I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
201
7
,
p
p
.
2
1
9
2
~
2
2
0
5
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
4
.
p
p
2
1
9
2
-
2205
2192
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Funct
io
na
l
Verifi
ca
tion o
f
L
a
rg
e
-
in
tegers
C
ir
cu
its
u
sing
a
Co
si
m
ula
tion
-
ba
sed Appro
a
ch
Nej
m
e
dd
i
ne
Ali
m
i
1
,
Yo
un
es
L
a
hb
ib
2
,
M
o
hs
en
M
a
chho
ut
4
,
Ra
ched
T
o
ur
k
i
5
1
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s o
f
T
u
n
is,
Un
iv
e
rsit
y
o
f
T
u
n
is
El
M
a
n
a
r,
2
0
9
2
El
M
a
n
a
r
T
u
n
is,
T
u
n
isia
2
Na
ti
o
n
a
l
E
n
g
in
e
e
rin
g
S
c
h
o
o
l
o
f
Ca
rth
a
g
e
,
Un
iv
e
rsit
y
o
f
Ca
rth
a
g
e
,
2
0
3
5
C
h
a
rg
u
ia II
T
u
n
is,
T
u
n
isia
1,
2,
4,
5
El
e
c
tro
n
ics
a
n
d
M
icro
-
El
e
c
tr
o
n
ics
L
a
b
o
ra
to
ry
(E.
µ.
E.
L
),
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s o
f
M
o
n
a
stir,
Un
i
v
e
rsit
y
o
f
M
o
n
a
stir,
5
0
0
0
M
o
n
a
stir,
T
u
n
isia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
2
8
,
2
0
1
6
R
ev
i
s
ed
A
p
r
2
6
,
2
0
1
7
A
cc
ep
ted
Ma
y
1
0
,
2
0
1
7
Cr
y
p
to
g
ra
p
h
y
a
n
d
c
o
m
p
u
tatio
n
a
l
a
lg
e
b
ra
d
e
sig
n
s
a
re
c
o
m
p
lex
s
y
st
e
m
s
b
a
se
d
o
n
m
o
d
u
lar
a
rit
h
m
e
ti
c
a
n
d
b
u
il
d
o
n
m
u
lt
i
-
lev
e
l
m
o
d
u
les
w
h
e
re
b
it
-
w
id
th
is
g
e
n
e
ra
ll
y
larg
e
r
th
a
n
6
4
-
b
it
.
Be
c
a
u
se
o
f
th
e
ir
p
a
rti
c
u
larity
,
su
c
h
d
e
sig
n
s
p
o
se
a
re
a
l
c
h
a
ll
e
n
g
e
f
o
r
v
e
ri
f
ica
ti
o
n
,
i
n
p
a
rt
b
e
c
a
u
se
larg
e
-
in
teg
e
r‘s
f
u
n
c
ti
o
n
s
a
re
n
o
t
su
p
p
o
r
ted
i
n
a
c
tu
a
l
h
a
rd
w
a
r
e
d
e
sc
rip
ti
o
n
lan
g
u
a
g
e
s
(HD
L
s),
th
e
re
f
o
re
li
m
it
in
g
th
e
HD
L
tes
tb
e
n
c
h
u
ti
l
i
ty
.
In
a
n
o
t
h
e
r
h
a
n
d
,
h
ig
h
-
lev
e
l
v
e
rif
ic
a
ti
o
n
a
p
p
ro
a
c
h
p
r
o
v
e
d
it
s
e
f
f
icie
n
c
y
in
th
e
las
t
d
e
c
a
d
e
o
v
e
r
HD
L
tes
tb
e
n
c
h
tec
h
n
iq
u
e
b
y
ra
isin
g
th
e
latter
a
t
a
h
ig
h
e
r
a
b
stra
c
t
io
n
lev
e
l.
In
t
h
is
w
o
rk
,
we
p
ro
p
o
se
a
h
ig
h
-
lev
e
l
p
latf
o
rm
t
o
v
e
rify
su
c
h
d
e
sig
n
s,
b
y
lev
e
r
a
g
in
g
th
e
c
a
p
a
b
il
it
ies
o
f
a
p
o
p
u
lar t
o
o
l
(M
a
t
lab
/S
im
u
li
n
k
)
to
m
e
e
t
th
e
re
q
u
ire
m
e
n
ts
o
f
a
c
y
c
le
a
c
c
u
ra
te
v
e
rif
i
c
a
ti
o
n
w
it
h
o
u
t
b
i
t
-
siz
e
re
strictio
n
s
a
n
d
in
m
u
lt
i
-
lev
e
l
in
sid
e
th
e
d
e
sig
n
a
rc
h
it
e
c
tu
re
.
T
h
e
p
ro
p
o
se
d
h
ig
h
-
lev
e
l
p
l
a
tf
o
r
m
is
a
u
g
m
e
n
ted
b
y
a
n
a
ss
e
rti
o
n
-
b
a
se
d
v
e
rif
ica
ti
o
n
to
c
o
m
p
lete
th
e
v
e
rif
ic
a
ti
o
n
c
o
v
e
ra
g
e
.
T
h
e
p
latf
o
r
m
e
x
p
e
ri
m
e
n
tal
re
su
lt
s
o
f
th
e
tes
tca
se
p
ro
v
id
e
d
g
o
o
d
e
v
id
e
n
c
e
o
f
it
s p
e
rf
o
r
m
a
n
c
e
a
n
d
re
-
u
sa
b
i
li
ty
.
K
ey
w
o
r
d
:
Ass
er
tio
n
-
b
ased
v
er
i
f
icat
io
n
Co
-
s
i
m
u
lat
io
n
C
r
y
p
to
g
r
ap
h
y
Har
d
w
ar
e
d
escr
ip
tio
n
lan
g
u
ag
e
Hig
h
-
lev
el
v
er
i
f
icatio
n
L
ar
g
e
-
i
n
te
g
er
Ma
tlab
/Si
m
u
l
in
k
Co
p
y
rig
h
t
©
2017
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Nej
m
ed
d
in
e
A
l
i
m
i,
E
lectr
o
n
ics an
d
Mic
r
o
-
E
lectr
o
n
ics
L
ab
o
r
ato
r
y
(
E
.
µ.
E
.
L
)
,
Facu
lt
y
o
f
Sc
ien
ce
s
o
f
Mo
n
a
s
t
ir
,
Un
iv
er
s
it
y
o
f
Mo
n
as
tir
,
Av
e
n
u
e
d
e
l
'
E
n
v
ir
o
n
n
e
m
en
t
-
5000
M
o
n
asti
r
,
T
u
n
is
ia.
E
m
ail:
n
ej
m
ed
d
in
e.
ali
m
i
@
f
s
t.
u
t
m
.
tn
1.
I
NT
RO
D
UCT
I
O
N
L
ar
g
e
-
i
n
te
g
er
ar
ith
m
etic
i
s
a
s
et
o
f
o
p
er
atio
n
s
li
k
e
ad
d
itio
n
,
m
u
lt
ip
licatio
n
,
m
o
d
u
lar
r
ed
u
ctio
n
,
etc
th
at
in
v
o
l
v
es
i
n
te
g
er
s
lar
g
er
th
a
n
th
e
n
at
iv
e
w
o
r
d
s
ize
o
f
t
h
e
g
en
er
al
p
u
r
p
o
s
e
p
r
o
ce
s
s
o
r
s
,
t
y
p
icall
y
,
6
4
-
b
it.
Dep
en
d
in
g
o
n
th
e
tar
g
et
ap
p
li
ca
tio
n
r
eq
u
ir
e
m
en
t
s
,
i
n
te
g
er
o
p
er
an
d
s
m
a
y
h
av
e
1
6
3
-
b
it,
1
9
2
b
it,
5
1
2
-
b
it,
1
0
2
4
-
b
it
o
f
len
g
t
h
,
an
d
m
o
r
e.
On
e
p
lace
w
h
er
e
lar
g
e
in
te
g
er
s
ar
e
u
s
ed
is
cr
y
p
to
g
r
ap
h
y
,
esp
ec
iall
y
in
t
h
e
p
u
b
lic
-
k
e
y
f
a
m
il
y
li
k
e
R
S
A
[
1
]
an
d
E
ll
ip
tic
C
u
r
v
e
C
r
y
p
to
g
r
ap
h
y
[
2
]
,
[
3
]
.
L
ar
g
e
in
te
g
er
s
ar
e
also
u
s
ed
in
co
m
p
le
x
r
esear
ch
,
h
ig
h
p
er
f
o
r
m
a
n
ce
c
o
m
p
u
ti
n
g
(
HP
C
)
a
n
d
co
m
p
u
t
atio
n
al
al
g
eb
r
a.
L
ar
g
e
in
teg
er
s
o
p
er
atio
n
s
k
n
o
w
a
co
n
tin
u
o
u
s
d
ev
elo
p
m
e
n
t
i
n
m
at
h
e
m
a
tical
al
g
o
r
ith
m
s
[4
-
6]
.
Har
d
w
ar
e
-
b
ased
i
m
p
le
m
en
tatio
n
s
o
f
s
u
c
h
alg
o
r
ith
m
s
h
a
v
e
p
r
o
v
ed
to
b
e
m
o
r
e
ef
f
icie
n
t
t
h
a
n
eq
u
i
v
al
en
t
s
o
f
t
w
ar
e
‘
s
p
r
o
g
r
a
m
s
i
n
t
er
m
s
o
f
s
p
ee
d
an
d
r
eso
u
r
ce
s
u
s
ag
e.
T
h
is
is
m
ai
n
l
y
d
u
e
to
ex
p
lo
r
in
g
n
e
w
d
esi
g
n
ar
c
h
itectu
r
e
s
[7
-
12]
.
Su
ch
d
esig
n
s
ar
e
g
e
n
er
all
y
w
r
itte
n
i
n
h
ar
d
w
ar
e
d
escr
ip
tio
n
lan
g
u
ag
e
s
(
HD
L
s
)
.
To
v
er
if
y
t
h
at
a
d
esig
n
w
o
r
k
s
as
in
ten
d
ed
,
t
w
o
tec
h
n
o
lo
g
ie
s
ar
e
co
m
m
o
n
l
y
u
s
ed
;
Si
m
u
la
tio
n
-
b
ased
v
er
if
ica
tio
n
a
n
d
f
o
r
m
al
v
er
if
i
ca
tio
n
.
T
h
e
s
i
m
u
latio
n
-
b
ased
v
er
if
icat
io
n
is
t
h
e
tec
h
n
iq
u
e
g
en
er
all
y
u
s
ed
f
o
r
co
m
p
le
x
d
esi
g
n
s
.
Fo
r
m
al
v
er
if
icatio
n
,
w
h
ic
h
co
n
s
is
t
s
in
m
a
th
e
m
atica
ll
y
ch
ec
k
i
n
g
t
h
e
f
u
n
ctio
n
al
co
r
r
ec
tn
es
s
o
f
th
e
d
esi
g
n
,
is
g
e
n
er
all
y
u
s
e
d
to
v
er
if
y
s
m
al
l
d
esig
n
s
an
d
co
r
n
er
ca
s
es.
Ho
w
e
v
er
in
t
h
e
last
d
ec
ad
e,
f
o
r
m
al
v
er
if
ica
tio
n
to
o
ls
h
a
v
e
s
ee
n
th
eir
ca
p
ac
ity
to
v
er
if
y
m
o
r
e
co
m
p
lex
d
esi
g
n
s
i
m
p
r
o
v
ed
to
s
o
m
e
ex
te
n
t,
in
p
ar
t,
b
ec
au
s
e
o
f
it
s
co
u
p
li
n
g
w
it
h
s
i
m
u
lat
io
n
(
d
y
n
a
m
ic
f
o
r
m
al
v
er
if
ica
tio
n
)
a
n
d
th
e
s
tan
d
a
r
d
izatio
n
o
f
s
o
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
n
ctio
n
a
l
V
erif
ica
tio
n
o
f La
r
g
e
-
in
teg
ers
C
ir
cu
its
u
s
in
g
a
C
o
s
imu
la
tio
n
-
b
a
s
ed
A
p
p
r
o
a
c
h
(
N
ejme
d
d
in
e
A
limi
)
2193
ass
er
tio
n
lan
g
u
ag
e
s
.
T
h
e
g
o
al
w
as
to
m
a
k
e
a
co
m
p
le
m
en
ta
r
y
tec
h
n
o
lo
g
y
to
th
e
s
i
m
u
late
d
-
b
ased
o
n
e
s
o
t
h
at
th
e
o
v
er
all
v
er
if
icat
io
n
m
eth
o
d
o
lo
g
y
co
u
ld
b
e
en
h
a
n
ce
d
.
R
eg
ar
d
in
g
s
i
m
u
lat
io
n
-
b
ased
v
er
if
ica
tio
n
,
r
u
n
n
i
n
g
test
b
e
n
c
h
i
n
a
n
HD
L
s
i
m
u
lato
r
is
th
e
co
m
m
o
n
ap
p
r
o
ac
h
to
v
er
if
y
h
ar
d
w
ar
e
d
esig
n
s
an
d
HD
L
p
ac
k
a
g
e
s
(
e.
g
.
