I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
201
6
,
p
p
.
2
5
0
6
~
2
5
1
5
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
6i
6
.
1
1
7
4
8
2506
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Ana
ly
tical Es
ti
m
a
tion o
f
t
he Elec
tr
o
sta
tic
Fiel
d i
n
Cy
linder
-
Plane a
nd Cylin
der
-
C
y
li
nder Elec
trode
Co
nfigura
tions
E
mm
a
no
u
il D.
F
y
lla
dita
k
i
s
1
,
Ant
o
nio
s
X.
M
o
ro
nis
2
,
M
icha
el
T
heo
do
ridis
3
1
,3
El
e
c
tro
n
ic &
Co
m
p
u
ter E
n
g
i
n
e
e
rin
g
De
p
a
r
tme
n
t,
Bru
n
e
l
Un
iv
e
rsity
L
o
n
d
o
n
,
UK
2
En
e
rg
y
T
e
c
h
n
o
lo
g
y
En
g
in
e
e
rin
g
De
p
a
rtme
n
t,
T
.
E.
I.
o
f
A
th
e
n
s
,
G
r
e
e
c
e
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l 5
,
2
0
1
6
R
ev
i
s
ed
A
u
g
13
,
2
0
1
6
A
cc
ep
ted
A
u
g
2
7
,
2
0
1
6
T
h
is
w
o
rk
p
re
se
n
ts
a
n
a
l
y
ti
c
a
l
f
o
rm
u
las
f
o
r
th
e
e
sti
m
a
ti
o
n
o
f
th
e
e
lec
tro
sta
ti
c
f
ield
in
c
y
li
n
d
e
r
-
p
lan
e
a
n
d
c
y
li
n
d
e
r
-
c
y
li
n
d
e
r
e
lec
tro
d
e
c
o
n
f
ig
u
ra
ti
o
n
s.
A
s
su
m
in
g
a
p
re
d
e
f
in
e
d
p
o
ten
ti
a
l
d
if
fe
re
n
c
e
b
e
twe
e
n
th
e
e
lec
tro
d
e
s
a
n
d
g
iv
e
n
th
e
ir
g
e
o
m
e
tri
c
a
l
c
h
a
ra
c
teris
ti
c
s,
th
e
se
c
o
u
ld
b
e
u
se
f
u
l
f
o
r
th
e
s
o
lu
ti
o
n
o
f
n
u
m
e
ro
u
s
p
ro
b
lem
s
in
v
o
lv
in
g
s
u
c
h
e
lec
tro
d
e
se
ts.
M
o
re
o
v
e
r,
th
e
v
o
lt
a
g
e
d
istri
b
u
ti
o
n
a
ro
u
n
d
t
h
e
e
lec
tro
d
e
s is
d
e
f
in
e
d
b
y
p
ro
v
id
in
g
e
q
u
a
ti
o
n
s eith
e
r
f
o
r
th
e
e
q
u
i
p
o
ten
ti
a
ls
a
t
a
g
iv
e
n
v
o
lt
a
g
e
ra
ti
o
,
o
r
th
e
e
x
a
c
t
e
sti
m
a
ti
o
n
o
f
th
e
p
o
ten
ti
a
l
a
t
a
n
y
p
o
in
t
in
t
h
e
su
r
ro
u
n
d
i
n
g
sp
a
c
e
.
S
im
p
li
f
i
e
d
e
x
p
re
ss
io
n
s
f
o
r
c
rit
ica
l
e
n
g
in
e
e
rin
g
p
a
ra
m
e
ters
s
u
c
h
a
s
th
e
p
e
a
k
e
lec
tri
c
f
i
e
ld
a
n
d
th
e
f
ield
e
n
h
a
n
c
e
m
e
n
t
fa
c
to
r
a
re
a
lso
g
iv
e
n
.
K
ey
w
o
r
d
:
C
y
l
in
d
er
-
c
y
li
n
d
er
elec
tr
o
d
e
s
C
y
l
in
d
er
-
p
la
n
e
elec
tr
o
d
es
E
lectr
ic
f
ield
in
te
n
s
it
y
E
lectr
o
s
tatic
f
ield
E
q
u
ip
o
ten
tial li
n
es
Field
an
al
y
s
i
s
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
E
m
m
an
o
u
il D.
F
y
llad
ita
k
is
,
E
lectr
o
n
ic
&
C
o
m
p
u
ter
E
n
g
i
n
ee
r
in
g
Dep
ar
t
m
en
t,
B
r
u
n
el
U
n
iv
er
s
it
y
L
o
n
d
o
n
,
Ux
b
r
id
g
e,
Mid
d
lesex
,
UK
.
E
m
ail: e
m
m
.
f
y
ll
@
g
m
a
il.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
elec
tr
ic
f
ield
s
tr
en
g
th
a
n
d
th
e
p
o
ten
tial
d
is
tr
ib
u
t
io
n
ar
e
th
e
k
e
y
d
esi
g
n
p
ar
a
m
eter
s
in
a
g
r
ea
t
n
u
m
b
er
o
f
elec
tr
ical
en
g
i
n
ee
r
i
n
g
ap
p
licatio
n
s
,
e
s
p
ec
iall
y
in
d
i
m
en
s
io
n
i
n
g
h
ig
h
v
o
ltag
e
eq
u
ip
m
e
n
t
[
1
-
3
]
.
