Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 4
,
A
ugu
st
2015
, pp
. 85
9
~
86
8
I
S
SN
: 208
8-8
7
0
8
8
59
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
MDS-WLAN: Maxim
a
l Data S
e
curi
ty in WLAN for Resisting
Potential Threats
L
a
th
a P.H
.
*, Vas
a
n
t
h
a
R
**
*Department of Information
Scie
nce
&
Engg., Atria Institute of
Technolog
y
,
B
a
ng
alore, Ind
i
a
** Departm
e
n
t
o
f
Inform
ation
Science &
Engg
., Sam
bhram
Institu
te of
T
echnolog
y
,
Bang
alor
e, In
dia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 23, 2015
Rev
i
sed
May
5, 201
5
Accepted
May 28, 2015
The u
t
m
o
s
t
s
ecu
rit
y
s
t
andards
o
v
er W
i
re
les
s
Lo
cal
Area
Networ
k (W
LAN)
are still an unsolved answer in res
earch
commu
nity
as well as among the
commercial user
s. Ther
e ar
e various prio
r attempts in proposing
security
o
f
WLAN that lacks focus on
access point
and is found to be qu
ite complex
implementation
of cr
y
p
togr
ap
h
y
. Th
e proposed paper presents a novel,
simple, and
y
e
t
robust techniqu
e calle
d as MDS-WLAN i.e. maximal data
s
ecurit
y
in W
L
AN. The
s
y
s
t
em
is
ev
alua
ted
ov
er l
a
borato
r
y pr
otot
ype
and
m
itigation m
e
asures are drawn
for resi
sting worm
hole att
ack
, Sybi
l at
ta
ck
,
and rogue access point issue
in WL
AN. The outcome of
th
e MDS is
compared with
conven
tional AES and S
HA that sho
w
s optimal
com
m
unication perform
ance
an
d
highest data security
.
K
eyw
ords
:
C
r
y
p
t
o
gra
p
hy
Data Secu
rity
Key
M
a
na
gem
e
nt
Secu
ri
t
y
Prot
o
c
ol
WL
AN
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Lath
a P.
H
.
,
Asst
. Pr
of:
De
pt
o
f
In
f
o
rm
at
ion
Sci
e
nce
&
En
gg
.
Atria In
stitu
te
o
f
Techno
log
y
B
a
ngal
o
re,
I
n
d
i
a
E-Mail: research
v
t
u
l
ath
a
@gmail.co
m
1.
INTRODUCTION
A wireless l
o
cal area n
e
two
r
k
(WLAN) is a d
i
stribu
tio
n
pro
cess for two
o
r
m
o
re d
e
v
i
ces th
at u
tilize
high fre
quenc
y
radio wa
ves
and fre
quentl
y incorporat
e a right to gai
n
access poi
nt
to the Internet. The
applications of
W
L
AN ra
nge
s
from
hom
e
to large scal
e
networki
ng. It allows the
use
r
s to access internet
using the acce
ss poi
nt (or routers
)
, wh
ich c
a
n be also set up in a
d
hoc manne
r.
Howe
ve
r, owing to the
data
co
mm
u
n
i
catio
n
i
n
wireless
med
i
u
m
, it als
o
i
n
v
ites
v
a
ri
ou
s
vu
ln
erab
le
secu
rity co
nd
itio
n
s
th
at affects the
pri
v
acy
of t
h
e
users a
n
d re
nde
rs t
h
e
res
o
urces
p
r
o
n
e f
o
r va
rious m
a
licious attacks
.
At present,
se
curity
pr
ot
oc
ol
s l
i
k
e
W
i
re
d E
qui
val
e
nt
Pri
v
acy
(
W
EP
),
Wi
-Fi
Prot
ect
e
d
Acc
e
ss (
W
P
A
),
an
d 8
0
2
.
1
1i
(
W
P
A
2
)
a
r
e
u
s
ed
. Ho
wev
e
r,
W
E
P is a
weak
secu
rity stan
d
a
rd
[1
]
as th
e secret k
e
y it
u
s
es can
freq
u
e
n
tly b
e
sp
litted
shortly with a fundam
e
ntal
Sm
art phone
using a
v
ailabl
e soft
ware tools.
WEP is also an old
IEEE
802.
11
stan
d
a
rd, wh
ich
is ou
td
ated th
ro
ugh
WPA. W
P
A was
a
spee
dy
opt
i
o
n t
o
e
nha
nce
securi
t
y
o
v
e
r
WEP
.
W
i
rel
e
ss
net
w
or
ks a
r
e m
o
re
defe
nsel
ess t
o
at
t
acks d
u
e t
o
t
h
ei
r i
m
part
ed
phy
si
cal
m
e
di
um
, open t
r
ans
m
i
ssi
on
of ra
dio
fre
que
n
cies. The attacks on
W
L
AN networks can
be delibe
r
ate based on the two phenom
ena attacks
on acces
s point and attacks lying
on their
protoc
ol stack. T
h
e fundam
ental issu
es that ha
ve bee
n
face
d
by the
WL
AN a
r
e sec
u
rity and signa
l
interfere
nce.
The issue w
ith
secu
rity
can
n
e
v
e
r b
e
tack
led
co
m
p
letely
h
o
wev
e
r
it can be
m
i
nimized. To reinforce the
security o
f
d
e
v
i
ces, it
is i
m
p
o
r
tan
t
to
co
m
p
reh
e
nd
th
e security
h
o
l
es.
For
exam
pl
e, i
)
eq
ui
pm
ent
have
secu
ri
t
y
set
t
i
ngs di
sa
bl
e t
h
r
o
u
g
h
de
f
a
ul
t
i
ng, i
i
)
i
n
s
i
gni
fi
ca
nt
secu
ri
t
y
i
s
effectively broken, and iii).r
ogue access points are not di
fficult to send a
nd
hard to
ide
n
tify [2]. Apa
r
t from
t
h
e secu
ri
t
y
i
ssues, a
not
her si
gni
fi
cant
i
ssue
i
s
aware
n
ess
of sec
u
ri
t
y
p
r
o
t
ocol
s am
ong t
h
e use
r
s.
Som
e
t
i
m
e
s
in
sp
ite of
p
o
t
en
tial secu
rity pro
t
o
c
o
l
s, th
e ign
o
ran
ce of
use
r
s cal
l
s
f
o
r c
r
e
a
t
i
ng a
pot
en
tial secu
rity breach
in
th
e n
e
t
w
ork
esb
t
ab
lish
e
d
b
y
th
e rou
t
ers
[3
]. Till no
w, n
u
m
erou
s remo
te
secu
rity
pro
t
o
c
o
l
s h
a
v
e
b
e
en
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 5
,
N
o
. 4
,
Aug
u
s
t 2
015
:
85
9
–
86
8
86
0
com
posed a
nd
execute
d, however
none tu
rned
ou
t to
p
e
rsuad
e
with
th
e secu
rity th
reats th
at co
m
e
co
n
s
isten
tly
wi
t
h
new
t
h
rea
t
s t
o
ou
r sy
st
e
m
s and i
n
f
o
rm
at
i
on.
Us
ua
lly WLAN is used
in pro
v
i
d
i
ng
wireless
ho
t spo
t
s in
larg
e cam
p
u
s
,
h
e
n
c
e it is
q
u
i
t
e
feasi
b
le th
at
v
a
ri
o
u
s
typ
e
o
f
illeg
iti
m
a
te
me
m
b
er co
u
l
d
al
so
attem
p
t to
hav
e
an
access to t
h
e
route
r
. T
h
e atta
cks m
a
y devic
e
va
rious in
t
r
usive
princi
ple t
o
perform
intrusion i
n
the
WL
AN
routers
and
once routers a
r
e
com
p
rom
i
sed,
the ot
her clients connecte
d
t
o
th
e rou
t
ers are eq
u
a
lly pron
e to
m
a
l
i
c
i
ous pr
og
ram
m
e
s. The exi
s
t
i
ng sec
u
ri
t
y
prot
oc
ol
s e.
g.
WPA a
n
d WEP a
r
e n
o
t
at
al
l
secured
agai
ns
t
vari
ous
attacks
like De
nial of Service,
worm
hole attack
, syb
il attack
, sin
kho
le attack
, rou
ting
attack, and
rogue access point.
He
nce, m
itigating all the
attacks in a si
ngle al
gorithm
is near im
possible task.
Hen
c
e, th
is
p
a
p
e
r
p
r
esen
ts a
v
e
ry
p
o
t
en
tial tech
n
i
q
u
e
in
term
s o
f
alg
o
r
it
hm
s
th
at ai
m
s
to
m
itig
ate th
e
l
e
t
h
al
t
h
reat
s o
v
er
W
L
A
N
. T
h
e pri
m
e
cont
r
i
but
i
o
ns of
t
h
i
s
pa
per
are
as f
o
l
l
o
w
s
e.
g.
i
)
To pre
s
ent
a
t
e
chni
que
to
in
corp
orate h
i
gh
est lev
e
l
o
f
secu
rity on
h
e
tero
g
e
n
ous
W
L
A
N
r
o
u
t
er
s, ii)
To
presen
t a un
ique k
e
y
managem
e
nt techni
que
s that
is inaccessibl
e to e
v
en
us
e
r
s as
well as
routers i
n
worst scenari
o
of node
com
p
rom
i
zat
ion, iii) To prese
n
t a no
vel algorithm
for node
activation by
the access poi
nts, iv) To pre
s
ent a
n
o
v
e
l algorithm
fo
r m
a
x
i
m
a
l
d
a
ta secu
rity fo
r t
h
warting
leth
al attack
s
o
n
W
L
AN, iii) To
carry
o
u
t
real-ti
m
e
ex
p
e
rim
e
n
t
an
d
prep
are a lab
o
ratory pro
t
otyp
e o
n
m
u
ltip
le
m
ach
in
es an
d
m
u
ltip
le v
a
rieties o
f
rou
t
ers and
check
f
o
r sec
u
ri
t
y
effi
ci
ency
.
Su
b-sect
i
o
n
1
.
1
of
Int
r
o
d
u
ct
i
on
di
scus
ses t
h
e bac
k
gr
o
u
n
d
of t
h
e st
u
d
y
whe
r
e
t
h
e p
r
i
o
r re
se
arch c
o
nt
ri
b
u
t
i
on
has
bee
n
di
scu
ssed
.