VHDL
,
Ver
ilo
g
,
etc
.
)
p
r
o
v
id
e
a
r
an
g
e
o
f
f
u
n
ctio
n
s
i
n
te
n
d
ed
to
h
elp
w
r
itin
g
test
b
e
n
ch
s
.
B
u
t,
t
o
th
e
b
est
o
f
o
u
r
k
n
o
w
led
g
e
,
a
m
o
n
g
th
o
s
e
p
ac
k
a
g
es
as
w
ell
as
f
u
n
ct
io
n
al
v
er
i
f
icatio
n
f
r
a
m
e
w
o
r
k
s
(
e.
g
.
Sp
ec
m
a
n
,
J
o
v
e,
etc
.
)
,
th
er
e
is
n
o
d
ed
icate
d
A
p
p
licatio
n
P
r
o
g
r
am
m
i
n
g
I
n
ter
f
ac
e
(
A
P
I
)
s
u
p
p
o
r
t
in
g
lar
g
e
-
i
n
te
g
er
s
o
p
er
atio
n
s
.
A
w
o
r
k
ar
o
u
n
d
co
n
s
i
s
ts
o
n
v
er
if
y
i
n
g
ag
ain
s
t
eq
u
iv
a
len
t
p
r
o
g
r
a
m
w
r
itte
n
at
a
h
i
g
h
-
le
v
el
la
n
g
u
ag
e.
S
u
ch
p
r
o
g
r
a
m
s
ar
e
r
u
n
o
n
s
o
f
t
w
ar
es
ca
l
led
C
o
m
p
u
ter
A
lg
eb
r
a
S
y
s
te
m
s
(
C
A
S)
t
h
at
s
u
p
p
o
r
ts
a
n
o
n
-
l
i
m
i
ted
p
r
ec
is
io
n
lik
e
M
A
P
L
E
,
M
A
T
HE
MA
T
I
C
A
a
n
d
th
e
GM
P
lib
r
ar
y
.
I
n
ad
d
itio
n
to
C
A
S
,
t
h
er
e
ex
i
s
t
a
n
u
m
b
er
o
f
d
o
m
ain
-
s
p
ec
if
i
c
lib
r
ar
ies
l
ik
e
C
r
y
p
to
++
an
d
MI
R
A
C
L
t
h
at
s
u
p
p
le
m
e
n
t
tr
a
d
itio
n
al
h
i
g
h
l
ev
e
l
p
r
o
g
r
a
m
m
i
n
g
la
n
g
u
a
g
es
w
it
h
lar
g
e
-
i
n
teg
er
s
u
p
p
o
r
t
to
tar
g
et
s
p
ec
if
ic
d
o
m
a
in
s
li
k
e
cr
y
p
to
g
r
ap
h
y
.
A
lt
h
o
u
g
h
u
s
i
n
g
C
A
S
a
n
d
s
p
ec
i
f
ic
lib
r
ar
ies
to
v
er
if
y
HDL
d
e
s
ig
n
s
m
a
y
m
ee
t
t
h
e
f
u
n
c
tio
n
al
v
er
if
icatio
n
p
u
r
p
o
s
e
f
o
r
v
er
y
b
asic
a
n
d
u
n
it
-
le
v
el
d
esig
n
s
,
it
r
e
m
ai
n
s
i
n
s
u
f
f
icie
n
t
f
o
r
m
o
r
e
co
m
p
le
x
d
esi
g
n
s
.
I
n
f
ac
t
,
b
ec
au
s
e
th
e
v
er
if
i
ca
t
io
n
f
lo
w
is
d
is
j
o
in
ed
(
DUV
an
d
C
A
S
ar
e
n
o
t
r
a
n
s
i
m
u
lta
n
eo
u
s
l
y
)
,
t
h
e
v
er
i
f
ca
tio
n
an
d
i
n
ter
ac
t
io
n
w
it
h
t
h
e
Des
ig
n
Un
d
er
Ver
if
ica
tio
n
(
DUV)
is
li
m
ited
.
On
t
h
e
o
th
er
h
an
d
,
th
e
lar
g
e
-
in
te
g
er
d
ata
to
b
e
u
s
ed
as
s
ti
m
u
li
to
DUV
an
d
C
A
S
h
as
to
b
e
co
n
s
ta
n
t
an
d
s
to
r
ed
b
ef
o
r
eh
an
d
.
T
h
er
ef
o
r
e,
g
u
id
ed
test
b
en
c
h
s
tec
h
n
iq
u
es
w
i
th
d
y
n
a
m
ic
u
p
d
ated
s
ti
m
u
li
ca
n
n
o
t b
e
ap
p
lied
.
C
o
-
s
i
m
u
lat
in
g
DUV
a
n
d
its
R
ef
er
en
ce
Mo
d
el
r
eq
u
ir
es a
n
ef
f
icien
t c
o
m
m
u
n
icatio
n
b
et
w
ee
n
th
e
h
ig
h
-
lev
el
test
b
e
n
ch
a
n
d
th
e
HD
L
s
i
m
u
lato
r
.
I
n
th
is
co
n
tex
t,
s
o
m
e
w
o
r
k
s
h
a
v
e
b
ee
n
d
o
n
e.
Fo
r
ex
a
m
p
le,
th
e
co
s
i
m
u
latio
n
o
f
VHD
L
d
esi
g
n
s
an
d
a
C
-
b
ased
test
b
en
c
h
u
s
i
n
g
th
e
Fo
r
eig
n
L
a
n
g
u
a
g
e
I
n
ter
f
ac
e
(
FL
I
)
p
r
o
v
id
ed
b
y
Mo
d
elSi
m
s
i
m
u
la
to
r
w
a
s
p
r
o
p
o
s
ed
in
[
1
3
]
.
Sim
i
lar
p
r
o
j
ec
ts
b
ased
o
n
FL
I
an
d
/o
r
P
L
I
(
f
o
r
Ver
ilo
g
)
an
d
w
r
itte
n
i
n
o
th
er
h
ig
h
-
le
v
el
la
n
g
u
a
g
es
(
e.
g
.
P
y
t
h
o
n
)
w
er
e
p
r
o
p
o
s
ed
in
[
1
4
]
an
d
[
1
5
]
.
Ho
w
e
v
er
b
ec
au
s
e
s
u
c
h
lan
g
u
a
g
es
ar
e
ar
ch
itect
u
r
e
lim
ited
s
ize,
lar
g
e
-
i
n
teg
er
s
u
p
p
o
r
t
in
n
o
t
s
u
p
p
o
r
ted
n
ativ
el
y
.
I
n
th
e
o
th
er
h
an
d
,
f
o
r
m
al
v
er
if
icatio
n
tec
h
n
iq
u
e
s
f
o
r
lar
g
e
-
i
n
te
g
er
HD
L
w
er
e
ap
p
lied
in
s
i
m
p
le
ca
s
es
i
n
[
1
6
]
,
[
1
7
]
.
Desp
ite
th
eir
p
r
o
v
ed
p
er
f
o
r
m
a
n
ce
,
t
h
o
s
e
f
r
a
m
e
w
o
r
k
s
r
e
m
ai
n
i
n
s
u
f
f
icien
t
to
v
er
if
y
lar
g
e
-
in
te
g
e
r
HDL
d
e
s
ig
n
s
o
f
ce
r
tain
c
o
m
p
le
x
it
y
i
n
s
tan
d
alo
n
e
.
I
n
a
n
o
th
er
h
a
n
d
,
s
o
m
e
w
o
r
k
s
o
n
lar
g
e
-
i
n
teg
er
s
u
s
i
n
g
M
atlab
/Si
m
u
li
n
k
,
t
h
e
p
o
w
er
f
u
l
p
air
o
f
n
u
m
er
ica
l
co
m
p
u
ti
n
g
an
d
s
i
m
u
la
tio
n
s
o
f
t
war
es
,
h
av
e
b
ee
n
co
n
d
u
cted
in
t
h
e
d
esig
n
f
ield
.
As
ex
a
m
p
le
s
,
in
[
1
8
]
–
[
2
0
]
au
th
o
r
s
s
p
ee
d
ed
u
p
h
ar
d
w
ar
e
i
m
p
le
m
en
tatio
n
s
o
f
cr
y
p
to
g
r
ap
h
ic
d
esig
n
s
b
y
m
o
d
elli
n
g
th
e
s
c
h
e
m
es
i
n
S
i
m
u
li
n
k
an
d
g
en
er
ati
n
g
s
y
n
th
e
s
izab
le
HD
L
u
s
i
n
g
d
ed
icate
d
to
o
ls
lik
e
HD
L
co
d
er
.
E
x
a
m
p
le
s
o
f
w
o
r
k
i
n
g
ar
o
u
n
d
th
e
s
ize
r
es
tr
ictio
n
h
as
b
ee
n
r
ep
o
r
ted
i
n
[
1
8
]
,
w
h
er
e
au
t
h
o
rs
d
iv
id
ed
th
e
lar
g
e
o
p
er
an
d
s
in
to
s
m
al
l
er
s
ize
to
ta
k
e
ad
v
a
n
ta
g
e
o
f
h
ar
d
w
ar
e
DSP
‘
s
m
u
l
tip
lic
atio
n
ca
p
ab
ilit
ies
i
n
t
h
e
tar
g
et
FP
GA
.
I
n
t
h
e
s
a
m
e
co
n
tex
t,
i
n
[
1
9
]
,
a
u
th
o
r
s
u
s
ed
s
p
ec
if
ic
m
u
l
tip
licatio
n
al
g
o
r
ith
m
w
i
th
a
p
r
o
p
er
ty
o
f
s
p
litt
i
n
g
u
p
o
p
er
an
d
s
in
to
s
m
al
l
s
ize
w
o
r
d
s
.
W
h
ile
in
[
2
0
]
,
au
th
o
r
s
b
o
u
n
d
ed
th
e
o
p
er
an
d
s
izes
to
o
r
d
in
ar
y
b
it
-
le
n
g
th
to
o
p
ti
m
ize
th
e
HDL
co
d
e
g
en
er
atio
n
i
n
o
r
d
er
to
ac
h
ie
v
e
ef
f
icie
n
t
th
r
o
u
g
h
p
u
t.
I
n
v
er
i
f
icatio
n
,
Ma
tlab
w
as
s
ep
ar
atel
y
u
s
ed
to
v
er
if
y
E
C
C
(
E
llip
tic
C
u
r
v
e
C
r
y
p
to
g
r
ap
h
y
)
d
esi
g
n
s
in
[
2
1
]
a
nd
[
2
2
]
b
u
t
n
o
d
etai
ls
on
t
h
e
ev
al
u
atio
n
p
r
o
ce
s
s
or
th
e
in
ter
f
ac
in
g
w
it
h
t
h
e
HD
L
d
esi
g
n
w
er
e
g
iv
e
n
.
T
h
r
ee
ch
allen
g
e
s
ar
e
s
till
to
t
ak
e
f
o
r
d
esig
n
s
in
v
o
lv
in
g
lar
g
e
-
in
te
g
er
s
:
h
o
w
to
s
u
p
p
o
r
t
a
h
ar
d
w
ar
e
d
esig
n
test
b
e
n
ch
w
i
th
o
u
t
s
ize
r
estrictio
n
?
Ho
w
to
p
er
f
o
r
m
v
er
if
icatio
n
f
o
r
co
m
p
lex
d
esi
g
n
s
w
h
er
e
o
p
er
atio
n
s
r
u
n
at
d
if
f
er
en
t
lev
el
s
,
an
d
h
o
w
to
s
et
t
h
e
v
er
i
f
icatio
n
s
tr
u
ct
u
r
e
to
v
er
if
y
th
e
f
u
ll
d
esig
n
?
In
th
i
s
p
ap
er
,
w
h
ic
h
is
a
r
ev
i
s
ed
an
d
e
x
te
n
d
ed
v
er
s
io
n
o
f
t
h
e
w
o
r
k
p
r
esen
ted
i
n
[
2
3
]
,
w
e
tr
y
to
d
r
a
w
a
p
ath
f
o
r
a
s
o
lu
tio
n
to
t
h
o
s
e
ch
alle
n
g
e
s
b
y
in
tr
o
d
u
ci
n
g
a
h
i
g
h
-
le
v
el
s
i
m
u
latio
n
-
b
ased
v
er
i
f
icatio
n
p
latf
o
r
m
b
ased
o
n
Ma
tlab
an
d
Si
m
u
li
n
k
.
B
esid
es
g
e
n
er
atin
g
s
ti
m
u
l
i
an
d
m
o
n
ito
r
in
g
t
h
e
v
er
if
ica
tio
n
f
lo
w
,
lar
g
e
i
n
te
g
er
‘
s
tr
an
s
ac
ti
o
n
s
an
d
p
r
o
ce
s
s
i
n
g
ar
e
s
u
p
p
o
r
t
ed
wi
t
h
i
n
t
h
e
p
r
o
p
o
s
ed
p
latf
o
r
m
.
