Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
5, No. 6, Decem
ber
2015, pp. 1328~
1
335
I
S
SN
: 208
8-8
7
0
8
1
328
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Met
a
materi
al Inspired P
a
t
c
h An
tenna for ISM Band by Adding
Single-Layer Complementary
Split Ring Resonators
R
a
j
n
i*, Gursha
ran
Ka
ur*
,
A
n
upma
Ma
rwa
h
a**
* Department of
ECE, SBSSTC (P
TU), Kapurth
ala, Punjab, India
** Departmen
t
o
f
ECE,
SLIET (
D
eemed Univers
i
ty
), Longowal,
Punjab, Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 22, 2015
Rev
i
sed
Au
g
12
, 20
15
Accepted Aug 29, 2015
In this work, we propose the design of metamaterial inspir
ed compact
circu
l
ar pa
tch a
n
tennas load
ed
with com
p
lem
e
ntar
y spli
t-ring
resonators
(CSRRs) for I
S
M band operation
.
CSRRs have been incorporated
horizont
all
y
ins
i
de the di
el
ectr
i
c.
Th
e various
models of CSRR loaded
antenn
as
with differen
t
patch
radius
are produced and ar
e evalu
a
te
d
numerically
with Ansoft HFSS soft
ware.
Th
e results of
th
e suggested
antenn
a des
i
gns
are pres
ented
tha
t
reve
al
a com
p
a
r
able
im
pedanc
e
m
a
tch and
radiation ch
aracteristics with those of
a normal patch antenna with
out CSRR.
The proposed antennas
y
i
eld h
i
gh lev
e
ls
of miniaturization and
similar
perform
ance
to
t
h
e conv
ention
a
l
patch
ant
e
nna
a
t
the 2
.
45GHz.
Keyword:
C
i
rcul
ar pat
c
h
ant
e
na
Co
m
p
le
m
e
n
t
ary sp
lit ring
reso
nato
r (CS
RR)
H
i
gh
f
r
e
q
u
e
n
c
y
str
u
ctuur
e
si
m
u
lato
r (HFSS)
Meta
m
a
terial a
n
tenn
a
M
i
ni
at
ure a
n
t
e
nna
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Raj
n
i,
Depa
rt
m
e
nt
of
El
ect
roni
cs
an
d C
o
m
m
uni
cati
on
E
ngi
neeri
n
g
,
Punja
b
Techni
cal
Uni
v
ersity,
Kapurthala, Punja
b
,
India.
Em
a
il: raj
n
i_
c1
23@yaho
o.co.in
1.
INTRODUCTION
Nowa
days the
sm
all size antenna
becam
e a signi
fican
t
pa
rt of the
overa
ll packa
g
e
vol
um
e due t
o
great
er i
n
t
e
gra
t
i
on of el
ect
r
o
ni
cs. Thi
s
rai
s
ed t
h
e dem
a
nd
for m
i
nim
i
zati
on i
n
ant
e
nna
si
ze. The bas
e
of al
l
these resea
r
ches arouse
from the
m
e
ta
material prop
e
r
t
y
coi
n
ed by
Vi
ct
or Vesel
a
go
i
n
1
9
68 [
1
]
.
The
in
stig
atio
n
o
f
t
h
e m
e
ta
m
a
teri
als (MTMs), with
u
n
n
a
tura
l
exot
i
c
p
r
o
p
ert
i
e
s has pr
o
v
i
d
e
d
a di
ffere
nt
ap
pr
oac
h
to
d
e
sign
electrically-s
m
a
l
l
an
tenn
a (ESA) system
s
.
Split-rin
g
re
s
onat
o
rs
(SRR
s) an
d their
dual,
com
p
lem
e
ntary
split-rin
g
res
onat
o
rs
(CSRR
s
) are
use
d
wi
dely to
m
a
n
u
f
actu
re m
e
ta
materials [2
]-[6
]. In
2
004
,
CSRRs were firstly in
trod
u
c
ed
b
y
Falcon
e
et al.,
p
r
ov
ed to
p
o
s
sess
n
e
g
a
tiv
e p
e
rm
i
ttiv
it
y [6
]. By
u
s
ing
t
h
e
co
n
c
ep
ts of duality
an
d
co
m
p
le
m
e
n
t
arity, Fa
lco
n
e
et al.
sho
w
ed
th
at th
e efficien
t p
e
rm
i
ttiv
ity
o
f
a d
i
electric
com
p
rising CSRRs (regular c
u
ts etched
from a
metallic
di
sk) ca
n be a
d
apt
e
d t
o
desi
re
d fr
eq
ue
ncy
w
h
en t
h
e
dielectric is energized
by the elect
ric fie
l
d polarized
over t
h
e axis
o
f
t
h
e C
S
R
R
s
.
Hence
,
t
h
e
r
e
so
nant
fre
que
ncy
o
f
a
com
p
l
e
m
e
nt
ary
st
ruct
u
r
e can
be re
duc
ed
wi
t
h
va
ri
o
u
s sl
ot
s. So m
i
ni
at
uri
zat
i
on, i
n
a
b
r
oade
r
conce
p
t
,
ca
n
be ac
qui
re
d
b
y
m
a
ki
ng a
hi
gh
fre
q
u
en
cy
ant
e
n
n
a t
o
ra
d
i
at
e at
a l
o
we
r f
r
eq
ue
ncy
.