Introd
u
c
tion
sub-sectio
n
1.2 en
lists th
e id
en
tified
pr
o
b
l
e
m
s
of t
h
e pr
o
p
o
s
ed st
udy
f
o
l
l
o
we
d
by
di
scussi
on
of p
r
op
ose
d
sy
st
em
i
n
sub-s
ect
i
on 1.
3. R
e
search
m
e
t
hod
ol
o
g
y
i
s
di
scusse
d i
n
Sect
i
on 2
,
w
h
i
l
e
sub-s
ect
i
on
2.
1 hi
g
h
l
i
g
ht
s abo
u
t
t
h
e t
e
st
-bed sce
n
ari
o
o
f
t
h
e
pr
o
pose
d
st
udy
, Su
b
-
sect
i
on
2
.
2
di
scus
ses ab
out
t
h
e
fi
rs
t al
g
o
rith
m
wh
ile su
b-section
2
.
3 d
i
scu
s
ses abou
t th
e
secon
d
algor
itm
. Sect
io
n
3
d
i
scu
s
ses about th
e o
u
t
co
m
e
s o
f
th
e st
ud
y, wh
ile co
n
c
l
u
d
i
ng
r
e
m
a
r
k
s
ar
e in
Sect
i
on 4.
1.
1 B
a
ck
gro
u
nd
Th
is sectio
n
d
i
scu
s
ses abou
t th
e b
ackgro
und
lite
ratu
res o
f
th
e stud
y, wh
ere
p
r
i
o
r research
i
m
p
l
e
m
en
tatio
n
toward
s secu
rity th
reats in
WLAN
was
fo
u
n
d
t
o
be
ad
dress
e
d
.
K
a
m
bou
ra
ki
s et
al
.[
7
]
co
n
c
en
trate
o
n
q
u
a
lity d
eclaratio
n
s
,
wh
ich
are of real
v
ita
li
ty fo
r clien
t
auth
orizatio
n
They stress on
the v
ital
pu
bl
i
c
key
f
r
a
m
ewor
k
w
h
i
c
h
o
b
l
i
g
es l
east
c
h
an
ges
i
n
3
G
c
e
nt
er sy
st
em
com
pone
nt
s a
n
d
si
g
n
al
i
n
g
a
n
d
gi
ve
a
rund
own of the p
o
t
en
tial th
reats, wh
ich
ca
n be
rec
o
g
n
i
z
e
d
i
n
a
n
a
ppa
re
nt
sen
d
i
n
g.
Th
ei
r t
r
i
a
l
assess
m
e
nt
of
t
h
e exec
ut
i
on
of t
w
o
opt
i
o
n t
e
st
bed sce
n
ari
o
s,
dem
onst
r
at
es t
h
at
com
put
eri
zed aut
h
e
n
t
i
cat
i
ons t
ech
n
o
l
ogy
i
s
not
j
u
st
p
o
ssi
b
l
e t
o
act
ual
i
z
e i
n
prese
n
t
an
d f
u
t
u
re
het
e
r
oge
ne
ou
s m
obi
l
e
sy
st
em
s.
B
a
l
achan
dra
n
et
al
.[8]
obs
er
ved t
h
at
t
h
e m
obi
l
e
co
m
put
i
n
g sce
n
e h
a
s chan
ge
d b
o
t
h
re
gar
d
i
n
g n
u
m
ber and ki
n
d
of h
o
t
s
p
o
t
ve
nue
s.
Th
ere are a
few inn
o
v
a
tiv
e a
n
d
arrang
em
en
t d
i
fficu
lties st
ayin
g
b
e
fo
re
ho
tspo
ts th
at can
turn
i
n
to
a
un
iv
ersal
fram
e
wo
rk
.
Th
ese
d
i
fficulties in
co
rpo
r
ate as v
e
rifi
catio
n
,
secu
ri
ty, sco
p
e
, ad
m
i
n
i
stratio
n
,
area
ad
m
i
n
i
stratio
n
s
, ch
arg
i
n
g
, and
in
tero
perab
ility. Mo
h
a
n
t
y et al. [9
] p
r
op
o
s
ed
a nov
el 3
G
/
W
LAN co
ord
i
n
a
t
e
d
b
u
ild
i
n
g
d
e
sign
u
tilizin
g
th
e o
u
t
si
d
e
r,
Netwo
r
k
In
ter-wo
rkin
g
Ag
en
t (NIA), to
co
ord
i
n
a
te 3
G
and
W
L
ANS of
dive
rse s
u
ppliers. T
h
is
building
design
does not neces
sitate the prese
n
ce of immedia
t
e SLAS am
ong the
syste
m
su
p
p
liers. Su
b
s
equ
e
n
t
ly i
t
is
ad
ap
tab
l
e. Th
ey created
a n
o
v
e
l alg
o
rith
m
b
y
u
t
ilizin
g
th
e id
ea o
f
dy
nam
i
c bou
n
d
ary
area
t
o
ba
cki
n
g co
nsi
s
t
e
nt
IS
HO
bet
w
e
e
n t
h
e
3G
an
d
WL
AN
. Thei
r
resul
t
s
s
h
o
w
t
h
at
t
h
e
p
r
op
o
s
ed
lim
it
territo
ry
b
a
sed
ISHO al
g
o
rithm
b
eats the current
WL
AN IS
HO and
3G algorithm
.
Bittau
et a
l
.[10
] p
r
esen
t a n
o
v
e
l d
e
fen
s
el
essn
ess techn
i
q
u
e
wh
ich
p
e
rm
i
t
s an
attac
k
er to
sen
d
su
bj
ectiv
e inform
at
io
n
o
n
a
WEP in
t
h
e
wak
e
o
f
h
a
v
i
ng
listen
e
d
stealthily o
n
a so
litary in
fo
rm
atio
n
p
ack
et.
They prese
n
t WEP
re-keying ave
r
t c
onve
n
tional attacks
.
Xing et al. [
11]
p
r
op
ose a
n
en
ha
nced
f
o
rm
of
802.11i to m
a
ke
m
o
re DoS sa
fe. Because of
the ph
ysical weakne
ss of
WL
AN links
, Dos
attacks de
pendably
sur
v
i
v
e
f
r
om
end
t
o
e
n
d f
r
e
que
ncy
st
i
c
ki
ng
, sy
st
em
st
icki
n
g
,
or
di
ff
erent
e
n
deav
o
r
s.
Nas
h
o
n
et
al
.[1
2
]
propose a
n
inc
o
rporated
ISM secur
ity
m
o
d
e
l th
at con
s
o
l
id
ates a g
o
down
arrang
em
e
n
t to
sh
ield
again
s
t Dos
attacks. Furthe
rm
ore the creat
or acce
pts the
use
of CCMP t
o
gi
ve Confi
d
e
n
tiality and Int
e
grity and utilization
EAP TILS
o
r
8
0
2
.
11
x
s
b
y
mean
s o
f
RADIUS to
g
i
v
e
co
nfirm
a
tio
n
.
Th
ey u
tilized
si
m
u
latio
n
as a p
a
rt
of
OP
NET t
o
de
m
onst
r
at
e t
h
at
t
h
ei
r secu
ri
t
y
m
odel
perf
orm
s
bet
t
e
r t
o
gi
ve
enha
nce
d
sec
u
ri
t
y
as far as
p
r
i
v
acy
,
respecta
b
ility, validne
ss and
accessibility.
Om
ar et al. [13] propose a
stra
ight
forwa
r
d, effective se
curity
ove
rl
ay
p
r
ot
oc
ol
t
o
exi
s
t
i
n
g
8
0
2
.
1
1
sy
st
em
s. B
eck
et
al
.
[1
4]
des
c
ri
be
d
i
n
no
vat
i
v
e
at
t
ack
s ne
xt
t
o
T
K
I
P
base
IEEE 802
.1
1
syste
m
s . Th
ey ch
aracterized
n
e
w
o
u
tlin
es
to
ceaselessly p
r
od
u
c
e
n
e
w
k
e
y stream
s, wh
ich
perm
i
t
m
o
re and m
o
re pack
et
s t
o
be i
n
fu
sed. T
h
ey
introduce
d
an attack ne
xt to the Michael
m
e
ssage
resp
ectab
ility co
d
e
. Th
e au
t
h
o
r
s in [1
5
]
g
i
ve a su
gg
esti
ons gu
id
e fo
r rem
o
te LAN se
cu
rity. Security of the
rem
o
te syste
m
is a v
ital
issu
e, o
n
t
h
e g
r
ou
nd
s th
at th
e t
r
an
sm
i
ssi
on m
e
dia i
s
open
.
The
y
created aide for t
h
e
securi
t
y
p
u
r
p
o
s
es, sec
u
ri
t
y
p
r
ot
ocol
s
begi
n
s
by
ch
o
o
si
n
g
t
h
e sy
st
em
size rel
y
i
ng
up
o
n
t
h
e
num
ber
of t
h
e
co
m
p
u
t
ers on
th
e syste
m
wit
h
d
i
fferen
t size(little,
m
e
d
i
u
m
an
d
sub
s
tantial) h
a
s d
i
v
e
rse arran
g
e
m
e
n
t
s fo
r
security. Mavridis et al.[16]
conc
e
n
trate on three principl
e security conventions
WEP, and
WPA2,
WPA .
They
t
a
l
k
e
d
a
b
o
u
t
a
nd
di
s
p
l
a
y
e
d i
n
det
a
i
l
an a
n
al
y
t
i
cal
m
e
t
hod t
o
wa
r
d
s
WEP a
n
d
WP
A2
crac
ki
n
g
f
r
o
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
MDS-WLAN: Maximal Dat
a
Secur
ity in
WLAN fo
r Resistin
g
Po
ten
tia
l
Th
rea
t
s (La
t
h
a
P.H.)
86
1
genuine
circ
um
s
t
ances. T
h
e
y
show that a
ny rem
o
te syst
e
m
may be expe
riencing e
ffecti
v
e hacki
n
g
e
n
deavors,
i
n
t
h
e e
v
ent
t
h
at
i
t
i
s
not
del
i
berat
e
l
y
set
u
p
and
secu
re
d.
Tsu
k
au
ne et
al
. [
17]
pr
op
ose
d
a
pr
ot
ect
ed
WEP
ope
rat
i
o
n ne
xt
t
o
key
recu
pe
rat
i
on at
t
acks
.