T
h
e
p
latf
o
r
m
f
ea
t
u
r
es
a
h
i
g
h
lev
e
l
g
e
n
er
at
io
n
o
f
te
s
tb
en
c
h
,
a
cr
o
s
s
-
le
v
el
an
d
a
c
y
c
le
-
ac
c
u
r
ate
v
er
if
icatio
n
.
Fu
r
t
h
er
m
o
r
e,
Ma
tlab
‘
s
s
u
p
p
o
r
t
f
o
r
lar
g
e
-
i
n
teg
er
,
u
s
i
n
g
it
s
Var
i
ab
le
P
r
ec
is
io
n
I
n
te
g
er
A
r
ith
m
etic
(
VP
I
)
p
ac
k
ag
e,
i
s
e
x
p
lo
ited
.
T
o
co
m
p
lete
t
h
e
v
er
i
f
icatio
n
o
f
a
g
i
v
e
n
d
esig
n
,
th
e
c
o
n
tr
o
l lo
g
ic
p
ar
t
o
f
a
DUV
is
v
er
i
f
ied
f
o
r
m
all
y
u
s
in
g
t
h
e
s
a
m
e
HD
L
s
i
m
u
lato
r
.
T
h
e
r
est
o
f
th
e
p
ap
er
is
o
r
g
an
is
ed
as
f
o
llo
w
s
,
s
ec
tio
n
2
d
etails
t
h
e
p
r
o
p
o
s
ed
p
latf
o
r
m
w
h
er
e
t
h
e
v
er
if
ica
tio
n
s
tr
u
ctu
r
e
,
d
ata
tr
an
s
f
o
r
m
atio
n
ac
r
o
s
s
s
tag
e
s
an
d
th
e
p
r
o
ce
s
s
o
f
s
ettin
g
s
a
n
d
co
n
tr
o
llin
g
th
e
p
latf
o
r
m
ar
e
e
x
p
lai
n
ed
.
I
n
s
e
ctio
n
3
,
a
d
etailed
t
e
s
tcase
is
g
i
v
en
to
ill
u
s
tr
ate
th
e
w
o
r
k
i
n
g
o
f
t
h
e
p
lat
f
o
r
m
f
o
llo
w
ed
b
y
r
es
u
lt
s
an
d
d
is
c
u
s
s
io
n
.
Fi
n
all
y
,
a
co
n
clu
s
io
n
w
i
t
h
f
u
t
u
r
e
w
o
r
k
s
e
n
d
s
th
e
p
ap
er
.
2.
T
H
E
P
RO
P
O
SE
D
P
L
A
T
F
O
RM
2
.
1
.
O
v
er
v
ie
w
T
h
e
d
esig
n
m
et
h
o
d
o
lo
g
y
o
f
t
h
e
p
latf
o
r
m
f
o
llo
w
s
t
h
e
Si
m
u
l
atio
n
-
b
ased
ap
p
r
o
ac
h
,
w
h
er
e
s
ti
m
u
l
i
ar
e
g
en
er
ated
,
ap
p
lied
to
th
e
D
UV
an
d
r
esp
o
n
s
e
s
ar
e
co
m
p
ar
ed
to
th
e
ex
p
ec
ted
o
n
es.
T
y
p
ical
v
er
i
f
icatio
n
f
r
a
m
e
w
o
r
k
b
ased
o
n
h
ig
h
lev
el
d
esig
n
lan
g
u
ag
e
i
n
cl
u
d
es
a
s
ti
m
u
li
g
e
n
er
ato
r
,
a
R
ef
er
en
ce
m
o
d
el
(
also
r
ef
er
r
ed
t
o
as
Go
ld
en
Mo
d
el)
w
h
ic
h
is
u
s
u
a
ll
y
w
r
itte
n
at
a
h
ig
h
er
lev
el
o
f
ab
s
tr
ac
tio
n
,
a
n
d
a
co
m
p
ar
ato
r
.
W
e
ab
s
tr
ac
t
th
e
f
u
n
ctio
n
a
l
d
escr
ip
tio
n
o
f
th
e
p
lat
f
o
r
m
i
n
to
th
r
ee
f
lo
w
s
,
i.e
.
,
co
n
tr
o
l
f
lo
w
,
d
ata
f
lo
w
a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
1
9
2
–
2
2
0
5
2194
v
er
if
ica
tio
n
f
lo
w
,
a
s
s
h
o
w
n
i
n
Fi
g
u
r
e
1
.
T
h
e
C
o
n
tr
o
l
f
lo
w
co
n
tr
o
ls
t
h
e
p
r
o
ce
s
s
o
f
v
er
if
icatio
n
t
h
r
o
u
g
h
th
e
p
latf
o
r
m
.
I
t
f
i
x
es
th
e
s
etti
n
g
s
;
i.e
.
t
h
e
p
ar
a
m
eter
s
o
f
th
e
b
lo
ck
s
co
n
s
tit
u
ti
n
g
t
h
e
p
lat
f
o
r
m
,
d
ela
y
ti
m
es,
s
a
m
p
li
n
g
ti
m
es,
etc
.
Data
f
lo
w
r
ep
r
esen
t
s
t
h
e
tr
an
s
f
o
r
m
atio
n
s
t
h
at
d
ata
u
n
d
er
g
o
es
,
s
tar
tin
g
f
r
o
m
th
e
g
en
er
atio
n
o
f
lar
g
e
-
in
te
g
er
o
p
er
an
d
s
,
p
ass
i
n
g
t
h
r
o
u
g
h
t
h
e
in
p
u
t
ad
ap
ter
,
th
e
DUV,
th
e
o
u
tp
u
t
ad
ap
ter
a
n
d
,
f
i
n
all
y
,
e
n
ter
i
n
g
t
h
e
co
m
p
ar
i
s
o
n
/ch
ec
k
i
n
g
b
lo
ck
s
.
T
h
e
th
ir
d
f
lo
w
,
Ver
i
f
icatio
n
f
lo
w
,
v
er
if
ies
th
e
f
u
n
ct
io
n
al
co
r
r
ec
tn
ess
o
f
t
h
e
DUV.
W
e
ch
o
s
e
to
b
u
ild
t
h
e
v
er
if
icati
o
n
f
lo
w
ar
o
u
n
d
t
w
o
co
m
p
le
m
en
tar
y
s
i
m
u
latio
n
-
b
ased
v
er
if
icat
io
n
ap
p
r
o
ac
h
es:
test
b
e
n
ch
a
n
d
as
s
er
tio
n
-
b
ased
v
er
if
icatio
n
.
W
e
g
u
id
e
t
h
e
test
b
e
n
ch
v
ia
a
v
er
if
ica
tio
n
s
tr
u
ctu
r
e
w
it
h
co
n
s
id
er
atio
n
s
o
f
a
co
v
er
ag
e
p
l
an
.
W
h
e
n
test
b
e
n
ch
is
la
u
n
c
h
ed
,
o
u
tp
u
ts
o
f
DUV
an
d
r
ef
er
en
ce
m
o
d
el
ar
e
co
m
p
ar
ed
.
R
esu
lts
ar
e
th
e
n
tr
an
s
f
er
r
ed
to
a
Sco
r
eb
o
ar
d
t
o
b
e
a
n
al
y
ze
d
.
W
e
w
r
it
e
ass
er
tio
n
s
i
n
P
r
o
p
er
ty
Sp
ec
i
f
i
ca
tio
n
L
an
g
u
ag
e
(
P
S
L
)
[
2
4
]
,
s
tan
d
ar
d
ass
er
tio
n
la
n
g
u
a
g
e
,
i
n
s
id
e
t
h
e
DU
V
an
d
r
ep
r
esen
t
a
p
r
ec
is
e
d
escr
ip
tio
n
o
f
th
e
DUV
‘
s
b
eh
a
v
io
r
.
No
te
th
at
w
e
c
h
o
s
e
P
S
L
f
o
r
p
r
o
p
er
ty
d
e
s
cr
ip
tio
n
a
s
it‗
s
i
n
w
id
esp
r
ea
d
u
s
e
in
i
n
d
u
s
tr
y
an
d
co
m
p
atib
le
w
it
h
m
a
n
y
h
ar
d
w
ar
e
d
escr
ip
tio
n
lan
g
u
a
g
es
.
P
SL
as
s
er
tio
n
s
ar
e
ch
ec
k
ed
b
y
t
h
e
HD
L
s
i
m
u
lato
r
d
u
r
in
g
th
e
s
i
m
u
latio
n
.
T
h
e
ass
er
tio
n
s
v
er
i
f
icatio
n
r
esu
lt
s
(
p
ass
/
f
ail)
ar
e
also
s
en
t
to
th
e
s
co
r
eb
o
ar
d
to
b
e
an
al
y
ze
d
a
n
d
n
e
w
s
ti
m
u
li
ar
e
g
en
er
ated
i
n
th
e
n
e
x
t
te
s
t
b
en
ch
ac
co
r
d
in
g
to
th
e
u
p
d
ated
f
u
n
c
tio
n
al
co
v
er
a
g
e
.
Fig
u
r
e
1
.
Fu
n
c
tio
n
al
De
s
cr
ip
ti
o
n
o
f
th
e
p
lat
f
o
r
m
.
2
.
2
.
T
he
F
un
ct
io
na
l V
er
if
ica
t
io
n
P
ro
ce
s
s
T
h
e
p
u
r
p
o
s
e
o
f
th
e
―
F
u
n
ct
i
o
n
al‖
v
er
i
f
icatio
n
p
r
o
ce
s
s
is
to
v
er
if
y
t
h
at
t
h
e
DUV
m
atch
es
it
s
s
p
ec
if
icatio
n
.
T
h
is
p
r
o
ce
s
s
s
h
o
u
ld
v
er
if
y
t
h
at
th
e
i
m
p
le
m
e
n
ted
f
u
n
ct
io
n
s
b
e
h
av
e
co
r
r
ec
tl
y
.
T
h
e
v
er
if
icat
io
n
tech
n
o
lo
g
y
u
s
ed
i
s
th
e
s
i
m
u
lat
io
n
-
b
ased
v
er
i
f
icatio
n
,
m
o
r
e
p
r
ec
is
el
y
a
co
s
i
m
u
latio
n
b
et
w
ee
n
Ma
tlab
/Si
m
u
l
in
k
an
d
Mo
d
elSi
m
,
an
d
s
i
m
u
lated
ass
er
tio
n
s
wr
itten
i
n
P
SL
.
Glo
b
all
y
,
w
e
f
o
llo
w
ed
a
co
v
er
ag
e
-
d
r
iv
e
n
r
an
d
o
m
-
b
ased
v
er
if
icatio
n
ap
p
r
o
ac
h
.
T
h
e
lev
el
o
f
v
er
if
ica
tio
n
ca
n
b
e
o
f
u
n
i
t/
s
u
b
-
u
n
it
o
r
co
r
es/b
lo
ck
s
le
v
el
an
d
t
w
o
s
i
m
u
latio
n
-
b
ased
v
er
i
f
ica
tio
n
tech
n
iq
u
e
s
ar
e
u
s
ed
j
o
in
tl
y
,
d
ep
en
d
in
g
o
n
t
h
e
p
ar
titi
o
n
o
f
DUV
b
ein
g
v
er
i
f
ied
.
I
n
f
ac
t,
a
co
m
m
o
n
p
r
ac
tice
in
th
e
in
te
g
r
ated
c
ir
cu
its
d
esi
g
n
co
m
m
u
n
i
t
y
is
t
o
d
iv
i
de
d
esi
g
n
s
i
n
to
d
atap
at
h
a
n
d
co
n
tr
o
l
lo
g
ic
(
F
ig
u
r
e
2
)
.
B
ec
au
s
e
o
f
t
h
eir
d
if
f
er
e
n
ce
s
,
ap
p
r
o
p
r
iate
v
er
if
icatio
n
s
ch
e
m
e
s
ca
n
b
e
ap
p
lie
d
to
ea
ch
.
Data
p
ath
u
n
its
w
h
ich
in
v
o
lv
e
lar
g
e
-
in
te
g
er
s
p
r
o
ce
s
s
in
g
ca
n
b
e
v
e
r
if
ied
u
s
in
g
t
h
e
Ma
tlab
/Si
m
u
l
in
k
te
s
tb
en
c
h
w
h
er
e
lar
g
e
-
in
t
eg
er
s
a
re
s
u
p
p
o
r
ted
as
w
i
ll
b
e
d
etailed
in
th
e
n
e
x
t
s
ec
tio
n
.
Data
p
ath
u
s
u
al
l
y
co
n
s
i
s
ts
o
f
u
n
if
o
r
m
ar
r
a
y
s
o
f
ce
l
ls
,
s
u
c
h
as
b
its
i
n
a
r
eg
is
ter
f
ile,
s
lice
s
in
a
n
ad
d
er
an
d
s
o
o
n
.
