Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
80
0
~
80
9
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
593
8
00
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Evalu
a
ti
ng the I
m
pact of
Transm
ission Range on the
Performance of VANET
Akr
a
m A. Al
mohamme
di
1
, N
o
r K
.
Noor
din
2
, Sabri Saeed
3
1,2
Department of
Computer
and
Comm
unication
S
y
stem
s Engin
e
ering,
Universi
ti
Putra Mal
a
y
s
ia
,
Mala
y
s
ia
3
Department of Electrical, Electr
oni
c
and S
y
s
t
em
s Engine
ering
,
U
n
iversiti
Kebang
saan Mal
a
y
s
ia
,
Mala
y
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 22, 2015
R
e
vi
sed Dec 8,
2
0
1
5
Accepte
d Ja
n
2, 2016
Recen
tly
,
inter
e
s
t
in the f
i
eld of
Ve
hicular Ad-hoc Networks (VANETs) has
grown among research community
to
improve
traffic safety
and ef
ficiency
on
the roads
.
D
e
s
p
ite th
e m
a
n
y
adv
a
ntag
es
, th
e tran
s
m
is
s
i
on range in vehicu
la
r
network remains one of th
e majo
r challenges due to the unique
chara
c
t
e
ris
t
i
c
s
of VANETs
s
u
ch as
various communication en
vironments,
highl
y
d
y
n
a
m
i
c topolog
y
,
hig
h
node m
obilit
y
and tr
affi
c densit
y
.
Th
e
network
would suffer from a broadcast-storm in
high vehicu
lar d
e
nsity
when
a fix
e
d tr
ansmission range
in
VANET is
used, while in
sparse vehicular
density
th
e n
e
twork could b
e
disconnect
ed fr
equently
. In
this paper, w
e
evalu
a
ted th
e i
m
p
act of differe
nt tr
ansmission
ranges and number of flows
form
ed between
vehicl
es
in a highwa
y
scenario using AODV as routing
protocol. In order to valid
ate th
e si
mulation of VANET, traffic and networ
k
s
i
m
u
lators
(S
UM
O & NS
-2) ha
ve been us
ed. Th
e perform
ance w
a
s
evalua
ted
in terms of packet deliv
er
y
ratio and
end-to-end d
e
la
y.
The sim
u
la
tion results
have shown that
better performan
ce was
achieved
in term of high
er
PDR and
lower end-
to-en
d
delay
for
less than
500 meters
transmission range. On
the
contrar
y
,
the P
D
R s
t
art
e
d to
de
c
r
eas
e
and end-to
-end
delay
incr
eased
when
the tr
ansmission range
exceeded
500 me
ters.
Th
e performance d
e
graded
as
the number
of f
l
ows increas
ed.
Keyword:
En
d t
o
en
d
del
a
y
Packet delivery
ratio
Tran
sm
i
ssi
on r
a
nge
VA
NET
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ak
ram
A.
Alm
oham
m
edi,
Depa
rt
m
e
nt
of
C
o
m
put
er an
d
C
o
m
m
uni
cat
i
o
n Sy
st
em
s Eng
i
neeri
n
g,
Un
i
v
ersiti Pu
tra Malaysia,
4
330
0 Ser
d
ang, Malaysia.
Em
a
il: Akram
.
a.a@ieee.org
1.
INTRODUCTION
Recently, Ve
hicular
Ad-hoc Networks
(VANETs
) ha
ve attracted
great attention am
ong
g
o
v
e
rn
m
e
n
t
al o
r
g
a
n
i
zatio
n
s
, in
du
strial sectors, an
d
acad
e
mic in
stitu
tio
n
s
d
u
e
t
o
th
eir sign
ifican
t ap
p
licatio
n
s
.
It can be
u
tili
zed
m
a
in
ly to
im
p
r
o
v
e
v
e
h
i
cle safety, en
han
ce traffic man
a
g
e
m
e
n
t
con
d
ition
s
and
prov
ide
infotainm
e
nt in ve
hicles suc
h
as
Internet access, vi
deo st
ream
ing, etc.
Howe
ver, VANETs a
r
e a sub-class
of
Mo
b
ile Ad
-hoc Netwo
r
k
s
(MANETs)
with
sev
e
ral d
i
ffer
ent characteri
s
tics that di
st
ing
u
i
s
h t
h
em
from
ot
her
MANETs, su
ch
as larg
e num
b
e
r o
f
nod
es, h
i
gh
m
o
b
ilit
y, ch
ang
e
rap
i
d
l
y o
n
n
e
two
r
k
top
o
l
o
g
y
,
no p
o
wer
constraints a
n
d availability of
GPS
[10]. The
r
eby, t
h
e m
e
dium
access c
ont
rol
(M
AC) protocols prese
n
te
d
for
MANETs are no
t fit fo
r
VANETs,
owing
to
t
h
e
u
n
i
qu
e f
eat
u
r
es of VA
N
E
Ts.
I
n
d
e
sign
ing
t
h
e MA
C
pr
ot
oc
ol
s
fo
r
VA
NETs
,
o
n
e
sho
u
l
d
c
onsi
d
e
r
a
speci
fi
c
wa
y
fo
r t
h
e
no
des
t
o
s
h
a
r
e t
h
e
u
nde
rl
y
i
ng
cha
n
nel
,
a
s
well as th
e type of m
e
ssag
e
[1
].
VA
NETs a
r
e c
onsi
d
ere
d
as a
t
y
pe of di
st
ri
b
u
t
e
d sel
f
-o
rg
an
i
z
i
ng net
w
o
r
k
am
ong
ve
hi
cl
es equi
ppe
d
wi
t
h
wi
rel
e
ss
com
m
uni
cat
i
on
devi
ces
t
o
pr
o
v
i
d
e c
o
m
m
uni
cat
i
o
n am
ong
nea
r
by
ve
hi
cl
es. T
h
i
s
t
y
pe o
f
co
mm
u
n
i
catio
n
is
kn
own
as in
tellig
en
t tran
sportatio
n
Sy
ste
m
(ITS) app
licatio
n
.
The co
mm
u
n
i
cati
o
n can
ei
t
h
er be b
e
t
w
een ve
hi
cl
es (
V
2
V
)
,
o
r
bet
w
een
vehi
cl
es
and t
h
e r
o
a
d
s
i
de i
n
f
r
ast
r
uct
u
re (
V
2I
) t
o
g
e
nerat
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
80
0 – 8
0
9
80
1
sig
n
i
fican
t
i
m
p
r
ov
em
en
t to
th
e tran
sportatio
n
sy
stem perform
ance. The si
gnificant objective
of
comm
unication
betwee
n
vehicles is to diss
e
m
inate alert
messages to neighbor
ve
hicles about an ac
cident,
a
b
a
d
weath
e
r or to
co
mm
u
n
i
cate with
RSU to
ob
tain
t
h
e t
r
affi
c l
i
ght
st
at
us. H
o
wev
e
r, V
A
N
ET a
c
qui
re
s
sens
ors t
o
be em
bedded o
n
t
h
e vehi
cl
es an
d i
n
fra
st
ruct
ures
[1]
.
M
o
reo
v
er
,
com
m
uni
cat
i
o
n bet
w
ee
n ve
h
i
cl
es
can be
de
vel
o
ped
by
i
n
t
e
g
r
at
i
on o
f
em
bedde
d c
o
m
put
ers su
p
p
o
r
t
e
d
wi
t
h
sen
s
i
n
g devi
ces
, di
gi
t
a
l
m
a
ps,
navi
gat
i
on sy
s
t
em
s (GPS) a
n
d wi
rel
e
ss c
o
m
m
uni
cat
i
on devi
ces as
wel
l
.
Each ve
hi
cl
e has O
n
B
o
a
r
d
Uni
t
(OB
U
) t
o
p
r
o
v
i
de com
m
uni
cat
i
on wi
t
h
an
ot
her
OB
U t
h
at
m
e
rges t
o
a
n
ot
her
ve
hi
cl
e or
wi
t
h
R
o
a
d
Si
d
e
Uni
t
s
(RSU) that is in
stalled
at a
road
si
d
e
[19
]
.
The
pr
o
p
o
s
ed
t
echn
o
l
o
gy
t
o
per
f
o
r
m
t
h
i
s
ki
nd
o
f
c
o
m
m
uni
cat
i
on i
s
De
di
cat
ed
Sh
ort
R
a
nge
C
o
m
m
uni
cat
i
o
n (D
SR
C
)
.
D
S
R
C
i
s
a wi
rel
e
ss t
echnol
o
g
y
devel
ope
d
based o
n
W
i
-Fi
t
o
sup
p
o
r
t
t
h
e
i
n
f
o
rm
at
i
on ex
chan
ge
bet
w
ee
n V
2
V an
d V
2
I, beca
use i
t
i
s
desi
g
n
ed
f
o
r
v
e
ry
hi
g
h
dy
na
m
i
c net
w
or
ks.
These
com
m
uni
cat
i
on net
w
o
r
k
s
ha
ve 7
5
M
H
z f
r
e
que
ncy
spect
ru
m
i
n
t
h
e range
of
5.
9 G
H
z al
l
o
cat
ed
by
t
h
e Fede
ral
C
o
m
m
uni
cat
i
o
ns C
o
m
m
i
ssi
on (FC
C
)
[
5
]
.