T
h
i
s
i
s
achi
e
ve
d by
l
o
adi
n
g t
h
e C
S
R
R
s
i
n
si
de t
h
e p
a
t
c
h cavi
t
y
. C
S
R
R
have bee
n
wi
del
y
used i
n
ESA de
si
g
n
s [
7
]
and
t
h
e m
i
ni
at
uri
zat
i
on
of
k
n
o
w
n
desi
g
n
s
[8]
-
[
1
4
]
.
A pl
et
h
o
r
a o
f
m
i
ni
at
uri
zat
i
on t
e
c
hni
que
s i
s
avai
l
a
bl
e i
n
liter
a
tu
r
e
lik
e in
ser
tion
o
f
slo
t
s o
n
t
h
e r
a
d
i
atin
g
p
a
tch
[
1
5
]
,
d
e
sign
of
fr
act
al b
a
sed
an
tenn
a [1
6
]-[1
7
]
and
u
s
e
of a
r
tificial
m
a
terials such as
high im
pedanc
e surfaces
(HIS),
reactive impeda
nce s
u
rfac
es (RIS), m
a
gneto-
d
i
electrics an
d Defected
Grou
nd
Stru
cture
(DGS) b
a
sed
an
tenn
as [1
8
]
b
u
t
th
ese m
e
t
h
od
s
p
r
o
v
i
d
e
litt
le
min
i
atu
r
izatio
n o
f
abou
t 38
% wh
ereas in
co
rpo
r
ation
of CSRRs in
sid
e
the
dielectric provides m
i
niaturization
upt
o 78
%
[
1
2]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Meta
ma
teria
l
In
sp
ired
Pa
tch
An
tenna
fo
r ISM Band
b
y
Add
i
ng
S
i
ng
le-Layer Comp
lemen
t
a
r
y Sp
lit… (Ra
j
n
i
)
1
329
In
t
h
is wo
rk
, variou
s m
i
cro
s
trip
p
a
tch
an
tenn
as lo
ad
ed
with
CSRR is presen
te
d, that
operate in the
ISM
ba
n
d
.
A
m
e
t
a
m
a
t
e
ri
al
inspi
r
ed
desi
gn
app
r
oach i
s
pr
esent
e
d t
o
desi
gn
ve
ry
sm
al
l
pat
c
h a
n
t
e
n
n
as
whi
c
h
are thin ha
ving low
weight, chea
p an
d
easy to
fab
r
icate.
W
ith
m
e
ta
material in
sp
ired, it is
m
ean
t th
at th
e
p
a
rasitic stru
ctu
r
e is
no
t m
e
t
a
m
a
terial itse
l
f; b
u
t
it is in
sp
ired
b
y
th
at
p
o
ssib
ility. Th
e red
u
c
ed
size
o
f
p
a
t
c
h
ant
e
n
n
as i
s
o
b
t
a
i
n
ed
o
v
er a
fi
ne i
m
pedance
m
a
t
c
h, al
on
g a
refl
ect
i
o
n c
o
e
ffi
ci
ent
of
bey
o
n
d
-2
0
dB
i
n
every
case. In t
h
is work, m
i
niaturized ante
nnas
upto 1/15 surface
area reduction,
are ob
serv
ed
in
si
m
u
latio
n
s
with
acceptable de
gradation of
impeda
nce or pattern.
2.
A
N
T
EN
NA
DESIGN
A ra
diating circular
patch is
s
ituated at the t
o
p of
a cylindrical dielectric,
ai
ded wi
t
h
ci
rc
ul
ar gr
o
u
n
d
pl
ane
havi
ng l
e
ngt
h i
d
e
n
t
i
cal
to t
h
e su
bst
r
at
e.
The pat
c
h
is ex
cited
with
m
i
cro
s
t
r
ip
lin
e feed
.
W
i
t
h
in
th
e
p
a
tch
an
d
groun
d
p
l
an
e a m
e
tal
lic d
i
sk
is po
sitio
ned
horizon
tally
an
d
C
S
RRs of
d
i
fferen
t
rad
i
us are in
co
rpo
r
ated
b
y
ski
m
m
i
ng t
h
e
di
sk
m
a
t
e
ri
al
.
2.
1. C
o
n
v
enti
o
n
al
Ci
rcul
a
r P
a
tc
h
A
n
te
nn
a Desi
gn
Fi
gu
re 1
de
pi
ct
s t
h
e desi
g
n
of
con
v
e
n
t
i
onal
ci
rcul
ar
pat
c
h
ant
e
n
n
a wi
t
h
o
u
t
C
S
R
R
.
A ci
rcul
ar c
o
ppe
r
pat
c
h o
f
ra
di
us
22.
1m
m
i
s
etched
on t
h
e t
o
p of a ci
rc
ul
ar R
oge
rs R
T
/
d
ur
oi
d 5
8
70 s
u
b
s
t
r
at
e of ra
di
us
4
6
.
2
m
m
havi
ng
t
h
i
c
k
n
e
ss 2
.
3
4
m
m
, di
el
ect
ri
c con
s
t
a
nt
2.
33
an
d
d
i
el
ect
ri
c l
o
ss t
a
nge
nt
δ
=0.001
2, su
ppo
r
t
ed
b
y
a
cop
p
e
r
g
r
o
u
nd pl
ane of
sam
e
radi
us. A
5
0
Ω
cop
p
e
r
m
i
crost
r
i
p
l
i
n
e o
f
wi
dt
h 1
.
5m
m
,
wi
t
h
an SM
A c
o
nne
ct
i
o
n
situ
ated
o
n
edge o
f
th
e
d
i
electric is feed
ing
t
h
e
p
a
tch
.
Th
e
p
a
tch
rad
i
u
s
is
o
p
tim
ized
to
reso
nate th
e an
ten
n
a
at
2.