T
h
e
r
em
ai
n
i
n
g
lo
g
i
c
is
r
eg
ar
d
ed
as c
o
n
tr
o
l lo
g
ic.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
n
ctio
n
a
l
V
erif
ica
tio
n
o
f La
r
g
e
-
in
teg
ers
C
ir
cu
its
u
s
in
g
a
C
o
s
imu
la
tio
n
-
b
a
s
ed
A
p
p
r
o
a
c
h
(
N
ejme
d
d
in
e
A
limi
)
2195
Fig
u
r
e
2
.
Data
p
ath
an
d
co
n
tr
o
l
lo
g
ic
p
ar
titi
o
n
f
o
r
v
er
i
f
icatio
n
An
ad
v
a
n
ta
g
e
o
f
u
s
i
n
g
HD
L
co
s
i
m
u
latio
n
w
it
h
Ma
tlab
/S
i
m
u
li
n
k
te
s
tb
en
c
h
i
s
t
h
e
p
o
s
s
ib
ilit
y
o
f
cr
o
s
s
-
le
v
el
d
atap
ath
v
er
if
ica
ti
o
n
,
as
w
ill
b
e
m
o
r
e
d
etailed
later
.
T
h
is
m
ea
n
s
th
at
d
ata
‘
s
o
u
tp
u
t
o
f
d
i
f
f
er
e
n
t
h
ier
ar
ch
ical
le
v
el
ca
n
b
e
p
r
o
b
ed
an
d
co
m
p
ar
ed
in
r
u
n
-
ti
m
e
ag
ain
s
t
Ma
t
lab
m
o
d
els.
O
n
t
h
e
o
th
er
h
a
n
d
,
co
n
tr
o
l
lo
g
ic
ca
n
b
e
ac
c
u
r
atel
y
s
p
ec
i
f
ied
b
y
p
r
o
p
er
ties
an
d
a
s
s
er
tio
n
s
,
a
n
d
t
h
u
s
i
s
v
er
i
f
iab
le
u
s
i
n
g
P
S
L
.
T
h
e
DUV
‘
s
co
n
tr
o
l lo
g
ic
is
s
p
ec
i
f
ied
b
y
a
s
et
o
f
p
r
o
p
r
ieties
w
r
itte
n
i
n
P
SL
as
s
er
tio
n
s
.
T
h
e
v
er
if
icatio
n
s
tr
u
c
tu
r
e
is
t
h
e
s
et
o
f
Ma
t
lab
Fu
n
ctio
n
B
lo
ck
s
w
it
h
i
n
t
h
e
p
latf
o
r
m
i
n
c
h
a
r
g
e
o
f
th
e
v
er
if
ica
tio
n
p
la
n
.
Fi
g
u
r
e
3
r
ep
r
esen
ts
th
e
ar
c
h
itect
u
r
e
o
f
t
h
e
―
Ver
i
f
icatio
n
s
tr
u
ctu
r
e‖
.
T
h
e
latter
is
d
iv
id
ed
i
n
t
w
o
b
lo
ck
s
et
s
,
co
n
n
ec
ted
to
f
o
r
m
a
lo
o
p
w
it
h
th
e
r
est
o
f
t
h
e
p
latf
o
r
m
.
T
h
e
f
ir
s
t
s
et
is
c
o
m
p
o
s
ed
o
f
s
ti
m
u
li
g
en
er
atio
n
b
lo
ck
s
w
h
ile
t
h
e
s
ec
o
n
d
is
co
m
p
o
s
ed
o
f
a
n
al
y
s
i
s
b
lo
ck
s
(
―
C
o
m
p
ar
ato
r
‖,
a
―
C
h
ec
k
er
‖
an
d
a
―
Sco
r
eb
o
ar
d
‖)
.
W
ith
in
th
e
f
ir
s
t,
th
e
Data
o
u
tp
u
t
o
f
t
h
e
D
UV
(
Z
_
DUV)
,
is
v
er
if
ied
a
g
ain
s
t
t
h
e
R
ef
er
e
n
ce
Mo
d
el
o
u
tp
u
t
(
Z
_
R
ef
)
,
th
e
r
esu
lt
o
f
t
h
e
co
m
p
ar
is
o
n
is
tr
an
s
f
er
r
ed
to
th
e
Sco
r
eb
o
ar
d
.
A
cc
o
r
d
in
g
to
th
e
f
ee
d
b
ac
k
,
t
h
e
f
ir
s
t
s
et
g
e
n
er
a
tes
n
e
w
s
ti
m
u
li
co
r
r
esp
o
n
d
in
g
to
t
h
e
n
e
x
t
co
v
er
ag
e
s
tep
an
d
/o
r
to
th
e
n
e
x
t
p
r
o
p
er
ty
to
b
e
v
er
i
f
ied
.
T
h
e
DUV
is
h
er
e
a
m
o
d
u
lar
ar
ith
m
et
ic
o
p
er
atio
n
.
T
h
e
o
b
j
ec
tiv
e
is
t
o
en
s
u
r
e
th
at
DU
V
m
atc
h
es it
s
s
p
ec
if
icatio
n
.
T
h
e
f
u
n
ct
io
n
al
v
er
i
f
icat
io
n
ap
p
r
o
ac
h
is
a
w
h
ite
-
b
o
x
ap
p
r
o
ac
h
(
i.e
.
th
e
HDL
d
esi
g
n
is
k
n
o
w
n
to
th
e
v
er
if
ier
)
.
B
ec
au
s
e
o
f
s
a
m
p
li
n
g
ti
m
e
d
i
f
f
er
e
n
ce
,
co
n
tr
o
l
s
ig
n
als
a
n
d
d
ata
w
er
e
as
s
ig
n
ed
to
s
ep
ar
ate
b
lo
ck
s
(
Fig
u
r
e
3
)
.
B
o
th
b
lo
ck
s
ar
e
d
r
iv
en
b
y
a
b
lo
ck
ca
lled
―
T
estb
en
ch
Scen
ar
io
Up
d
ate‖
.
T
h
e
r
o
le
o
f
th
e
la
tter
is
to
u
p
d
ate
co
n
tr
o
l sig
n
als a
n
d
d
ata
ac
co
r
d
in
g
to
v
er
i
f
icat
io
n
co
v
er
ag
e.
Fig
u
r
e
3
.
T
h
e
v
er
if
icatio
n
s
tr
u
ctu
r
e
I
n
s
id
e
th
e
Data
b
lo
ck
,
a
R
an
d
o
m
N
u
m
b
er
Gen
er
ato
r
(
R
NG)
p
r
o
d
u
ce
s
co
n
s
tr
ain
ed
r
an
d
o
m
lar
g
e
-
in
te
g
er
d
ata
(
X,
Y
o
p
er
an
d
s
)
u
s
in
g
a
VP
I
s
ee
d
v
alu
e.
An
o
v
e
r
v
ie
w
o
f
t
h
e
f
u
n
ctio
n
i
n
g
o
f
t
h
e
p
latf
o
r
m
‘
s
b
lo
ck
s
is
g
i
v
en
i
n
T
ab
le
1
.
T
h
e
c
o
m
p
ar
ato
r
r
ec
eiv
es
d
ata
f
r
o
m
D
UV
an
d
R
ef
er
e
n
ce
Mo
d
el,
co
n
v
er
t
s
it
to
VP
I
d
ata
t
y
p
e,
m
a
k
e
s
t
h
e
co
m
p
ar
i
s
o
n
,
a
n
d
f
in
al
l
y
tr
an
s
f
er
s
t
h
e
r
es
u
lt
t
o
th
e
Sco
r
eb
o
ar
d
.
Su
b
-
DUV
C
h
ec
k
er
c
h
ec
k
s
t
h
e
f
u
n
ctio
n
al
co
r
r
ec
tn
ess
o
f
in
t
er
n
al
o
p
er
atio
n
s
o
f
DUV.
I
t
r
ec
eiv
es
th
e
p
r
o
b
ed
m
etad
a
ta
f
r
o
m
th
e
D
UV,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
1
9
2
–
2
2
0
5
2196
co
n
v
er
ts
it
to
VP
I
d
ata
t
y
p
e,
ca
lcu
late
s
th
e
in
ter
n
al
o
p
er
atio
n
b
it
-
w
i
s
e
as
a
r
e
f
er
en
ce
o
p
er
atio
n
,
m
a
k
es
t
h
e
co
m
p
ar
is
o
n
a
n
d
f
in
a
ll
y
tr
an
s
f
er
s
th
e
r
es
u
lt
to
th
e
Sco
r
eb
o
ar
d
.
A
s
ill
u
s
tr
ated
in
Fi
g
u
r
e
3
,
t
h
e
co
m
p
ar
ato
r
a
n
d
th
e
S
u
b
-
DU
V
C
h
ec
k
er
u
p
d
ate
th
e
s
co
r
eb
o
ar
d
w
i
th
r
es
u
lt
s
as
lo
n
g
as t
h
e
co
s
i
m
u
latio
n
is
g
o
i
n
g
o
n
.
T
h
e
co
n
tr
o
l
lo
g
ic
v
er
i
f
icatio
n
,
n
o
t r
ep
r
esen
ted
in
Fig
u
r
e
3
,
is
d
o
n
e
w
ith
P
SL
a
s
s
er
tio
n
s
s
i
m
u
lated
in
t
h
e
HDL
S
i
m
u
lato
r
.
T
ab
le
1
.
Fu
n
ctio
n
i
n
g
o
f
p
lat
f
o
r
m
b
lo
ck
s
P
h
a
se
B
l
o
c
k
C
o
r
r
e
sp
o
n
d
i
n
g
p
se
u
d
o
-
c
o
d
e
S
t
i
m
u
l
i
p
r
e
p
a
r
a
t
i
o
n
a
n
d
G
e
n
e
r
a
t
i
o
n
T
e
st
-
b
e
n
c
h
S
c
e
n
a
r
i
o
U
p
d
a
t
e
n
e
w
_
see
d
=
C
o
m
p
u
t
e
_
se
e
d
(
f
e
e
d
b
a
c
k
(
i
)
)
/
/
c
o
n
s
t
r
a
i
n
t
o
n
se
e
d
t
o
h
i
t
s
p
e
c
i
f
i
c
d
a
t
a
i
n
t
e
r
v
a
l
D
o
{
C
R
L
I
_
1
=
r
a
n
d
i
n
t
(
v
p
i
(
n
e
w
_
se
e
d
)
)
;
(
*
)
/
/
C
R
L
I
=
C
o
n
st
r
a
i
n
e
d
R
a
n
d
o
m L
a
r
g
e
-
I
n
t
e
g
e
r
C
R
L
I
_
2
=
r
a
n
d
i
n
t
(
v
p
i
(
n
e
w
_
se
e
d
)
)
;
O
K
=
V
e
r
i
f
y
_
se
e
d
(
n
e
w
_
se
e
d
,
C
R
L
I
_
1
,
C
R
L
I
_
2
)
;
}
/
/
t
o
v
e
r
i
f
y
t
h
a
t
R
L
I
i
s c
o
n
st
r
a
i
n
e
d
a
s
d
e
si
r
e
d
W
h
i
l
e
(
N
O
T
(
O
K
)
)
/
/
R
L
I
s d
o
n
o
t
mat
c
h
t
h
e
d
e
si
r
e
d
i
n
t
e
r
v
a
l
.
S
i
g
n
a
l
s
R
e
se
t
<
=
‗
1
‘
;
W
h
e
n
T
=
T
0
,
R
e
se
t
<
=
‗
0
‘
;
/
/
T
0
=
n
0
*
C
L
K
C
y
c
l
e
s
W
h
e
n
T
=
T
1
,
S
t
a
r
t
_
f
r
a
me
s <
=
‗
1
‘
/
/
T
1
=
n
1
*
C
L
K
C
y
c
l
e
s
W
h
e
n
T
=
T
‘
1
,
S
t
a
r
t
_
f
r
a
me
s <
=
‗
0
‘
;
/
/
T
’
1
=
T
1
+
1
C
L
K
C
y
c
l
e
D
a
t
a
X
<
=
V
P
I
_
t
o
_
b
i
n
a
r
y
_
mat
r
i
x
(
C
R
L
I
_
1
)
;
Y
<
=
V
P
I
_
t
o
_
b
i
n
a
r
y
_
mat
r
i
x
(
C
R
L
I
_
2
)
;
S
i
g
n
a
l
s
W
h
e
n
T
=
T
2,
S
t
a
r
t
<
=
‗
1
‘
/
/
T
2
=
n
2
*
C
L
K
C
y
c
l
e
s
W
h
e
n
T
=
T
‘
2,
S
t
a
r
t
<
=
‗
0
‘
;
/
/
T
’
2
=
T
2
+
1
C
L
K
C
y
c
l
e
R
e
f
e
r
e
n
c
e
M
o
d
e
l
X
_
v
p
i
<
=
b
i
n
a
r
y
_
mat
r
i
x
_
t
o
_
V
P
I
(
X
)
;
/
/
i
n
s
i
d
e
t
h
e
R
e
f
e
re
n
c
e
Mo
d
e
l
Y
_
v
p
i
<
=
b
i
n
a
r
y
_
mat
r
i
x
_
t
o
_
V
P
I
(
Y
)
;
/
/
i
n
s
i
d
e
t
h
e
R
e
f
e
re
n
c
e
Mo
d
e
l
Z
_
R
e
f
<
=
R
e
f
e
r
e
n
c
e
_
M
o
d
e
l
(
X
_
v
p
i
,
Y
_
v
p
i
)
;
/
/
i
n
si
d
e
t
h
e
Re
f
e
r
e
n
c
e
M
o
d
e
l
V
e
r
i
f
i
c
a
t
i
o
n
e
x
e
c
u
t
i
o
n
a
n
d
a
n
a
l
y
s
i
s
C
o
mp
a
r
-
a
t
o
r
C
o
mp
a
r
e
_
r
e
s <
=
(
Z
_
D
U
V
=
=
Z
_
R
e
f
)
?