T
h
e
ex
p
er
i
m
e
n
tal
m
ea
s
u
r
e
m
e
n
t
o
f
th
e
elec
tr
ic
s
tr
en
g
t
h
o
r
v
o
ltag
e
in
t
h
e
s
p
ac
e
s
u
r
r
o
u
n
d
i
n
g
v
o
ltag
e
ap
p
licatio
n
elec
tr
o
d
es,
is
u
s
u
all
y
d
i
f
f
icu
l
t
an
d
in
ac
c
u
r
ate,
d
u
e
to
th
e
in
t
er
f
er
e
n
ce
o
f
t
h
e
m
ea
s
u
r
i
n
g
d
ev
ices
w
i
th
t
h
e
elec
tr
ic
f
ield
.
Ob
v
io
u
s
l
y
,
t
h
e
in
tr
o
d
u
ctio
n
o
f
an
a
l
y
t
ical
f
o
r
m
u
las
f
o
r
th
e
f
ield
o
r
th
e
p
o
ten
tial,
b
ec
o
m
e
s
o
f
g
r
ea
t i
m
p
o
r
tan
ce
,
t
h
o
u
g
h
d
if
f
i
cu
lt to
ac
h
ie
v
e
i
n
m
o
s
t c
ases
.
Fo
r
th
at
r
ea
s
o
n
,
t
h
e
ap
p
licatio
n
o
f
co
m
p
u
ter
-
aid
ed
s
i
m
u
lat
io
n
s
,
b
ased
o
n
f
in
i
te
el
e
m
en
t a
n
al
y
s
is
ar
e
n
o
w
ad
a
y
s
m
o
s
tl
y
p
r
ef
er
ab
le
in
m
o
s
t c
ase
s
[
4
-
6
]
.
T
h
e
aim
o
f
t
h
i
s
s
t
u
d
y
is
t
h
e
d
ev
elo
p
m
e
n
t
o
f
a
m
at
h
e
m
atica
l
m
o
d
el
f
o
r
th
e
an
al
y
tical
ca
lc
u
latio
n
o
f
th
e
elec
tr
ic
f
ield
s
tr
e
n
g
th
a
n
d
th
e
p
o
ten
tial
d
is
tr
ib
u
t
io
n
in
w
ir
e
-
p
lan
e
an
d
p
ar
allel
cy
lin
d
er
-
c
y
lin
d
er
elec
tr
o
d
e
co
n
f
i
g
u
r
atio
n
s
o
f
an
y
d
i
m
en
s
io
n
s
.
S
u
ch
a
m
at
h
e
m
atica
l
m
o
d
el
ca
n
b
e
v
er
y
u
s
ef
u
l
i
n
v
ar
io
u
s
r
ea
l
w
o
r
ld
ap
p
licatio
n
s
,
s
u
ch
a
s
elec
tr
o
h
y
d
r
o
d
y
n
a
m
ic
(
E
HD)
p
u
m
p
co
n
f
i
g
u
r
atio
n
s
,
elec
tr
o
s
tatic
p
r
ec
i
p
itato
r
s
,
E
HD
d
r
y
er
s
,
e
lectr
o
s
tatic
s
ep
ar
ato
r
s
etc
[
5
]
,
[
7
-
1
3
]
.
Sim
i
lar
s
tu
d
ies
m
a
y
b
e
f
o
u
n
d
in
b
ib
lio
g
r
ap
h
y
[
1
4
-
16
]
,
n
ev
er
t
h
eles
s
n
o
t
p
r
o
v
id
i
n
g
f
u
ll
an
al
y
tical
s
o
l
u
tio
n
s
f
o
r
th
e
f
ield
s
tr
e
n
g
t
h
,
t
h
e
p
o
ten
tial
d
is
tr
ib
u
tio
n
o
r
th
e
d
eter
m
in
at
io
n
o
f
th
e
an
al
y
t
i
ca
l
eq
u
atio
n
s
o
f
eq
u
ip
o
ten
ti
als
all
o
v
er
th
e
s
p
ac
e
s
u
r
r
o
u
n
d
i
n
g
th
e
s
p
ec
if
i
c
elec
tr
o
d
e
s
ets u
n
d
er
co
n
s
id
er
atio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
n
a
lytica
l E
s
tima
tio
n
o
f th
e
E
lectro
s
ta
tic
F
ield
in
C
ylin
d
er
-
P
la
n
e
a
n
d
…
(
E
mma
n
o
u
il D.
F
.
)
2507
2.
