is
s
h
o
w
n
in
F
ig
u
r
e
8
,
2
-
in
p
u
t,
1
-
o
u
tp
u
t
ANFI
S
w
it
h
la
y
er
s
a
n
d
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
i
n
o
n
e
i
m
a
g
e.
T
h
e
n
u
m
b
er
o
f
g
e
n
er
ated
r
u
les
f
o
r
th
e
en
tire
A
N
FIS
tr
ain
ed
s
y
s
te
m
i
s
7
2
.
Als
o
,
it
is
p
o
s
s
ib
le
to
g
e
n
er
ate
m
o
r
e,
b
u
t
co
m
p
le
x
it
y
o
f
t
h
e
s
y
s
te
m
m
ak
e
s
tr
ai
n
i
n
g
las
t
m
u
c
h
lo
n
g
er
.
Fig
u
r
e
5
.
Su
r
f
ac
e
o
f
th
e
f
u
n
cti
o
n
in
g
o
f
t
h
e
MP
PT
alg
o
r
ith
m
Fig
u
r
e
6
.
T
w
o
in
p
u
ts
w
it
h
t
h
e
Su
g
en
o
I
n
f
er
en
ce
Mo
d
el
an
d
s
y
s
te
m
o
u
tp
u
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
N
F
I
S
u
s
ed
a
s
a
Ma
ximu
m
P
o
w
er P
o
in
t Tr
a
ck
in
g
A
lg
o
r
ith
m
fo
r
a
P
h
o
to
v
o
lta
ic
S
ystem
(
Dra
g
a
n
Mla
kić)
873
Fig
u
r
e
7
.
So
lar
ex
p
o
s
u
r
e
w
ith
6
tr
ap
ez
o
id
al
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
Fig
u
r
e
8
.
A
NFI
S M
P
PT
s
y
s
te
m
d
iag
r
a
m
w
it
h
la
y
er
s
Fig
u
r
e
9
.
L
ef
t
–
co
n
v
e
n
tio
n
al
d
u
al
-
MP
P
T
s
y
s
te
m
,
r
i
g
h
t
–
ANFI
S M
P
PT
alg
o
r
ith
m
w
it
h
t
w
o
s
e
n
s
o
r
s
T
h
e
MPPT
alg
o
r
ith
m
,
w
h
ic
h
is
b
u
ilt
in
t
h
e
in
v
er
ter
s
i
n
T
a
b
le
2
,
w
as
n
o
t
u
s
ed
to
tr
ain
th
e
ANFI
S
MP
PT
alg
o
r
ith
m
.
T
h
is
m
ea
n
s
th
at
th
e
ANFI
S
MP
P
T
alg
o
r
ith
m
“
lear
n
s
”
in
d
ep
en
d
e
n
tl
y
f
r
o
m
t
h
e
ex
is
ti
n
g
MP
PT
alg
o
r
ith
m
i
n
in
v
er
ter
s
,
an
d
th
e
f
in
a
l
r
esu
lt
o
f
it
s
ac
tiv
it
y
p
r
o
v
id
es
t
h
e
o
u
tp
u
t
to
th
e
DC
-
D
C
s
tab
ilizer
w
h
ic
h
r
e
g
u
late
s
DC
v
o
lta
g
e
o
f
t
h
e
m
o
d
u
le
s
.
T
h
e
co
m
p
a
n
y
,
w
h
ic
h
p
r
o
d
u
ce
s
in
s
talled
i
n
v
e
r
ter
s
,
u
s
e
s
a
D
u
al
-
MP
PT
s
y
s
te
m
to
co
n
n
ec
t
m
o
d
u
les.
T
h
is
s
y
s
te
m
r
eq
u
ir
e
s
t
h
at
t
w
o
s
ep
ar
ate
co
n
n
ec
tio
n
s
b
e
u
s
ed
to
co
n
n
ec
t
P
V
m
o
d
u
les
f
ac
i
n
g
d
i
f
f
er
en
t d
ir
ec
tio
n
s
: e
as
t a
n
d
w
est.