The 7
5
M
H
z fre
que
ncy
spe
c
t
r
um
of t
h
e DSR
C
i
s
di
vi
ded i
n
t
o
seve
n cha
n
nels, 10 MHz
for each c
h
annel
and
5 M
H
z fo
r guard
ba
nd.
One
of the c
h
annels is t
h
e c
ont
rol
channel (CCH_178) a
nd t
h
e othe
r six are s
e
rvice cha
n
nel
s
(SC
H
s
)
[
1
1]
. In p
a
rt
i
c
ul
ar
, t
h
e co
nt
r
o
l
cha
nnel
i
s
use
d
f
o
r sa
fet
y
appl
i
cat
i
o
ns
whi
l
e
t
h
e
ot
he
r si
x c
h
an
nel
s
are use
d
fo
r n
o
n
-
sa
fet
y
appl
i
cat
i
ons.
Fu
rt
he
rm
ore,
anot
her
st
an
da
rd m
e
rge
d
wi
t
h
i
n
t
h
i
s
p
r
ot
oc
ol
i
s
W
i
rel
e
ss
Access
fo
r
V
e
hi
cul
a
r
En
vi
r
onm
ent
(
W
A
V
E
) t
o
work in t
h
e upper layer.
WAVE is a
new standa
rd
de
veloped base
d
on the I
EEE 802.11p and
the
IEEE 1609
st
anda
rd
s. T
h
e
80
2.
1
1
p
o
r
WA
VE i
s
a m
a
jo
r a
r
ea o
f
i
n
t
e
rest
i
n
t
h
e
fi
el
d o
f
resea
r
c
h
an
d
de
vel
o
p
m
ent
t
o
provide enha
nce
m
ents on the physi
cal (PHY) and m
e
d
i
um
access control (MAC) layers of the 802.11
protoc
ol. IEE
E
1609 fam
ily has sub-
detailed standards that include
I
EEE 1609.1, IEEE 1609
.2, IEEE 1609.3,
and
IEEE 1609.4, used for rem
o
te
manage
m
e
nt services
, security services, netw
ork services a
nd
m
u
l
ti-
chan
nel
ope
rat
i
ons
, resp
ect
i
v
e
l
y
[1
1]
.
H
o
w
e
v
e
r, a typ
i
cal tr
an
sm
issio
n
r
a
ng
e i
n
VA
N
E
Ts
h
a
s
n
o
t b
een
sp
eci
f
i
ed
yet, altho
ugh its stan
d
a
rd
pr
o
pose
d
a
ra
n
g
e f
o
r di
st
a
n
ce
u
p
t
o
1
k
m
.
Subs
eq
ue
nt
l
y
, t
h
e t
r
a
n
sm
i
ssi
on ra
n
g
e i
s
c
o
n
s
i
d
ere
d
as
o
n
e
of
t
h
e
obstacles i
n
vehicular net
w
orks
. T
h
e
reas
on lies in
th
e
un
iqu
e
featu
r
es o
f
VANETs
in
term
s o
f
, variou
s
com
m
unication environm
ents, high
ly dynam
i
c topol
ogy,
high
node
m
obility, propa
gation m
o
del and
pote
n
tially lar
g
e scale. The
r
efore,
V
A
N
ET
s are pr
o
n
e t
o
suf
f
er f
r
om
a br
oadcast
-
st
o
r
m
i
n
hi
gh ve
h
i
cul
a
r
den
s
i
t
y
as a re
sul
t
o
f
u
s
i
n
g a
fi
xe
d t
r
a
n
sm
issi
on
ra
nge
es
peci
al
l
y
i
n
ur
b
a
n area
s,
whi
l
e i
n
s
p
arse
ve
hi
cul
a
r
den
s
i
t
y
(e.g
.,
h
i
gh
way
)
t
h
e
ne
t
w
o
r
k
co
ul
d
be
di
sc
on
nect
ed
f
r
eq
ue
nt
l
y
.
As de
ri
ve
d f
r
o
m
t
h
e l
i
t
e
rat
u
r
e
st
udy
, a co
ns
i
d
era
b
l
e
am
ount
of
researc
h
e
r
s ha
ve di
sc
uss
e
d t
h
i
s
i
ssue
,
of t
h
o
s
e i
n
cl
ud
e [2]
,
[
3
]
,
[
7
]
,
[8]
,
[1
2]
,
[1
4]
,
[1
5]
,
[2
2]
. I
n
[2]
,
t
h
e aut
h
or
s di
sc
usse
d t
h
e
com
p
ari
s
o
n
i
n
t
h
e
per
f
o
r
m
a
nce o
f
A
d
-h
oc
On
-
D
em
and Di
st
a
n
ce
Vect
o
r
(
A
OD
V)
r
o
ut
i
ng
pr
ot
oc
ol
wi
t
h
Opt
i
m
i
zed Li
nk St
at
e
R
out
i
n
g
pr
ot
oc
ol
(
O
LSR
)
o
n
t
w
o
di
f
f
ere
n
t
r
o
ad
net
w
or
k sce
n
ari
o
s. T
h
e
fi
r
s
t
roa
d
sce
n
ari
o
i
s
a c
o
m
p
l
e
x ro
a
d
n
e
two
r
k
wh
ich represen
ts th
e city ro
ad
n
e
t
w
ork with
m
u
ltip
le cro
s
sro
a
ds, and
the o
t
h
e
r is an
i
n
tersectio
n
o
f
two
ro
ad
s. Th
e
m
a
in
o
b
j
ective o
f
th
e st
u
d
y
was to
d
o
an
assessm
en
t o
n
th
e app
licab
ility o
f
AODV and
OLSR
protoc
ols in
VANE
T with
di
ffe
rent tra
ffic s
cenari
o
s and transm
issi
on ranges of IEEE
802.11p standard. T
h
e
V2
V c
o
nnect
i
v
i
t
y
for
ve
hi
cul
a
r com
m
uni
cat
i
on i
n
fa
di
ng c
h
an
nel
s
was i
n
t
r
o
duce
d
by
[
3
]
.
The
ve
hi
cl
es wer
e
co
nsid
ered trav
elin
g in opp
osite o
r
si
m
i
lar d
i
rection
.
From
th
e resu
lts, i
t
was
kn
own
t
h
at th
e conn
ectiv
ity in
VA
NET ca
n b
e
im
prove
d
by
adapt
i
n
g t
h
e t
r
ansm
i
ssi
on ra
nge
base
d o
n
t
h
e p
r
edi
c
t
e
d l
o
cal
ve
hi
cl
e d
e
nsi
t
y
(and
v
e
lo
city),
as well as swit
ch
ing
in
t
o
a less-cong
est
e
d
fre
que
ncy
b
a
n
d
.
The c
o
n
n
ect
i
v
i
t
y
of a Ve
hi
c
u
l
a
r A
d
hoc
Net
w
o
r
k
(V
AN
ET)
f
o
r
m
ed bet
w
ee
n
vehi
cl
es t
h
at
m
ove on a
hi
gh
way
wa
s sc
rut
i
n
i
z
e
d
i
n
[1
2]
. T
h
e
aut
h
ors al
s
o
di
scusse
d t
h
e an
al
y
t
i
cal
m
odel
t
o
det
e
rm
i
n
e the net
w
o
r
k c
o
nnect
i
v
i
t
y
of
v
e
hi
cul
a
r
net
w
o
r
k
by
assu
m
i
n
g
v
e
h
i
cle sp
eeds fo
llo
w
no
rm
al d
i
stribu
tio
n. Th
e resu
lts illu
strate in
crem
en
t o
f
n
e
two
r
k
co
nn
ectiv
ity
whe
n
t
h
e t
r
a
n
s
m
i
ssi
on ran
g
e
of ve
hi
cl
es i
n
c
r
eased
. O
n
t
h
e
cont
ra
ry
, t
h
e net
w
or
k co
n
n
e
c
t
i
v
i
t
y
degrade
d
wi
t
h
increasing a
v
e
r
age
ve
hicle s
p
eed.
It is known
from
the study that increasing the
a
v
era
g
e s
p
ee
d
woul
d
in
crease th
e cri
tical tran
s
m
issi
o
n
rang
e requ
i
r
ed
to
m
eet a g
i
v
e
n
co
nn
ectivity p
r
o
b
a
b
ility
criterio
n
. Th
e effect
of
wi
rel
e
ss
t
r
a
n
sm
i
ssi
on ra
ng
e o
n
t
h
e
l
i
f
et
i
m
e im
provem
e
nt
o
f
t
h
e r
o
ut
i
n
g
pat
h
i
n
VA
N
ET wa
s
prese
n
t
e
d by
[1
4]
. T
h
e m
odel
has t
a
ke
n u
n
i
cast
rout
i
n
g a
nd
n
u
m
b
er of
vehi
cl
es m
ovi
n
g
o
n
t
h
e l
a
ne h
a
vi
n
g
t
h
ei
r
res
p
ect
i
v
e
sp
eed
.
Th
e
resu
lts showed that in
creasing
t
h
e
wirele
ss tran
sm
issio
n
ran
g
e can
im
p
r
ov
e th
e reliab
ility
o
f
t
h
e
rou
ting
p
a
t
h
in
an
In
ter-v
ehicu
l
ar co
mm
u
n
i
catio
n
n
e
twork. Also
, th
e
p
a
th
setup
p
r
ob
ab
ility in
an In
ter-
vehi
c
u
l
a
r c
o
m
m
uni
cat
i
on net
w
o
r
k
ca
n
be i
n
creased
as
t
h
e
wireless tra
n
s
m
ission ra
nge i
s
increa
sed.