RE
S
E
ARCH
M
E
T
H
O
D
I
t
is
k
n
o
w
n
t
h
at
t
h
e
elec
tr
ic
f
i
eld
d
is
tr
ib
u
tio
n
ar
o
u
n
d
t
w
o
p
ar
allel
c
y
li
n
d
r
ical
co
n
d
u
cto
r
s
o
f
in
f
i
n
ite
len
g
th
w
it
h
id
en
tica
l
cr
o
s
s
-
s
ec
tio
n
s
,
ca
n
b
e
ca
lcu
lated
b
y
a
s
s
u
m
in
g
th
e
p
r
ese
n
ce
o
f
t
w
o
eq
u
i
v
ale
n
t
lin
e
ch
ar
g
es
o
f
o
p
p
o
s
ite
s
ig
n
s
+q
l
an
d
-
q
l
,
ea
ch
p
lace
d
w
it
h
i
n
a
co
n
d
u
cto
r
.
Du
e
to
lo
n
g
it
u
d
in
al
s
y
m
m
etr
y
,
t
h
e
s
o
lu
tio
n
o
f
t
h
e
p
r
o
b
le
m
ca
n
b
e
m
i
n
i
m
ized
in
t
w
o
d
i
m
e
n
s
io
n
s
,
s
in
ce
t
h
e
elec
tr
ic
f
ield
is
o
n
l
y
d
ep
en
d
in
g
o
n
t
h
e
d
is
tan
ce
p
er
p
en
d
icu
lar
to
th
e
co
n
d
u
cto
r
s
,
th
u
s
r
e
m
ain
in
g
u
n
ch
a
n
g
ed
alo
n
g
t
h
e
lo
n
g
it
u
d
i
n
al
d
i
m
e
n
s
io
n
.
T
h
is
m
o
d
el
ca
n
b
e
e
x
ten
d
ed
to
s
o
l
v
e
c
y
li
n
d
er
to
p
lan
e
an
d
t
w
i
n
c
y
li
n
d
er
to
c
y
lin
d
er
s
y
s
te
m
co
n
f
ig
u
r
atio
n
s
.
I
n
t
h
e
ca
s
e
o
f
a
c
y
li
n
d
er
to
p
lan
e
co
n
f
ig
u
r
atio
n
,
t
h
e
g
r
o
u
n
d
ed
p
lan
e
ca
n
b
e
ass
u
m
ed
t
h
e
p
lan
e
o
f
s
y
m
m
etr
y
f
o
r
m
ed
b
et
w
ee
n
t
w
o
id
en
t
ical
c
y
li
n
d
r
ical
co
n
d
u
cto
r
s
.
T
h
en
,
ac
co
r
d
in
g
to
th
e
th
eo
r
y
o
f
i
m
a
g
e
ch
ar
g
es
[
1
4
]
,
th
e
p
r
o
b
lem
ca
n
b
e
s
o
lv
ed
b
y
r
e
p
lacin
g
t
h
e
g
r
o
u
n
d
ed
p
lan
e
w
it
h
an
eq
u
iv
ale
n
t
n
e
g
ati
v
e
i
m
ag
e
li
n
e
ch
ar
g
e
-
q
p
lace
d
ec
ce
n
tr
icall
y
b
e
h
in
d
t
h
e
p
lan
e,
at
eq
u
al
d
is
ta
n
ce
t
o
th
e
p
o
s
iti
v
e
li
n
e
ch
ar
g
e
+q
r
ep
r
esen
tin
g
t
h
e
c
y
li
n
d
r
ical
elec
tr
o
d
e,
as sh
o
w
n
in
Fig
u
r
e
1
.
Ass
u
m
in
g
air
e
n
v
ir
o
n
m
en
t,
t
h
e
f
ield
i
n
te
n
s
i
t
y
d
u
e
to
t
h
e
p
r
e
s
en
ce
o
f
li
n
e
c
h
ar
g
e
s
ca
n
b
e
f
o
u
n
d
u
s
i
n
g
th
e
p
r
in
cip
le
o
f
s
u
p
er
p
o
s
itio
n
(
E
q
u
atio
n
1
)
.
(
)
(
)
(
1
)
w
h
er
e
Z
i
s
a
co
n
s
ta
n
t
d
e
f
i
n
ed
f
r
o
m
b
o
u
n
d
ar
y
co
n
d
itio
n
s
.
Fo
r
eq
u
al
li
n
e
ch
ar
g
es
o
f
o
p
p
o
s
ite
p
o
lar
ity
r
ep
r
esen
tin
g
a
w
ir
e
-
p
lan
e
co
n
f
ig
u
r
atio
n
,
th
e
p
o
ten
tial
at
th
e
p
la
n
e
s
h
o
u
ld
b
e
ze
r
o
(
p
lan
e
i
s
g
r
o
u
n
d
ed
)
,
th
er
ef
o
r
e
Z =
0
.
Fig
u
r
e
1
.