They
pr
o
p
o
s
ed
a st
rat
e
gy
t
h
at
requi
r
e
fo
r at
t
ackers n
o
l
e
ss
t
h
a
n
10
0,
0
00
pack
e
t
s t
o
recu
perat
e
t
h
e
W
E
P key
.
Po
dda
r et
al
. [1
8]
prese
n
t
an
i
nvest
i
g
at
i
o
n of
WEP, a
n
d WP
A2
,
WP
A. T
h
ey
ha
ve at
t
e
m
p
t
e
d i
n
t
h
e di
rect
i
on
of ca
rry
o
u
t
an
d m
a
ke sure va
l
i
d
at
i
on o
f
eac
h o
f
t
h
e p
r
ot
oc
ol
s by
i
n
fer
r
i
n
g t
h
e l
e
gen
d
a
r
y
at
t
ack vect
o
r
scri
pt
by
Ai
r
brea
k s
e
t
of a
ppa
rat
u
s
e
s. The e
x
am
inat
i
on i
s
di
rect
ed
o
n
B
ack Trac
k
w
o
r
k
i
n
g f
r
am
ewor
k
whi
c
h i
s
c
onsi
d
ere
d
as
d
e
vot
e
d
p
r
et
est
i
ng
w
o
r
k
i
n
g f
r
a
m
e
wor
k
.
In t
h
e t
e
st
out
c
o
m
e
, t
h
ey
di
sco
v
ere
d
t
h
at
W
E
P i
s
t
h
e
w
eakest
,
t
o
whi
c
h
WP
A
was a
m
a
keshi
f
t
a
rra
ngem
e
nt
an
d
WP
A
2
is an exce
ptionally strong a
nd l
o
ng team arra
ngem
e
nt. Ifeyinwa et al. [19]
com
p
re
he
nsively assesse
d
di
ffe
re
nt
i
m
prove
d
p
r
ot
ocol
s
t
o
WEP
co
n
n
ect
ed co
n
f
i
r
m
a
tion,
secrecy a
n
d res
p
ectabili
ty issues. T
h
e
author
d
i
scov
ered
that q
u
a
lity o
f
ev
ery arran
g
e
m
en
t relie
s
u
pon
ho
w fit
th
e en
cryp
tio
n, con
f
irm
a
ti
o
n
and
resp
ectab
ility strateg
i
es
work. Th
ey
u
tilize a Defen
s
e in Dep
t
h
Strateg
y
an
d jo
in
i
n
g
o
f
bio
m
e
t
ric in
802
.1
1
i
.
Adi
b
an
d R
a
i
ssou
n
i
[
20]
ha
v
e
i
n
t
r
o
duce
d
s
ecuri
t
y
archite
cture toward im
ple
m
enting AES algorithm
.
The
stu
d
y
was carri
ed
o
u
t
in FPGA and
find
s mo
re su
itab
ility
in
im
p
l
e
m
en
tin
g
in
WLAN. So
dho
et al. [21] h
a
v
e
pr
o
pose
d
a
uni
que
key
m
a
nagem
e
nt
for sec
u
ri
ng
wi
rel
e
s
s
n
e
two
r
k
wh
er
e th
e
f
o
cu
s
w
a
s
mo
r
e
on
s
t
or
ag
e
of
k
e
ys.
Howev
e
r, th
e app
licab
ility o
f
th
e
wo
rk in
WLAN is no
t d
i
scu
ssed
m
u
ch.
1.
2 Pr
obl
em
I
d
enti
fi
c
a
ti
on
Th
e i
d
en
tified
p
r
ob
lem
s
o
f
the propo
sed stud
y are as
fo
llows:
Security pr
otocols
:
Th
e
resilien
c
ies o
f
th
e ex
isting
security p
r
o
t
o
c
o
l
s are h
i
g
h
l
y
q
u
e
stio
n
a
b
l
e i
n
area
o
f
WLAN. Still t
h
ere is a
pre
v
al
ence of
using
WPA and
WEP as
the core security techni
que in access
point.
It is already known that
bo
th
of th
em
are
v
u
l
n
e
rab
l
e fo
r v
a
riou
s leth
al
attack
s p
a
rticu
l
arly worm
h
o
le
attack
and
Sy
bil attack
, wh
ere id
en
tities and
rou
t
es are easy
to
b
e
co
m
p
romised
.
Role of Acces
s
Point
: Major
ity o
f
th
e ex
i
s
tin
g
p
r
o
t
o
c
o
l
s d
i
scu
s
sed
i
n
p
r
i
o
r
section
d
i
scu
s
ses about
secu
rity tech
n
i
q
u
e
s on
th
e clien
t
’s
m
achine. The role of ac
cess poi
nt is
not that
m
u
ch e
m
phasized. It is
noticed t
h
at access point is consi
d
ere
d
as mere a router
t
o
help in c
o
mm
u
n
ication
of the
nodes
prese
n
t
i
n
WL
AN. It s
h
ould
be known that
access point in
WL
AN is the m
o
st vulne
rable
poi
nt as all the da
ta
tran
sact t
h
ro
ug
h it and
it is also
resp
on
si
b
l
e for au
th
enticatin
g
and
au
tho
r
izing
o
t
her
n
o
d
e
s.
Hence,
ex
istin
g stud
ies fo
cu
ses
o
n
l
y
o
n
ph
ysical level secu
rity
an
d no
t on
app
licatio
n
o
r
n
e
t
w
ork
layer security.
Hence
,
t
h
e
r
e i
s
an em
erge
nt
n
eed
of
m
u
l
t
i
l
a
yered
secu
ri
t
y
t
echni
que
t
o
sec
u
re
dat
a
i
n
WL
AN
.
Selection
of E
n
cryp
t
ion S
t
andar
d
: It
was
seen that
SHA is t
h
e m
o
st f
r
e
qu
en
tly u
s
ed
cr
yp
togr
aph
i
c
tech
n
i
qu
e in
WLAN, wh
ich is fo
llo
wed
by AES. Th
ere is n
o
d
oub
t th
at SHA as well as AES h
a
s
pot
e
n
t
i
a
l
m
e
ri
t fact
or as a
n
e
n
cry
p
t
i
on st
a
n
dar
d
s i
n
WLAN,
b
u
t
th
ere are certain
p
itfalls to
o
.
SHA i
s
com
put
at
i
onal
l
y
sl
ow an
d y
i
el
d l
a
rge
r
has
h
si
ze, wher
e A
E
S desi
g
n
i
s
q
u
i
t
e
com
p
l
e
x. Ho
we
ver
,
AE
S
sup
p
o
rt
s
fast
er
p
r
oces
si
n
g
i
n
har
d
ware
an
d
hence
a sl
i
g
ht
m
odi
fi
cat
i
on i
n
AES
co
ul
d
s
o
l
v
e t
h
e i
s
s
u
es
o
f
encry
p
tion.
C
o
mp
lia
n
c
e to
S
e
cu
r
i
ty
St
a
n
d
a
rd
:
Altho
ugh
it is
q
u
ite a ch
allengin
g
task
t
o
en
sure
priv
acy,
co
nfid
en
tiality,
an
d
in
teg
r
ity in
secu
rity p
r
oto
c
o
l
s in
WLAN, bu
t it is i
n
d
e
ed
dem
a
n
d
e
d
fo
r en
suring
opt
i
m
al
securi
t
y
. If a
n
y
cry
p
t
o
g
r
a
phi
c al
g
o
r
i
t
h
m
ensures s
o
t
h
en i
t
s
desi
g
n
ca
n be e
x
pec
t
ed t
o
be hi
ghl
y
com
p
lex. He
nce, the
r
e is a
need of a light
weight
cry
p
tographic technique as
well as l
ogical techni
que
t
h
a
t
c
a
n
en
s
u
r
e
ma
x
i
mu
m c
o
mp
l
i
a
n
ce of
security standards
and le
ss co
m
p
u
t
atio
n
a
lly co
m
p
lex
in
WLAN. Or else attack
s can
not b
e
m
itig
ated
to
m
a
x
i
m
u
m
ex
ten
t
.
Hence
,
the
present resea
r
c
h
work introduces a
m
u
lti
lay
e
red
security tech
n
i
qu
e t
o
secu
re
d
a
ta
com
m
uni
cat
i
on i
n
WLA
N
.
1.
3 Pr
op
osed
Mo
del
Th
e
p
r
im
e ai
m of th
e presen
t
stud
y is to in
co
rpo
r
at
e m
a
x
i
m
u
m
lev
e
l o
f
secu
rity to
t
h
e
d
a
ta th
at are
bei
n
g t
r
a
n
sact
ed t
h
r
o
u
g
h
var
i
ous
WLA
N
r
out
e
r
s.
The
p
r
op
ose
d
m
odel
i
s
an e
x
t
e
n
s
i
o
n
of
o
u
r
pri
o
r
m
odel
SA
KG
P (Sec
u
r
ed
Aut
h
ent
i
c
a
t
i
on o
f
Key
G
e
nerat
i
o
n P
r
ot
ocol
) i
n
WLA
N
[
22]
. S
A
KG
P ha
ve i
n
t
r
od
u
ced a
uni
que t
e
c
hni
q
u
e f
o
r e
n
s
u
ri
n
g
t
h
e a
u
t
h
e
n
t
i
cat
i
on o
f
bi
di
re
ctio
n
a
l n
a
t
u
re
with
an
ai
d
of
math
e
m
atica
l
m
o
d
e
l.
SA
KG
P al
so a
d
o
p
t
s
t
h
e l
a
t
e
s
t
versi
o
n
of c
r
y
p
t
o
g
r
a
phi
c
ha
sh f
u
nct
i
on
(S
HA
-3
), t
h
at
w
a
s ne
ver t
r
i
e
d
bef
o
re
.
Th
e
p
r
esen
t syste
m
is co
in
ed
as MDS-WLAN
wh
ich stan
d
s
fo
r M
a
x
i
m
a
l Data Security in
WLAN t
o
introduce a
m
o
st robust, sim
p
le, as well as c
o
st effectiv
e secu
rity tech
n
i
ques to
en
sure priv
acy, in
teg
r
ity, an
d
co
nfid
en
tiality
ag
ain
s
t wo
rm
h
o
l
e attack
an
d
Syb
il attack
. Th
e sch
e
m
a
tic a
r
ch
itecture o
f
t
h
e p
r
esen
t syste
m
i
s
hi
g
h
l
i
ght
e
d
i
n
Fi
gu
re
1. T
h
e
prese
n
t
sy
st
em
t
a
rget
s t
o
acc
om
pl
i
s
h t
h
e m
a
xi
m
a
l
st
andar
d
s
of sec
u
ri
t
y
wi
t
h
p
r
i
v
acy, co
nfiden
tiality, an
d
no
n-repu
d
i
ation
u
s
ing
ligh
t
wei
g
h
t
AES en
cry
p
tio
n stand
a
rd
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 5
,
N
o
. 4
,
Aug
u
s
t 2
015
:
85
9
–
86
8
86
2
2.