The w
o
r
k
o
f
[
15]
p
r
o
p
o
se
d a no
vel
br
oa
d
cast
al
gori
t
h
m
kn
ow
n as Tra
n
sm
i
ssi
on R
a
nge A
d
apt
i
v
e
B
r
oa
dcast
(TR
A
B
)
deri
ved
fr
om
t
h
e l
o
cat
i
on-
base
d i
d
eas
f
o
r
ve
hi
cl
es wi
t
h
di
ffe
rent
t
r
a
n
sm
i
ssi
on ra
ng
e
s
. Th
e
si
m
u
latio
n
resu
lts sh
owed
t
h
at ev
en in the case
o
f
d
i
fferent t
r
ansm
ission ra
nges
fr
om
di
ffere
nt
v
e
hi
cl
es,
TR
AB
ca
n si
gni
fi
cant
l
y
bri
n
g
l
o
wer
di
ss
em
i
n
at
i
on re
d
u
nda
n
cy as to im
prove
broa
dcast efficienc
y
, and
g
u
a
ran
t
ees better real-tim
e
p
e
rform
a
n
ce an
d reliab
ility
o
f
m
e
ssag
e
d
i
ssemin
a
tio
n
.
In
[22
]
, th
e au
tho
r
s
speci
fi
cal
l
y
fo
cuse
d o
n
t
h
e t
r
ansm
i
ssi
on po
wer a
nd i
t
s
ef
f
ect
on U
D
P t
h
ro
u
g
h
p
u
t
i
n
ve
hi
cul
a
r
net
w
or
ks. T
h
e
aut
h
ors
f
o
un
d
t
h
at
t
h
r
o
ug
h
p
u
t
was m
a
i
n
l
y
infl
uence
d
by
t
h
e
num
ber
o
f
ho
ps
bet
w
een
t
h
e s
o
u
r
ce a
n
d
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eval
u
a
t
i
n
g t
h
e
Im
pa
ct
of
Tra
n
s
mi
ssi
o
n
R
a
ng
e o
n
t
h
e
Perf
or
ma
nce
of
VAN
ET
(Akram
A.
Alm
oha
mm
ed
i)
80
2
dest
i
n
at
i
o
n. C
ons
eq
ue
nt
l
y
, increasi
ng t
h
e t
r
ansm
i
ssi
on ra
nge
decrease
d
t
h
e num
ber o
f
ho
ps bet
w
een
sou
r
ce
an
d
d
e
stin
ation
.
Th
eoretically, as th
e tran
smissio
n
rang
e
is correlate
d to the avera
g
e
num
b
er of
hops
, lesser
h
o
p
s
wou
l
d
effectiv
ely in
crease th
roug
hpu
t. Th
e stud
y con
c
lud
e
d, in
creasin
g
th
e tran
smissio
n
rang
e
u
n
til a
certain
po
in
t (i.e. 1
000
m
e
ter) saturates the th
roug
hpu
t
d
u
e
to
h
i
gh
er
in
terferen
c
e. Th
ey realized
th
at th
e
effect
of
ve
hi
cl
e de
nsi
t
y
i
s
o
n
l
y
im
port
a
nt
at
l
o
we
r t
r
a
n
sm
i
ssi
on
ra
nges
t
o
p
r
o
v
i
d
e
t
h
e
req
u
i
red c
o
nnect
i
v
i
t
y
.
In t
h
i
s
pa
per
w
e
st
udi
ed t
h
e i
n
t
e
ract
i
o
n of
AO
D
V
fo
r V
A
N
ETs u
n
d
er di
ffe
rent
t
r
ansm
i
ssi
on ra
n
g
es
with
v
a
ryin
g
data rates an
d
nu
m
b
er o
f
fl
o
w
s. Th
is st
ud
y ev
alu
a
ted
p
a
rticu
l
ar v
e
h
i
cles with
certain
mo
b
ility
and
broa
dcasti
ng m
e
ssages s
y
nchronously
using the
wire
l
e
ss access envi
ronm
ents available in
our sce
n
ari
o
.
At th
e en
d
of si
m
u
latio
n
,
th
e p
ack
et d
e
liv
ery ratio
an
d
end-to
-end
d
e
lay were calcu
lated
.
Rest o
f
th
e
p
a
p
e
r is
o
r
g
a
n
i
zed
as fo
llo
ws: Th
e DSRC A
N
D
W
A
V
E
STANDA
RD
S ar
e pr
esen
ted
in
Sectio
n
2
.
I
n
section
3,
we
dem
onst
r
at
e t
h
e sim
u
l
a
t
i
ons use
d
i
n
t
h
i
s
st
udy
.
Sect
i
on
4
cont
ai
n
s
t
h
e
resul
t
s
a
nd a
n
al
y
s
i
s
. The pa
per i
s
concl
ude
d i
n
S
ect
i
on
5.
2.
DS
RC
A
N
D
WA
VE ST
AN
DA
R
D
S
D
e
d
i
cated Sh
or
t Ran
g
e
Co
mm
u
n
i
catio
n
(
D
SRC)
is a w
i
r
e
less tech
no
logy d
e
v
e
lop
e
d
b
a
sed
o
n
W
i
-
F
i
t
o
su
p
p
o
r
t
i
n
f
o
rm
at
i
on exc
h
ange am
on
gV
2V a
n
d V
2
I [
11]
.
DSR
C
ha
s bee
n
desi
g
n
e
d t
o
be e
xpl
oi
t
e
d i
n
aut
o
m
o
t
i
v
e i
n
d
u
st
ry
.
It
i
s
a
se
t
of
p
r
ot
oc
ol
s
and
st
an
da
rds
cont
ai
ni
ng
al
l
part
s
o
f
l
a
y
e
rs,
i
n
cl
u
d
i
n
g t
h
e
PH
Y
lay
e
r and a
p
p
lication lay
e
r for
V
ANE
T
[1
8]
. Am
er
ican Society for Testing a
nd Materials (ASTM)
sub
c
om
m
i
t
t
ee (E1
7
.
5
1)
i
s
t
h
e
o
r
ga
ni
zat
i
o
n t
h
at
has st
a
r
t
e
d
t
o
wo
rk
on
t
h
e
DSR
C
st
an
dar
d
.
Th
us
,
AST
M
ha
s
t
h
e aut
h
o
r
i
t
y
to m
a
nage t
h
e i
ssues i
n
ve
hi
cl
e roa
d
si
de c
o
m
m
uni
cat
i
ons
[9]
.
T
h
e st
an
d
a
rd
ver
s
i
o
n, E
2
2
1
3
-
0
3
(AS
T
M 2003)
for
DSRC was
published
i
n
J
u
ly 2003
by
ASTM. T
h
is st
a
nda
rd relies
on the IEEE
802.11a
protoc
ol by
merging with som
e
editing on
PHY a
n
d MAC layers sp
ecifie
d
in
IEEE
1999 a
n
d 2003,
resp
ectiv
ely. DSRC is a
licen
sed
sp
ectru
m
a
n
d
can
b
e
u
s
ed with
ou
t an
y ch
arg
e
s as p
e
rm
itted
b
y
th
e Fe
d
e
ral
C
o
m
m
uni
cat
i
o
ns c
o
m
m
i
ssi
on
(FC
C
)
[
9
]
.
Despite the free usage ba
nd, a few restric
t
ed ru
les wh
ich
were issu
ed b
y
th
e FCC
in
2
004
are
em
phasi
zed
.
M
o
re
ove
r,
D
S
R
C
i
s
use
d
i
n
a hi
g
h
l
y
dy
na
m
i
c net
w
o
r
k
t
o
pr
o
v
i
d
e
rel
i
a
bl
e com
m
uni
cat
i
on
wi
t
h
m
i
nim
u
m
l
a
t
e
ncy
.
The
r
e
b
y
,
DSR
C
i
s
de
di
cat
ed f
o
r s
h
o
r
t
t
i
m
e
response
s
. The c
o
m
m
u
n
i
cat
i
on
net
w
o
r
k
fo
r
DSR
C
ha
s 7
5
M
H
z o
f
t
h
e
fre
que
ncy
s
p
ect
r
u
m
i
n
t
h
e ra
nge
of 5.9 GHz
allocated by
the FCC
for distance
up
t
o
1
k
m
t
o
su
p
p
o
r
t
sa
fet
y
an
d
no
n
-
safet
y
a
ppl
i
cat
i
o
ns
[5]
.
A
s
m
e
nt
i
one
d
bef
o
re
, t
h
e
75
M
H
z
f
r
eq
u
e
ncy
spect
r
u
m
of t
h
e DSR
C
i
s
di
vi
de
d i
n
t
o
se
v
e
n c
h
a
nnel
s
w
i
t
h
1
0
M
H
z e
ach,
an
d
5 M
H
z
fo
r
g
u
ar
d
ban
d
a
s
sho
w
n i
n
fi
g
u
r
e 1.