45
G
H
z.
Figu
re 1. Conv
en
tion
a
l circular p
a
tch
with
ou
t CSRR
2.
2 .
Desi
gn
A
n
al
ysi
s
o
f
Ci
rc
ul
ar P
a
tc
h
An
tenn
a
The
radi
us
of
a
ci
rcul
ar
p
a
t
c
h,
r
i
s
gi
ve
n by
(
B
al
ani
s
,
1
9
8
2
)
[1
9]
i
s
:
.
(1)
whe
r
e
is s
ubst
r
ate dielectric
constant
i
s
su
bst
r
at
e
he
i
ght
F i
s
o
p
e
r
at
i
ona
l
fre
que
ncy
gi
v
e
n
by
E
quat
i
o
n
(
2
):
.
√
(
2
)
Th
e Equ
a
tio
n
(1) is withou
t co
nsid
eri
n
g
th
e fring
i
ng effects. Fringing resu
lts in
t
h
e electrically
l
a
rger
pat
c
h,
S
o
t
h
e
ef
fect
i
v
e
radi
us
of
pat
c
h
,
i
s
i
s
gi
ve
n by
Eq
uat
i
o
n
(
3
)
.
1
1.7726
/
(3)
Hence
,
t
h
e
res
ona
nt
fre
que
nc
y
i
s
gi
ve
n
by
E
quat
i
o
n
(
4
).
.
√
(4)
whe
r
e
is the
free space
spee
d
of light.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1328 –
1335
1
330
2
.
3
. Ant
e
nna
D
e
sig
n
wit
h
CSRR
For m
i
ni
at
uri
zat
i
on, a c
o
p
p
e
r
di
sk c
o
n
s
i
s
t
i
ng o
f
a C
S
R
R
i
s
i
n
sert
ed
h
o
ri
z
ont
al
l
y
0.
78 m
m
bel
o
w t
h
e
rad
i
ating
p
a
tch as illu
strated
i
n
Fi
g
u
re
2
.
Three d
i
fferen
t
m
o
d
e
ls
of circu
l
ar p
a
tch
an
tenn
a are d
e
sign
ed
with
d
i
fferen
t
p
a
tch rad
ii.
For all
th
e cases
,
t
h
e
gr
o
u
n
d
pl
ane
r
a
di
us i
s
t
a
ke
n
t
w
i
ce of
t
h
e
p
a
t
c
h,
wi
t
h
s
u
bst
r
at
e
t
h
i
c
kne
ss 2.
3
4
m
m
,
and t
h
e
m
i
crost
r
i
p
feed l
i
ne wi
dt
h i
s
t
a
ken
1.
5 m
m
for 50
Ω
charact
eristic im
pedance; all
th
ese are sim
i
l
a
r to th
e con
v
e
n
tio
n
a
l
p
a
tch
.
Fol
l
o
wi
n
g
t
h
re
e m
i
ni
at
ure
ver
s
i
ons
o
f
c
o
nve
nt
i
onal
ci
rcul
a
r
pat
c
h
ant
e
n
n
a
are
desi
g
n
ed:
1)
M
odel
1:
I
n
m
odel
1, t
h
e ci
rc
ul
ar
pat
c
h a
n
t
e
nna
wi
t
h
pat
c
h
radi
us
12
m
m
, a di
s
k
of
ra
d
i
us
r
1
,
23m
m
cont
ai
ni
ng si
ngl
e ri
ng
(
n
=1
) ha
vi
n
g
ra
di
us
r
2
, 7
.
1
mm,
th
ickn
ess
t
, 1
.
5m
m
and ga
p
wi
dt
h
d
,
1.
15
m
m
i
s
in
serted 0.78
mm
b
e
lo
w th
e
p
a
tch
.
2)
M
ode
1 2:
I
n
m
odel
2, t
h
e ci
rcul
ar pat
c
h ant
e
n
n
a wi
t
h
pa
t
c
h radi
us 1
0
m
m
, a di
sk of ra
di
us
r
1
,
9.
8m
m
cont
ai
ni
n
g
t
w
o ri
ng
s (n=
2
) wi
t
h
out
e
r
ri
ng
radi
us
r
2
, 5.
3m
m
,
t
h
i
c
k
n
ess
t
,
1
.
1
6
m
m
, gap w
i
dt
h
d
,
1.
46m
m
and s
p
aci
ng
bet
w
e
e
n
t
h
e ri
ngs
s,
0
.
7
4
i
s
i
n
sert
e
d
0.
78m
m
bel
o
w t
h
e
pat
c
h
.
3)
M
ode
1 3:
In
m
odel
3, t
h
e ci
rcul
ar
pat
c
h a
n
t
e
nna
wi
t
h
pat
c
h ra
di
us
6m
m
,
a di
sk
of
rad
i
us
r
1
,
10
.7m
m
cont
ai
ni
n
g
t
h
ree
ri
n
g
s
(
n
=3
) with
o
u
ter rin
g
ra
diu
s
r
2
, 9.
9m
m
,
t
h
i
c
kness
t
, 1.65mm,
spacing between
rin
g
s
s,
1
.
05m
m
and ga
p
wi
d
t
h
d
,
1
.
9
m
m
is in
serted 0.78
mm
b
e
lo
w th
e
p
a
tch
.
4)
M
odel
4:
I
n
m
odel
4
,
t
h
e ci
rcul
ar pat
c
h ant
e
nna
wi
t
h
pat
c
h
radi
us
5.