T
h
is
r
es
u
l
ts
in
g
r
ea
ter
ef
f
icie
n
c
y
o
f
all
m
o
d
u
les.
T
h
e
Du
al
MP
PT
co
n
n
ec
tio
n
s
y
s
te
m
to
t
h
e
s
a
m
e
r
o
w
o
f
P
V
m
o
d
u
le
s
e
n
s
u
r
es
s
ep
ar
ate
o
p
er
atio
n
i
n
th
e
ca
s
e
o
f
d
ef
ec
t
o
n
a
n
in
d
i
v
i
d
u
al
m
o
d
u
le,
t
h
u
s
m
ai
n
tai
n
i
n
g
th
e
m
a
x
i
m
u
m
e
f
f
icien
c
y
o
f
t
h
e
en
tire
P
V
ar
r
ay
.
Usi
n
g
a
s
i
n
g
le
ANFI
S
MP
P
T
alg
o
r
ith
m
to
w
h
ich
all
P
V
m
o
d
u
les
ar
e
co
n
n
ec
ted
r
e
g
ar
d
les
s
o
f
th
e
ir
tilt
an
g
le
o
r
az
i
m
u
t
h
,
i
t
is
p
o
s
s
ib
le
to
s
w
itc
h
f
r
o
m
o
n
e
r
o
w
o
f
m
o
d
u
l
es
to
t
h
e
o
th
er
u
s
in
g
t
h
e
u
n
iv
e
r
s
al
s
o
lar
i
r
r
ad
ian
ce
m
eter
.
T
h
is
w
o
u
ld
h
av
e
t
h
e
s
a
m
e
e
f
f
ec
t
a
s
a
Du
al
-
MP
PT
s
y
s
te
m
,
w
it
h
o
u
t
h
av
i
n
g
to
ch
an
g
e
th
e
D
C
/
AC
in
v
er
ter
,
b
u
t
r
eq
u
ir
es
t
w
o
ad
d
itio
n
al
in
p
u
ts
,
as
s
h
o
w
n
i
n
Fig
u
r
e
9
.
Sin
ce
tr
ain
in
g
o
f
th
e
A
N
FIS
MP
PT
alg
o
r
ith
m
is
u
n
iq
u
e
f
o
r
ea
ch
P
V
ar
r
ay
,
th
i
s
w
o
u
l
d
co
v
er
all
th
e
co
s
ts
o
f
ad
d
itio
n
al
m
ater
i
al,
w
h
i
le
s
u
c
h
co
s
ts
ar
e
u
n
a
v
o
id
ab
le
in
th
e
ca
s
e
o
f
th
e
clas
s
ic
MP
PT
alg
o
r
ith
m
s
i
n
a
Du
al
-
MP
P
T
s
y
s
te
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
8
6
7
–
8
7
9
874
4.
CASE
S
AM
P
L
E
AND
SI
M
UL
A
T
I
O
N
R
E
SU
L
T
S
T
h
e
9
.
5
9
k
W
s
o
lar
p
h
o
to
v
o
ltaic
m
o
d
u
les
f
o
r
elec
tr
icit
y
g
e
n
er
atio
n
ar
e
in
s
talled
w
ith
a
3
0
°
tilt
an
g
le
o
n
th
e
s
o
u
t
h
s
lo
p
e
o
f
th
e
r
o
o
f
o
f
a
h
o
u
s
e
in
Šp
an
s
k
o
,
a
n
ei
g
h
b
o
r
h
o
o
d
in
Z
a
g
r
eb
.
T
h
e
s
y
s
te
m
w
o
r
k
s
p
ar
allel
w
it
h
th
e
d
i
s
tr
ib
u
tio
n
n
et
w
o
r
k
,
an
d
it
i
s
u
s
ed
to
s
u
p
p
l
y
e
lectr
icit
y
to
t
h
e
ap
p
lia
n
ce
s
i
n
t
h
e
f
a
m
il
y
h
o
u
s
e,
w
h
i
le
an
y
e
x
c
es
s
elec
tr
icit
y
is
f
ed
i
n
to
th
e
p
o
w
er
g
r
id
.