O
n
e
of t
h
ese cha
nnel
s
i
s
cal
l
e
d co
nt
r
o
l
cha
nnel
(C
C
H
_1
7
8
) a
n
d t
h
e
ot
he
r si
x a
r
e s
e
rvi
c
e
chan
nel
s
(
S
C
H
s) [
11]
. M
o
re
ove
r, t
h
e c
o
nt
r
o
l
cha
nnel
i
s
used
fo
r safety ap
p
lication
s
wh
ile th
e o
t
h
e
rs
are for
n
on-safety ap
plicatio
n
s
. Safet
y
ap
p
lication
s
are
g
i
ve
n
hi
g
h
e
r
pri
o
ri
t
y
o
v
er
n
o
n
-
sa
fet
y
ap
pl
i
cat
i
ons.
Fi
gu
re
1.
D
S
R
C
spect
r
u
m
band
an
d c
h
a
nnel
s
i
n
t
h
e
U.S
.
The DSR
C
su
p
p
o
r
t
s
di
f
f
ere
n
t
t
y
pes of t
r
an
sf
er rat
e
such as
3, 4
.
5
,
6, 9
,
1
2
,
18,
24 an
d 2
7
M
bps f
o
r a
10 M
H
z cha
nnel. The m
o
st optim
al transfer rate in DS
R
C
i
s
6 M
bps as
i
n
[2
0]
. T
w
o s
p
eci
fi
c cha
n
ne
l
pai
r
s
are able t
o
be
m
e
rged
with
a 20M
Hz c
h
a
nnel t
o
supp
ort transfe
r
rates
of
54 Mbps i
n
s
p
ecial conditions:
ch
ann
e
l
17
4 with
176
, and
ch
ann
e
l
18
0 w
i
th
18
2.
I
n
ad
d
i
tio
n
,
W
i
r
e
less
A
ccess i
n
V
e
hicu
lar
Env
i
r
onmen
t
(WAVE) is a
n
e
w stan
d
a
rd
,
d
e
sign
ed
fo
r
VANET to
su
ppo
rt a CCH and
m
u
ltip
le SCHs. Ho
wev
e
r,
WAVE
interface was developed base
d
on
th
e IEE
E
802.11p
a
n
d
IEEE
1609 sta
n
dards to
operat
e on
Physical (PHY)
l
a
y
e
r, M
e
di
um
Access C
ont
r
o
l
(M
AC
) l
a
y
e
r an
d
hi
g
h
er l
a
y
e
r pr
ot
o
c
ol
s
[
11]
,
w
h
e
re
IEE
E
8
0
2
.
1
1
p
i
s
t
h
e ba
se
layer
stan
d
a
rd
an
d I
E
EE
1
609
is th
e upp
er layer
stand
a
rd
[1
9
]
. Meanw
h
il
e, I
E
EE
1
609
fa
m
i
l
y
is categ
or
ized
into
four sta
n
dards
as
fo
llows
: IEEE
1609.1[23], IE
EE
16
09.2 [6],
IE
EE 1609.3 [1
6], a
n
d IEEE
1609.4
[13]
,
o
f
ten
u
s
ed
for
rem
o
te
m
a
n
a
g
e
m
e
n
t
serv
ices, security
serv
i
ces, n
e
t
w
ork
serv
ices and
m
u
lti-ch
ann
e
l op
eratio
n
s
respectively as
in fi
gure
2.
T
h
e c
h
annel acc
ess tim
e
in
WAVE
st
ack
wa
s re
prese
n
t
e
d
i
n
fi
gu
re
3,
w
h
i
c
h i
s
evenly divi
ded into repeating synchr
onization (sync) inte
rvals of 100
m
s
[13], and each sync inte
rval is
d
i
v
i
d
e
d
in
t
o
CCH In
terv
als
(CCHI)
o
f
50
ms an
d
SCH In
t
e
rv
als (SCHI)
o
f
5
0
m
s
. In
ad
d
ition
,
th
e stan
d
a
rd
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
80
0 – 8
0
9
80
3
defi
nes a
Guard interval at the be
gi
nning
of each c
h
a
nnel
interval. Typic
a
l values
for t
h
e
gua
rd interval are
bet
w
ee
n 4 a
nd
6 m
s
, usi
ng f
o
r
radi
o s
w
i
t
c
hi
n
g
an
d n
o
t
fo
r t
r
ansm
i
ssi
ons. S
y
nch
r
o
n
i
zat
i
o
n
bet
w
een
ve
hi
cl
es i
s
achieve
d by receiving the c
o
ordinate
d uni
v
ersal ti
m
e
(UTC) provide
d
by the navi
gation satellite syste
m
s
(GPS) equippe
d
in each ve
hic
l
e.
Figure
2.
D
S
R
C
an
d
WA
VE
st
anda
rd
s arc
h
i
t
ect
ure
Fig
u
re
3
.
Syn
c
in
terv
al, gu
ard
in
terv
al, CCH i
n
terv
al, an
d SCH in
terv
al
The IE
EE 8
0
2
.
1
1
p
st
an
da
rd
d
e
fi
nes t
h
e P
H
Y
and M
A
C
l
a
y
e
rs o
f
t
h
e
WA
VE arc
h
i
t
ect
ur
e pr
ot
oc
ol
. It
is base
d on the
802.11 standa
rd
which
was
establishe
d in
2010 [5]. Furt
herm
or
e, si
nce
IEEE
802.11p is the
a
m
endm
ent of IEEE 802.11 Distribute
d
Coordination Function
(DCF
), t
hus,
802.11p uses the Enhanc
e
d
Distribu
ted
C
h
ann
e
l Access (EDC
A) as
th
e MAC
m
e
th
od
. EDCA
u
s
es th
e Carrier Sen
s
e Multip
le
Access/Collision Avoida
nce
(CSMA/CA)
m
e
thod
for ac
c
e
ssing the
sha
r
ed m
e
dium
. The operation m
e
thod
of
CSMA/CA is
b
y
listen
i
ng
to
th
e ch
ann
e
l
at first. There
f
ore, if the c
h
a
nnel
is free
fo
r an
arb
itratio
n in
ter-fram
e
space (AIFS), the node starts
transm
it
ting directly, if it is
busy
or be
c
o
m
e
s busy during the AIFS, the
node
m
u
st perform
a bac
k
-off [21]. The m
a
in purpose of
the
IEEE
802.11p standa
rd is to give c
h
a
nnel
access
through the EDCA
by
supporting different
types of
Access Categories (ACs)
which has a rang
e from
AC0 to
AC3
,
fro
m
th
e lo
west to
t
h
e
h
i
gh
est priority as in
tab
l
e 1 [
1
7
]
. A
t
t
h
e
MA
C sub
-
layer
,
th
e
I
EEE 802
.1
1p
st
anda
rd pr
o
v
i
d
es
a
di
f
f
ere
n
t
rol
e
. It
defi
nes an
ex
trem
ely
low ove
rhead WAVE
Ba
sic Service Set (WBSS) to
fo
rm
gro
u
p
s
o
f
ve
hi
cl
es com
m
uni
cat
i
ng at
t
h
e sam
e
area to s
u
pport
V2V and V2I com
m
unications for safety
and non-sa
f
ety applications
[4].
Tabl
e
1.
Defa
u
l
t
EDC
A
pa
ra
m
e
t
e
rs i
n
IE
EE
P8
0
2
.
1
1
p
[
17]
.
AC No.
Access Class
CW
CW
AIFSN[
A
C]
0
Backgr
ound tr
af
fic (
B
K)
15
1023
9
1
Best E
ffor
t
(
B
E
)
7
15
6
2
Voice
(
V
O)
3 7 3
3
Video
(
V
I)
3 7 2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eval
u
a
t
i
n
g t
h
e
Im
pa
ct
of
Tra
n
s
mi
ssi
o
n
R
a
ng
e o
n
t
h
e
Perf
or
ma
nce
of
VAN
ET
(Akram
A.
Alm
oha
mm
ed
i)
80
4
3.
SIMULATIONS
To
have
a fe
asible scena
r
i
o
for the sys
t
e
m
,
a
com
put
er-ba
s
ed si
m
u
l
a
t
i
on
i
s
nec
e
ssary
. Ou
r
sim
u
l
a
t
i
on p
r
o
g
ram
aim
e
d t
o
st
udy
t
h
e i
m
pact
of t
r
a
n
sm
i
s
si
on
ran
g
e
fo
r
VA
NET
p
r
ot
o
c
ol
an
d t
o
e
v
al
uat
e
i
t
s
per
f
o
r
m
a
nce u
nde
r di
ffe
rent
t
r
ansm
i
ssi
on ran
g
es
wi
t
h
v
a
ry
i
ng
dat
a
ra
t
e
s and
num
ber o
f
fl
o
w
s.
F
o
r t
h
i
s
p
u
rp
o
s
e, a traffic scen
ari
o
o
f
a h
i
ghway was
d
e
sign
ed
u
s
ing Sim
u
lat
i
o
n
o
f
Urb
a
n
Mob
ility (SUM
O) [24]. N
S
-
2
[25
]
was u
tilized
as th
e n
e
twork
sim
u
lato
r to
v
a
lid
ate th
e resu
lts. Sim
u
l
a
tio
n
s
were con
d
u
c
ted
for 802
.1
1p
b
a
sed
on
CSM
A
/CA
algo
r
i
t
h
m f
o
r
t
h
e CSMA
/CA
of
algo
r
ith
m
.