8m
m
,
a di
sk of radi
us
r
1
,
10
.5m
m
containin
g
th
ree rin
g
s
(
n
=4
) with o
u
ter rin
g
ra
di
us
r
2
, 9m
m
,
t
h
i
c
kness
t
,
1.3mm, spacing betwee
n
rin
g
s
s,
0
.
7m
m an
d
gap
wi
dt
h
d
,
1
.
6m
m
i
s
i
n
sert
ed
0.
7
8
m
m
bel
o
w t
h
e
pat
c
h.
Fi
gu
re 2.
The
m
i
ni
at
uri
zed
p
a
t
c
h
ant
e
n
n
a u
s
i
n
g
C
S
R
R
(M
odel
3 wi
t
h
n=
3)
Th
e cir
c
u
l
ar d
i
sk
g
e
o
m
etr
y
, p
r
esen
ted in
Fig
u
r
e
3
.
, is op
t
i
m
i
zed
th
r
ough
ch
ang
i
ng
t
h
e nu
m
b
er
of
ri
n
g
s,
n,
t
h
e
o
u
t
er ri
ng
ra
di
us
,
,
t
h
ickness of the
ri
ngs,
, s
p
a
c
ing bet
w
een the
rings,
,
an
d t
h
e
wi
dt
h of
t
h
e
cut,
. The
values of
t
,
and
are
selected to
be
the equal for
al
l
of t
h
e
C
S
R
R
s
, an
d t
h
e
di
s
k
r
a
di
us
r
1
, is ke
pt
less th
an th
e
gro
und
rad
i
u
s
.
Fi
g
u
re
3
.
C
i
rc
ul
ar
di
sk
co
nt
a
i
ni
ng
t
h
e C
S
R
R
(a)
n=
3
(b
)
n
=
4
To
p
r
ev
en
t in
t
e
ractio
n with th
e SM
A con
n
ecto
r
, th
e
d
i
sk rad
i
u
s
,
r
1
,
for eve
r
y case is
chosen to
be
sm
a
ller than t
h
e substrate. The
r
1
val
u
es
fo
r
vari
ous
pat
c
h
g
e
om
et
ri
es are t
a
bul
at
ed
i
n
Ta
ble 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Meta
ma
teria
l
In
sp
ired
Pa
tch
An
tenna
fo
r ISM Band
b
y
Add
i
ng
S
i
ng
le-Layer Comp
lemen
t
a
r
y Sp
lit… (Ra
j
n
i
)
1
331
Tabl
e
1.
Val
u
e
s
o
f
C
S
R
R
par
a
m
e
t
e
rs fo
r t
h
r
ee m
odel
s
wi
t
h
di
f
f
ere
n
t
pat
c
h
ra
di
us
MO
DEL
MO
DEL 1
MO
DEL 2
MO
DEL 3
MO
DEL 4
Patch Radius (
i
n
m
m
)
12
10
6
5.
8
Disk r
a
dius(
r
1
)
(
i
n m
m
)
23
9.
8
10.
7
10.
5
Outer
r
i
ng radius(
r
2
)
(
i
n
m
m
)
7.
1 5.
3 9.
9
9
spacing (
s
)
(
i
n
m
m
)
.
.
.
0.
74
1.
05
0.
7
T
h
ickness
(
t
)
(
i
n m
m
)
1.
5
1.
14
1.
65
1.
3
Gap width(
d)
(
i
n
m
m
)
1.
15
1.
46
1.
9
1.
6
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Aft
e
r
o
p
t
i
m
i
zing t
h
e pat
c
h a
n
d m
odel
i
ng t
h
e
geom
et
ry
of C
S
R
R
t
h
e ant
e
n
n
a i
s
anal
y
zed
fo
r fa
r fi
el
d
cal
cul
a
t
i
ons.
T
h
e f
r
e
que
ncy
r
e
sp
onses
an
d
r
e
fl
ect
i
on c
o
e
fficient for all the cases is calc
u
lated a
n
d pre
s
ented
i
n
va
ri
o
u
s
pl
ot
s. It
i
s
o
b
se
rve
d
t
h
at
va
ri
o
u
s
C
S
R
R
ge
om
et
r
i
es pr
o
duce
di
f
f
ere
n
t
pat
c
h a
n
t
e
nnas
wi
t
h
di
f
f
ere
n
t
pat
c
h ra
di
u
s
, r
e
so
nat
i
ng at
sa
m
e
freq
u
ency
,
but
wi
t
h
vary
i
ng
per
f
o
r
m
a
nces. The
geom
et
ry
of t
h
e C
S
R
R
for a
d
e
sired
lev
e
l
of m
i
n
i
atu
r
izati
o
n
is
reso
lv
ed
with
its
sim
u
la
tio
n
with
fu
ll wav
e
so
l
v
er
HFSS.
HFSS so
ftware i
s
base
d
on
Fi
ni
t
e
El
em
ent
M
e
t
hod
(F
EM
),
i
s
n
o
wa
day
s
use
d
i
n
desi
g
n
i
n
g a
n
d a
n
al
y
s
i
s
o
f
c
o
m
p
l
e
x ant
e
nn
as.
3.
1.
C
o
n
v
en
ti
on
al
Ci
rcul
a
r Patc
h Ant
e
nn
a
The f
r
eq
ue
ncy
resp
on
se an
d
refl
ect
i
o
n coe
f
fi
ci
ent
pl
ot
o
f
con
v
e
n
t
i
onal
p
a
t
c
h ant
e
n
n
a i
s
sho
w
n i
n
Figure
4. It is
noticeable from
Fi
gure
4,
conve
n
tional
c
i
rcular patc
h
a
n
tenna
resonat
e
s at 2.45GHz
with
refl
ect
i
o
n c
o
ef
f
i
ci
ent
bel
o
w
-1
0dB
as
desi
re
d
wi
t
h
ci
rc
ul
ar
p
a
t
c
h ra
di
us
as
22
.1
m
m
.