Du
r
i
n
g
th
e
p
er
io
d
w
h
en
t
h
e
s
o
lar
m
o
d
u
les
d
o
n
o
t
g
en
er
ate
s
u
f
f
icie
n
t
elec
tr
icit
y
,
p
o
w
er
t
o
th
e
ap
p
lian
ce
s
i
s
s
u
p
p
lied
b
y
elec
tr
icit
y
f
r
o
m
th
e
g
r
id
.
H
av
in
g
r
e
g
ar
d
to
th
e
f
ac
t
th
a
t
p
ea
k
en
er
g
y
g
en
er
ati
o
n
o
f
th
e
i
n
s
t
al
led
P
V
s
y
s
te
m
is
d
u
r
in
g
m
id
-
d
a
y
,
it
m
ee
ts
a
p
p
r
o
x
im
a
tel
y
5
0
%
o
f
o
w
n
d
e
m
a
n
d
w
h
ile
t
h
e
r
e
m
ain
d
er
is
f
ed
i
n
to
t
h
e
elec
tr
ic
p
o
w
er
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
[
1
]
.
T
h
e
p
h
o
to
v
o
ltaic
s
y
s
te
m
co
n
s
i
s
ts
o
f
5
6
m
o
d
u
le
s
m
o
u
n
ted
o
n
t
h
e
r
o
o
f
o
f
a
h
o
u
s
e,
d
is
tr
ib
u
ted
in
f
o
u
r
r
o
w
s
w
it
h
a
3
0
°
tilt
an
g
le
,
w
it
h
th
r
ee
r
o
w
s
co
m
p
r
is
i
n
g
1
4
m
o
d
u
les,
w
h
er
e
th
e
r
at
ed
p
o
w
er
p
er
m
o
d
u
le
is
1
7
0
W
,
an
d
o
n
e
r
o
w
co
m
p
r
is
in
g
1
4
m
o
d
u
les
w
i
th
r
ated
p
o
w
er
p
er
m
o
d
u
le
o
f
1
7
5
W
.
T
h
e
en
tire
P
V
s
y
s
te
m
co
n
tai
n
s
5
6
P
V
m
o
d
u
le
s
w
it
h
to
tal
p
o
w
er
o
f
9
.
5
9
k
W
p
.
T
h
e
s
p
ec
if
icatio
n
s
o
f
th
e
in
s
talled
m
o
d
u
le
s
p
r
esen
ted
in
T
a
b
le
1
.
E
lev
en
(
1
1
)
m
o
d
u
les
ar
e
co
n
n
ec
ted
in
s
er
ies
to
in
d
iv
id
u
a
l
in
v
er
ter
s
(
o
v
er
all
th
r
ee
s
u
c
h
i
n
v
er
ter
s
)
.
T
h
e
r
e
m
ai
n
in
g
9
m
o
d
u
les
ar
e
co
n
n
ec
ted
i
n
s
er
ie
s
an
d
th
e
ad
d
ed
1
4
n
e
w
m
o
d
u
les
ar
e
also
co
n
n
ec
ted
in
s
er
ies
to
th
e
f
o
u
r
t
h
in
v
er
ter
.
T
h
e
r
ated
p
o
w
er
o
f
t
h
e
th
r
ee
in
v
er
ter
s
i
s
3
0
0
0
VA
r
esp
ec
tiv
el
y
,
a
n
d
o
n
e
in
v
er
ter
h
a
s
t
h
e
p
o
w
er
o
f
4
2
0
0
VA
[
1
]
.
T
ab
le
1
.
P
V
m
o
d
u
le
s
d
ata
T
e
c
h
n
i
c
a
l
d
a
t
a
P
V
st
r
i
n
g
s 1
,
2
,
3
P
V
st
r
i
n
g
4
M
a
x
i
m
u
m
p
o
w
e
r
P
max
1
7
0
1
7
5
W
M
a
x
i
m
u
m
p
o
w
e
r
v
o
l
t
a
g
e
U
mp
36
3
5
,
4
V
M
a
x
i
m
u
m
p
o
w
e
r
c
u
r
r
e
n
t
I
mp
4
,
7
2
4
,
9
A
S
h
o
r
t
-
c
i
r
c
u
i
t
c
u
r
r
e
n
t
I
sc
5
5
,
5
A
O
p
e
n
c
i
r
c
u
i
t
v
o
l
t
a
g
e
U
oc
4
4
,
2
4
4
,
3
V
M
a
x
i
m
u
m
sy
st
e
m v
o
l
t
a
g
e
6
0
0
6
0
0
V
D
i
me
n
si
o
n
s
1
5
9
3
x
7
9
0
x
5
0
mm
M
a
ss
1
5
.