S
u
b
-
DUV
C
h
e
c
k
e
r
O
p
_
i
,
…
,
O
p
_
k
<
=
b
i
n
a
r
y
_
m
a
t
ri
x
_
t
o
_
V
PI
(
Pro
b
e
_
i
,
…
,
Pro
b
e
_
k
)
;
/
/
O
p
e
ra
n
d
s
o
f
a
sel
e
c
t
e
d
i
n
t
e
r
n
a
l
o
p
e
r
a
t
i
o
n
a
re
p
r
o
b
e
d
f
r
o
m
D
U
V
I
n
t
_
M
a
t
l
a
b
_
o
u
t
p
u
t
<
=
I
n
t
e
r
n
a
l
_
o
p
e
r
a
t
i
o
n
(
O
p
_
i
,
…
,
O
p
_
k
)
;
/
/
T
h
e
e
q
u
i
v
a
l
e
n
t
Ma
t
l
a
b
o
p
e
ra
t
i
o
n
i
s
c
a
l
c
u
l
a
t
e
d
.
I
n
t
_
D
U
V_
o
u
t
p
u
t
<
=
b
i
n
a
ry
_
m
a
t
ri
x
_
t
o
_
VPI(
Pr
o
b
e
_
n
)
;
/
/
T
h
e
res
u
l
t
o
f
t
h
e
i
n
t
e
r
n
a
l
o
p
e
r
a
t
i
o
n
i
s
a
l
s
o
p
r
o
b
e
d
C
h
e
c
k
_
r
e
s<
=
(
I
n
t
_
D
U
V
_
o
u
t
p
u
t
=
=
I
n
t
_
Ma
t
l
a
b
_
o
u
t
p
u
t
)
?
/
/
res
u
l
t
s
a
r
e
c
o
m
p
a
re
d
P
r
o
p
e
r
t
y
a
sse
r
t
i
o
n
s
(
*
*
)
…
p
sl
a
sse
r
t
_
d
o
n
e
_
p
u
l
se
:
a
sse
r
t
a
l
w
a
y
s(
{d
o
n
e
} |
-
>
n
e
x
t
{!
d
o
n
e
} a
b
o
r
t
!
R
S
T
_
N
)
@
(
p
o
se
d
g
e
C
L
K
);
--
si
g
n
a
l
D
O
N
E
i
s
a
p
u
l
se
o
f
o
n
e
c
l
o
c
k
c
y
c
l
e
…
S
c
o
r
e
-
b
o
a
r
d
D
a
t
a
_
c
o
v
e
ra
g
e
=
Me
a
s
u
re
_
c
o
v
e
ra
g
e
(
C
o
m
p
a
r
e
_
res,
C
h
e
c
k
_
r
e
s,
C
RLI
_
(
c
o
v
e
ra
g
e
_
st
e
p
)
,
T
o
t
a
l
_
Ass
e
rt
i
o
n
s
_
c
o
v
e
ra
g
e
)
f
e
e
d
b
a
c
k
(
i
+
1
)
=
C
o
m
p
u
t
e
_
n
e
w
_
t
e
st
b
e
n
c
h
_
s
c
e
n
a
ri
o
(
D
a
t
a
_
c
o
v
e
r
a
g
e
)
;
*
r
a
n
d
i
n
t
(
)
i
s a
r
a
n
d
o
m
a
n
d
u
n
i
f
o
r
ml
y
d
i
st
r
i
b
u
t
e
d
V
P
I
n
u
m
b
e
r
.
**
―
P
r
o
p
e
r
t
y
A
ss
e
r
t
i
o
n
s‖
i
s
n
o
t
a
b
l
o
c
k
o
f
t
h
e
p
l
a
t
f
o
r
m;
i
t
r
u
n
s
i
n
H
D
L
si
mu
l
a
t
o
r
.
2
.
3
.
L
a
rg
e
-
inte
g
er
Da
t
a
P
ro
ce
s
s
ing
L
ar
g
e
-
i
n
te
g
er
s
d
ata
p
r
o
ce
s
s
i
n
g
i
s
a
n
i
m
p
o
r
tan
t
p
ar
t
o
f
t
h
e
p
latf
o
r
m
.
P
r
o
ce
s
s
i
n
g
is
ca
r
r
ied
o
u
t
i
n
Ma
tlab
,
Si
m
u
li
n
k
a
n
d
s
i
m
u
la
ted
h
ar
d
w
ar
e.
W
e
a
s
s
u
m
e
t
h
at
th
e
p
latf
o
r
m
,
s
h
o
w
n
in
Fi
g
u
r
e
4
,
v
er
if
ies
th
e
o
p
er
atio
n
f:
Z
=
f(
X
,
Y)
,
w
h
er
e:
X
,
Y
an
d
Z
ar
e
th
r
ee
lar
g
e
-
in
t
eg
er
s
.
C
o
n
tr
o
l
s
i
g
n
a
ls
ar
e
r
eset
an
d
s
tar
t.
Do
n
e
is
an
o
u
tp
u
t
s
i
g
n
al
t
h
at
i
n
d
icate
s
th
e
en
d
o
f
t
h
e
DUV
‘
s
o
p
er
atio
n
.
Si
m
u
la
tio
n
co
n
tr
o
l is
h
a
n
d
led
b
y
Si
m
u
li
n
k
.
T
h
e
co
-
s
i
m
u
latio
n
s
ta
g
e
(
s
ta
g
e
5
in
Fi
g
u
r
e
4
)
co
n
tai
n
s
t
h
e
R
e
f
er
en
ce
Mo
d
el
an
d
th
e
DUV.
T
h
e
R
ef
er
e
n
ce
Mo
d
el
is
t
h
e
D
U
V‘
s
eq
u
i
v
alen
t
m
o
d
el
w
r
it
ten
in
Ma
t
lab
in
s
id
e
a
Ma
tlab
Fu
n
ctio
n
b
lo
c
k
.
T
h
e
DUV
is
r
ep
r
esen
ted
b
y
t
h
e
HDL
C
o
s
i
m
u
latio
n
b
lo
ck
.
T
h
e
DUV‘
s
s
i
m
u
lato
r
(
Mo
d
elSim
)
is
la
u
n
c
h
ed
an
d
lin
k
ed
to
Si
m
u
li
n
k
u
s
i
n
g
a
Ma
tlab
co
d
e
b
ased
o
n
a
T
C
L
s
cr
ip
t.
W
h
en
co
m
m
u
n
icati
o
n
is
estab
li
s
h
ed
,
t
h
e
s
i
m
u
lato
r
f
u
n
ctio
n
s
as
th
e
s
er
v
er
an
d
Si
m
u
li
n
k
a
s
a
clien
t.
T
h
e
HDL
s
i
m
u
lato
r
r
esp
o
n
d
s
to
s
i
m
u
latio
n
r
eq
u
ests
it
r
ec
ei
v
es
f
r
o
m
th
e
S
i
m
u
li
n
k
C
lie
n
t.
T
h
e
co
m
m
u
n
i
ca
tio
n
b
et
w
ee
n
t
h
e
HD
L
Si
m
u
lato
r
an
d
Si
m
u
li
n
k
is
d
o
n
e
t
h
r
o
u
g
h
th
e
HD
L
Ve
r
if
ier
™
to
o
l.
T
h
e
m
ax
i
m
u
m
len
g
th
o
f
in
te
g
er
d
ata
t
y
p
es
s
u
p
p
o
r
ted
b
y
HD
L
C
o
s
i
m
u
la
tio
n
B
lo
ck
in
S
i
m
u
l
in
k
i
s
1
2
8
-
b
its
.
T
o
w
o
r
k
ar
o
u
n
d
t
h
is
li
m
itat
io
n
,
th
e
DUV
w
as
m
as
k
ed
in
a
n
HDL
w
r
ap
p
er
th
at
s
tack
s
th
e
r
ec
eiv
ed
d
ata
f
r
a
m
es
i
n
to
a
lo
g
ic
v
ec
to
r
th
at
m
atc
h
es
th
e
i
n
p
u
t
d
ata
s
ize
o
f
th
e
DUV
a
n
d
v
ice
-
v
er
s
a
f
o
r
t
h
e
o
u
tp
u
t
d
ata.
T
w
o
k
i
n
d
s
o
f
ad
ap
ter
s
w
er
e
u
s
ed
in
t
h
e
p
lat
f
o
r
m
(
Fro
n
te
n
d
an
d
B
ac
k
en
d
ad
ap
ter
s
)
.
T
h
e
f
ir
s
t
o
n
e
ad
ap
t
s
d
ata
an
d
co
n
tr
o
l
s
ig
n
al
s
r
ec
eiv
ed
in
Ma
tlab
/Si
m
u
lin
k
f
o
r
m
at
s
to
DUV
s
u
p
p
o
r
ted
f
o
r
m
at
s
.
W
ith
in
t
h
is
s
tag
e,
ea
c
h
d
ata
m
atr
i
x
is
co
n
v
er
ted
i
n
to
a
s
eq
u
e
n
ce
o
f
s
ca
lar
s
u
s
i
n
g
th
e
Si
m
u
li
n
k
‘s
b
lo
ck
―
U
n
b
u
f
f
er
‖.
T
h
e
Un
b
u
f
f
er
u
n
b
u
f
f
er
s
a
n
M
-
by
-
N
in
p
u
t
in
to
a
1
-
by
-
N
o
u
tp
u
t
(
Fig
u
r
e
5
(
a
)
)
.
T
h
at
is
,
in
p
u
ts
ar
e
u
n
b
u
f
f
er
ed
r
o
w
-
w
i
s
e
s
o
th
a
t
ea
ch
m
atr
ix
r
o
w
b
ec
o
m
e
s
an
i
n
d
ep
en
d
en
t
ti
m
e
-
s
a
m
p
le
in
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
n
ctio
n
a
l
V
erif
ica
tio
n
o
f La
r
g
e
-
in
teg
ers
C
ir
cu
its
u
s
in
g
a
C
o
s
imu
la
tio
n
-
b
a
s
ed
A
p
p
r
o
a
c
h
(
N
ejme
d
d
in
e
A
limi
)
2197
o
u
tp
u
t.
A
s
e
x
a
m
p
le,
a
1
9
2
-
b
it
d
ata
f
its
i
n
to
a
2
4
-
by
-
8
m
atr
i
x
,
an
d
th
e
Un
b
u
f
f
er
B
lo
ck
w
i
ll
u
n
b
u
f
f
er
t
h
e
2
4
-
by
-
8
i
n
p
u
t
i
n
to
a
n
8
-
b
it
le
n
g
t
h
v
ec
to
r
.
T
h
en
,
ea
c
h
d
ata
i
s
co
n
v
er
ted
to
s
tan
d
ar
d
lo
g
ic
v
ec
to
r
v
ia
t
h
e
―Da
ta
T
y
p
e
C
o
n
v
er
s
i
o
n
‖
b
lo
ck
.
T
h
e
B
ac
k
en
d
ad
ap
ter
ad
ap
ts
d
ata
an
d
s
i
g
n
a
ls
f
r
o
m
DU
V
to
th
e
C
o
m
p
ar
ato
r
an
d
C
h
ec
k
er
b
lo
ck
s
.
I
n
th
is
s
ta
g
e,
th
e
HDL
b
lo
ck
o
u
tp
u
t
d
ata
is
r
e
-
b
u
f
f
er
ed
in
to
a
d
ec
i
m
al
m
a
tr
ix
u
s
i
n
g
a
Si
m
u
li
n
k
b
lo
ck
―D
ela
y
L
in
e‖
.
T
h
e
latter
p
er
f
o
r
m
s
t
h
e
r
ev
e
r
s
e
task
o
f
th
e
―Un
b
u
f
f
er
B
lo
ck
‖
,
r
eb
u
f
f
er
i
n
g
a
s
eq
u
en
ce
o
f
Mi
-
by
-
N
m
a
tr
ix
i
n
p
u
t
s
in
to
a
s
eq
u
en
ce
o
f
Mo
-
by
-
N
m
atr
i
x
o
u
tp
u
ts
(
Fi
g
u
r
e
5
(
b
)
)
.