Fi
gu
re
4.
R
e
fl
e
c
t
i
on C
o
ef
fi
ci
ent
(
S
11
) p
l
o
t
o
f
th
e
norm
a
l
p
a
t
c
h
an
tenn
a with
ou
t
CSRR
3.
2.
Model 1 (Circular patc
h
with
r
a
dius
12mm)
The
fre
q
u
ency
resp
o
n
se a
n
d r
e
fl
ect
i
on c
o
e
ffi
ci
ent
pl
ot
o
f
m
odel
1 i
s
sh
o
w
n i
n
Fi
g
u
r
e
5.
The a
n
t
e
n
n
a
reso
nat
e
s
at
2.
46
G
H
z wi
t
h
re
fl
ect
i
on
c
o
e
ffi
c
i
ent
bel
o
w
-
2
0
d
B
as desi
re
d.
The res
u
l
t
s
ach
i
e
ved re
duce
d
pat
c
h
radi
us
of
1
2
m
m
and area
re
d
u
ct
i
o
n
o
f
1/
4
o
f
t
h
e
co
n
v
ent
i
o
nal
pat
c
h a
n
t
e
n
n
a
.
Fi
gu
re
5.
R
e
fl
e
c
t
i
on C
o
ef
fi
ci
ent
(
S
11
) pl
ot
of
m
odel
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1328 –
1335
1
332
3.
3.
Model 2 (Circular patc
h
with
r
a
dius
10mm)
The f
r
e
que
ncy
resp
o
n
se a
n
d
refl
ect
i
o
n co
effi
ci
ent
pl
ot
of m
odel
2 i
s
sho
w
n i
n
Fi
gu
re
6. T
h
e
reflection
co
efficien
t of t
h
is an
tenn
a is
b
e
l
o
w
-25d
B an
d
i
t
res
onat
e
s
at
2.
47
G
H
z
whe
n
t
h
e
radi
us
of
t
h
e pat
c
h
is 10
mm
. Th
is d
e
sign
resu
lts in
area redu
ction
o
f
1
/
5
o
f
t
h
e
co
nv
en
tio
n
a
l
patch
an
tenn
a.
Fi
gu
re
6.
R
e
fl
e
c
t
i
on C
o
ef
fi
ci
ent
(
S
11
) pl
ot
of
m
odel
2
3.
3.
Model 3 (Circular patc
h
with
r
a
dius
6mm
)
The f
r
e
que
ncy
resp
o
n
se a
n
d
refl
ect
i
o
n co
effi
ci
ent
pl
ot
of m
odel
3 i
s
sho
w
n i
n
Fi
gu
re
7. T
h
e
reflection c
o
efficient of t
h
is
antenn
a i
s
bel
o
w
-
2
5
d
B
a
n
d
i
t
s
res
ona
nce
fre
que
ncy
i
s
2.
46
G
H
z.
Thi
s
a
n
t
e
n
n
a
desi
g
n
ac
hi
eve
re
duce
d
pat
c
h
radi
us
of
6m
m
and
area
re
du
ct
i
on
o
f
1/
1
4
of t
h
e c
o
n
v
e
n
t
i
o
na
l
pat
c
h a
n
t
e
nna
.
Fi
gu
re
7.
R
e
fl
e
c
t
i
on C
o
ef
fi
ci
ent
(
S
11)
pl
ot
o
f
m
odel
3
3.
4.
Model 4 (Circular patc
h
with
r
a
dius
5.
8mm
)
The f
r
e
que
ncy
resp
o
n
se a
n
d
refl
ect
i
o
n co
effi
ci
ent
pl
ot
of m
odel
4 i
s
sho
w
n i
n
Fi
gu
re
8. T
h
e
reflection
co
efficien
t o
f
t
h
is
an
tenn
a is n
e
arly -25
d
B
a
nd
i
t
s
reson
a
nce
f
r
eq
ue
ncy
i
s
2.
48
G
H
z. T
h
i
s
a
n
t
e
n
n
a
desi
g
n
ac
hi
eve
s
f
u
rt
he
r
red
u
c
e
d
pat
c
h
radi
u
s
o
f
5
.
8m
m
and are
a
re
d
u
ct
i
o
n
of
1/
1
5
of
t
h
e co
nve
nt
i
o
nal
pat
c
h
antenna
.
D
u
e
t
o
t
h
e
de
gra
d
at
i
on i
n
a
n
t
e
n
n
a
vol
um
e, t
h
e ra
di
at
i
o
n
ef
f
i
ci
ency
an
d t
h
e ba
nd
wi
dt
h
of
t
h
e
resu
ltan
t
p
a
tch
an
tenn
a
g
e
t affected
bu
t its
p
r
o
p
e
rties stay fairly g
ood
.
Fi
gu
re
8.
R
e
fl
e
c
t
i
on C
o
ef
fi
ci
ent
(
S
11)
pl
ot
o
f
m
odel
4
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Meta
ma
teria
l
In
sp
ired
Pa
tch
An
tenna
fo
r ISM Band
b
y
Add
i
ng
S
i
ng
le-Layer Comp
lemen
t
a
r
y Sp
lit… (Ra
j
n
i
)
1
333
An electric current is induced on the m
e
tal,
whe
n
an SRR is placed in time varying
normal
m
a
gnetic
fi
el
d,
gai
n
i
n
g
p
eak
val
u
e
at
t
h
e SR
R
res
o
nan
t
fre
que
ncy
.