RESEARCH METHO
D
OL
The propose
d
syste
m
has considere
d
em
pirical as
well as
math
e
m
atica
l
m
o
d
e
llin
g
as th
e stand
a
rd
of
researc
h
m
e
t
hod
ol
o
g
y
.
T
h
e
prese
n
t
e
d M
D
S i
s
desi
g
n
e
d
consideri
ng t
h
e real-tim
e sce
n
ari
o
where
WLAN is
use
d
like institution, cam
pus,
cafeteria etc.
using m
u
ltipl
e
access poin
t
as well as m
u
l
tiple ter
m
inals with
som
e
of the latest configurations
.
The
prim
ary com
pone
nts
of prese
n
t syst
em
are i) Sender node
, ii) Receiver
node, a
nd iii) access poi
nts.
The layout
of
the evaluation
of MDS is shown
in Fig.2.
The prim
ary r
o
le of
access point i
s
to m
a
nage t
h
e
node i
d
enti
ties. Us
ua
lly, in real-tim
e the node
creates
its ID in
WLAN
configuration, but
i
n
prese
n
t syst
e
m
, the access point
will create a si
gni
fi
cant
node
ID that are
m
a
int
a
ine
d
pri
v
at
el
y
by
them
and com
m
on t
e
r
m
i
n
al
s
doe
sn
’t
ha
ve an
y sort
of acc
ess to suc
h
private inform
ation. Thi
s
fo
rm
ul
at
i
on pl
ay
s a si
g
n
i
f
i
c
a
n
t
r
o
l
e
i
n
dat
a
secu
ri
t
y
as
w
e
l
l
as key
m
a
nagem
e
nt
uni
qu
el
y
.
Fo
r a
n
e
x
am
pl
e,
con
s
i
d
er
an
en
vi
r
onm
ent
w
h
e
r
e t
h
e
r
e a
r
e
16
key
s
bei
n
g ra
n
dom
l
y
di
st
ri
bu
t
e
d am
ong
1
6
users
,
whe
r
e
n
one
o
f
t
h
e 16
user
s k
n
o
w
s any
i
n
fo
rm
ati
on ab
out
t
h
ei
r nei
g
hb
o
r
key
s
. T
h
i
s
p
r
i
n
ci
pl
e pl
ay
s a si
gni
fi
cant
r
o
l
e
i
n
mit
i
g
a
tin
g
wo
rm
h
o
l
e an
d
Syb
il attack
as th
e id
en
tities o
f
th
e n
o
d
e
s cann
o
t
b
e
co
m
p
romised
.
Th
e attack
er
will h
a
ve to gu
ess
with
so
m
e
co
m
p
lex
algo
rith
m
s
to
fi
n
d
th
e l
o
catio
n of
k
e
ys. Th
e commo
n
cryp
t
o
graph
i
c
t
echni
q
u
e
st
o
r
e
s
key
s
i
n
st
ora
g
e,
b
u
t
t
h
e
p
r
es
ent
M
D
S
st
o
r
e
s
key
s
i
n
net
w
or
k.
Fi
gu
re 1 Sche
m
a
t
i
c
Archi
t
ect
ure of
M
D
S
Fi
gu
re
2 Lay
o
ut
o
f
t
h
e M
D
S
Every tim
e
the sende
r node
would like to
comm
uni
cate
with destination node
, access
point plays a
critical role. W
i
t
h
out the access poi
nt, no
one
will able t
o
retrieve the
keys from
th
e network. For giving a
n
access to the sender, the access poi
nt need
t
o
m
e
rge the secret key of sender
and response of split keys. Even
by de
fa
ult, if t
h
e access
poi
nt is also c
o
m
p
rom
i
sed, th
e int
r
uder will
never
be a
b
le to guess t
h
e l
o
cation of
secret k
e
ys or
can
g
e
n
e
rate sp
lit k
e
ys. Hen
c
e, th
e propo
sed
system is als
o
resilien
t
ag
ai
n
s
t p
r
ob
lem
o
f
rog
u
e
access point.
For inc
o
rp
orat
ing
e
ffective design pri
n
ciple
s
,
we ha
ve
de
signe
d it in Ja
va environm
ent with
enri
c
h
AP
Is of
net
w
o
r
ki
ng a
nd cry
p
t
o
gra
p
hy
t
o
carry
ou
t
t
h
e present
s
t
udy
. Th
e pres
ent
st
udy
al
so
offe
r
s
hi
g
h
er
l
e
vel
of
com
m
uni
cat
i
on
per
f
o
r
m
a
nce due
t
o
a
d
opt
i
o
n
of
AE
S
base
d e
n
cry
p
t
i
o
n
2.1 Im
plementati
on Scenari
o
The i
m
pl
em
ent
a
t
i
on of t
h
e
pr
o
pose
d
M
D
S-
WLA
N
sy
st
em
i
s
done o
n
real
-t
i
m
e
t
e
st
bed. T
h
e
t
a
bul
at
ed i
n
f
o
r
m
at
i
on i
n
Tabl
e 1 al
so
pert
ai
ns t
o
t
h
e s
ecu
r
i
t
y
prot
oc
ol
s s
u
p
p
o
rt
e
d
by
ac
cess p
o
i
n
t
s
as
wel
l
as
IEEE
standards supported
by
the term
inals. The e
x
perim
e
ntation of t
h
e
present syst
em
was done
consi
d
ering
all G-base
d wi
reless routers
.
Table
1 hi
ghli
ghts the s
p
ecific confi
g
urations of the acce
ss poi
nts as well a
s
t
e
rm
i
n
al
s
use
d
fo
r
t
e
st
i
n
g
t
h
e
prese
n
t
pr
ot
oc
ol
.
The
prese
n
t
st
udy
c
o
nsi
d
e
r
s
12
di
f
f
ere
n
t
do
m
a
i
n
s t
h
at
are
i
ndi
vi
dual
l
y
ha
ndl
e
d
by
t
h
e a
ccess p
o
i
n
t
s
fo
r 5
9
use
r
s ar
e consi
d
ere
d
.
Tw
o si
gni
ficant algorithm
s
are created in thi
s
st
udy
. Al
go
ri
t
h
m
-
1 i
s
respo
n
si
bl
e
for nod
e activ
atio
n
,
wh
ile
Algo
rith
m
-
2
is resp
on
si
b
l
e fo
r
da
t
a
securi
t
y
. T
h
e desi
g
n
of t
h
e
Al
g
o
ri
t
h
m
-
1 i
s
do
ne
consideri
ng t
h
e fact that e
ither one or m
o
re than one
no
de
are sen
d
i
n
g re
que
st
t
o
t
h
e
WLAN
ro
ut
er
. A
f
t
e
r t
h
e
access poi
nt’s
gives access
priviledge to the
requester
no
de, si
m
u
ltaneousl
y
, the access point will also requi
re
checki
n
g
t
h
e
num
ber
o
f
no
de act
i
v
at
i
o
n
i
n
net
w
or
k.
T
h
e m
eani
ng
of
t
h
e t
e
rm
no
de
act
i
v
at
i
o
n
m
e
ans t
h
e
no
des
are
p
r
o
v
i
ded
wi
t
h
a
u
t
h
ent
i
cat
ed sec
r
e
t
key
t
o
pe
rf
or
m
co
m
m
uni
cati
on
wi
t
h
eac
h
o
t
her.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
MDS-WLAN: Maximal Dat
a
Secur
ity in
WLAN fo
r Resistin
g
Po
ten
tia
l
Th
rea
t
s (La
t
h
a
P.H.)
86
3
Tabl
e 1
C
o
m
p
one
nt
s use
d
fo
r
Ex
peri
m
e
nt
s
Co
m
ponents T
y
pe
Secur
ity
Pr
otocol
Nu
m
b
er
s
W
L
AN
Router
s
L
i
nksy
s
-
W
R
T
54G-
802.
11g
W
E
P,
W
P
A,
W
P
A2
7
Netgear
-W
GR614
W
P
A,
128-
bit WEP
5
Co
m
ponents T
y
pe
I
E
EE
Nu
m
b
er
s
T
e
r
m
inals
L
e
novo Noteboo
k
802.
11a/b
14
L
e
novo T
h
inkPad
802.
11 b/
g/n
15
Dell L
a
titude (
D
610)
802.
11
b
19
Dell L
a
titude (
D
400)
802.
11
b
11
Hence
,
usi
ng
ou
r p
r
i
o
r SA
KG
P t
echni
qu
e, i
f
t
h
ere i
s
onl
y
on
e n
o
d
e, t
h
e
r
e i
s
n
o
reas
on t
o
p
e
rf
orm
authe
n
tication
as SAKGP already ens
u
re
d robust aut
h
entic
ation from
one
access point to one term
inal using
bidirectional keys
sha
r
ing. Howe
ve
r, if there
are
prese
n
ce
of m
o
re
t
h
an 2 nodes, the
access
poi
n
t
will
g
e
n
e
rate 128
bit o
f
AES secret k
e
y sh
aring
(lin
e-8
o
f
Algorith
m
-
1
)
and
perfo
r
m
sp
littin
g
of th
e secret
k
e
y to
be di
st
ri
but
e
d
wi
t
h
i
n
t
h
e
net
w
o
r
k
(Li
n
e
-
1
1
of Al
go
ri
t
h
m
-
1
)
. On
e o
f
t
h
e in
terestin
g
po
in
t in
p
r
esen
t
m
o
d
e
l is
that access
point will m
a
nage
the e
xplic
it re
cords
of the
se
cret key
by
giving
uni
que
node
ID t
o
eac
h node
(Line
-
12), which is of pri
v
at
e type. Hence no
other
nodes
in the network can ev
e
r
access that information
renderi
n
g pote
ntial node
ID to e
n
su
re t
h
e privacy of acces
s point
whic
h i
ndi
rectly
m
a
intains hi
ghe
r le
vel of
con
f
i
d
e
n
t
i
a
l
l
y
i
n
m
u
l
t
i
hop c
o
m
m
uni
cat
i
on p
r
oces
s i
n
WL
AN
wi
t
h
hi
g
h
e
r
n
u
m
b
er o
f
n
ode
s.