4
1
5
.
4
kg
N
u
mb
e
r
o
f
mo
d
u
l
e
s
42
14
p
c
s
T
h
e
P
V
s
y
s
te
m
co
m
p
r
is
e
s
th
r
ee
in
s
talled
s
o
lar
i
n
v
er
ter
u
n
it
s
o
f
3
0
0
0
VA
,
an
d
o
n
e
u
n
it
o
f
4
2
0
0
VA
,
w
h
o
s
e
s
p
ec
i
f
icatio
n
s
ar
e
lis
ted
in
T
ab
le
2
[
1
]
.
T
ab
le
2
.
I
n
v
er
ter
s
tr
in
g
s
d
ata.
T
e
c
h
n
i
c
a
l
d
a
t
a
P
V
st
r
i
n
g
i
n
v
e
r
t
e
r
P
V
st
r
i
n
g
i
n
v
e
r
t
e
r
I
n
p
u
t
M
a
x
i
m
u
m
P
V
P
p
v
4
1
0
0
W
M
a
x
i
m
u
m
D
C
p
o
w
e
r
P
D
C,
m
a
x
3
2
5
0
4
4
0
0
W
M
a
x
i
m
u
m
D
C
v
o
l
t
a
g
e
U
D
C,
m
a
x
6
0
0
7
5
0
V
P
V
v
o
l
t
a
g
e
,
M
P
P
-
r
a
n
g
e
U
PV
2
3
2
-
550
1
2
5
-
750
V
M
a
x
i
m
u
m
c
u
r
r
e
n
t
I
PV
.
M
a
x
12
11
A
D
C
n
o
i
se
v
o
l
t
a
g
e
U
SS
<
1
0
<
1
0
%
M
a
x
i
m
u
m
N
o
.
i
n
a
se
r
i
e
s (p
a
r
a
l
l
e
l
)
3
2
O
u
t
p
u
t
M
a
x
i
m
u
m
A
C
p
o
w
e
r
P
A
C,
m
a
x
3
0
0
0
4
2
0
0
W
A
C
r
a
t
e
d
p
o
w
e
r
P
A
C,
n
o
m
2
7
5
0
4
0
0
0
W
T
o
t
a
l
c
u
r
r
e
n
t
h
a
r
mo
n
i
c
d
i
st
o
r
t
i
o
n
<4
<4
%
O
p
e
r
a
t
i
n
g
r
a
n
g
e
,
g
r
i
d
v
o
l
t
a
g
e
U
AC
1
9
8
-
260
1
9
8
-
260
V
R
a
t
e
d
r
a
n
g
e
,
g
r
i
d
v
o
l
t
a
g
e
1
8
0
-
265
1
8
0
-
265
V
A
C
p
o
w
e
r
f
r
e
q
u
e
n
c
y
f
AC
4
9
,
8
-
5
0
,
2
4
9
,
8
-
5
0
,
2
Hz
R
a
t
e
d
p
o
w
e
r
f
r
e
q
u
e
n
c
y
4
5
,
5
-
5
4
,
5
4
5
,
5
-
5
4
,
5
Hz
F
e
e
d
-
i
n
p
h
a
se
c
o
s
φ
1
1
Si
m
p
li
f
ied
b
lo
ck
d
ia
g
r
a
m
o
f
t
h
e
P
V
s
y
s
te
m
co
n
n
ec
tio
n
to
th
e
lo
w
v
o
lta
g
e
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
,
i
s
s
h
o
w
n
in
Fi
g
u
r
e
1
0
.