Mo
r
e
ov
er, th
e leng
t
h
o
f
h
i
ghw
ay was 8
k
m
wi
t
h
6
l
a
nes
i
n
bot
h di
rect
i
ons
whi
c
h
c
o
m
p
ri
ses
3
l
a
ne
s
i
n
eac
h di
re
ct
i
on. Part
i
c
ul
arl
y
,
t
h
e scena
r
i
o
of
a
h
i
gh
way
was
bu
ilt b
ecau
s
e t
h
e env
i
ro
n
m
en
t
was su
itab
l
e
for inv
e
stig
ating
th
e
b
i
gg
est ch
allen
g
e
s
of th
e
MA
C
l
a
y
e
r.
O
n
e hu
n
d
re
d no
des
(
v
e
h
i
c
l
e
s) wi
t
h
s
p
eed 60
km
/
h
were tested
i
n
the scen
ario
. The si
m
u
lated
sen
s
ing
ran
g
es we
re1
0
0
-
7
00 m
.
Four
di
ffe
re
nt
dat
a
rat
e
s were bei
n
g co
nsi
d
e
r
ed i
n
cl
u
d
i
n
g 6
4
,
1
0
0
,
2
5
0
an
d 5
1
2
Kby
t
e
.
AO
D
V
wa
s t
h
e sel
ect
ed
r
o
ut
i
n
g
p
r
ot
oc
ol
fo
r t
h
e si
m
u
lat
i
on a
n
d
t
h
e
be
havi
or
o
f
AO
D
V
p
r
ot
oc
ol
was
eval
uat
e
d i
n
t
e
rm
s of
pac
k
e
t
del
i
v
ery
rat
i
o a
n
d e
n
d
-
t
o
-en
d
d
e
lay. The m
o
st o
p
tim
a
l
tran
sfer rate to
b
e
sup
p
o
rt
e
d
by
8
0
2
.
1
1
p
was
6
M
bps as acc
or
di
n
g
t
o
[
2
0]
.T
abl
e
2 s
h
o
w
s t
h
e pa
ram
e
t
e
rs
of si
m
u
l
a
t
i
on set
t
i
ngs
.
In
ord
e
r to
d
e
scrib
e
briefly th
e ex
ecu
tion
of th
e p
r
o
g
ra
m
,
i
n
itially
we selected
th
e n
e
twork
typ
e
(i.e.
VANET)
to
b
u
ild
th
e scen
ari
o
(i.e. h
i
g
h
way), fo
llowed b
y
settin
g
th
e in
itial v
a
lu
es t
o
b
e
u
s
ed
fo
r t
h
e m
o
d
e
l. Th
e in
itial
v
a
lu
es sho
u
l
d
b
e
in
serted
first in
to
th
e traffi
c si
m
u
la
to
r (i.e. SOM
U
) t
o
create n
o
d
e
s m
o
b
ility fo
r th
e
p
r
o
p
o
s
ed
m
odel
.
The m
ovem
e
nt
det
a
i
l
s
we
re
gene
rat
e
d
usi
n
g S
O
M
U
/
M
OV
E.
Fu
r
t
herm
ore, t
h
e
m
obi
l
i
t
y
fi
l
e
that
ha
s
b
een ach
iev
e
d
b
y
th
e traffic
si
m
u
lato
r was co
nv
erted
an
d s
e
nt
t
o
t
h
e
net
w
or
k si
m
u
l
a
t
o
r (
N
S-
2
)
t
o
co
nfi
g
u
r
e
the network by
assigning UDP, AODV
, a
n
d IEEE 802.11p MAC protoc
ol. In
this case the nodes connec
tivity
sh
ou
l
d
b
e
i
n
itiated
.
W
i
t
h
resp
ect to
th
e
n
t
h si
m
u
latio
n
cycles for th
e mo
d
e
l, t
h
e tran
smissio
n
ran
g
e
, n
o
d
e
s
co
nn
ectiv
ity an
d traffic lo
ad were ch
ang
e
d con
s
tan
tly to
stu
d
y
t
h
e im
p
act o
f
d
i
fferen
t
tran
sm
issio
n
ran
g
e
s
an
d th
e
nu
m
b
er
o
f
f
l
ow
s i
n
the n
e
twor
k.
In fact,
the single
line-of-sight
p
a
th
b
e
tween
two
mo
b
ile nod
es
was ra
rely
in
a wireless
com
m
uni
cat
i
on;
co
nse
que
nt
l
y
t
h
e t
w
o-
ray
gr
o
u
n
d
re
fl
ect
i
on m
odel
w
h
i
c
h deal
s
wi
t
h
b
o
t
h
t
h
e
di
rect
p
a
t
h
an
d
the ground re
flection pat
h
ha
s bee
n
c
onsi
d
e
r
ed i
n
ou
r work. T
h
e
receive
d power
at a c
e
rtain dista
n
ce
was
calcu
lated
as
fo
llo
ws:
∗
∗
∗
∗
∗
(1
)
give
n that: Gt and
Gr are t
h
e
gain of the transm
itter
and
receiver a
n
tennas, re
spective
l
y; ht and hr a
r
e the
heights of the
transm
itter and recei
ver a
n
tenna
s; d is
the
distance
betwe
e
n the
receiver and t
h
e tra
n
s
m
itter;
an
d L is t
h
e sy
ste
m
lo
ss,
o
f
ten
ar
oun
d 1.
There
are
two
comm
on types of e
v
aluation
criteria stud
ied, wh
ich ar
e Pack
et deliv
er
y
ratio
and
end
-
t
o
-
e
nd
del
a
y
.
∗
(2
)
whe
r
e D,
,
and
N
ar
e
d
e
lay, MA
C delay, pr
opag
a
tio
n d
e
lay an
d hop
co
un
ts,
r
e
sp
ectiv
ely.
Tabl
e 2. Si
m
u
lat
i
on param
e
t
e
rs
Para
m
e
ters
Sp
ecif
i
catio
n
M
A
C Pr
otocol
I
E
E
E
802.
11P
Pr
opagation
m
odel
T
w
oR
ay
Gr
ound
Ro
u
tin
g
p
r
o
t
o
c
o
l
AOD
V
Packet ty
pe
CBR
Tran
s
m
issio
n
p
r
o
t
o
c
o
l
UDP
Hig
h
w
ay len
g
t
h
8
k
m
No. of
lanes
6 (3 in
each direction)
Width of
each lane
4
m
ea
ch
No.
of nodes
100
No
d
e
sp
eed
6
0
k
m
/h
Packet length
64,
100,
250 &
512Kb
Packet size
1000
Ban
d
w
id
th
6
Mb
p
s
T
r
ans
m
ission r
a
ng
e
100 – 700
m
e
ter
T
i
m
e
of sim
u
lation end
1796s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
80
0 – 8
0
9
80
5
4.
R
E
SU
LTS AN
D ANA
LY
SIS
Thi
s
sect
i
o
n e
m
phasi
zed an
d
di
scuss
e
d t
h
e si
m
u
l
a
ti
on r
e
sul
t
s
.
As t
h
e
g
o
al
o
f
t
h
i
s
pape
r
was t
o
scrut
i
n
i
ze t
h
e
beha
vi
o
r
of
V
ANE
T p
r
ot
oc
o
l
wi
t
h
res
p
ect
to
d
i
fferen
t tran
sm
issio
n
ranges, traffic loa
d
s and
num
ber o
f
fl
o
w
s, t
h
e e
v
al
uat
i
on wa
s f
o
cuse
d o
n
t
w
o com
m
on perf
orm
a
nce m
e
t
r
i
c
s, i
.
e. pack
et
del
i
v
e
r
y
rat
i
o
and e
n
d-t
o
-e
n
d
del
a
y
.
T
h
e r
e
sul
t
s
were
de
scri
be
d b
r
i
e
fl
y
i
n
t
h
e fol
l
o
wi
ng sect
i
o
ns
, al
on
g wi
t
h
fi
g
u
r
e
s t
h
at
ex
h
i
b
it th
e an
alyzed
resu
lts in term
s o
f
th
e perfo
r
m
a
n
ce m
e
trics.
4.
1. Pac
k
et De
livery Ra
tio
(
P
DR
)
The fol
l
o
wi
ng
fi
g
u
res
de
pi
ct
t
h
e
be
ha
vi
o
r
o
f
VA
NET
p
r
ot
ocol
base
d o
n
PDR
.
Fi
g
u
re
4
sh
ow
s
t
h
e
per
f
o
r
m
a
nce o
f
V
A
N
ET p
r
ot
ocol
usi
n
g
AO
DV as
r
out
i
n
g
pr
ot
oc
ol
wi
t
h
r
e
spect
t
o
t
h
e
d
i
ffere
nt
t
r
a
n
sm
i
ssi
on
ran
g
es:
1
0
0
, 2
0
0
,
3
0
0
, 4
0
0
,
50
0,
6
00 a
nd
7
00 m
e
t
e
rs. The
resul
t
s
i
m
pl
y
t
h
at
PDR
i
s
i
n
di
rect
va
ri
at
i
on wi
t
h
up
t
o
50
0 m
t
r
ansm
i
ssi
on ra
n
g
e
whi
c
h s
u
g
g
e
st
s i
n
creasi
n
g
PDR
i
n
co
rrel
a
t
i
on t
o
hi
ghe
r
t
r
ansm
i
ssi
on r
a
nge
.