An
ot
he
r
uni
que
p
o
i
n
t
to
b
e
n
o
t
ed
in
th
e
d
e
sign
prin
cip
l
e
o
f
Algo
rith
m
-
1
is th
at th
e secret
k
e
y can
b
e
splitted
in
o
n
l
y 2 o
r
1
6
part
s as t
h
e m
i
ni
m
u
m
si
ze of one
bl
oc
k
of
m
e
ssage occ
u
p
i
es aro
u
n
d
8 b
i
t
t
o
sup
p
o
r
t
1
28
bi
t
of e
n
c
r
y
p
t
i
o
n
usi
n
g
AES
(
s
o
,
8
x
1
6
=
1
28
)
(L
i
n
e-
13
).
W
e
ch
oos
e t
o
w
o
rk
o
n
AES
as t
h
i
s
i
s
f
r
eq
ue
nt
l
y
ad
opt
e
d
c
r
y
p
t
o
g
r
aphi
c
has
h
function i
n
norm
a
l wi-fi environm
ent like office, c
a
mpus
, ca
feteria
etc.
Afte
r recei
ving the
secret
key,
the re
que
ster
node is allowed a
n
acce
ss to
the network. It
is
critically
i
m
portant for us to i
n
corporat
e
algorithm
-
1 to avoid rogue a
ccess poi
nt as well as
for prope
r ide
n
tification of legitim
ate node
s in WL
AN
envi
ro
nm
ent
2.
2 Alg
o
rithm
f
o
r Nod
e
Acti
va
tio
n
The
prese
n
t sy
ste
m
ensure
s optim
a
l secu
rity b
y
adop
ting
a
si
m
p
le
and yet
cryptographic
mechanism
co
nsid
eri
n
g
only th
ree en
titie
s, sou
r
ce
n
o
d
e
(i
s
), dest
i
n
at
i
o
n n
ode
(i
d
) and access point
(router). Aft
e
r the
req
u
ester n
ode
(i
s
) ob
tain
activ
atio
n
state from th
e Alg
o
rithm
-
1
,
it can
commu
n
i
cate with
th
e
d
e
stin
atio
n
no
d
e
(i
d
)
u
s
i
n
g
Algo
rith
m
-
2
.
Acco
rd
ing
to
Algo
rith
m
-
2
,
an
y n
o
d
e
in
t
h
e n
e
twork
can
in
itialize a
m
e
ssag
e
as a
source node to the access poin
t, where the source node
will be requi
re
d to select the IP address of the
destination node and this i
n
form
ation has t
o
be
forwarde
d to the access
point. T
h
e
prim
e reason
behi
nd this is
that access point is a node
considere
d
in
the network that has secure
d
inform
ation about the sourc
e
and
d
e
stin
ation
n
o
d
e
s. Th
e so
urce no
d
e
will
g
e
n
e
rate t
h
ei
r own
1
28-b
it AES
secret k
e
y
(Lin
e-3
o
f
Al
g
o
rith
m
-
2
)
and
will send a request
m
e
s
s
age to the access poi
nt ab
out the splitted key (Line-
4 of Al
gorithm
-
2). The
source
node will
be authen
tic
ated by the access poi
nt, whic
h upon su
ccessful authe
n
tication, the access poi
nt
will retriev
e
t
h
e sp
litted
k
e
y
fro
m
th
e n
e
two
r
k
(Lin
e-5
o
f
Al
g
o
rith
m
-
2
)
.
Hen
ce, it can
b
e
seen
th
at secret
k
e
ys
resides
in
network a
n
d access
poi
nt can
only
gene
rate it whe
n
eve
r
t
h
e re
quest is m
a
de by sender
node
(i
s
).
Algorithm-1 for Node Activat
io
n
Inp
u
t
: request
message for au
th
entication (i
req
), r
e
quester
node (i)
,
Access point (r
outer)
Output
: Authorization for
requ
ester nod
e.
Start
1. Node
i
r
e
ques
t
i
req
to
join
th
e n
e
twork
2. i
req
router.
3. Perform
au
the
n
tic
ation
4.
If
i=1,
5.
No
authen
tic
at
io
n
6.
Return
;
7.
If
i
⩾
2,
8.
rout
er
hash(s
k
) //AES s
ecre
t
k
e
y
9.
u=h
a
s
h
(s
k
); //s
k
=S
ecre
t
k
e
y
10.
Break
;
11. Distribu
te
u
to i
n.
//n
=to
t
al nu
mber of nodes
12. Gen
e
rate Priv(ID)
i
n
.
13. Spli
t
u
to R
a
nd(i
n
) (2<i<16)
14.
Activate the node
i
End
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 5
,
N
o
. 4
,
Aug
u
s
t 2
015
:
85
9
–
86
8
86
4
2.
3 Al
g
o
ri
thm
f
o
r Ma
xi
mal Data
Security
After th
e access po
in
t
retrieves th
e
resp
on
ses, it m
e
rg
es th
e
k
e
y (k
i
) fr
om
th
e send
er no
d
e
(
i
s
) and
response Res(m
s
g
split
ke
y
)
that
it has retrieved recently (Line
-
6 of
Al
gorithm
-
2). The concatenated res
u
l
t
(v
s
) o
f
th
is op
eration
is send
to th
e
send
er
no
d
e
.
Th
e send
er nod
e
will p
e
rform
en
cryp
tio
n
o
f
t
h
e m
e
ssage twice,
wh
ere th
e first
lev
e
l o
f
en
cryptio
n
will b
e
carried
ou
t u
s
ing
secret k
e
y (k
i
) of t
h
e se
nde
r n
ode i
t
s
el
f (Li
n
e-9 o
f
Algo
rith
m
-
2
)
an
d
secon
d
lev
e
l o
f
en
cry
p
tio
n
will b
e
carried
o
u
t
u
s
ing
sp
litted
k
e
y
(v
s
) that is recently
receive
d from
access poi
nt (L
ine-10
of Al
gorithm
-
2). Obta
ining the
prope
r
update about the destination node
by the acces
s
poi
nt, se
nde
r
node
can
now transm
it data to
the destination node
. T
h
e
de
stination
node
, after
receiving t
h
e e
n
cry
p
ted
data,
will request
se
nde
r
node
for t
h
eir
own secret key
(k
i
).
Th
en th
e d
e
stin
ation
n
o
d
e
requ
ests th
e access p
o
i
n
t
fo
r
sp
litted
k
e
y (v
s
) of t
h
e source
node as it will
be always in
possession of
access
poi
nt. Upon
re
ceiving t
h
e re
quest, th
e access poi
nt will pe
rform
authenti
ca
tion of the
destination
node and
retrieve source
node splitted key from the network.
Finally, the access point m
e
rges the splitted key (vs) a
n
d
response and the concatenate
d
outcom
e (v
d
) will b
e
fo
rward
e
d
as a n
e
w sp
litted
k
e
y to
t
h
e d
e
stin
ation
n
ode
(Line
-
17 of Algorithm
-
2). Upon r
eceivi
ng
the splitted
ke
y, the de
stina
tion
node also perform
s dua
l step
d
ecry
p
tio
n
process.
Th
e first lev
e
l
of d
ecryptio
n
p
r
o
ces
s is
mech
an
ized b
y
sp
litted
k
e
y of sou
r
ce nod
e
(Lin
e-
1
9
of
Algo
rithm
-
2
)
and
th
e seco
nd
lev
e
l of th
e
d
ecr
y
p
tion
process is
mechanize
d
by s
ecret key
of s
o
urce
no
de (Li
n
e
-
20
of
Al
go
ri
t
h
m
-
2).
Algorithm-2 for Maxima
l Data
Securit
y
(
M
DS)
Inp
u
t
: IP addres
s of i
d
,
Output
: S
u
cces
s
f
ul and
S
ecur
e
d
a
ta
trans
m
is
s
i
on
Start
1. Initialize sour
ce nod
e
is
and
d
e
stination nod
e
i
d
.
2. i
s
StringCap
ture(IP of
i
d
) to
r
outer
3. i
s
gen
e
rates k
i
(size of
i=128)
4. i
s
Req(msg
splitkey
) to router
5. router v
a
lid
ate Req(msg
splitkey
) and retrieves Res(msg
splitke
y
)
6. router
v
s
=
c
a
t(k
i
|| R
e
s(
m
s
g
splitkey
))
7. Send
v
s
to
i
s
8. Ini
tia
te
dual
e
n
cr
y
p
tion
b
y
i
s
9. i
s:
(E
S1
=
e
nc
ry
pt
(
k
i
))
10. i
s
: (
E
s2
=encr
y
pt(v
s
))
11. i
s
tr
ansm
it da
ta
to i
d
.
12. i
d
re
ceiv
e
d
e
n
cr
y
p
ted
dat
a
f
r
o
m
i
s
.
13. i
d
R
e
q(k
i
) to
i
s
14. i
s
Res(k
i
) to
i
d
15.
i
d
Req(v
s
)
to
router
16.
router
au
the
n
tic
ated
i
d
and
re
triev
e
v
s
from network
17.
router
v
d
= cat(v
s
|| R
e
s(
msg
s
p
litkey
)) to i
d
18. Initiate dual
encr
y
p
tion b
y
i
d
19. i
d
: (
E
S4
=encr
y
pt(v
d
))
20. i
d:
(E
S3
=en
c
r
y
pt(k
i
))
End
The
pri
m
e ob
j
ect
i
v
e o
f
t
h
e
pr
o
pose
d
al
go
ri
t
h
m
s
di
sc
u
s
sed
in presen
t
stu
d
y
is t
o
inco
rpo
r
ate m
u
lt
ilayer
securi
t
y
p
r
ot
oc
ol
f
o
r
WLA
N
un
de
r m
o
st
ch
al
l
e
ngi
n
g
e
n
vironm
ent. T
h
e
present
syste
m
is com
p
ared wi
th the
m
o
st
freque
nt
l
y
ado
p
t
e
d c
r
y
p
t
o
gra
p
hi
c p
r
o
t
ocol
s i
n
W
L
AN i
.
e
.