Si
milarly b
y
d
u
a
l
ity,
m
a
g
n
e
tic cu
rren
t is exp
e
cted
t
o
be
ge
nerat
e
d a
m
ong t
h
e
C
S
R
R
sl
ot
s, a
p
pr
oachi
n
g
t
h
e
o
p
t
i
m
u
m
val
u
e
at
t
h
e C
S
R
R
r
e
so
nance
f
r
eq
uency
,
whe
n
C
S
R
R
w
a
s ke
pt
i
n
a t
i
m
e
vary
i
n
g
pe
r
p
en
di
cul
a
r el
ec
t
r
ic field
.
Th
is effect is sho
w
n
in
Figu
re
9
,
wh
ich
prese
n
ts an el
ectric field intensity plot on the CSRR sc
reen
for a miniaturized pa
tch an
tenn
a with
rad
i
u
s
6mm
.
It is obs
erve
d t
h
at the
electric
fi
el
d i
n
t
e
nsi
t
y
i
s
st
r
o
ng
at
t
h
e e
d
ge
s o
f
t
h
e
sl
ot
s.
Whe
n
di
sk
ra
d
i
us i
s
decrease
d
, t
h
e
num
ber of slot
s in the dis
k
increases in
or
de
r t
o
achi
e
ve eq
ui
val
e
nt
reso
n
a
nt
fre
q
u
ency
and a
fi
ne i
m
pedance
m
a
t
c
hi
ng.
Figu
re 9. Electric field
i
n
te
ns
ity at the surfa
ce of the
CSR
R
The si
m
u
l
a
t
e
d 2-D
pat
t
e
rns
of gai
n
o
f
co
n
v
ent
i
o
nal
pat
c
h ant
e
n
n
a s
h
o
w
n i
n
Fi
gu
re 10
. A
nd t
h
e
pr
o
pose
d
m
i
ni
at
ure a
n
t
e
n
n
as
ha
ve be
en
p
r
e
s
ent
e
d i
n
Fi
gu
re 1
1
(a)
(
w
i
t
h
pat
c
h
ra
di
us
12m
m
)
, Fi
gu
re
1
1
(
b
)
(wi
t
h
pat
c
h ra
di
us
1
0
m
m
), Fi
gu
re
1
2
(a
)
(wi
t
h
pat
c
h ra
di
us
6m
m
)
and Fi
gu
re
1
2
(
b
)
(
w
i
t
h
pat
c
h
ra
di
u
s
5.
8m
m
)
respect
i
v
el
y
.
The br
oad
s
i
d
e be
ha
vi
or
of ra
di
at
i
o
n
pat
t
e
rn i
s
p
r
e
s
erve
d,
but
du
e t
o
t
h
e decre
a
se i
n
radiation e
fficiency, the
ac
hi
eved gai
n
is
reduced by m
a
king the
ante
nna s
m
aller.
Fi
gu
re 1
0
. Si
m
u
l
a
t
e
d gai
n
pat
t
ern of
co
n
v
ent
i
onal
pat
c
h
ant
e
nna
The
position
of t
h
e disk containing CSR
R
is d
ecided by
accessible substrate
thicknesses. The
su
bstrate th
ickn
ess
of
0
.
7
8
m
m
u
s
ed
in th
is
work is a st
andard value
fa
bricated by
Roger
s
C
o
rp
or
ation
.
A
l
so
furth
e
r op
ti
m
i
z
a
tio
n
s
h
a
v
i
ng
CSRR p
o
s
itio
ned
at 1
.
56
mm
b
e
low th
e p
a
tch
presen
ted
th
e sa
m
e
resu
lts as th
o
s
e
achieve
d for
a
distance of
0.78mm
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1328 –
1335
1
334
Fi
gu
re
1
1
.
Si
m
u
l
a
t
e
d
gai
n
pat
t
erns
o
f
(a
) m
odel
1
f
o
r
n=
1
(
b
)
m
odel
2
fo
r
n=2
Fi
gu
re
1
2
.
Si
m
u
l
a
t
e
d
gai
n
pat
t
erns
o
f
(a
) m
odel
3
f
o
r
n=
3
(
b
)
m
odel
4
fo
r
n=4
4.
CO
NCL
USI
O
N
A hi
g
h
l
y
m
i
ni
at
uri
zed pat
c
h ant
e
nnas
de
si
gn m
e
t
hod
ol
ogy
i
s
p
r
esen
t
e
d. B
y
i
n
sert
i
ng a di
s
k
cont
ai
ni
ng
C
S
R
R
s
i
n
t
o
c
o
nv
ent
i
onal
pat
c
h,
t
h
e
radi
us
o
f
t
h
e
pat
c
h ca
n
be
decrea
sed
s
i
gni
fi
ca
nt
l
y
wi
t
h
o
u
t
di
st
ur
bi
n
g
t
h
e i
m
pedance m
a
tch an
d t
h
e fi
el
d pat
t
e
r
n
.
The
con
s
t
r
uct
i
o
n
of
t
h
ese m
i
ni
at
ure ant
e
n
n
as i
s
si
m
p
l
e
and c
a
n
be
pr
o
duce
d
wi
t
h
l
e
s
s
eff
o
rt
at
l
o
w
cost
. E
v
e
n
f
u
rt
her
re
duct
i
o
ns
i
n
t
h
e a
n
tenna
size are possi
ble, but
t
h
e fract
i
o
nal
b
a
nd
wi
dt
h an
d r
a
di
at
i
on e
ffi
ci
e
n
cy
al
so get
re
duce
d
t
h
at
m
i
ght
pr
o
v
ed t
o
be
ob
ject
i
o
nabl
e.