This inc
r
em
ent has a
ffe
cted t
h
e redu
ction
i
n
th
e nu
m
b
er
o
f
ho
ps an
d sufficien
t co
nn
ectiv
ity b
y
co
v
e
rin
g
a
wide a
r
ea with higher
powe
r
signal to e
n
s
u
re that near
ly e
v
ery
packet arrives at
the dest
ination s
u
ccess
f
ully.
In c
ont
ra
st
, w
h
en t
h
e t
r
ansm
i
ssi
on ra
n
g
e was
ove
r 5
00 m
e.g. 6
0
0
m
and 7
00 m
,
t
h
e PDR
decrease
d
t
h
at
was
pr
o
b
abl
y
d
u
e t
o
t
h
e
hi
g
h
er c
o
nt
ent
i
o
n fl
ow
s
whi
c
h ha
d ca
used higher
i
n
terfe
rence rate. Nonetheless
,
t
h
e
rules
of
C
S
M
A
/
C
A
rest
ri
ct
m
a
ny
no
des
f
r
om
co
m
m
uni
cat
i
on
by
u
s
i
n
g ca
rri
er se
nse t
h
at
l
i
m
i
t
s
t
h
e reu
s
e
o
f
t
h
e
b
a
ndwid
th. Relativ
ely, wh
en th
e tran
sm
issi
o
n
ran
g
e
wa
s
10
0 m
t
h
e val
u
e
of
PDR
wa
s l
o
w i
.
e.
0.
31
t
h
at
refl
ect
s u
p
o
n
t
h
e i
n
fl
ue
nce
of n
u
m
b
er of
ho
ps bet
w
ee
n t
h
e so
urce
and
dest
i
n
at
i
o
n t
o
wa
rd
s t
h
e
PDR
.
C
onse
q
uent
l
y
,
decreasi
n
g t
h
e t
r
a
n
sm
i
ssion
ra
nge
w
o
ul
d i
n
c
r
ease
t
h
e n
u
m
b
er of
h
ops a
n
d
l
e
d t
o
d
i
sconn
ectiv
ity b
e
tween
t
h
e so
urce and
d
e
stin
atio
n.
Figure
4.
Pac
k
et
del
i
v
ery
rat
i
o
vers
us t
r
an
s
m
i
ssi
on ra
n
g
e
(m
et
er)
The
rem
a
i
n
i
ng fi
g
u
res
we
r
e
o
b
t
a
i
n
ed
f
r
o
m
t
h
e t
e
st
s usi
n
g t
h
e a
v
e
r
age
an
d
hi
g
h
e
st
pr
ot
oc
ol
p
e
rf
or
m
a
n
ce f
r
o
m
f
i
g
u
r
e 4 i.e. 300
and
50
0
meter
s
. Th
ese
f
i
gu
r
e
s fo
cus
on
d
e
scr
i
b
i
ng
the ef
f
ect
of
n
u
m
b
er
o
f
fl
o
w
v
a
ri
at
i
o
n
s
an
d
dat
a
rat
e
s
u
nde
r
30
0 m
and
5
0
0
m
t
r
ansm
i
ssi
on ra
ng
es. Fi
g
u
r
es
7(a
)
&
6
(
b
)
descri
be t
h
e
PDR
f
o
r cert
a
i
n
fl
o
w
s usi
n
g AO
D
V
as ro
ut
i
ng p
r
ot
oc
ol
. A n
o
t
a
bl
e o
b
s
e
rvat
i
o
n i
s
t
h
e
decreasi
n
g
pr
ot
oc
ol
per
f
o
r
m
a
nce aro
u
nd se
veral
fl
o
w
s f
o
r
30
0
m
t
r
ansm
i
ssi
on ra
nge
. C
o
nv
ersel
y
, w
h
en t
h
e t
r
an
sm
i
ssi
o
n
ra
nge
was i
n
crease
d
to 500 m
,
the
perform
a
n
ce of the
protoc
ol increase
d
in te
rm
s o
f
th
e
PDR
.
Th
is ind
i
cates th
at
whe
n
t
h
e t
r
a
n
s
m
i
ssi
on ra
n
g
e
was
30
0 m
,
t
h
e pac
k
et
d
r
op
ped
an
d
di
sco
nnect
i
v
i
t
y
i
n
c
r
eased,
o
w
i
n
g t
o
t
h
e
in
cr
easing
hops b
e
tw
een
th
e so
ur
ce and
d
e
stin
atio
n
to
d
e
li
v
e
r
th
e data, as w
e
ll as sp
ar
se v
e
h
i
cu
lar
d
e
n
s
ity.
Fi
gu
re
5(a
)
sh
ows t
h
at
t
h
e P
D
R
i
s
0.
8
fo
r f
l
ow
1 an
d
0.
2
fo
r fl
ow
5 i
n
c
o
n
j
unct
i
o
n t
o
t
h
e t
r
a
n
sm
i
ssi
o
n
r
a
n
g
e
o
f
300
m
;
th
is was
d
u
e to th
e
sp
arse
v
e
h
i
cu
lar
densi
t
y
w
h
i
c
h ca
use
d
di
sco
nnect
i
v
i
t
y
i
n
fl
ow
5
.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
100
200
300
400
500
600
700
PDR
Transmission range
(m)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eval
u
a
t
i
n
g t
h
e
Im
pa
ct
of
Tra
n
s
mi
ssi
o
n
R
a
ng
e o
n
t
h
e
Perf
or
ma
nce
of
VAN
ET
(Akram
A.
Alm
oha
mm
ed
i)
80
6
Figure
5. (a
)
Packet deli
very
ratio
to each fl
ow at Tr =
300 m
.
(b)
Packet
delivery ratio
t
o
eac
h flow
at Tr
=
50
0 m
Si
m
ilar
l
y, f
i
g
u
r
e 6
sh
ow
s th
e PD
R f
r
o
m
d
i
f
f
e
r
e
n
t
nu
m
b
er
o
f
f
l
o
w
s un
d
e
r tr
an
sm
issio
n
r
a
n
g
e
o
f
300
m an
d
5
0
0
m
.
As no
ticed
from th
e fig
u
r
e, t
h
e tran
sm
i
ssio
n
ran
g
e
has a po
sitiv
e co
rrelatio
n
with
p
e
rforman
ce
o
f
t
h
e pro
t
o
c
o
l
. G
e
n
e
r
a
lly, h
i
g
h
e
r
n
u
m
b
e
r
of
f
l
ow
s
r
e
d
u
ces th
e PD
R du
e t
o
th
e exp
o
n
e
n
tial p
r
o
lif
er
ation
upon
th
e nu
m
b
er
o
f
co
llisio
n
s
as a
resu
lt
o
f
h
i
g
h
e
r co
n
t
en
tio
n fl
o
w
s.
As can
be ob
serv
ed
from
th
e figure
belo
w,
un
de
r t
r
a
n
sm
i
s
si
on
ra
n
g
e
of
5
0
0
m
,
PDR
de
creases
w
h
en t
h
e
num
ber of
flows
inc
r
eases. For i
n
stance
,
whe
n
t
h
e num
ber o
f
fl
ows i
s
2, t
h
e PDR
i
s
0.
8 and
decrease
d
t
o
0.6
whe
n
t
h
e num
ber of fl
ows i
s
2
0
. O
n
e
u
n
a
n
ticip
ated
find
ing
was
ob
serv
ed
,
o
f
wh
ich
in
itially t
h
e PDR was
0
.
7
7
with
5
fl
o
w
s and
it in
creased
sl
i
ght
l
y
t
o
0.
8 du
ri
n
g
1
0
fl
o
w
s. A reaso
n
a
b
l
e
ex
pl
anat
i
o
n
coul
d be beca
use wi
t
h
t
h
e 1
0
fl
o
w
s,
t
h
e
v
e
hi
cl
es
m
i
ght
n
o
t
be
i
n
eac
h
ot
he
r’s t
r
ansm
i
ssion
ra
nge
an
d
t
h
e
vehi
c
u
l
a
r
de
nsi
t
y
was
hi
g
h
t
o
m
a
i
n
tai
n
t
h
e
con
n
ect
i
v
i
t
y
. S
o
m
e
how,
wi
t
h
5 fl
o
w
s t
h
e
ve
hi
cl
es were i
n
t
h
e t
r
ansm
i
ssi
on ra
nge
of eac
h ot
her
whi
c
h l
e
d t
o
higher interferences.
Fi
gu
re 6.
Pac
k
et
del
i
v
ery
rat
i
o
s vs.
n
u
m
b
er of
fl
o
w
s
4.
2. En
d-to-E
nd
Delay
In o
r
der t
o
ev
al
uat
e
t
h
e beh
a
vi
o
r
of V
A
N
ET pr
ot
oc
ol
i
n
t
e
r
m
of end-t
o
-e
n
d
del
a
y
,
t
h
e fol
l
o
wi
n
g
figu
res were
plo
tted
.
Fi
g
u
re
7
illu
strates t
h
e p
e
rfo
r
m
a
n
ce of
VANET pro
t
o
c
o
l
i
n
term
o
f
d
e
lay b
y
u
s
i
ng
AO
V
D
as
r
out
i
ng
p
r
ot
ocol
w
i
t
h
res
p
ect
t
o
t
h
e
di
ffe
re
nt
t
r
a
n
sm
i
ssi
on ra
ng
es i
.
e.