S
H
A
and
AE
S. T
h
e
pres
ent
st
udy
of
fers
a
sim
p
l
e
and y
e
t
a ro
b
u
st
pr
ot
oc
ol
f
o
r
pe
rf
orm
i
ng
enc
r
y
p
t
i
o
n
as wel
l
as
decr
y
p
t
i
on a
s
ex
pl
a
i
ned i
n
t
h
e
p
r
e
v
i
o
us
sect
i
on.
It
i
s
k
n
o
w
n t
h
at
a
t
y
pi
cal
cry
p
t
o
g
r
a
phi
c al
go
ri
t
h
m
has
va
ri
o
u
s i
t
e
rat
i
v
e st
ep
s a
n
d
hence
i
t
can
ens
u
re
hi
g
h
est
l
e
vel
o
f
secu
ri
t
y
. H
o
weve
r, e
n
s
u
ri
n
g
t
h
e c
o
m
m
uni
cat
i
on an
d se
r
v
i
ce rel
a
y
i
s
anot
her
per
f
o
r
m
ance
fact
or t
h
at
sh
o
u
l
d
be ev
al
uat
e
d w
h
i
l
e
fr
am
ing c
r
y
p
t
o
g
r
ap
hi
c p
r
ot
ocol
.
T
h
e ne
xt
sect
i
o
n di
sc
usses a
b
out
t
h
e
resul
t
acc
om
pl
ishe
d f
r
o
m
t
h
e st
udy
.
3.
RESULT DI
S
C
USSIO
N
The res
u
lt accom
p
lished from the propos
ed study is
discusse
d in this section with respect to
t
h
r
o
u
g
h
p
u
t
,
l
a
t
e
ncy
,
a
n
d
pack
et
del
i
v
ery
rat
i
o
.
Th
ro
u
g
h
p
u
t
i
s
eval
uat
e
d
by
co
nsi
d
e
r
i
n
g t
h
e am
ount
of t
h
e dat
a
packet being transm
itted from the sende
r t
o
the receive
r. Hence,
we ca
lc
ulate the throughpu
t by estim
a
ting
th
e rate
o
f
g
e
neratio
n of th
e
k
e
ys fo
r v
a
li
d
a
tin
g
th
e user
t
h
at ena
b
les t
h
e
m
to forward t
h
e
data pac
k
et
s with
respect
t
o
t
h
e
r
e
que
st
bei
n
g
m
a
de by
t
h
e
5
9
u
s
ers i
n
v
o
l
v
ed i
n
t
h
e ex
pe
r
i
m
e
nt
. Tabl
e
2 hi
ghl
i
ght
s t
h
at
AES
h
a
s b
e
tter thro
ugh
pu
t p
e
rform
a
n
ce reco
rded
in
ob
serv
at
io
n
a
l ti
m
e
in
secon
d
s
co
m
p
ared
to
SHA. AES
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
MDS-WLAN: Maximal Dat
a
Secur
ity in
WLAN fo
r Resistin
g
Po
ten
tia
l
Th
rea
t
s (La
t
h
a
P.H.)
86
5
al
go
ri
t
h
m
i
s
hi
ghl
y
resi
st
i
v
e
agai
nst
a
n
y
b
r
ut
e
fo
rce
attack,
but
owing to exte
nsive i
n
clusi
on
of com
p
lex
m
a
t
h
em
at
i
c
al
desi
g
n
s,
AES
coul
d be sl
ow
er t
o
o
.
S
HA a
l
go
ri
t
h
m
on t
h
e ot
her
ha
nd i
s
fo
u
nd t
o
be
bet
t
e
r
alternate for
s
ecurity for
AES as
it pro
d
u
ces long
h
a
sh
v
a
lu
e, so
m
e
th
in
g wh
ich
A
E
S cann
o
t
pr
odu
ce.
Al
t
h
o
u
g
h
S
H
A s
u
p
p
o
rt
s
hi
ghe
r sec
u
ri
t
y
pr
ot
oc
ol
s,
b
u
t
i
t
does
n
’t
s
u
p
p
o
r
t
en
ha
ncem
ent
o
f
per
f
o
r
m
a
nce i
n
lar
g
e scale
W
L
A
N
system
i
n
r
eal-
tim
e. Ta
b
l
e 2
sh
ow
s that o
v
e
r
a
ll thr
o
u
ghp
u
t
p
e
rf
orman
ce o
f
A
E
S is f
ound
to be al
ways better com
p
ared to SHA
versions. T
h
e
prop
os
ed system
revises the structure of
AE
S to
ge
nerate
th
e sp
lit k
e
ys i
n
su
ch
a
way th
at it h
a
s b
i
-d
i
r
ectio
n
a
l
n
a
ture; it is lig
h
t
weig
h
t
(12
8
b
it),
an
d
supp
orts op
ti
m
a
l
securi
t
y
o
n
re
al
-t
im
e t
e
r
m
i
n
al
s i
n
cl
ude
d i
n
o
u
r
ex
pe
ri
m
e
nt
. He
nce
,
be
t
t
e
r no
n
-re
pu
d
i
at
i
on p
o
l
i
c
y
can b
e
ens
u
re
d
by
t
h
e
prese
n
t
sy
st
em
al
on
g
wi
t
h
dat
a
pac
k
et
i
n
t
e
gr
i
t
y
.
Tab
l
e
2
Th
roug
hpu
t An
alysis
Time(Sec)
SHA
AES
AES w
i
th MDS
0.07412
1.74
2.24
3.86
0.11657
1.80
2.39
3.91
0.16013
1.84
2.34
3.96
0.1017
2.01
2.49
3.98
0.18681
5.74
2.24
7.98
0.23037
5.80
6.39
8.06
0.27203
5.84
6.34
8.17
0.3145
6.01
6.49
9.24
0.40061
9.74
7.24
9.96
Tabl
e 3
hi
g
h
l
i
ght
s t
h
e l
a
t
e
nc
y
anal
y
s
i
s
of t
h
e p
r
ese
n
t
sy
st
em
. The p
r
ese
n
t
m
odel
M
D
S
wi
t
h
A
E
S
has
red
u
ce
d
latency factor
com
p
ared to c
o
nve
n
tional
AES and SH
A
alg
o
rith
m
in
c
r
yp
tog
r
aph
y
.
Hen
c
e, th
e outco
me
highly enc
o
ura
g
es t
h
e system
to be
used in m
o
re
large
scale
s
without any
fear
of
c
o
m
p
ro
m
i
zat
i
on by
i
n
t
r
u
d
er
.
Tabl
e
3 Lat
e
nc
y
Anal
y
s
i
s
Time(Sec)
SHA
AES
AES w
i
th MDS
0.481667
4.49
3.49
2.01
0.585278
9.19
6.49
6.03
0.620815
13.19
10.49
10.01
0.632000
17.74
16.34
13.74
0.633665
17.89
16.39
13.89
0.634306
17.84
16.44
13.84
0.637084
18.01
16.49
14.28
0.647447
22.79
21.29
14.79
0.65454
25.49
24.01
18.79
Table 4 Data
Packet
Deli
very Ratio
Analysis
Time(Sec)
SHA
AES
AES w
i
th MDS
1 3.96
4.86
5.46
5 4.01
5.01
5.61
20 8.23
9.31
14.31
30 10.37
14.04
19.00
40 14.11
18.31
19.84
50 20.19
21.41
22.62
60 24.05
25.03
26.31
To c
h
eck i
n
t
e
gri
t
y
of t
h
e da
t
a
packet
,
pac
k
et
del
i
v
e
r
y
ra
t
i
o
i
s
com
put
ed by
am
ount
o
f
t
h
e t
e
st
fi
l
e
al
ready
receive
d by the destination
node to
the am
ount of total files already se
nt by the sender node
. Finally, we
eval
uat
e
t
h
e t
i
m
e
requi
re
d t
o
t
r
ansm
i
t
t
h
e da
t
a
packet
by
di
vi
di
n
g
num
ber
of
bi
t
s
by
rat
e
of
dat
a
t
r
an
sm
issi
on
.
For
bet
t
e
r prec
i
s
i
on
a
n
al
y
s
i
s
, we have
u
s
ed
W
i
reS
h
ar
k [
2
3
]
th
at m
o
n
ito
rs th
e
real-tim
e d
a
ta tran
saction
o
n
th
e
expe
ri
m
e
nt
al
test
-be
d
of M
D
S. Tabl
e 4 sh
o
w
s t
h
e o
u
t
c
om
e of t
h
e pac
k
et
del
i
v
ery
ratio, where it can be see
n
th
at p
e
rfo
r
m
a
n
ce of AES
with
p
r
o
p
o
s
ed
M
D
S is m
u
ch
b
e
tter co
m
p
ared
to
conv
en
tion
a
l SHA an
d AES. The
resu
lts ob
tain
ed
sh
ow
t
h
e j
u
stificatio
n
o
f
u
s
i
n
g
m
o
d
i
fi
ed
AES to
supp
ort secu
rity in
WLAN.The co
nv
en
tio
n
a
l
researc
h
outcomes on net
w
ork security is tested for
pr
oc
essi
ng
t
i
m
e
t
h
at
gi
ves
t
h
e sc
al
e of
com
put
at
i
onal
tim
e
co
m
p
lexity.
W
e
ha
ve s
h
own e
x
tensi
v
e analysis by
obs
e
rvi
ng t
h
e com
putationa
l tim
e
com
p
lexity of each
p
h
a
ses
o
f
algorith
m
i
m
p
l
e
m
e
n
tatio
n
.
Th
e co
m
p
u
t
atio
n
a
l t
i
m
e
co
m
p
lex
ity o
f
th
e
p
r
esen
t MDS algo
ri
th
m
i
s
stu
d
i
ed
with
resp
ect to i) activ
atio
n
tim
e, i
i
) v
a
lid
a
tion
ti
me, an
d iii) time requ
ired to p
e
rfo
rm
en
cryp
tio
n.
Hence
,
it can
be see
n
that propose
d
technique excels
b
e
tter as co
m
p
ared to
th
e ex
isting
secu
rity stand
a
rd
s
u
s
ing
SHA as well as freq
u
en
tly u
s
ed
AES alg
o
rith
m
in
th
e wireless ro
u
t
ers. Th
e outco
m
e
s in
th
e
tab
l
es
ab
ov
e exh
i
b
its th
at it no
t
o
n
l
y en
su
re
b
e
tter security bu
t also
o
p
tim
izes t
h
e
n
e
two
r
k
i
ng and
co
mm
u
n
i
catio
n
per
f
o
r
m
a
nce o
f
t
h
e
WLA
N
.