A
cc
o
r
d
in
g
to
Fig
u
r
e
1
,
m
ar
k
eted
p
lace
o
f
m
ea
s
u
r
e
m
en
t,
“
E
n
er
g
y
m
et
er
”,
f
r
o
m
w
h
ic
h
th
e
g
ath
er
ed
d
ata
ar
e
u
s
ed
in
t
h
i
s
p
ap
er
,
is
in
p
lace
b
etw
ee
n
p
la
n
t a
n
d
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
N
F
I
S
u
s
ed
a
s
a
Ma
ximu
m
P
o
w
er P
o
in
t Tr
a
ck
in
g
A
lg
o
r
ith
m
fo
r
a
P
h
o
to
v
o
lta
ic
S
ystem
(
Dra
g
a
n
Mla
kić)
875
Fig
u
r
e
1
0
.
B
lo
ck
d
iag
r
am
o
f
P
V
m
o
d
u
les a
n
d
in
v
er
ter
s
.
An
alg
o
r
it
h
m
f
o
r
m
a
x
i
m
u
m
P
o
w
er
P
o
in
t
T
r
ac
k
in
g
i
m
b
ed
d
ed
in
P
V
s
tr
in
g
in
v
er
ter
s
is
n
o
t
p
r
o
v
id
ed
b
y
t
h
e
m
a
n
u
f
ac
tu
r
er
an
d
th
e
a
s
s
u
m
p
tio
n
is
t
h
at
in
v
er
ter
s
ar
e
u
s
i
n
g
o
n
e
o
f
m
o
s
t
p
o
p
u
lar
m
eth
o
d
s
:
P
er
tu
r
b
&
Ob
s
er
v
e
o
r
I
n
cr
e
m
en
tal
C
o
n
d
u
ctan
ce
.
So
m
e
m
a
n
u
f
ac
tu
r
er
s
i
m
p
le
m
e
n
t
b
o
th
m
et
h
o
d
s
c
o
m
b
i
n
ed
i
n
o
n
e
o
r
m
o
r
e
MP
P
T
co
n
tr
o
l
ler
s
,
b
u
t
in
t
h
is
ca
s
e
it
u
s
es
m
o
r
e
t
h
an
o
n
e
co
n
tr
o
ller
f
o
r
s
tr
i
n
g
m
o
d
u
les
at
a
d
i
f
f
er
e
n
t
an
g
le.
T
h
e
P
V
s
y
s
te
m
t
h
at
w
a
s
co
n
s
id
er
ed
in
th
is
p
ap
er
,
o
n
th
e
r
o
o
f
o
f
h
o
u
s
e
is
o
r
ien
ted
to
th
e
ea
s
t
w
it
h
3
0
o
az
i
m
u
th
,
p
r
ese
n
ted
in
Fi
g
u
r
e
1
1
.
Fig
u
r
e
1
1
.
P
V
s
y
s
te
m
i
n
s
talle
d
o
n
th
e
h
o
u
s
e
r
o
o
f
(
Go
o
g
le
Ma
p
s
)
Fo
llo
w
i
n
g
th
e
tr
ain
i
n
g
o
f
t
h
e
A
N
FIS
MP
PT
alg
o
r
ith
m
,
a
s
i
m
u
latio
n
w
a
s
la
u
n
c
h
ed
w
it
h
t
h
e
ac
ti
v
ated
A
N
FIS
MP
P
T
alg
o
r
ith
m
as
s
h
o
w
n
in
Fi
g
u
r
e
1
.
T
h
e
i
n
p
u
t
d
ata
co
n
ce
r
n
i
n
g
s
o
lar
e
x
p
o
s
u
r
e
an
d
te
m
p
er
atu
r
e
w
er
e
ta
k
en
f
r
o
m
t
h
e
w
ea
t
h
er
f
o
r
ec
ast
f
o
r
t
h
at
d
a
y
.