Fig
u
r
e
4
.
B
lo
ck
d
iag
r
a
m
o
f
t
h
e
p
r
o
p
o
s
ed
v
er
if
icatio
n
p
lat
f
o
r
m
Fig
u
r
e
5
.
T
h
e
ad
a
p
ter
s
An
atte
n
tio
n
s
h
o
u
ld
b
e
g
i
v
e
n
to
th
e
r
ea
d
in
g
ti
m
e
o
f
t
h
e
―
De
la
y
L
i
n
e‖
o
u
tp
u
t
s
o
t
h
at
t
h
e
d
ata
m
atr
i
x
ca
n
b
e
r
ea
d
e
n
tire
l
y
.
I
n
f
ac
t,
t
h
e
DU
V
w
r
ap
p
er
,
d
etailed
in
a
latter
p
ar
ag
r
ap
h
,
w
a
s
d
es
ig
n
ed
to
s
en
d
ea
c
h
o
f
Z
_
DUV
f
r
a
m
es
at
e
v
er
y
clo
ck
‘
s
p
o
s
iti
v
e
ed
g
e
s
tar
tin
g
f
r
o
m
i
n
s
tan
t
w
h
en
th
e
o
u
tp
u
t
s
ig
n
al
―
d
o
n
e‖
is
o
n
a
n
d
ac
co
r
d
in
g
to
t
h
e
―
Dela
y
L
i
n
e
‖
B
lo
ck
f
u
n
ctio
n
i
n
g
,
t
h
e
e
n
tir
e
m
atr
i
x
r
ep
r
esen
t
in
g
Z
_
DUV
ca
n
b
e
r
ea
d
b
y
t
h
e
C
o
m
p
ar
ato
r
B
lo
ck
at
ti
m
e
T
c
alcu
lated
in
f
o
r
m
u
la
2
:
T=T
i
m
e
(
done
=
1)
+N
br_of
_Z_f
rames*T
(
Z
_s
ample
_
pe
r
iod)
(
2)
U
n
b
u
f
f
e
r
N
M
...
N
N
M
D
U
V
I
n
p
u
t
(
H
W
)
D
a
t
a
Ty
p
e
C
o
n
v
e
r
s
i
o
n
D
e
l
a
y
Li
n
e
...
N
N
M
i
=
1
D
U
V
o
u
p
u
t
(
H
W
)
N
Mo
(
a
)
T
h
e
F
r
o
n
t
e
n
d
A
d
a
p
t
e
r
(
b
)
T
h
e
B
a
c
k
e
n
d
A
d
a
p
t
e
r
D
a
t
a
m
a
t
r
i
x
D
a
t
a
f
r
a
m
e
s
D
a
t
a
f
r
a
m
e
s
D
a
t
a
m
a
t
r
i
x
U
n
b
u
f
f
e
r
D
a
t
a
Ty
p
e
C
o
n
v
e
r
s
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
1
9
2
–
2
2
0
5
2198
W
h
er
e:
T
im
e
(done
=
1)
is
t
h
e
ti
m
e
w
h
en
d
o
n
e
i
s
s
et
to
‗
1
‘
,
Nb
r
of
Z
fram
es
is
t
h
e
t
o
tal
n
u
m
b
er
o
f
Z
f
r
a
m
e
s
o
u
tp
u
t
ted
f
r
o
m
HD
L
B
lo
ck
,
an
d
T
(Z
sam
pl
e
period)
is
th
e
s
a
m
p
li
n
g
t
i
m
e
o
f
Z
.
T
h
e
Fig
u
r
e
6
ill
u
s
tr
ates
t
h
e
c
o
m
m
u
n
icatio
n
b
et
w
ee
n
Si
m
u
l
in
k
an
d
th
e
DUV
v
ia
t
h
e
w
r
ap
p
er
.
A
s
s
h
o
w
n
,
I
n
p
u
ts
(
r
eset,
s
tar
t_
f
r
a
m
es,
s
tar
t,
X,
Y)
ar
e
s
ti
m
u
l
i
f
r
o
m
Ma
tlab
/Si
m
u
li
n
k
,
w
h
i
le
O
u
tp
u
t
s
(
Do
n
e,
Z
_
DUV,
P
r
o
b
e1
…
P
r
o
b
e
n
)
ar
e
r
esu
lts
s
e
n
t
b
ac
k
to
Ma
tlab
/Si
m
u
li
n
k
f
o
r
co
m
p
ar
is
o
n
a
n
d
in
ter
n
al
c
h
ec
k
in
g
.
T
h
e
s
tar
t_
f
r
a
m
es i
s
an
e
x
tr
a
in
p
u
t to
th
e
DUV
W
r
ap
p
er
to
co
n
tr
o
l th
e
r
ec
ep
tio
n
o
f
f
r
a
m
e
s
f
r
o
m
Data
b
lo
ck
.
T
h
e
r
o
le
o
f
th
e
W
r
ap
p
er
is
t
o
h
an
d
le
a
c
y
cle
-
ac
c
u
r
ate
tr
a
n
s
f
er
o
f
d
ata
b
et
w
ee
n
Si
m
u
l
i
n
k
a
n
d
t
h
e
DUV
w
it
h
o
u
t
m
o
d
i
f
y
in
g
th
e
latter
‘
s
d
escr
ip
tio
n
.
T
h
e
w
r
ap
p
er
,
wr
itte
n
in
VHD
L
,
i
s
b
ased
o
n
a
n
I
n
p
u
t
co
n
v
er
ter
an
d
t
w
o
O
u
tp
u
t c
o
n
v
er
ter
s
.
On
e
d
ed
icate
d
to
DUV‘
s
r
es
u
lt,
t
h
e
o
th
er
to
in
ter
n
al
s
ig
n
als (
Fi
g
u
r
e
7
)
.
Fig
u
r
e
6
.
UM
L
s
eq
u
en
ce
d
ia
g
r
a
m
o
f
Si
m
u
li
n
k
–
HD
L
b
lo
ck
co
m
m
u
n
icatio
n
Fig
u
r
e
7
.
T
h
e
HDL
C
o
s
i
m
u
lat
io
n
b
lo
ck
d
ata
f
lo
w
As
ill
u
s
tr
ated
in
F
ig
u
r
e
8
(
a
)
,
T
h
e
―
I
n
p
u
t
C
o
n
v
er
ter
‖
m
o
d
u
le
r
ec
eiv
e
s
d
ata
(
X,
Y)
f
r
o
m
Ma
tlab
/Si
m
u
l
in
k
,
s
tac
k
s
t
h
e
w
-
b
it
le
n
g
t
h
f
r
a
m
e
s
(
f
i
)
i
n
to
S
tan
d
ar
d
lo
g
ic
v
ec
to
r
.
T
h
e
m
-
b
it
m
atc
h
i
n
g
t
h
e
s
ize
o
f
th
e
ex
p
ec
ted
DUV
i
n
p
u
t
d
ata
s
ize
(
f
0
to
f
k
f
r
a
m
es)
ar
e
ex
tr
ac
ted
(
―
u
n
p
a
d
d
i
n
g
‖
o
p
er
atio
n
)
.
W
h
en
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
n
ctio
n
a
l
V
erif
ica
tio
n
o
f La
r
g
e
-
in
teg
ers
C
ir
cu
its
u
s
in
g
a
C
o
s
imu
la
tio
n
-
b
a
s
ed
A
p
p
r
o
a
c
h
(
N
ejme
d
d
in
e
A
limi
)
2199
―
O
u
tp
u
t
C
o
n
v
er
ter
‖
m
o
d
u
le
r
ec
eiv
es
t
h
e
r
esu
l
t
,
b
its
ar
e
ad
d
ed
to
th
e
lo
g
ic
v
ec
to
r
to
b
r
i
n
g
it
to
th
e
r
eq
u
ir
ed
s
ize
(
f
k+
1
to
f
n
f
r
a
m
e
s)
(
―
p
a
d
d
in
g
‖
o
p
e
r
atio
n
)
.
T
h
en
,
th
e
lo
g
i
c
v
ec
to
r
is
s
e
n
t
i
n
w
-
bi
t
f
r
a
m
es
to
th
e
n
ex
t
s
ta
g
e
(
Fig
u
r
e
8
(
b
)
)
.
Si
m
ilar
l
y
,
t
h
e
―De
b
u
g
C
o
n
v
er
ter
‖
m
o
d
u
le
b
r
in
g
s
DUV
‘
s
i
n
ter
n
al
s
i
g
n
a
ls
to
th
e
n
e
x
t s
tag
e.
Fig
u
r
e
8
.
T
h
e
DUV‘
s
W
r
ap
p
e
r
u
n
it
s
.
2
.
4
.
P
la
t
f
o
rm
Co
ntr
o
l,
Set
t
ing
s
a
nd
E
x
ec
utio
n
An
ess
e
n
tial
s
id
e
o
f
th
e
p
latf
o
r
m
i
s
th
e
co
n
tr
o
l
an
d
s
etti
n
g
s
.
P
latf
o
r
m
co
n
tr
o
l
co
n
s
i
s
ts
i
n
c
o
n
tr
o
llin
g
th
e
e
x
ec
u
tio
n
o
f
t
h
e
tes
tb
en
c
h
b
y
s
c
h
ed
u
li
n
g
t
h
e
s
t
i
m
u
li
t
o
th
e
DUV
/R
e
f
er
en
ce
Mo
d
el
an
d
t
h
e
o
u
t
g
o
in
g
s
ig
n
al
s
/d
ata
to
b
e
v
er
i
f
ied
.
T
h
e
ch
a
llen
g
e
h
er
e
is
to
s
y
n
c
h
r
o
n
ize
t
h
e
Ma
tlab
/S
i
m
u
li
n
k
b
lo
ck
s
,
w
h
ich
ar
e
in
h
er
e
n
tl
y
u
n
t
i
m
ed
,
w
it
h
a
n
R
T
L
-
lev
e
l d
esig
n
r
u
n
n
i
n
g
in
a
n
ev
en
t
-
b
ased
s
i
m
u
lato
r
(
Mo
d
elSi
m
)
.
T
h
e
P
latf
o
r
m
C
o
n
tr
o
l p
r
o
ce
s
s
is
ab
s
tr
ac
ted
in
th
e
ti
m
ed
f
in
ite
s
tate
m
a
c
h
in
e
(
T
FS
M)
r
ep
r
esen
ted
in
Fi
g
u
r
e
9.
Fig
u
r
e
9
.
T
h
e
f
in
ite
s
ta
te
m
ac
h
in
e
o
f
t
h
e
P
latf
o
r
m
C
o
n
tr
o
l
B
ec
au
s
e
Ma
tlab
Fu
n
ctio
n
B
l
o
ck
,
an
d
Ma
t
lab
lan
g
u
ag
e
i
n
g
e
n
er
al,
is
u
n
ti
m
ed
,
t
h
e
ti
m
i
n
g
an
d
th
e
d
eliv
er
y
o
f
t
h
e
d
ata
is
co
n
tr
o
lled
b
y
t
h
e
HD
L
s
i
m
u
lato
r
(
w
h
e
n
Ma
tlab
Fu
n
ctio
n
B
lo
ck
is
lo
ca
ted
af
ter
th
e
DUV)
an
d
/o
r
b
y
th
e
B
lo
ck
‘
s
s
a
m
p
lin
g
ti
m
e
s
etti
n
g
(
w
h
e
n
M
atlab
Fu
n
ctio
n
B
lo
ck
is
lo
ca
te
d
f
o
r
w
ar
d
)
.
Usi
n
g
a
Si
m
u
li
n
k
Dig
ital
C
lo
c
k
,
th
e
s
t
i
m
u
li
(
co
n
tr
o
l
s
i
g
n
al
s
an
d
d
at
a)
ar
e
g
en
er
ated
in
s
p
ec
if
ic
s
i
m
u
latio
n
ti
m
e
s
.
T
h
e
tr
an
s
itio
n
d
ela
y
ti
m
e
s
b
et
w
ee
n
th
e
T
FS
M
s
tates a
r
e
p
r
esen
te
d
in
T
ab
le
2
.
P
latf
o
r
m
s
et
tin
g
s
ar
e
th
e
s
ett
i
n
g
s
o
f
p
ar
a
m
eter
s
r
elate
d
to
ea
ch
b
lo
ck
o
f
t
h
e
p
lat
f
o
r
m
.
T
h
at
i
s
,
th
e
Si
m
u
li
n
k
b
lo
ck
s
p
ar
a
m
e
ter
s
(
Un
b
u
f
f
er
,
Dela
y
L
i
n
e,
etc
.
)
a
n
d
th
e
s
a
m
p
li
n
g
ti
m
es
f
o
r
Ma
tlab
f
u
n
ctio
n
b
lo
ck
s
(
Ver
if
icatio
n
s
tr
u
ct
u
r
e
b
lo
cs).
A
g
r
ap
h
ical
u
s
er
in
ter
f
ac
e
(
G
UI
)
w
as d
ev
elo
p
ed
to
f
ac
ilit
at
e
th
is
ta
s
k
.