The al
go
ri
t
h
m
i
s
very
l
i
ght
-w
ei
ght
ed
f
o
r
wh
i
c
h rea
s
o
n
t
h
e
st
ora
g
e c
o
m
p
l
e
xi
t
y
i
s
q
u
ite less. H
e
nce, it can suppo
r
t
t
h
e ter
m
in
als ev
en
in pr
esen
ce
o
f
leth
al th
r
eats
on
W
L
A
N
.
Fig
u
re 3
h
i
gh
lig
h
t
s th
e an
aly
s
is o
f
th
e activ
atio
n
tim
e. B
a
sically ac
tiv
atio
n
ti
m
e
p
e
rtain
s
to
ti
m
e
requ
ired
to
ex
ecu
t
e th
e Algo
ri
th
m
-
1
.
W
e
com
p
are o
u
r
results with
SHA-1/2
,
as it is
th
e m
o
st freq
u
e
n
tly u
s
ed
al
go
ri
t
h
m
i
n
m
a
ny
exi
s
t
i
ng st
udi
es e.
g. [
2
4]
, [2
5]
et
c. The o
u
t
c
om
e shows t
h
at
wi
t
h
i
n
creasi
n
g n
u
m
ber of
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 5
,
N
o
. 4
,
Aug
u
s
t 2
015
:
85
9
–
86
8
86
6
access point (we ha
ve im
ple
m
ented on
16
access points ) consi
d
ere
d
in
the study,
SHA1/
2
cons
um
e
s
m
u
ch
ex
tra tim
e
to
g
e
n
e
rate th
e sp
lit k
e
ys co
m
p
ared
to
th
e
p
r
esent MDS. Th
e
pri
m
e reaso
n
is
SHA1
/
2
u
s
es 16
0
b
i
t
o
f
m
e
ssag
e
g
e
n
e
ration
h
e
n
c
e th
e size of th
e
m
e
ssag
e
b
e
comes q
u
ite h
e
avy fo
r
sp
littin
g
o
p
e
ration
of the k
e
y
.
The si
m
i
l
a
r operat
i
o
n i
n
pr
esent
M
D
S
us
i
ng
AES
uses
onl
y
1
2
8
bi
t
si
ze, hen
ce, a
c
t
i
v
at
i
on o
f
t
h
e no
d
e
becom
e
s quite
faster. Once
the node is activated
by th
e
r
o
ut
er,
t
h
e
n
i
t
ca
n c
o
m
m
uni
cate wi
t
h
ot
her
n
ode
s i
n
WL
AN sy
st
e
m
. The curve
of M
D
S i
s
f
o
un
d t
o
be q
u
i
t
e
stable and a
l
m
o
st linear whereas
, the c
u
rve
of
SHA1/
2
i
n
cre
a
ses m
o
re as increased num
b
er
of
de
pende
n
c
y
of comm
unication
on access
point.
Fi
gu
re
4
hi
g
h
l
i
ght
s t
h
e
o
u
t
c
om
e of t
h
e
val
i
d
at
i
o
n t
i
m
e w
h
i
c
h
pert
a
i
ns t
o
o
p
erat
i
o
n
t
i
m
e
of
A
l
go
r
ith
m
-
2
.
Th
e
o
p
e
r
a
tion
ti
m
e
o
f
A
l
gor
ith
m
-
2
h
a
s t
w
o typ
e
s of
step
s, on
e
f
o
r
sender
nod
e an
d o
t
h
e
r
fo
r
d
e
stin
ation
n
o
d
e
.
In th
e en
tire op
eratio
n of Al
g
o
rith
m
-
2
,
the router
ha
s to ret
r
ieve t
h
e sec
r
et keys
as a
response agai
nst the request from
both sender
node as
w
e
l
l
as dest
i
n
at
ion
no
de. T
h
i
s
t
y
pi
cal
case of key
m
a
nagem
e
nt
d
o
es
n’t
req
u
i
r
e
t
o
st
o
r
e t
h
e
ke
y
i
n
any
p
h
y
s
i
cal
devi
ce
as t
h
e
key
ha
s t
o
be
ret
r
i
e
ve
d
fr
om
t
h
e
network itself. There
f
ore,
a
m
u
ch re
d
u
ced
st
ora
g
e o
r
m
e
m
o
ry
i
s
requi
r
e
d i
n
t
h
e
ent
i
r
e pr
ocess
of
p
r
o
p
o
se
d
MDS technique.
He
nce, t
h
e valida
t
i
o
n t
i
m
e si
gni
fi
cant
l
y
redu
ced c
o
m
p
ared t
o
S
H
A
1
/
2
p
r
ot
oc
ol
. T
h
e
out
c
o
m
e
show
case t
h
e evi
d
e
n
ce o
f
no
n-
re
pu
di
at
i
o
n
o
f
t
h
e p
r
op
ose
d
s
y
st
em
, whi
c
h
i
s
si
gni
fi
ca
nt
l
y
bet
t
e
r
com
p
ared t
o
SHA1/2.
Fi
gu
re
3.
A
n
al
y
s
i
s
of
Act
i
v
at
i
o
n
Ti
m
e
Fi
gu
re
4.
A
n
al
y
s
i
s
of
Val
i
d
at
i
o
n
Ti
m
e
Fi
gu
re 5.
A
n
al
y
s
i
s
of Enc
r
y
p
t
i
on Ti
m
e
Fi
gu
re 5 s
h
o
w
s t
h
e t
i
m
e
requi
re
d t
o
pe
rf
o
r
m
onl
y
encry
p
t
i
on
of t
h
e
d
a
t
a
packet
pa
r
t
i
c
ul
arl
y
i
n
Algorithm
-
2. Algorithm
-
2
design pri
n
ciple
shows that the
access poi
nt con
cate
n
ates the key of the se
nde
r as
well as resp
onse m
e
ssag
e
. Th
e sim
i
lar o
p
e
ratio
n
is also
carried out in
decry
p
tion
st
age, but
wi
t
h
r
e
duc
e
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
MDS-WLAN: Maximal Dat
a
Secur
ity in
WLAN fo
r Resistin
g
Po
ten
tia
l
Th
rea
t
s (La
t
h
a
P.H.)
86
7
depe
n
d
ency
of
secret
k
e
y
fr
o
m
sender n
o
d
e
o
w
i
n
g t
o
Al
g
o
ri
t
h
m
-
1.
He
n
ce, t
h
e e
n
cry
p
t
i
on t
i
m
e doesn
’t
t
a
k
e
m
u
ch t
i
m
e
for
encry
p
t
i
n
g da
t
a
wi
t
h
i
n
crea
si
ng
num
bers
of t
h
e
user i
n
put
s
of 1
6
bi
t
s
. He
nce, o
n
every
en
cry
p
tio
n, the o
p
e
ration
a
l
step
s sp
eed
s up
b
y
u
s
ing
AE
S algo
rith
m
th
at run
s
qu
ite faster c
o
m
p
ared t
o
SH
A1/
2
on
ha
r
d
wa
re.
Al
t
h
ou
gh
S
HA
ve
rsi
o
n s
u
p
p
o
rt
s
1
6
0
bi
t
s
o
f
m
e
ssage, b
u
t
AES i
s
a
l
so scal
abl
e
t
o
m
o
re
t
h
an 1
6
8
bi
t
s
o
f
m
e
ssage. Th
e 12
8 bi
t
bl
oc
k
si
ze of AES i
n
t
h
e pro
p
o
se
d sy
st
em
rende
rs t
h
e fast
er en
cry
p
t
i
o
n
mechanism
as
com
p
ared to fre
que
ntly
us
ed S
HA
ve
rsi
ons
i
n
cry
p
t
o
gra
p
hi
c has
h
fu
nct
i
o
n.
Hen
ce, t
h
e
pr
o
pose
d
al
go
r
i
t
h
m
not
onl
y
sup
p
o
rt
s
p
o
t
e
n
t
i
a
l
securi
t
y
st
anda
r
d
s
but
al
so s
u
pp
ort
s
hi
ghe
r c
o
m
m
uni
cat
i
on
per
f
o
r
m
a
nce.
4.
CO
NCL
USI
O
N
The p
r
i
m
ary out
com
e
of t
h
e pr
o
pose
d
sy
st
em
shows t
h
at
t
h
e prese
n
t
e
d
al
go
ri
t
h
m
prov
i
d
es hi
g
h
l
y
efficien
t techniq
u
e
s
no
t on
ly to
wa
rd
s m
a
x
i
mized
d
a
ta
secu
rity bu
t
also enha
nces
the comm
unication
per
f
o
r
m
a
nce in
W
L
A
N
i
n
m
o
st
cost
effect
i
v
e
m
a
nner.
Ens
u
ri
ng sec
u
r
i
t
y
over
W
L
A
N
i
s
one o
f
t
h
e
m
o
st
critical challe
nge
s enc
o
unte
red
by the us
ers worl
dwi
d
e
.
Although most advance s
ections of wi
reless
n
e
two
r
k
i
ng
sy
ste
m
are a th
o
r
o
ugh
p
a
rt o
f
inv
e
stig
ation
in
research
co
mmu
n
ity, bu
t still
th
e m
o
st p
r
acti
cally
ado
p
t
e
d
WL
A
N
i
s
enc
o
u
n
t
e
r
i
ng sec
u
ri
t
y
t
h
reat
s. T
h
e p
r
es
ent
st
u
d
y
has i
n
t
r
od
uce
d
a se
curi
t
y
pr
ot
oc
ol
whi
c
h
is no
t on
ly ligh
t
wei
g
h
t
ed
but also
p
o
t
en
tially secu
re
ag
ai
nst v
a
ri
o
u
s typ
e
s of leth
al t
h
reats on
WLAN. Th
is
p
a
p
e
r
h
a
s
presen
ted
m
a
in
ly two algo
rith
m
s
th
at is th
e
b
a
ckb
o
n
e
of th
e stud
y. Th
e
first al
g
o
rith
m
en
sures th
at
every
node i
n
the environm
e
n
t are le
gitim
a
te and are a
u
t
h
or
i
zed com
m
uni
cat
i
o
n. A u
n
i
q
ue
fe
at
ure
of
t
h
i
s
pape
r is
the ac
cess point
m
a
intains t
h
e
uni
que
node
ID
pri
v
ately that cannot
be
accesse
d
by a
n
y ot
her node
prese
n
t
i
n
t
h
e
net
w
or
k.