Geo
m
e
tr
ical
I
llu
s
tr
at
io
n
o
f
a
Wi
re
-
to
-
p
la
n
e
C
o
n
f
i
g
u
r
atio
n
Ass
u
m
in
g
t
h
e
Fo
r
m
ati
o
n
o
f
an
I
m
ag
e
C
h
ar
g
e
On
t
h
e
o
th
er
h
an
d
,
i
n
t
h
e
ca
s
e
o
f
t
w
i
n
c
y
lin
d
r
ical
co
n
d
u
cto
r
s
,
th
e
p
la
n
e
o
f
s
y
m
m
etr
y
is
at
a
v
o
ltag
e
p
o
ten
tial
o
f
V
/2
,
w
h
er
e
V
is
th
e
v
o
lta
g
e
d
if
f
er
e
n
ce
b
et
w
ee
n
t
h
e
t
w
o
elec
tr
o
d
es.
As
s
u
c
h
,
t
h
e
co
n
s
ta
n
t
Z
eq
u
al
s
V
/2
.
T
h
e
g
eo
m
etr
ic
p
ar
a
m
eter
s
a
a
n
d
b
ca
n
b
e
ea
s
il
y
f
o
u
n
d
:
√
(
)
(
2
)
√
(
)
(
3
)
I
t
ca
n
b
e
n
o
ticed
th
at
t
h
e
f
o
r
m
atio
n
o
f
eq
u
ip
o
ten
tial
li
n
es
i
n
an
y
ca
s
e
is
a
s
et
o
f
cir
cles,
r
an
g
in
g
f
r
o
m
a
p
air
o
f
cir
cles
w
ith
r
ad
iu
s
r
,
r
ep
r
esen
tin
g
t
h
e
eq
u
ip
o
ten
tial
s
u
r
f
ac
e
o
f
ea
c
h
c
y
li
n
d
r
ical
co
n
d
u
cto
r
,
to
a
cir
cle
o
f
in
f
i
n
ite
r
ad
iu
s
,
p
r
ac
ticall
y
r
ep
r
esen
tin
g
a
lin
e
w
h
ic
h
co
in
cid
es
w
it
h
t
h
e
p
lan
e
o
f
s
y
m
m
etr
y
.
T
h
e
ce
n
tr
e
o
f
th
o
s
e
cir
cle
s
is
al
w
a
y
s
o
n
t
h
e
x
ax
is
.
T
h
er
ef
o
r
e,
th
e
elec
tr
ic
f
ield
i
n
te
n
s
it
y
a
n
d
t
h
e
p
o
ten
ti
al
w
it
h
in
th
e
s
p
ac
e
s
u
r
r
o
u
n
d
in
g
t
h
e
elec
tr
o
d
es
in
th
e
a
f
o
r
e
m
e
n
tio
n
ed
co
n
f
i
g
u
r
atio
n
s
co
u
ld
b
e
ea
s
il
y
d
eter
m
in
ed
,
p
r
o
v
id
ed
th
e
cir
cle
eq
u
atio
n
s
r
ep
r
esen
tin
g
t
h
e
eq
u
ip
o
ten
tia
l lin
e
s
ar
e
k
n
o
w
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
5
0
6
–
2
5
1
5
2508
3.
M
AT
H
E
M
AT
I
CAL M
O
DE
L
S
3
.
1
.
E
qu
ipo
t
ent
ia
l
L
ines
Ass
u
m
in
g
t
h
at:
(
4
)
an
d
r
ep
lacin
g
E
q
u
atio
n
2
,
3
,
4
in
to
E
q
u
atio
n
1
,
w
e
h
av
e
t
h
at
,
in
th
e
ca
s
e
o
f
a
w
ir
e
-
p
la
n
e
co
n
f
i
g
u
r
atio
n
(
Z=0
)
,
th
e
eq
u
ip
o
ten
t
ials
s
a
tis
f
y
th
e
c
o
n
d
itio
n
:
(
(
)
(
)
)
(
5
)
w
h
er
e
P
eq
is
a
n
u
m
b
er
th
at
d
en
o
tes d
if
f
er
e
n
t set
s
o
f
eq
u
ip
o
te
n
tial
s
.
R
ea
r
r
an
g
in
g
E
q
u
atio
n
5
w
e
g
e
t:
*
(
)
+
(
)
(
6
)
T
h
e
ab
o
v
e
eq
u
atio
n
s
h
o
w
s
th
at
all
eq
u
ip
o
ten
tial
li
n
es
ar
e
i
n
f
ac
t
cir
cles,
w
it
h
ce
n
tr
es
l
y
i
n
g
o
n
t
h
e
x
ax
is
.