Th
e
pr
o
pose
d
desi
g
n
m
e
t
hodol
ogy
can be
use
d
f
u
rt
her i
n
ot
he
r
pat
c
h
desi
g
n
s
l
i
k
e rect
an
gul
a
r
pat
c
h. P
r
el
i
m
i
n
ary
i
nvest
i
g
at
i
o
ns
per
f
o
r
m
e
d usi
n
g
m
i
ni
at
uri
zed
rect
an
gul
a
r
pat
c
h
ant
e
nnas
re
veal
per
f
o
r
m
a
nces com
p
arabl
e
t
o
t
hose
achi
e
ve
d
wi
t
h
ci
r
c
ul
a
r
pat
c
h.
M
o
re
ove
r,
t
h
e
p
r
o
p
o
se
d
opt
i
m
i
zati
on
sy
st
em
wil
l
pr
ove
h
e
l
p
f
u
l
i
n
d
e
sign
ing
p
a
tch
an
tenn
as for th
e
m
u
lti-b
a
n
d
o
p
e
ration
s
.
REFERE
NC
ES
[1]
V.
G.
Veselago, “The
electrod
ynamics of substances w
ith simultan
e
ously
n
e
gative valu
e
ε
and
μ
,”
Sov. Ph
ys
.
Us
pekekhy
, Vol. 10, No. 4
,
pp
. 5
09-514, 1968
.
[2]
R. Marques, F. Martin, and M.
Sorolla
,
“
M
etam
ater
ials
with Ne
gativ
e P
a
ram
e
ter
s
: Theor
y
, Des
i
g
n
and M
i
crowave
Applica
tions,”
N
e
w
Yo
r
k
: Wiley
,
2008.
[3]
S.
Hra
b
a
r
,
J.
Ba
rt
ol
ic
,
a
nd
Z
.
Si
pus,
“Wa
v
e
gui
de
mi
nia
t
uri
z
at
i
on usi
n
g uni
a
x
ia
l
ne
gat
i
v
e
pe
rme
a
b
i
lity
me
t
a
ma
t
e
ria
l
,
”
I
EEE Trans. Antennas
Propag.
, Vol. 53
, No
. 1
,
pp
. 110-119, 2005.
[4]
J
.
D
.
B
a
e
n
a
,
J
.
B
o
n
a
c
h
e
,
F
.
M
a
r
t
i
n
,
R
.
M
a
r
q
u
e
s
,
F
.
F
a
l
c
o
n
e
,
T
.
L
o
p
e
t
e
g
i
,
M
.
A
.
G
.
L
a
s
o
,
J
.
G
a
r
c
i
a
,
I
.
G
i
l
,
a
n
d
M
.
Sorolla, “Equiv
a
lent-
c
ircu
it models for split-ring
resonato
rs and
complementar
y
split-ring reson
a
tors coupled to
planar
tr
ans
m
is
s
i
on lin
es
,”
IEEE
T
r
ans
. Micr
ow.
T
h
eor
y
T
ech
.
, Vol. 53
, No
. 4
,
pp
. 1451-1461, 200
5.
[5]
P. K. Singhal, Bi
m
a
l Garg, “Desi
gn a
nd Ch
aracterization of
Com
p
act
Microstr
ip
Patch Ant
e
nna
Using “Split Rin
g
”
S
h
aped M
e
tam
a
teri
al S
t
ructur
e,
”
International Journal of Electr
i
ca
l and Computer Engineering (
I
JECE)
, V
o
l. 2,
No. 5, pp. 655-6
62, 2012
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Meta
ma
teria
l
In
sp
ired
Pa
tch
An
tenna
fo
r ISM Band
b
y
Add
i
ng
S
i
ng
le-Layer Comp
lemen
t
a
r
y Sp
lit… (Ra
j
n
i
)
1
335
[6]
Falcone, T.
Lop
e
teg
i
, J. D. Baena,
R. Marques
,
F. Martin, and
M. Soro
lla, “Eff
ective neg
a
tiv
e-
epsilon stopban
d
m
i
crostrip lines
based on com
p
le
m
e
ntar
y split ri
ng resonators,”
IEEE Mi
crow.
Wireless
Compon. Lett.
, V
o
l. 14
,
No. 14, pp. 280-
282, 2004
.
[7]
K. B. Alici and
E. Ozba
y, “
E
l
ect
rica
ll
y
sm
al
l split ring resonator antenn
as,”
J
.
Ap
pl. Phys.
, Vol. 1
01, pp. 083-104,
2007.
[8]
F. Bilotti, A
.
Alú, and
L. Vegn
i,
“
D
esign of m
i
niaturi
zed m
e
ta
m
a
teria
l
pa
tch
a
n
tennas with
-n
egat
ive lo
ading
,
”
IEEE Trans. Antennas Propag.
,
Vol. 56
, No. 6, p
p
. 1640-1647
, 2
008.
[9]
M. Palandoken
,
A. Grede, and
H. He
nke, “Broadband microstr
ip antenn
a
with left-h
anded
metamaterials,”
IE
EE
Trans. Antennas
Propag.
, Vol. 57
, No. 2, pp. 331-
338, 2009
.
[10]
M.
C. Tang
,
S. Xiao, T.
D
e
ng, D.
Wang, J. Guan, B
.
Wang, an
d G. Ge,
“
C
ompact UW
B an
te
nna with m
u
lt
ip
l
e
band-notch
es for
WiMAX and WLAN,”
I
EEE Trans. Antennas Propag.