I
n
ad
d
itio
n
to
t
h
e
c
h
o
ice
o
f
Si
m
u
li
n
k
b
lo
ck
s
an
d
a
lg
o
r
it
h
m
s
in
s
id
e
Ma
tlab
Fu
n
ctio
n
b
lo
ck
s
,
t
h
e
f
u
n
ctio
n
i
n
g
o
f
t
h
e
p
lat
f
o
r
m
r
e
lies
o
n
th
e
ti
m
in
g
s
etti
n
g
s
.
I
n
f
ac
t,
f
o
r
ea
ch
b
lo
ck
,
a
s
a
m
p
l
e
ti
m
e
n
ee
d
s
to
b
e
s
p
ec
if
ied
.
I
n
Si
m
u
l
in
k
,
t
h
e
s
a
m
p
le
ti
m
e
o
f
a
b
lo
ck
is
a
p
ar
am
eter
t
h
at
i
n
d
icate
s
w
h
e
n
,
d
u
r
in
g
s
i
m
u
latio
n
,
t
h
e
b
lo
ck
is
ac
tiv
e
an
d
i
f
ap
p
r
o
p
r
i
ate,
u
p
d
ates
its
in
ter
n
al
s
tate.
Fo
r
HDL
co
s
i
m
u
lat
io
n
B
lo
ck
,
a
s
a
m
p
le
ti
m
e
h
as
X
Y
X
Y
m
m
R
e
c
e
p
t
i
o
n
U
n
p
a
d
d
i
n
g
Clk
reset
start_frame
done
Z
w
Z
w
w
m
Tr
a
n
s
m
i
s
s
i
o
n
P
a
d
d
i
n
g
+
...
f0
+
fk
w
w
+
...
+
fn
w
+
...
f0
+
fk
w
w
+
...
+
fn
w
+
...
fk
+
fn
w
w
+
...
f0
+
w
(
a
)
T
h
e
i
n
p
u
t
c
o
n
v
e
r
t
e
r
(
b
)
T
h
e
o
u
t
p
u
t
c
o
n
v
e
r
t
e
r
Data vectors
Data frames
Data vector
Data frames
...
f0
f1
fk
m
...
f0
f1
fk
m
...
f0
f1
fk
m
S
t
a
r
t
d
a
t
a
g
e
n
e
r
a
t
i
o
n
p
r
o
c
e
s
s
S
t
a
r
t
t
e
s
t
b
e
n
c
h
p
a
r
a
m
s
u
p
d
a
t
e
r
e
s
e
t
r
e
s
e
t
=
0
r
e
s
e
t
=
1
s
t
a
r
t
_
f
r
a
m
e
s
=
1
s
i
m
_
t
i
m
e
=
T0
s
i
m
_
t
i
m
e
=
T1
S
t
a
r
t
d
a
t
a
g
e
n
e
r
a
t
i
o
n
p
r
o
c
e
s
s
-
f
i
n
i
s
h
e
d
s
t
a
r
t
_
f
r
a
m
e
s
=
0
s
i
m
_
t
i
m
e
=
T1
'
s
i
m
_
t
i
m
e
=
T2
S
t
a
r
t
L
a
r
g
e
-
i
n
t
o
p
e
r
a
t
i
o
n
s
t
a
r
t
=
1
s
i
m
_
t
i
m
e
=
T2
'
L
a
r
g
e
-
i
n
t
o
p
e
r
a
t
i
o
n
s
t
a
r
t
=
0
S
t
a
r
t
t
e
s
t
b
e
n
c
h
p
a
r
a
m
s
u
p
d
a
t
e
-
f
i
n
i
s
h
e
d
U
p
d
a
t
e
=
1
U
p
d
a
t
e
=
0
s
i
m
_
t
i
m
e
=
Tp
w
a
i
t
T1
w
a
i
t
T1
'
w
a
i
t
T0
w
a
i
t
T2
w
a
i
t
T2
'
w
a
i
t
Tp
w
a
i
t
Tf
C
o
m
p
a
r
i
s
o
n
&
v
e
r
i
f
i
c
a
t
i
o
n
w
a
i
t
Td
i
n
i
t
P
r
o
c
e
s
s
r
e
s
u
l
t
s
&
d
i
s
p
l
a
y
i
d
l
e
s
i
m
_
t
i
m
e
=
Tf
s
i
m
_
t
i
m
e
=
Td
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
1
9
2
–
2
2
0
5
2200
to
b
e
s
et
f
o
r
ea
ch
i
n
p
u
t/o
u
tp
u
t.
Sa
m
p
le
ti
m
e
s
o
f
p
lat
f
o
r
m
b
lo
ck
s
w
er
e
s
et
to
HD
L
clo
ck
p
er
io
d
ex
ce
p
t
th
e
―
r
ef
er
e
n
ce
m
o
d
el‖
w
h
o
m
t
h
e
ex
ec
u
t
io
n
d
ep
en
d
s
o
n
t
h
e
tr
i
g
g
er
in
g
s
ig
n
al
r
ec
ei
v
ed
f
r
o
m
t
h
e
Sti
m
u
li
Ge
n
er
ato
r
B
lo
ck
.
T
h
e
s
am
p
le
ti
m
e
o
f
Da
ta
b
lo
ck
ca
n
b
e
ca
lcu
lated
u
s
in
g
f
o
r
m
u
la
5
d
er
iv
ed
f
r
o
m
f
o
r
m
u
la
4
:
UB
O_
S
a
mp
le_
Time
=
UB
I
_
S
a
mp
le_
Time
/ D
a
ta
Ma
tr
ix_
r
o
w
s
_
N
b
r
(
4
)
W
h
er
e
UB
O
is
―
U
n
b
u
f
f
er
ed
B
lo
ck
Ou
tp
u
t‖
UB
I
_
s
a
mp
le_
time
= D
UV
_
clk_
p
erio
d
*
D
a
ta
Ma
tr
ix_
r
o
w
s
_
N
b
r
(
5
)
W
h
er
e
UB
I
is
―
U
n
b
u
f
f
er
ed
B
lo
ck
I
n
p
u
t‖
As
UB
I
is
co
n
n
ec
ted
to
Da
ta
b
lo
ck
,
th
e
v
al
u
e
o
f
Data
b
lo
ck
‘
s
s
a
m
p
le
t
i
m
e
is
t
h
e
s
a
m
e
as
t
h
at
o
f
UB
I
.
B
ec
au
s
e
th
e
Un
b
u
f
f
er
o
n
l
y
ac
ce
p
ts
f
i
x
ed
-
s
ize
i
n
p
u
t,
o
u
tp
u
t
o
f
Da
ta
s
u
b
-
b
lo
ck
ca
n
n
o
t
b
e
s
et
to
v
ar
iab
le
s
ize
t
y
p
e.
T
h
er
ef
o
r
e,
d
ata
b
it
-
s
ize
(
o
p
er
an
d
s
)
h
as to
b
e
s
et
m
an
u
al
l
y
b
y
u
s
er
f
o
r
d
if
f
er
en
t o
p
er
an
d
s
b
it
-
s
ize.
I
n
p
r
ac
tice,
Sam
p
le
ti
m
e
ca
n
b
e
s
et
au
to
m
atica
ll
y
b
y
w
o
r
k
i
n
g
ar
o
u
n
d
th
e
r
es
tr
ictio
n
o
f
th
e
Un
b
u
f
f
er
.
T
o
d
o
s
o
,
th
e
s
ize
o
f
a
ll
d
ata
tr
an
s
f
er
r
ed
b
et
w
ee
n
b
lo
ck
s
in
th
e
p
latf
o
r
m
ar
e
c
h
o
s
en
as
a
co
n
s
ta
n
t
t
h
a
t
h
o
ld
s
all
s
ta
n
d
ar
d
s
izes
o
f
f
i
n
ite
-
f
ield
co
m
m
o
n
l
y
u
s
ed
in
P
u
b
lic
-
k
e
y
C
r
y
p
to
g
r
ap
h
y
(
f
o
r
i
n
s
ta
n
ce
,
1
0
2
4
)
.
T
h
er
ef
o
r
e,
th
e
N
u
m
b
er
o
f
d
ata
m
atr
ix
r
o
w
s
i
s
also
a
co
n
s
ta
n
t
(
f
i
x
ed
s
ize
-
in
p
u
t)
an
d
th
e
Sa
m
p
le
T
im
e
o
f
UB
I
,
b
ec
o
m
e
s
o
n
l
y
DUV
‘
s
C
lo
ck
d
ep
en
d
en
t.
T
h
e
ch
o
ice
o
f
a
u
n
iq
u
e
s
ize
s
i
m
p
li
f
ies
th
e
tr
an
s
m
is
s
io
n
/r
ec
ep
tio
n
o
f
d
at
a
in
s
id
e
ea
c
h
b
lo
ck
an
d
o
n
l
y
b
its
co
r
r
esp
o
n
d
in
g
to
o
p
er
an
d
s
r
ea
l
s
ize
(
e.
g
.
1
9
2
-
b
it)
ar
e
u
s
ed
.
T
h
is
tas
k
i
s
d
o
n
e
b
y
th
e
W
r
ap
p
er
as
it
b
r
in
g
s
o
p
er
an
d
s
to
th
e
r
eq
u
i
r
ed
s
ize
b
y
t
h
e
p
ad
d
in
g
a
n
d
u
n
p
a
d
d
in
g
p
r
o
ce
s
s
es
p
r
ev
io
u
s
l
y
d
etailed
.
User
h
as
to
p
lace
th
e
VHD
L
d
e
s
ig
n
co
d
e(
s
)
in
s
id
e
a
s
p
ec
if
ic
f
o
ld
er
f
o
r
co
-
s
i
m
u
lat
io
n
,
ad
j
u
s
t
w
r
ap
p
er
‘
s
p
ar
a
m
eter
s
to
th
e
s
ize
o
f
th
e
HD
L
d
esi
g
n
o
p
er
an
d
s
an
d
co
n
n
ec
t
w
r
ap
p
er
‘
s
p
r
o
b
es
(
o
u
tp
u
ts
)
to
d
esir
ed
DUV‘
s
in
ter
n
al
s
ig
n
al
s
.
T
h
e
O
u
tp
u
t
Data
A
d
a
p
ter
,
r
ep
r
esen
ted
b
y
t
h
e
Si
m
u
l
in
k
b
lo
ck
―
Dela
y
Lin
e
‖,
e
x
ec
u
tes
t
h
e
r
e
v
er
s
e
ta
s
k
o
f
th
e
U
n
b
u
f
f
er
B
lo
ck
.
T
h
at
is
,
it tr
an
s
f
o
r
m
s
a
s
eq
u
en
ce
o
f
d
ata
f
r
a
m
e
s
in
to
a
m
atr
ix
.
W
h
en
v
er
i
f
icatio
n
is
la
u
n
c
h
ed
,
P
SL
ass
er
tio
n
s
test
r
es
u
lts
ar
e
p
r
o
ce
s
s
ed
in
Ma
tlab
w
o
r
k
s
p
ac
e.
T
h
en
,
r
esu
lt
s
ar
e
ca
r
r
ied
t
o
Sco
r
eb
o
ar
d
alo
n
g
co
m
p
ar
ato
r
an
d
ch
ec
k
er
r
esu
lt
s
.
T
h
e
Sco
r
eb
o
a
r
d
co
m
p
u
tes
t
h
e
n
e
w
v
er
if
ica
tio
n
co
v
er
ag
e
a
n
d
g
en
er
ates
a
f
ee
d
b
ac
k
s
u
m
m
ar
izin
g
th
e
co
v
er
ag
e.
A
cc
o
r
d
in
g
to
th
e
f
ee
d
b
ac
k
,
a
n
e
w
test
b
en
c
h
s
ce
n
ar
io
a
n
d
p
ar
a
m
eter
s
tar
g
eti
n
g
t
h
e
u
n
co
v
er
ed
ass
er
tio
n
s
a
n
d
/o
r
d
atap
ath
lo
g
ic
n
o
t
y
et
v
er
i
f
ied
ar
e
s
et.
T
h
en
,
th
e
n
e
x
t te
s
tb
e
n
ch
w
ill b
e
r
ea
d
y
to
r
u
n
.
T
ab
le
2
.