T
h
e
ab
s
ciss
a
o
f
th
e
ce
n
tr
es
o
f
d
if
f
er
e
n
t
eq
u
ip
o
ten
tial
s
x
0
an
d
th
e
co
r
r
esp
o
n
d
in
g
r
ad
iu
s
R
m
a
y
ar
e
g
i
v
e
n
as f
o
llo
w
s
:
(
)
(
7
)
(
)
(
8
)
E
q
u
atio
n
s
7
an
d
8
ca
n
b
e
also
w
r
itte
n
as:
(
)
(
9
)
√
(
1
0
)
T
h
e
ab
o
v
e
f
o
r
m
u
las
d
e
f
in
e
t
h
e
ce
n
tr
es
a
n
d
r
ad
ii
o
f
eq
u
i
p
o
ten
tial
li
n
es
p
r
o
v
id
ed
t
h
e
d
is
tan
ce
c
b
et
w
ee
n
t
h
e
p
lan
e
o
f
s
y
m
m
etr
y
a
n
d
th
e
i
m
a
g
e
lin
e
ch
ar
g
es
(
Fig
u
r
e
1
)
,
as
w
ell
as
t
h
e
m
a
g
n
itu
d
e
q
o
f
th
e
lin
e
ch
ar
g
es,
ar
e
b
o
th
k
n
o
w
n
.
T
h
e
d
is
tan
ce
c
ca
n
b
e
ea
s
il
y
f
o
u
n
d
b
y
co
n
s
id
er
i
n
g
t
h
e
f
ac
t
t
h
at
th
e
c
y
li
n
d
r
ical
co
n
d
u
cto
r
'
s
s
u
r
f
ac
e
i
s
eq
u
ip
o
ten
tial,
t
h
u
s
s
ati
s
f
y
i
n
g
eq
u
atio
n
1
0
f
o
r
R
=r
an
d
x
0
=d
+
r
.
A
cc
o
r
d
in
g
l
y
,
w
e
g
et:
√
(
1
1
)
w
h
ic
h
d
ef
i
n
es c
as a
f
u
n
ctio
n
o
f
th
e
alr
ea
d
y
k
n
o
w
n
g
eo
m
etr
i
ca
l p
ar
am
eter
s
d
an
d
r
(
Fig
u
r
e
1
)
.
No
w
t
h
e
lin
e
c
h
ar
g
e
m
a
g
n
it
u
d
e
q
n
ee
d
s
also
to
b
e
d
ef
in
e
d
.
T
h
is
m
a
y
b
e
d
o
n
e
b
y
u
s
i
n
g
E
q
u
atio
n
1
f
o
r
th
e
e
lectr
ic
p
o
ten
tial
at
s
u
i
t
ab
le
p
o
in
ts
,
X
1
(
d
,
0
)
a
n
d
X
2
(
-
d
,
0
)
,
o
n
th
e
s
u
r
f
ac
e
o
f
t
h
e
c
y
l
in
d
r
ical
co
n
d
u
c
to
r
s
o
f
Fig
u
r
e
1
,
w
h
er
e
th
e
p
o
te
n
tial
i
s
alr
ea
d
y
k
n
o
w
n
(
V
a
n
d
-
V
r
esp
ec
tiv
el
y
i
n
t
h
e
ca
s
e
o
f
a
w
ir
e
-
p
la
n
e
co
n
f
i
g
u
r
atio
n
w
h
er
e
t
h
e
g
r
o
u
n
d
ed
p
lan
e
is
eq
u
i
v
ale
n
tl
y
s
u
b
s
titu
ted
b
y
th
e
i
m
a
g
e
c
h
ar
g
e
-
q
lo
ca
ted
in
s
id
e
t
h
e
i
m
a
g
e
c
y
li
n
d
er
at
th
e
le
f
t sid
e
o
f
f
i
g
u
r
e
1
)
.
Su
b
s
titu
tin
g
i
n
E
q
u
atio
n
1
f
o
r
Z=0
w
e
f
in
al
l
y
g
e
t:
(
)
(
√
(
)
√
(
)
)
(
)
(
1
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
n
a
lytica
l E
s
tima
tio
n
o
f th
e
E
lectro
s
ta
tic
F
ield
in
C
ylin
d
er
-
P
la
n
e
a
n
d
…
(
E
mma
n
o
u
il D.
F
.
)
2509
an
d
(
)
(
√
(
)
√
(
)
)
(
)
(
1
3)
w
h
er
e:
(
)
(
)
(
1
4
)
C
o
m
b
i
n
in
g
E
q
u
at
io
n
1
4
w
i
t
h
E
q
u
atio
n
1
2
an
d
E
q
u
atio
n
1
3
r
esu
lts
to
f
o
u
r
p
o
s
s
ib
l
e
eq
u
atio
n
co
m
b
i
n
atio
n
s
.
B
y
s
o
l
v
i
n
g
t
h
e
m
,
it c
an
b
e
f
o
u
n
d
t
h
at
o
n
l
y
o
n
e
ca
s
e
y
ield
s
a
n
ac
ce
p
t
ab
le
s
o
lu
tio
n
:
(
)
(
1
5
)
Su
b
s
ti
tu
t
in
g
E
q
u
atio
n
4
in
E
q
u
atio
n
1
5
,
w
e
r
ec
ei
v
e
a
s
o
lu
ti
o
n
f
o
r
th
e
ch
ar
g
e
q
l
in
t
h
e
ca
s
e
o
f
a
w
ir
e
-
c
y
li
n
d
er
co
n
f
i
g
u
r
at
io
n
,
b
ased
o
n
l
y
o
n
k
n
o
w
n
p
h
y
s
ica
l p
ar
am
eter
s
.