1
0
0
,
20
0
,
3
0
0
,
4
0
0
,
50
0
,
6
0
0
,
and
70
0 m
.
Basi
cal
l
y
, as t
h
e num
ber o
f
h
ops i
n
creases
the delay increases as we
ll. There
f
ore,
when the
t
r
ansm
i
ssi
on
ra
nge was hi
g
h
, t
h
e
n
u
m
b
er
of ho
ps
a
nd del
a
y
decrease
d
. Fi
g
u
re 7
di
s
p
l
a
y
s
decreasi
ng del
a
y
as
the
transm
ission range was increase
d
u
p
t
o
5
0
0
m
.
T
h
i
s
i
s
d
u
e
t
o
t
h
e decreasi
ng hops
along with a
high
v
e
h
i
cu
lar d
e
n
s
ity wh
ich
led
to
su
fficien
t
co
nn
ectiv
ity
between s
o
urces
and
destinations. On the contrary,
whe
n
t
h
e t
r
an
sm
i
ssi
on ra
nge
was
10
0 m
the del
a
y
was
very
hi
g
h
d
u
e
t
o
t
h
e i
n
c
r
eas
i
ng
ho
ps
(M
A
C
an
d
p
r
op
ag
ation
d
e
lays) for
d
a
ta t
o
b
e
reach
e
d
at a d
e
stin
ation
.
In add
ition
,
wh
en th
e t
r
an
sm
issio
n
rang
e
reach
ed
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
flow1
f
low2
flow3
f
low4
flow5
PDR
(a)
flow
0
0.2
0.4
0.6
0.8
1
flow1
f
low2
flow3
f
low4
flow5
PDR
(b)
flow
0
0.2
0.4
0.6
0.8
1
2
5
10
20
PDR
Number of
flows
Tr
=
500
m
Tr
=
300
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
80
0 – 8
0
9
80
7
certain poi
nt i.e. above 500
m
,
for instance
600
m
,
th
e delay began to increase slowly whic
h was ass
o
ciated
to
th
e M
A
C
d
e
lay fro
m
co
n
t
en
d
e
d
d
a
ta sendin
g
fro
m
n
o
d
e
s, pro
d
u
c
ing
h
i
gh
er co
llisio
n
s
an
d in
terferen
ces.
Fi
gu
re
7.
Del
a
y
vers
us t
r
an
s
m
i
ssi
on ra
n
g
e
(m
et
er)
Fi
gu
re
8(a
)
re
p
r
esent
s
t
h
e
del
a
y
of
V
ANE
T
pr
ot
oc
ol
f
o
r
t
r
ansm
i
ssi
on ra
n
g
e
of
3
00 m
.
No
net
h
el
ess
,
t
h
e del
a
y
was hi
g
h
wi
t
h
m
o
st of t
h
e fl
o
w
s,
owi
ng t
o
t
h
e i
n
crease
d
h
o
p
s bet
w
ee
n so
urc
e
and dest
i
n
at
i
o
n
.
Th
e
high delay wa
s also the effe
ct from
sparse
vehic
u
la
r d
e
nsity wh
ich
led to
freq
u
e
n
t
disco
n
n
ectiv
ity. Th
e
beha
vi
o
r
of
V
ANE
T
pr
ot
oc
o
l
i
n
t
e
rm
of de
l
a
y
for
5
0
0
m
t
r
ansm
i
ssi
on r
a
nge
i
s
p
r
ese
n
t
e
d i
n
Fi
g
u
re
8
(
b
)
.
I
n
part
i
c
ul
a
r
,
we
not
i
ced
very
l
o
w
del
a
y
s
i
n
m
o
st
cases suc
h
as
i
n
fl
o
w
2,
fl
o
w
4
an
d
fl
o
w
5
wi
t
h
del
a
y
s
0
.
0
5
s
,
0.
01
s a
n
d
0.
0
2
s
,
r
e
spect
i
v
e
l
y
.
Thi
s
was
p
o
ssi
bl
e a
s
hi
g
h
er
t
r
a
n
sm
i
ssion
ra
n
g
es c
o
v
e
red
wi
der
are
a
, t
h
us
decrease
d
t
h
e
num
ber
of hops which ena
b
le
d c
o
nstant
a
n
d sufficient c
onnectivity am
ong
vehicles. As
it can
be
o
b
ser
v
e
d
i
n
Fi
g
u
re
8(
b)
, t
h
ere
i
s
a
n
u
n
u
s
ual
di
spl
a
y
fo
r fl
ow
1,
of
w
h
i
c
h t
h
e
del
a
y
i
s
ve
ry
hi
g
h
(0
.
5
5
s)
.
This outcom
e
was due to the large di
stanc
e
betwee
n the se
nde
r and recei
ver
that ha
d increased the
num
b
er of
ho
ps.
O
v
e
r
al
l
,
Fi
gu
res
1
0
(a
)
&1
0(
b)
ha
ve
p
r
o
v
e
n
t
h
e
i
n
ver
s
e rel
a
t
i
o
n
s
hi
p
of
t
r
an
sm
i
ssi
on ra
nge
an
d t
h
e
del
a
y
.
Figure
8. (a
)
Delay in each flow at T
r
=
30
0
m
.
(b)
Delay in each
flow at
T
r
=
500 m
Fi
gu
re 9 bel
o
w sh
ow
s t
h
e p
e
rf
orm
a
nce of
t
h
e prot
ocol
i
n
t
e
rm
of aver
age en
d-t
o
-e
nd
del
a
y
wi
t
h
respect to the
diffe
re
nt trans
m
ission ranges
and num
b
er
of flows. Ne
ve
rtheless,
as clearly seen from
Figure
9
the transm
ission ra
nge i
n
crea
sed whe
n
the a
v
era
g
e end-
t
o
-
e
nd
del
a
y
decr
eased, a
nd
vi
c
e
versa
.
O
n
t
h
e ot
her
han
d
,
whe
n
t
h
e num
ber o
f
fl
ows
was i
n
c
r
e
a
sed, t
h
e a
v
er
a
g
e end-t
o
-e
nd delay also increased. T
h
is is due t
o
t
h
e hi
ghe
r c
ont
ent
i
o
n
fl
o
w
s
a
m
ong t
h
e
n
ode
s t
h
at
l
e
d t
o
hi
ghe
r i
n
t
e
rfe
ren
ces. Ta
ki
n
g
t
h
e 5
00 m
t
r
ans
m
i
ssi
on
ran
g
e a
s
a
n
e
x
am
pl
e, w
h
e
n
t
h
e
num
ber
o
f
f
l
ows
was
2, t
h
e ave
r
age
e
n
d
-
t
o
-e
nd
del
a
y
w
a
s 0
.
3
s,
an
d
w
h
en
i
t
was
2
0
, th
e averag
e end
-
t
o
-en
d
d
e
lay was
1
.
8
s.
Th
is
wa
s in
acco
r
d
a
n
c
e to
th
e
h
i
gh
frequ
e
n
c
y of collisio
n
s
and interfere
n
c
e
s as the
nu
m
b
er of flows
i
n
creased.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
100
200
300
400
500
600
700
Del
ay (s)
Transmission range
(m)
0
0.5
1
1.5
2
flow1
f
low2
flow3
f
low4
flow5
Del
ay (s)
flow
0
0.1
0.2
0.3
0.4
0.5
0.6
flow1
f
low2
flow3
f
low4
flow5
Del
ay (s)
flow
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eval
u
a
t
i
n
g t
h
e
Im
pa
ct
of
Tra
n
s
mi
ssi
o
n
R
a
ng
e o
n
t
h
e
Perf
or
ma
nce
of
VAN
ET
(Akram
A.
Alm
oha
mm
ed
i)
80
8
Fi
gu
re
9.
A
v
er
age e
n
d
t
o
e
n
d
del
a
y
s
ve
rs
us
n
u
m
b
er o
f
fl
o
w
s
5.
CO
NCL
USI
O
N
The i
n
c
o
rp
ora
t
i
on
of c
o
m
p
u
t
i
ng, t
e
l
ecom
m
uni
cat
i
ons (f
i
x
ed a
n
d m
obi
l
e
), an
d
vari
o
u
s
ki
n
d
s
o
f
services are
facilitat
i
ng the
deploy
m
e
nt
of di
ffe
rent types of VANE
T technologies. Recently, vehicula
r
net
w
or
k
pr
o
j
e
c
t
s
have
bee
n
t
a
ken i
n
t
o
c
o
nsi
d
e
r
at
i
o
n
by
m
a
ny researc
h
ers a
r
ound the world, and
several
VA
NET st
a
n
d
a
rds
have
been
devel
o
pe
d t
o
i
m
prove V
2
V o
r
V2
I com
m
uni
cat
i
ons. He
nc
e, t
o
un
de
rst
a
n
d
t
h
e
beha
vi
o
r
of
V
ANE
Ts, t
h
i
s
p
a
per
ha
d
ge
ne
rat
e
d a
hi
gh
w
a
y
scenari
o
.
T
h
e m
a
i
n
goal
of t
h
i
s
pape
r
was t
o
eval
uat
e
t
h
e i
m
pact
of di
f
f
e
r
ent
t
r
a
n
sm
i
ssion
ra
nges
an
d
num
ber
of
fl
ows
t
h
at
cha
n
ge ra
pi
dl
y
i
n
VA
NET
envi
ro
nm
ent
usi
ng
A
O
D
V
a
s
ro
ut
i
n
g
pr
ot
ocol
.