T
h
e
r
esu
lts
o
b
tai
n
ed
in
t
h
e
s
i
m
u
latio
n
w
er
e
co
m
p
ar
ed
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
8
6
7
–
8
7
9
876
th
e
m
ea
s
u
r
ed
p
o
w
er
v
al
u
es
o
n
th
e
ac
t
u
al
P
V
s
y
s
te
m
f
r
o
m
t
h
e
o
n
lin
e
p
o
r
tal
to
w
h
ich
th
e
P
V
s
y
s
te
m
is
lin
k
ed
.
T
h
e
test
i
n
g
w
as
co
n
d
u
c
ted
o
v
er
a
p
er
io
d
o
f
1
8
ch
o
s
e
n
d
a
y
s
.
Du
e
to
t
h
e
e
x
te
n
s
i
v
e
n
ess
o
f
t
h
e
o
b
tain
ed
r
esu
lts
,
o
n
l
y
1
2
d
a
y
s
ar
e
p
r
ese
n
ted
.
T
h
e
r
es
u
lts
o
v
er
1
2
d
ay
s
ar
e
p
r
esen
ted
i
n
T
ab
le
4
an
d
T
a
b
le
5
.
T
h
e
g
en
er
ated
d
a
y
p
o
w
er
cu
r
v
e
o
f
s
i
m
u
latio
n
is
s
h
o
w
n
i
n
Fi
g
u
r
e
1
2
an
d
Fig
u
r
e
1
3
.
T
o
g
eth
er
w
it
h
t
h
e
m
ea
s
u
r
ed
p
o
w
er
o
f
th
e
in
v
er
ter
a
n
d
ir
r
ad
ian
ce
.
A
s
ca
n
b
e
s
ee
n
,
th
e
ANFI
S
M
P
PT
p
er
f
o
r
m
s
b
etter
th
a
n
t
h
e
in
s
ta
lled
MP
PT
alg
o
r
ith
m
.
S
u
n
n
y
d
a
y
s
a
m
p
le
b
ased
o
n
o
n
-
s
ite
m
ea
s
u
r
e
m
e
n
t
s
an
d
co
m
p
ar
ed
ag
ai
n
s
t
th
e
r
e
s
u
lt
s
f
r
o
m
d
esi
g
n
e
d
m
o
d
el
is
p
r
esen
ted
in
Fig
u
r
e
1
2
to
g
e
th
er
w
it
h
s
u
n
li
g
h
t
ir
r
ad
ian
ce
.
Sa
m
e
an
a
lo
g
y
f
o
r
clo
u
d
y
d
a
y
s
is
p
r
ese
n
ted
in
Fi
g
u
r
e
1
3
also
w
it
h
s
u
n
lig
h
t
ir
r
ad
ian
ce
.
B
ased
o
n
p
r
ese
n
ted
g
r
ap
h
s
,
b
o
th
Fi
g
u
r
e
,
1
2
an
d
Fig
u
r
e
13
,
s
h
o
w
r
esu
lt
s
as p
r
esen
ted
i
n
T
ab
le
3
.
T
ab
le
3
.
Su
n
n
y
d
a
y
a
n
d
clo
u
d
y
d
a
y
r
es
u
lts
D
i
f
f
e
r
e
n
c
e
A
N
F
I
S
I
n
v
e
r
t
e
r
kW
%
S
u
n
n
y
d
a
y
4
9
.
9
1
k
W
4
8
.
5
2
k
W
1
.
3
8
2
.
7
8
C
l
o
u
d
y
d
a
y
3
0
.
3
2
k
W
2
8
.
6
7
k
W
1
.
6
5
5
.
4
6
Fig
u
r
e
1
2
.
C
o
m
p
ar
is
o
n
o
f
t
h
e
p
o
w
er
cu
r
v
e
f
o
r
a
s
u
n
n
y
d
a
y
o
f
s
a
m
p
lin
g
a
n
d
r
esu
lt
s
f
r
o
m
m
o
d
el
Fig
u
r
e
1
3
.
C
o
m
p
ar
is
o
n
o
f
t
h
e
p
o
w
er
cu
r
v
e
o
v
er
a
clo
u
d
y
d
a
y
o
f
s
a
m
p
li
n
g
a
n
d
r
esu
lt
s
f
r
o
m
m
o
d
el
Evaluation Warning : The document was created with Spire.PDF for Python.