(
)
(
1
6
)
Si
m
i
lar
m
et
h
o
d
o
lo
g
y
ca
n
b
e
ap
p
lied
f
o
r
th
e
d
eter
m
i
n
atio
n
o
f
eq
u
ip
o
ten
tial
s
i
n
t
h
e
ca
s
e
o
f
t
w
o
p
ar
allel
c
y
li
n
d
r
ical
co
n
d
u
cto
r
s
(
w
ir
e
-
w
ir
e
co
n
f
ig
u
r
atio
n
)
w
it
h
p
o
ten
t
ial
d
i
f
f
er
e
n
ce
V
.
I
n
t
h
i
s
ca
s
e
w
e
h
a
v
e
t
h
at
Z≠
0
in
E
q
u
atio
n
1
,
s
o
E
q
u
atio
n
5
tak
es t
h
e
f
o
llo
w
i
n
g
f
o
r
m
:
(
(
)
(
)
)
(
)
(
1
7
)
T
h
er
ef
o
r
e,
E
q
u
atio
n
9
n
o
w
b
ec
o
m
e
s
:
(
)
(
1
8
)
I
n
eith
er
ca
s
e,
t
h
e
n
u
m
b
er
P
eq
s
er
v
es
to
s
p
ec
i
f
y
t
h
e
p
o
s
it
io
n
o
f
ea
ch
eq
u
ip
o
te
n
tial
cir
cle.
I
f
o
n
e
co
n
d
u
cto
r
is
g
r
o
u
n
d
ed
,
th
e
n
th
e
n
u
m
b
er
P
eq
d
ef
i
n
e
s
t
h
e
e
q
u
ip
o
ten
tial
cir
cle
at
p
o
ten
tia
l
V
=P
Equation
I
f
t
h
e
c
y
li
n
d
r
ical
co
n
d
u
cto
r
s
ar
e
at
d
if
f
er
e
n
t
p
o
ten
tial
w
it
h
co
n
s
ta
n
t
d
if
f
er
en
ce
V
,
b
u
t
n
eit
h
er
o
f
th
e
m
is
g
r
o
u
n
d
ed
,
th
en
th
e
n
u
m
b
er
P
eq
d
ef
in
e
s
t
h
e
eq
u
ip
o
ten
t
ial
cir
cle
at
p
o
ten
tial
V
=
P
eq
+V
min
w
h
er
e
V
min
r
ep
r
esen
ts
t
h
e
lo
w
er
p
o
ten
tial
b
et
w
ee
n
t
h
e
t
w
o
co
n
d
u
cto
r
s
.
Fo
r
P
eq
=
V
/2
th
e
eq
u
ip
o
ten
tial
cir
cle
d
i
m
i
n
i
s
h
e
s
i
n
to
a
lin
e
p
o
s
itio
n
ed
m
id
w
a
y
b
et
w
ee
n
t
h
e
co
n
d
u
cto
r
s
(
R
→∞
).
Eq
u
atio
n
1
0
an
d
1
1
f
o
r
R
an
d
c
ar
e
s
till
v
alid
,
w
h
ile
f
u
r
t
h
er
ca
lcu
latio
n
s
d
eter
m
i
n
e
th
at
E
q
u
atio
n
16
f
o
r
th
e
esti
m
at
io
n
o
f
q
l
b
ec
o
m
es:
(
)
(
1
9
)
3
.
2
.
E
lect
ric
F
ield
Ana
ly
s
is
3
.
2
.
1
.
Cy
lin
der
-
P
la
ne
Co
nfig
ura
t
io
n
A
cc
o
r
d
in
g
to
t
h
e
an
al
y
s
is
p
r
esen
ted
i
n
t
h
e
p
r
ev
io
u
s
s
ec
t
i
o
n
an
d
w
it
h
r
e
f
er
en
ce
to
Fi
g
u
r
e
1
,
th
e
elec
tr
ic
p
o
ten
tial
f
o
r
a
c
y
li
n
d
er
-
p
lan
e
elec
tr
o
d
e
s
et,
at
a
n
y
p
o
in
t
w
it
h
C
ar
tesi
a
n
co
o
r
d
in
ates
(
x,
y
)
,
m
a
y
b
e
d
ef
in
ed
b
y
co
m
b
i
n
i
n
g
E
q
u
a
tio
n
1
,
E
q
u
atio
n
2
an
d
E
q
u
atio
n
3
as f
o
llo
w
s
:
(
)
(
√
(
)
√
(
)
)
[
(
(
)
)
(
(
)
)
]
(
2
0
)
w
h
er
e
A
cp
is
d
er
iv
ed
b
y
co
m
b
i
n
in
g
E
q
u
at
io
n
4
an
d
E
q
u
atio
n
15:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
5
0
6
–
2
5
1
5
2510
(
)
(
2
1
)
T
h
e
co
r
r
esp
o
n
d
in
g
elec
tr
ic
f
ie
ld
s
tr
en
g
t
h
at
p
o
in
t (
x,
y
)
is
d
ef
in
ed
as th
e
g
r
ad
ien
t o
f
p
o
ten
ti
al:
(
)
(
)
[
*
(
)
(
)
(
)
(
)
+
[
(
)
(
)
]
]
(
2
2
)
C
o
m
b
i
n
in
g
E
q
u
atio
n
2
1
an
d
E
q
u
atio
n
2
2
w
e
f
i
n
all
y
g
et:
(
)
(
)
(
)
|
|
√
(
)
(
2
3
)
Ass
u
m
in
g
t
h
at
y=0
an
d
x=d
,
th
en
w
e
g
et
t
h
e
p
ea
k
elec
tr
ic
f
i
eld
o
f
th
e
g
eo
m
etr
y
:
(
)
(
)
(
2
4
)
E
x
p
an
d
in
g
,
t
h
e
Field
E
n
h
an
ce
m
en
t
Facto
r
ca
n
b
e
ca
lcu
lated
b
y
d
iv
id
in
g
th
e
a
v
er
ag
e
elec
tr
ic
f
ield
o
f
th
e
g
eo
m
etr
y
(
E
avg
=V
/d
)
w
i
th
th
e
r
e
s
u
l
t
o
f
E
q
u
atio
n
2
4
.