, Vol. 59
,
No. 4, pp.1372-1
376, 2011
.
[11]
Y. Dong, H.
To
y
a
o
,
and T. I
t
oh, “Design an
d char
acter
ization of miniatur
ized p
a
tch
anten
n
as load
ed with
complementar
y
split-ring
resonators,”
I
EEE Trans. Antennas Pro
pag.
, Vol. 60, No. 2
,
pp
.772-785
, 2012
.
[12]
R.
O.
Ouedraogo,
E. J.
Rothwell,
A.
R.
Diaz,
K.
Fuchi,
and A
.
Temme, “Miniatu
rization of p
a
tch
antenn
as using a
metamaterial-
i
nspired techn
i
que,”
IEEE Trans. Antennas Propag.
, Vol. 60
, No. 5,
pp. 2175-2181
,
2012.
[13]
J. B. Pendr
y
,
A.
J. Holden, D. J.
Robbins, and W. J. Stewart, “Magnetis
m from co
nductors and en
hanced nonlinear
phenomena,”
IEEE
T
r
ans
. Mi
cr
o
w
.T
heor
y T
ech
.
,
Vol. 47
, No. 11,
pp. 2075-2084
,
1999.
[14]
O Necibi, A Fer
c
hich
i,
T. P Vuong, A Gharsallah,
“
Miniaturized
CSRR TAG Antenna
s for
60GHz Applications,”
International Jo
urnal of
Electrical
and Computer Engin
eering
(
I
JECE)
,
Vol. 4, No. 1
,
pp
. 64-74
,
2014.
[15]
Kuldeep Kum
a
r P
a
ras
h
ar, “
D
es
ign and Anal
y
s
is
of I-S
lotted
Rectangu
lar Micro
s
trip Patch Ante
nna for W
i
reless
Applica
tion,
”
International Jour
nal of Electrica
l
and Computer
Engineering (
I
JECE)
, Vol. 4, No. 1, pp. 31-36,
2014.
[16]
Saty
andra Singh
lodhi, P. K. Singhal, V.
V. Thak
are, “Design and
Analy
s
is of
Trip
ple Band Koch Fractal Yagi Uda
Antenna,”
International
Journal of Electrical
a
nd Computer Engineering (
I
JECE)
,
Vol. 3, No
. 4, pp
. 456-460
,
2013.
[17]
Simarpreet Kau
r
, Rajni, Anupma Marw
aha, “Fractal Antennas: A Novel Mi
niaturization Technique for Next
Generation Networks,”
International Journal o
f
Engineer
ing Trends and Technology (
I
JETT)
,
Vol. 9, No. 15,
2014.
[18]
Gurpreet Singh, Rajni, Ranjit
Singh Mo
mi, “Microstrip Patch Antenna with
Defected Grou
nd Structures f
o
r
Bandwidth Enhancement,”
In
tern
ational Journal of
Computer Ap
plications,
Vol.
73, No. 9, pp. 14
-17, 2013
.
[19]
Balanis
C. A, “Handbook of Micr
ostrip Ante
nn
as,” John Wiley
an
d Sons New York, 1982
.
BIOGRAP
HI
ES OF
AUTH
ORS
Rajni is
current
l
y
As
s
o
cia
t
e P
r
of
es
s
o
r at S
B
S
S
t
ateT
echni
cal
Ca
m
pus
F
e
rozepur, India. S
h
e
has
completed her
M.E. from NITTTR, Chandig
a
rh, I
ndia and B.Tech from
NIT, Kur
ukshetra India.
S
h
e is
purs
u
ing her P
h
.D. in m
e
tam
a
t
e
ria
l
an
te
nnas
.
S
h
e has
a
pprox. 17
yea
r
s
of academ
ic
experi
enc
e
. S
h
e
has
author
ed
a n
u
m
b
er of res
e
arc
h
papers
in In
ter
n
ation
a
l
journals
, Nat
i
onal
and
Interna
tiona
l co
nferenc
e
s
.
Her
areas
of in
ter
e
s
includ
e W
i
rel
e
s
s
comm
unicati
on and Antenna
design.
Gurs
haran Kaur
is
curr
entl
y
pur
s
u
ing M
.
Te
ch fr
om
S
B
S
S
t
ate
Techn
i
ca
l C
a
m
pus
, F
e
rozepu
r
,
India. She has completed B.Tech
from
PTU
Jalandhar in 2013. Her ar
ea of interest is Antenna
design.
Dr Anupm
a Marwaha is curr
ent
l
y
Associate Prof
essor at Sant
L
ongowal Institu
t
e
of Engg
. &
Tech
, Logowal (
S
angrur). She has done her Ph.D
from G
NDU,
A
m
ritsar, M. Tech
. from
REC
Kurukshetra (No
w
NIT, Kuruksh
e
tra)
, B
.
E from Punjab University
,Ch
a
ndig
a
rh.Sh
e
has 22
y
e
ars
of acad
em
ic ex
periem
ce
. S
h
e h
a
s
authored 25
res
earch
papers
in Intern
ation
a
l
and Nation
a
l
Journals and 50
research pap
e
rs in National and
I
n
terna
tiona
l con
f
erenc
e
s
.
S
h
e has
s
upervis
ed 03
Ph.D Thesis and 12 M.Tech th
esis and 04 are
under progress. Her areas of interst includ
e
Electromagnetics, Microwav
e C
o
mm, Wire
less communication and Antenna Design.
Evaluation Warning : The document was created with Spire.PDF for Python.