The
pr
o
pose
d
t
e
c
h
n
i
que al
s
o
of
fer
s
t
h
e
best
sec
u
ri
t
y
feat
ures
ev
en i
f
t
h
e sec
r
et
key
i
s
com
p
rom
i
sed t
h
en
al
so
dat
a
c
a
nn
ot
be
dec
r
y
p
t
e
d
by
t
h
e i
n
t
r
u
d
er
as i
t
has
hi
g
h
er
l
e
vel
of
de
pe
nde
ncy
o
f
t
h
e
sp
litted
k
e
ys,
wh
ich
are
n
e
ver sh
ared
with
o
t
h
e
r no
d
e
s pr
esen
t in
th
e n
e
twork. Th
e
o
u
t
co
m
e
o
f
th
e p
r
o
p
o
s
ed
tech
n
i
qu
e is
co
m
p
ared
with ex
isting
security tech
n
i
qu
es lik
e AES,
SHA1
/2 th
at
are fre
quently used in
W
L
A
N
. Th
e r
e
su
lts sh
ow
th
at pr
oposed
MDS sch
e
m
e
p
r
ov
id
es o
p
tim
al se
cu
r
ity w
ith
su
p
e
r
i
or
com
m
uni
cat
i
on per
f
o
r
m
a
nce.
REFERE
NC
ES
[1]
Y. Zhang, H. Zheng, M.
Ma IGI.Handbook of Research
on Wireless Security
. V.1
Technology &
Engineerin
g
.
2008; 860
[2]
R.
Prasad,
S.
Dixit,
V.
Nee, A.
Ojanpera. Artific
i
a
l int
e
l
ligen
ce Global
i
zat
i
on of Mobile and Wireless
Communications.
Springer
, 201
0; 356
[3]
M. Finneran
,
F
.
D. Jonathan
,
T.
Finneran. Computers th
e Priv
acy Engin
eer
'
s
Man
i
festo.
Spring
e
r
. 2014;
104
[4]
Baek, H
y
un K
,
S
m
ith. S
.
W
and K
o
tz. D
.
A
S
u
rve
y
of
WPA and 80
2.11 i RSN Authentication Protocols.
Dartmouth
Computer Scien
ce
Technical Report
. 2004
[5]
S
.
M
u
k
e
s
h
,
R
.
B
a
i
,
Y
.
L
i
n
,
Y
.
W
a
n
g
,
W. Yang
, and Q. Zhang
.
Key
manag
e
ment p
r
otocols for Wir
e
less Networks.
Lab for
Advanced Networking
. D
e
pt of
Com
puter
Science. Univers
i
ty
of
Kentu
c
k
y
,
Technica
l Report
. 2004
[6]
A. Kumar, and
A. Aggarwal, C
h
aru. Survey
an
d Taxonom
y
of
Key
M
a
nagement Protoc
ols fo
r
Wired and Wir
e
less
Networks.
International
Journal of N
e
twor
k Secu
rity
&
Its Applications
. 2012
; 4
[7]
G. Kambourakis, A. Rouskas, S. Gritza
lis
, and
D. Geneiatak
i
s.
Support of subs
cribers’ certificates in a h
y
br
id
WLAN-3G environment.
Compu
t
er Networks
. 20
06; 11: pp.1843-
1859
[8]
A. Balachandr
an
, G.M. Voelker
,
and
P. Bah
l
. W
i
reless hotspots: current
challen
g
es and futur
e
d
i
rections.
Mob
i
le
Networks and
Applications
. 200
5; 3: 265-274
[9]
S. Mohanty
.
A new architectu
r
e for 3G and
WLAN
integration and
inter-s
y
s
tem
handover management.
Wire
le
ss
Networks
.2006;
12: 6, 733-745
[10]
A. Bittau
, M. Handley
,
and J. Lackey
.
The final nail
i
n
WE
P'
s
coffi
n.
I
E
EE Sym
posium In Secur
ity and Privacy
.
2006; 15
[11]
X. Xing, E. Sha
k
shuki, D. benoi
t, T. Shel
tam
i
.
S
ecuri
t
y
Ana
l
y
s
is and Im
provem
e
nts for IEEE 802.11 i.
In The 12th
Annual Network and Distributed
System Security
Symposium (
N
DSS'05)
Stanford University.
Stanford. 2005; 90
-
110
[12]
O.
N.
Ondiwa, E. Biermann,
and
G. Noel
. An
inte
grated
s
ecur
i
t
y
m
odel for W
L
A
N
.
In AFRICON
. 2009; 1-6
[13]
Y.
Omar,
M.
Youssef,
and El Gamal.
.
H
.
AR
Q se
crec
y:
From
the
o
r
y
to
pra
c
ti
ce
."
In Information Theory Workshop,
IEEE
. 2009
; 6-1
0
.
[14]
M
.
Beck.
Enh
a
nc
ed TKIP
m
i
ch
ae
l a
tta
cks
.
arXiv p
r
eprint
arXiv
:
14
10.6295. 2010
[15]
J. Padgette, K.Scarfone
,
and
L
.
C
h
en. Guid
e
to Bl
uetooth
s
ecuri
t
y
.
NIST Special Publication
. 2008
; 121
[16]
I.P. Mavrid
is,
H. Androulakis,
B. Halk
ias,
an
d P. M
y
l
onas.
Real-
life parad
i
gms of
wireless network secur
ity
att
acks
.
In Informatics 15th
Pan
h
ellenic Confer
ence
. 2011; 112-1
16
[17]
T. Tsuk
ane, Y.
Todo,
and M. M
o
rii.
Proposal of
a Secur
e
WEP
Operation
again
s
t Existing K
e
y
Recover
y
A
ttacks
and its Ev
aluatio
n. IEEE-Information
Security
(A
sia JCIS), 2012
Seventh
Asia Joint Confer
ence.2
012; 25-30
[18]
V. Poddar
and H
.
Choudhar
y
. A
Comparative Analy
s
is Of
Wireless Security
Proto
c
ols (Wep And
Wpa2). 2014
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 5
,
N
o
. 4
,
Aug
u
s
t 2
015
:
85
9
–
86
8
86
8
[19]
Ajah .A Ifey
i
nw
a. Ev
aluation of
Enhanced S
ecurity
Solutions in 8
02.11-Based Networks.
International Journal of
Network S
ecurity
&
Its Applications
. 2014; 4
[20]
S.A Adib, N.
Raissouni. AES
Encr
y
p
tion Algorithm Hard
ware Implementation Arch
itectur
e
: Resource an
d
Execu
tion Tim
e
Optim
izatio
n.
IAES-INternationa
l Journal
of Info
rmation and ne
twork Security (
IINS)
. 2012; 1:2
[21]
A.H. Sodhro, Y. Li, M.A. Shah.
Nove
l Key
Storage and Management Solution
for the Security
of
Wireless Sensor
Networks.
IAES-
T
ELKOMNIKA Indonesian Journ
a
l of Electrical
Engineering
. 20
13; 11:6
[22]
P.
H.
Latha,
R.
Vasantha.
SAKGP: Secure Auth
entication Key Generati
on Protocol in WLA
N
,
Internationa
l
Journal of Computer App
lica
tion
s
. 2014; 96
: 7
[23]
https://www.
wireshark.
org/
[24]
J
.
Eis
i
ng
er,
P
.
W
i
nterer
, B.
Be
cker,
Se
curing
Wireless Ne
tworks in a
Univ
ersity
Environment
. IEEE
Internatio
nal
Conference on
p
e
rvasive Computing and
Commu
nication Workshop. 2005; 312-3
16
[25]
G. Epiphaniou
. Iterative Blo
c
k Cipher’s
effects on Quality
of Experience fo
r
VoIP Unicast Transmissions un
der
Different Codin
g
Schemes.
Doc
t
orial Dissertatio
n of Un
iversity o
f
Bedfordshire
. 2
010
BIOGRAP
HI
ES OF
AUTH
ORS
Mrs. Lat
h
a P.H. is curren
tly wo
rk
ing
as an
Assistan
t Pro
f
essor in Atri
a Institu
te of
Tech
nol
ogy
,
B
a
ngal
o
re
(
I
n
d
i
a
) i
n
De
part
m
e
nt
o
f
In
fo
rm
at
ion
Sci
e
nce
.
S
h
e has t
o
t
a
l
o
f
15 years
of teaching e
xpe
ri
e
n
ce. She
has
com
p
leted
her
Masters of T
echnology in
C
o
m
put
er Net
w
o
r
k E
n
gi
neer
i
ng at
AM
C
C
o
l
l
e
ge of E
n
gi
nee
r
i
n
g an
d
at
present
i
s
p
u
rsu
i
ng
h
e
r
research program
s fro
m
Visv
esv
a
raya Techno
log
i
cal In
stitu
te, Belg
au
m
.
She ha
s w
on
v
a
ri
o
u
s rec
o
g
n
i
t
i
on i
n
t
h
e a
r
e of
net
w
or
ki
n
g
as wel
l
as soft
ware t
e
st
i
n
g.
She
has
a s
p
ecial interest
on s
ecur
ity issu
es in
wireless
n
e
t
w
ork
i
ng
.
Dr. Vasantha h
a
s com
p
leted h
e
r PhD on 1985 fro
m
Indian Institute of Sci
e
nce. She has
completed h
a
se
Masters of Scien
ce in 1978 from
Manasa Gangothri M
y
sore Univ
ersity
. She h
a
s
35
y
e
ars
of work experien
ce in t
each
ing and has
m
a
de s
o
m
e
s
i
gnifican
t contribu
ti
ons
in the area
of academ
ics
.
S
h
e has
als
o
worked as
As
s
i
s
t
ant P
r
ofes
s
o
r in
Univers
i
t
y
of Okhlahom
a, US
A, as
well as
in Unive
r
s
i
t
y
of Cl
eve
l
an
d, US
A. At pres
ent, s
h
e is
worki
ng as
P
r
ofes
s
o
r
in S
a
m
bhram
Institute
of
Te
ch
nolog
y
Evaluation Warning : The document was created with Spire.PDF for Python.