Fo
r
in
h
o
m
o
g
e
n
eo
u
s
g
eo
m
etr
ie
s
th
at
i
n
d
u
ce
co
r
o
n
a
cu
r
r
en
ts
,
t
h
e
Field
E
n
h
a
n
ce
m
e
n
t Fac
to
r
w
ill al
w
a
y
s
h
av
e
a
v
alu
e
lo
w
er
th
a
n
1
.
3
.
2
.
2
.
Cy
lin
der
-
P
la
ne
Co
nfig
ura
t
io
n
Fo
r
a
cy
li
n
d
er
-
c
y
li
n
d
er
co
n
f
i
g
u
r
atio
n
,
E
q
u
atio
n
2
0
tak
es t
h
e
f
o
r
m
:
(
)
[
(
(
)
)
(
(
)
)
]
(
2
5
)
w
h
er
e:
(
)
(
2
6
)
T
h
e
co
r
r
esp
o
n
d
in
g
elec
tr
ic
f
ie
ld
s
tr
en
g
t
h
i
s
d
ef
i
n
ed
as:
(
)
(
)
(
)
|
|
√
(
)
(
2
7
)
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
I
n
o
r
d
er
to
v
er
if
y
th
e
v
alid
it
y
o
f
th
e
m
at
h
e
m
a
tical
m
o
d
el,
th
e
r
esu
lts
w
er
e
co
m
p
ar
ed
to
th
at
d
er
iv
ed
v
ia
f
i
n
ite
ele
m
en
t
a
n
al
y
s
is
(
FE
A
)
,
w
h
ic
h
to
d
a
y
i
s
t
h
e
m
o
s
t
wid
el
y
ac
ce
p
ted
co
m
p
u
tatio
n
al
m
et
h
o
d
f
o
r
s
o
lv
i
n
g
s
i
m
ilar
p
r
o
b
lem
s
.
On
th
at
p
u
r
p
o
s
e,
C
OM
SO
L
M
u
lti
p
h
y
s
ics
4
.
3
b
h
as
b
ee
n
u
s
ed
.
Sp
ec
if
ica
ll
y
,
t
h
e
s
i
m
u
latio
n
s
h
av
e
b
ee
n
p
er
f
o
r
m
ed
u
s
i
n
g
th
e
elec
tr
o
s
tatics
m
o
d
u
le.
I
n
o
r
d
er
to
m
i
n
i
m
ize
an
y
en
d
-
e
f
f
e
cts,
th
e
s
i
m
u
latio
n
s
w
er
e
p
er
f
o
r
m
ed
w
it
h
in
a
s
q
u
ar
e
b
o
u
n
d
ar
y
b
o
x
o
f
8
0
c
m
,
w
it
h
t
h
e
c
y
li
n
d
r
ical
e
m
itter
f
ac
in
g
a
6
0
c
m
w
id
e
p
lan
e
co
llecto
r
.
T
h
e
m
a
x
i
m
u
m
s
i
m
u
la
tio
n
d
i
s
tan
ce
b
et
w
ee
n
t
h
e
elec
tr
o
d
es i
s
5
c
m
a
n
d
t
h
e
e
m
it
ter
elec
tr
o
d
e
is
al
w
a
y
s
at
t
h
e
ex
ac
t
ce
n
tr
e
o
f
th
e
b
o
u
n
d
ar
y
b
o
x
.
T
ab
le
1
d
is
p
la
y
s
t
h
e
m
ai
n
s
o
f
t
w
ar
e
s
etti
n
g
s
.