T
im
e
P
er
io
d
s
o
f
th
e
T
FS
M
D
e
l
a
y
t
i
me
sy
mb
o
l
S
i
g
n
i
f
i
c
a
n
c
e
V
a
l
u
e
T
0
T
i
me
t
o
w
a
i
t
b
e
f
o
r
e
st
a
r
t
i
n
g
a
n
e
w
t
e
st
T
0
= n
0
*
C
L
K
C
y
c
l
e
s
T
1
T
i
me
t
o
w
a
i
t
b
e
f
o
r
e
S
t
a
r
t
i
n
g
D
a
t
a
g
e
n
e
r
a
t
i
o
n
p
r
o
c
e
ss
T
1
= n
1
*
C
L
K
C
y
c
l
e
s
T
2
T
i
me
t
o
w
a
i
t
b
e
f
o
r
e
S
t
a
r
t
i
n
g
D
a
t
a
g
e
n
e
r
a
t
i
o
n
p
r
o
c
e
ss
T
2
= n
2
*
C
L
K
C
y
c
l
e
s
T
d
T
i
me
t
o
w
a
i
t
b
e
f
o
r
e
D
o
n
e
=
1
T
d
= n
d
*
C
L
K
C
y
c
l
e
s
T
f
T
i
me
t
o
w
a
i
t
b
e
f
o
r
e
F
e
e
d
b
a
c
k
i
s
r
e
a
d
y
T
f
= n
f
*
C
L
K
C
y
c
l
e
s
T
p
T
i
me
t
o
w
a
i
t
b
e
f
o
r
e
Te
st
b
e
n
c
h
P
a
r
a
m
e
t
e
r
s a
r
e
u
p
d
a
t
e
d
T
p
= n
d
*
C
L
K
C
y
c
l
e
s
T
x‘
O
n
e
c
l
o
c
k
c
y
c
l
e
a
f
t
e
r
T
x
T
x
‘
=
T
x
+
C
L
K
C
y
c
l
e
2
.
5
.
Ver
if
ica
t
io
n P
la
t
f
o
rm
w
it
h F
P
G
A
in
-
t
he
-
lo
o
p
An
o
th
er
a
s
p
ec
t
o
f
r
eu
s
ab
ilit
y
o
f
t
h
e
p
r
o
p
o
s
ed
p
latf
o
r
m
is
t
h
e
p
o
s
s
ib
ilit
y
to
s
w
itch
f
r
o
m
HD
L
co
s
i
m
u
latio
n
to
r
ea
l
h
ar
d
w
ar
e
test
i
n
g
w
h
ile
k
ee
p
in
g
th
e
s
a
m
e
v
er
if
icatio
n
p
latf
o
r
m
.
T
h
is
o
p
tio
n
w
a
s
te
s
ted
w
it
h
t
h
e
―Ha
r
d
w
ar
e
-
i
n
-
t
h
e
-
lo
o
p
‖
(
HI
L
)
o
p
tio
n
p
r
o
v
id
ed
b
y
S
i
m
u
li
n
k
f
o
r
FP
GA
b
o
ar
d
s
eq
u
ip
p
ed
w
it
h
Gi
g
ab
it
E
th
er
n
et
p
o
r
t
(
an
A
l
ter
a
DE
2
-
1
1
5
b
o
ar
d
w
ith
C
y
clo
n
e
I
V
E
P
4
C
E
1
1
5
FP
GA
w
a
s
u
s
ed
)
.
T
h
is
w
a
y
e
n
ab
les
co
n
tr
o
llin
g
an
d
v
er
if
y
i
n
g
a
d
e
s
ig
n
(
a
m
o
d
u
lar
m
u
ltip
lier
,
m
o
r
e
d
etails
in
s
ec
tio
n
3
)
r
u
n
n
i
n
g
o
n
FP
G
A
f
r
o
m
th
e
Ma
tlab
/S
i
m
u
li
n
k
p
latf
o
r
m
w
it
h
t
h
e
d
esi
g
n
‘s
r
ea
l
ex
ec
u
tio
n
ti
m
e
(
Fi
g
u
r
e
1
0
)
.
Ho
w
e
v
er
,
th
is
ca
m
e
at
a
co
s
t
as
t
h
at
i
n
ter
n
al
v
er
i
f
icatio
n
(
S
u
b
-
DU
V
P
r
o
b
in
g
)
b
ec
o
m
e
s
i
n
ac
ce
s
s
ib
le
d
u
e
to
t
h
e
FP
G
A
d
ev
elo
p
m
e
n
t
‘
s
to
o
l
r
estrictio
n
s
o
n
d
es
ig
n
‘
s
co
d
in
g
s
t
y
le
a
n
d
w
r
ap
p
in
g
.
T
o
co
n
clu
d
e
th
i
s
s
ec
tio
n
,
T
ab
le
3
g
i
v
e
s
a
co
m
p
ar
is
o
n
b
et
wee
n
t
h
e
p
r
es
e
n
t
w
o
r
k
a
n
d
s
i
m
ilar
w
o
r
k
s
f
r
o
m
l
iter
atu
r
e.
T
h
e
T
ab
le
s
h
o
w
s
th
at
t
h
e
p
r
o
p
o
s
ed
p
latf
o
r
m
w
h
ile
s
h
ar
in
g
s
o
m
e
f
ea
t
u
r
es
w
it
h
o
t
h
er
w
o
r
k
s
(
s
u
p
p
o
r
ted
HDL
,
co
s
i
m
u
lat
io
n
,
etc.
)
,
s
tan
d
s
o
u
t
w
it
h
m
o
r
e
p
o
w
er
f
u
l
HV
L
,
u
n
r
estric
ted
lar
g
e
-
i
n
te
g
er
s
u
p
p
o
r
t
an
d
ad
ap
tab
ilit
y
to
HI
L
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
n
ctio
n
a
l
V
erif
ica
tio
n
o
f La
r
g
e
-
in
teg
ers
C
ir
cu
its
u
s
in
g
a
C
o
s
imu
la
tio
n
-
b
a
s
ed
A
p
p
r
o
a
c
h
(
N
ejme
d
d
in
e
A
limi
)
2201
Fig
u
r
e
10
.
Ver
if
icatio
n
P
latf
o
r
m
w
it
h
FP
G
A
-
in
-
t
h
e
-
lo
o
p
T
ab
le
3.
C
o
m
p
ar
is
o
n
w
i
th
s
i
m
ilar
v
er
if
icat
io
n
p
lat
f
o
r
m
s
V
e
r
i
f
i
c
a
t
i
o
n
e
n
v
i
r
o
n
me
n
t
H
W
V
e
r
i
f
i
c
a
t
i
o
n
L
a
n
g
u
a
g
e
(
H
V
L
)
S
u
p
p
o
r
t
e
d
H
D
L
I
n
t
e
r
f
a
c
i
n
g
w
i
t
h
S
i
mu
l
a
t
o
r
C
o
si
m
u
l
a
t
i
o
n
w
i
t
h
V
H
D
L
si
mu
l
a
t
o
r
L
a
r
g
e
-
i
n
t
e
g
e
r
su
p
p
o
r
t
D
U
V
i
n
H
a
r
d
w
a
r
e
[
1
3
]
C
V
H
D
L
F
LI
Y
e
s
L
i
mi
t
e
d
No
[
1
4
]
P
y
t
h
o
n
V
H
D
L
/
V
e
r
i
l
o
g
F
LI
/
V
P
I
Y
e
s
L
i
mi
t
e
d
No
[
1
5
]
P
y
t
h
o
n
V
e
r
i
l
o
g
V
P
I
No
L
i
mi
t
e
d
No
[
2
5
]
P
y
t
h
o
n
V
e
r
i
l
o
g
V
P
I
No
L
i
mi
t
e
d
No
[
2
6
]
Ru
by
V
e
r
i
l
o
g
V
P
I
No
L
i
mi
t
e
d
No
T
h
i
s W
o
r
k
M
a
t
l
a
b
/
S
i
m
u
l
i
n
k
V
H
D
L
/
V
e
r
i
l
o
g
H
D
L
V
e
r
i
f
i
e
r
®
+
W
r
a
p
p
e
r
Y
e
s
U
n
l
i
mi
t
e
d
Y
e
s (H
I
L
)
V
PI
:
V
e
r
i
l
o
g
P
r
o
c
e
d
u
r
a
l
I
n
t
e
r
f
a
c
e
,
F
L
I
:
F
o
r
e
i
g
n
L
a
n
g
u
a
g
e
I
n
t
e
r
f
a
c
e
,
PL
I
:
P
r
o
c
e
d
u
r
a
l
L
a
n
g
u
a
g
e
I
n
t
e
r
f
a
c
e
,
HIL
:
H
a
r
d
w
a
r
e
-
in
-
t
h
e
-
l
o
o
p
.
3.
CASE
S
T
UD
Y
& R
E
SU
L
T
S
As
ca
s
e
s
t
u
d
y
o
f
t
h
e
p
lat
f
o
r
m
,
w
e
co
n
s
id
er
th
e
o
p
er
atio
n
Z
=
f
(
X
,
Y
)
,
w
h
er
e
X
,
Y
an
d
Z
ar
e
th
r
ee
lar
g
e
-
i
n
te
g
er
s
.
C
o
n
tr
o
l
s
i
g
n
a
ls
ar
e
r
ese
t
a
n
d
s
ta
r
t
,
w
h
ile
Do
n
e
is
a
n
o
u
tp
u
t
i
n
d
icatin
g
th
e
e
n
d
o
f
th
e
o
p
er
atio
n
.
T
h
e
g
o
al
is
to
e
v
alu
a
te
t
h
e
co
s
t
o
f
t
h
e
b
it
-
s
ize,
t
h
e
n
u
m
b
er
o
f
ass
er
tio
n
s
a
n
d
th
e
in
ter
n
al
s
ig
n
al
p
r
o
b
in
g
o
n
t
h
e
p
latf
o
r
m
.
3
.
1
.
L
a
rg
e
-
inte
g
er
Arit
h
m
et
ic
B
a
ck
g
ro
un
d
L
ar
g
e
-
i
n
te
g
er
ar
ith
m
etic
h
as
a
v
ar
iet
y
o
f
ap
p
licatio
n
s
in
cr
y
p
to
g
r
ap
h
y
.
Am
o
n
g
t
h
ese,
A
E
S,
R
S
A
a
n
d
E
C
C
.
As
ill
u
s
tr
ated
i
n
th
e
Fi
g
u
r
e
1
1
,
E
C
C
s
c
h
e
m
es
ar
e
b
ased
o
n
P
o
in
t
o
p
er
atio
n
s
,
p
r
i
m
ar
il
y
o
n
t
h
e
p
o
in
t
m
u
ltip
licatio
n
an
d
also
o
n
t
h
e
o
p
er
atio
n
s
o
n
w
h
ic
h
it
p
o
in
t
m
u
lt
ip
licatio
n
r
elie
s
,
i.e
.
p
o
in
t
ad
d
itio
n
an
d
d
o
u
b
lin
g
.
I
n
tu
r
n
,
t
h
o
s
e
p
o
in
t
o
p
er
atio
n
s
ar
e
m
ad
e
o
n
f
in
ite
-
f
ield
s
ar
it
h
m
etic,
a
p
ar
tic
u
lar
f
ie
ld
o
f
lar
g
e
-
in
te
g
er
s
.
T
h
is
i
m
p
l
ies
t
h
at
f
in
ite
-
f
ield
ar
ith
m
etic
ar
e
d
et
er
m
in
a
n
t
to
d
esi
g
n
a
n
e
f
f
ici
en
t
ellip
tic
c
u
r
v
e
cr
y
p
to
s
y
s
te
m
.
Fi
n
ite
-
f
ield
ar
i
th
m
etic
is
t
h
e
ar
it
h
m
e
tic
o
f
i
n
teg
er
s
m
o
d
u
lo
a
lar
g
e
p
r
i
m
e
p
.
A
r
ith
m
etic
i
n
a
f
i
n
ite
-
f
ield
is
d
if
f
er
e
n
t
f
r
o
m
s
t
an
d
ar
d
in
teg
er
ar
ith
m
etic
an
d
all
o
p
er
atio
n
s
p
er
f
o
r
m
ed
in
th
e
f
in
ite
-
f
ield
r
esu
l
t
in
an
e
le
m
en
t
w
it
h
i
n
th
a
t
f
ie
ld
.
T
h
r
ee
k
in
d
s
o
f
f
ield
s
t
h
at
ar
e
u
s
ed
f
o
r
ef
f
icien
t
i
m
p
le
m
en
tatio
n
o
f
E
C
C
s
y
s
te
m
s
ar
e
p
r
i
m
e
f
ield
s
(
F
p
)
,
b
in
ar
y
f
ield
s
(
F
2
m
)
,
an
d
o
p
t
i
m
al
e
x
te
n
s
io
n
f
ie
ld
s
(
F
p
m
)
.
T
h
o
s
e
f
i
eld
s
w
er
e
ex
ten
s
i
v
el
y
s
t
u
d
ied
a
n
d
th
is
h
as
r
es
u
lted
i
n
n
u
m
er
o
u
s
a
lg
o
r
ith
m
s
.
Fi
n
ite
-
f
ield
ar
it
h
m
etic
is
a
p
r
ac
tical
ex
a
m
p
le
o
f
lar
g
e
-
i
n
teg
er
ar
it
h
m
etic
u
s
a
g
e
an
d
is
t
h
e
co
r
n
er
s
to
n
e
o
f
cr
y
p
to
g
r
ap
h
ic
s
ch
e
m
e
s
s
u
c
h
as E
C
C
.
Evaluation Warning : The document was created with Spire.PDF for Python.