I
n
o
r
der
t
o
val
i
d
at
e t
h
e
sim
u
l
a
t
i
on o
f
VA
NET
,
t
r
a
f
f
i
c and
net
w
or
k
si
m
u
l
a
t
o
rs (S
UM
O &
NS
-
2
) were use
d
.
T
h
e pe
rform
ance was e
v
aluated in
term
s of packet
delivery
rat
i
o
an
d e
n
d-t
o
-e
n
d
del
a
y
.
T
h
e si
m
u
l
a
t
i
on resul
t
s
s
h
ow t
h
at
bet
t
e
r
pe
rf
orm
a
nce can
b
e
achi
e
ve
d i
n
t
e
rm
of
hi
g
h
er
P
D
R
a
n
d l
o
we
r e
n
d-t
o
-en
d
del
a
y
by
l
o
we
ri
n
g
t
h
e
t
r
ansm
i
ssi
on ra
n
g
e
of
l
e
ss t
h
an
5
0
0
m
e
t
e
rs. O
n
t
h
e
co
n
t
rary, wh
en th
e tran
sm
issi
o
n
rang
e was m
o
re th
an
5
00
m
e
ters, PDR will start
to
d
ecrease and
end-to
-end
d
e
lay will in
crease. Th
e
p
e
rform
a
n
ce d
e
gr
aded
as
th
e nu
m
b
er o
f
flows
i
n
creased
.
REFERE
NC
ES
[1]
Gillani SA, Shah PA, Qay
y
u
m
A, Hasbullah HB. MAC La
y
e
r
Challeng
es and
Proposed Protocols for Vehicular
Ad-hoc Network
s
. Veh
i
cular Ad
-hoc Networks
f
o
r Smart Cities:
Springer; 2015
.
p. 3-13
.
[2]
Jaiswal RK, Jaidhar C. An Applicability
of
AODV and
OLSR Protocols on
IEEE 802.11 p
for City
Ro
ad in
VANET. Intern
et of Th
ings, S
m
art Spaces,
an
d Next Ge
ner
a
ti
on Networks and S
y
stem
s: Springer; 2015. p. 2
86-
98.
[3]
Rawat DB, Shetty
S,
editors.
Enhancing
conn
ectivity
for
spectrum-agile
veh
i
cular
ad ho
c n
e
tworks in fad
i
n
g
channe
ls. In
tel
l
i
g
ent Veh
i
cl
es S
y
m
posium
Proceedings, 2014
IEE
E
; 2014
: IE
EE
.
[4]
Torabi N, Gha
h
farokhi BS, e
d
itors. Im
plem
e
n
tati
on of th
e
IEEE 802
.11 p/1609.4 DSRC/W
AVE in NS-
2
.
Computer and
Knowledge
Engin
eering
(ICCKE),
2014 4th
Intern
ation
a
l
eConfer
ence on
; 2014
: IEEE.
[5]
Palma V,
Vegni AM.
On the Op
timal Design of a Broa
dc
ast Dat
a
Dissem
i
nation
Sy
stem over VANET Providing
V2V and V2I Communications" The Vision
of Rome as
a
Smart City
"
.
Jo
urnal of
Teleco
mmunications
and
Information Technolog
y
.
2013
:4
1-8.
[6]
IEEE Standard
f
o
r Wireless Ac
cess in Vehicular
Environments S
ecurity
Se
rvices for
Applications
and
Manag
e
men
t
Messages, IEEE
Std 1609.2-2013
, April 2013.
[7]
Godbole V. Int
e
l
ligent d
r
iver m
o
bilit
y
m
odel
and
traffi
c pa
ttern g
e
neration b
a
sed
optim
izat
ion of r
eactive pro
t
oco
l
s
for vehicular ad-
hoc networks. In
tern
ational Journal of Informatio
n and
Network Security
(IJINS). 2013;2(3):207-
15.
[8]
Ying W, Hui-bin X, Dai-feng C
.
A novel rou
tin
g prot
oco
l
for
VANETS. TELKOMNIK
A
Indonesian Journal o
f
Electrical Eng
i
n
eering
.
2013
;11(
4):2195-9.
[9]
Zead
all
y
S
,
Hu
nt R, Ch
en YS
,
Irwin
A,
Hassan A.
Vehicular
ad hoc netw
ork
s
(VANETS): status, r
e
sults,
and
challenges. Telecommunicati
on S
y
stems.
2012;5
0
(4):217-41.
[10]
Piran MJ, Murth
y
GR
, Babu
GP. Vehicu
lar
ad ho
c and
sens
or networks; princip
l
es and ch
allenges
.
arXiv
prepr
i
nt
arXiv:11082776. 2011.
[11]
Rawashdeh ZY
,
Mahmud SM. Communications in Vehicu
la
r
Networks. Way
n
e
S
t
ate University
.
Detroit; 2011.
[12]
Muhammed
A, Neelak
antan P,
Babu A, editors
. Network
Connectivity
of One-
dimensional Vehicular Ad Ho
c
Ne
t
w
ork.
Proc
e
e
di
ngs of Int
e
rna
t
i
ona
l
Confe
r
e
n
ce
on Communi
c
a
t
i
ons a
nd Si
gnal
Proc
e
ssi
ng Ke
ra
l
a
,
Indi
a:
IEEE
Press; 2011.
[13]
IEEE S
t
and
a
rd
for W
i
reless Access in Vehicul
a
r Envir
onm
ents
(W
AVE) - Multi Chann
e
l Ope
r
ation
,
IEE
E
S
t
d
1609.4-2010, Februar
y
2011
.
0
0.5
1
1.5
2
2.5
3
2
5
10
20
Average E2E
delay
(s)
Number of
flows
Tr
=
300
m
Tr
=
500
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
80
0 – 8
0
9
80
9
[14]
Dorle S
S
,
Khand
a
re S
,
Kes
k
ar
AG, Chakol
e M
B
,
edi
t
ors
.
W
i
re
les
s
Trans
m
is
s
i
on Im
pact on
the
Lif
e
tim
e of
Routi
n
g
Path in VANET. Emerging Tr
en
ds in Engineer
in
g and Te
chnolo
g
y
(ICETET), 2
010 3rd
International Conference
on; 2010: IEEE.
[15]
Xue-W
e
n W
,
W
e
i Y, Shi-Mi
ng S, Hui-bin
W
,
edito
rs.
A
tr
ansmission range ad
aptiv
e bro
a
dcast
algorithm
for
vehicu
lar ad hoc networks. Networks
Security
Wire
less Communications and Trus
ted Computing (NSWCTC),
2010 Second
International C
onference on; 2010: I
EEE.
[16]
IEEE St
andard f
o
r W
i
reless Acc
e
ss in
Vehicul
a
r
Environm
ents (
W
AVE) - Networking Servic
es,
IEEE Std 1609
.3
-
2010, December
2010.
[17]
Association IS.
802.11 p-2010
—ieee standard
for informa
tion technolog
y
—
local and metropo
litan ar
ea network
s
—
s
p
ecifi
c requ
ire
m
ents
—part 11
: W
i
re
le
ss l
a
n me
di
um a
c
ce
ss control (M
AC) and ph
y
s
ical lay
e
r (PHY)
s
p
ecifi
cat
ions
am
endm
ent 6:
W
i
reles
s
acc
es
s
in veh
i
cu
lar
environm
en
ts
. URL h
ttp:
//s
tanda
rds
i
eee
org/findstds/stan
dard/80211 p-20
10 html.
[18]
Hartenstein H,
Laber
t
eaux
K.
VANET
vehicu
lar applications
and inter-n
etworking technologies: John Wiley
&
Sons; 2009.
[19]
Moustafa H, Sen
ouci SM, J
e
rbi
M. Introductio
n
to Vehicular
Networks. 10th Nov
e
mber. 2008
.
[20]
J
i
ang D, Chen Q, Delgros
s
i
L, ed
itors
. Optim
al data ra
te s
e
le
ction
for vehicle s
a
fe
t
y
com
m
unicat
io
ns
. P
r
oceedings
of the fif
t
h ACM international wo
rkshop
on VehiculAr Inter-N
ETworking; 2008:
ACM.
[21]
Bilstrup K, Uhlemann E, Ström
EG, Bilstrup U,
editors.
Ev
alu
a
tion of the IEEE 802.11 p MAC method for vehicle-
to-vehicle communication. Vehicula
r
Technolog
y Conferen
ce, 20
08 VTC
2008-F
a
ll IEEE 68
th; 2
008: IEEE.
[22]
Khorashadi B, Chen A, Ghosal D, Chuah C-N, Zhang M,
editors
. Im
pact of trans
m
is
s
i
on power on the perform
ance
of UDP in vehicular ad hoc networks. Commun
icati
ons, 2007 ICC'
07 IEEE International Conf
erence on; 2007:
IEEE
.
[23]
IEEE Dra
f
t Tr
ia
l-Use S
t
andard
for W
i
reless Ac
cess in
Vehi
cul
a
r Environm
ents
(W
AVE) - Resource Man
a
ger,
IEEE Std 1609
.1
-206, Octob
e
r 20
06
[24]
www.
isi.
edu/nsnam/ns
[25]
http://sumo.sourceforge.net/
Evaluation Warning : The document was created with Spire.PDF for Python.