Fig
u
r
e
2
d
is
p
lay
s
th
e
g
eo
m
etr
ic
r
ep
r
esen
tatio
n
o
f
o
n
e
o
f
t
h
e
FE
A
m
o
d
el
s
th
at
ar
e
b
ein
g
u
s
ed
to
s
i
m
u
late
t
h
e
s
y
s
te
m
.
T
o
ch
ec
k
th
e
co
r
r
elatio
n
b
et
w
ee
n
t
h
e
r
es
u
lt
s
o
f
t
h
e
m
at
h
e
m
atica
l
m
o
d
el
a
n
d
th
e
FE
A
s
o
f
t
w
ar
e
o
u
tp
u
t,
t
h
r
ee
s
tat
is
tical
f
u
n
ctio
n
s
ar
e
u
s
ed
.
T
h
e
f
ir
s
t
is
th
e
m
ea
n
ab
s
o
lu
te
p
er
ce
n
ta
g
e
er
r
o
r
(
MA
P
E
)
,
d
escr
ib
ed
b
y
E
q
u
a
tio
n
2
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
n
a
lytica
l E
s
tima
tio
n
o
f th
e
E
lectro
s
ta
tic
F
ield
in
C
ylin
d
er
-
P
la
n
e
a
n
d
…
(
E
mma
n
o
u
il D.
F
.
)
2511
[
∑
|
|
]
(
2
8
)
w
h
er
e
n
is
th
e
n
u
m
b
er
o
f
d
at
a
p
o
in
ts
,
E
sim
i
s
t
h
e
s
i
m
u
lated
elec
tr
ic
f
ield
s
tr
e
n
g
t
h
a
n
d
E
eq
is
t
h
e
ca
lc
u
lated
elec
tr
ic
f
ield
s
tr
e
n
g
t
h
u
s
i
n
g
t
h
e
m
ath
e
m
at
ical
m
o
d
el
d
escr
ib
ed
in
th
e
p
r
ev
io
u
s
s
ec
tio
n
s
.
Fig
u
r
e
2.
Ou
tp
u
t o
f
a
De
m
o
n
s
t
r
at
iv
e
FE
A
Mo
d
el,
Dis
p
la
y
i
n
g
th
e
E
lectr
ic
Fi
eld
in
t
h
e
Sp
ac
e
b
et
w
ee
n
a
C
y
l
in
d
er
-
P
la
n
e
E
lectr
o
d
es Se
t in
A
ir
.
(
d
=3
cm
,
r
=1
0
0
0
μ
m
)
T
h
e
s
ec
o
n
d
s
tatis
tical
f
u
n
ct
io
n
is
th
e
m
ea
n
ab
s
o
l
u
te
d
ev
iat
io
n
(
M
A
D)
,
s
h
o
w
n
in
E
q
u
atio
n
29
.
∑
|
|
(
2
9
)
T
h
e
th
ir
d
s
tati
s
tical
f
u
n
ct
io
n
is
t
h
e
w
ei
g
h
ted
M
A
P
E
,
also
k
n
o
w
n
as
th
e
M
A
D/Me
a
n
r
at
io
,
w
h
ic
h
ass
u
m
e
s
th
at
t
h
e
ab
s
o
lu
te
er
r
o
r
o
f
ea
ch
ite
m
i
s
eq
u
all
y
i
m
p
o
r
tan
t
[
1
5
]
.
T
h
er
ef
o
r
e,
d
u
e
to
t
h
e
v
er
y
lar
g
e
s
ca
le
o
f
th
e
elec
tr
ic
f
ield
i
n
te
n
s
it
y
,
w
ei
g
h
ted
M
A
P
E
is
g
r
ea
tl
y
a
f
f
ec
ted
b
y
an
y
er
r
o
r
s
v
er
y
c
lo
s
e
to
th
e
to
p
o
f
t
h
e
s
ca
le.
T
h
e
w
ei
g
h
ted
M
A
P
E
is
d
escr
ib
ed
b
y
E
q
u
atio
n
3
0
.
*
∑
|
|
∑
+
(
3
0
)
Mu
ltip
le
co
n
f
i
g
u
r
atio
n
s
o
f
v
ar
y
in
g
c
y
li
n
d
er
r
ad
iu
s
h
a
v
e
b
ee
n
ex
p
lo
r
ed
,
as
it
ca
n
b
e
s
ee
n
f
r
o
m
T
ab
le
1
,
w
h
ic
h
d
is
p
la
y
s
th
e
MA
D
b
et
w
ee
n
th
e
d
ev
elo
p
ed
m
a
th
e
m
atica
l
m
o
d
el
an
d
th
e
r
esu
lts
o
f
t
h
e
FE
A
s
o
f
t
w
ar
e
ac
r
o
s
s
t
h
e
g
ap
b
et
w
ee
n
t
h
e
c
y
li
n
d
er
-
p
la
n
e
elec
tr
o
d
e
p
air
.
T
ab
le
2
c
o
r
r
esp
o
n
d
in
g
l
y
d
is
p
la
y
s
t
h
e
W
MA
P
E
er
r
o
r
o
f
th
e
s
a
m
e
co
n
f
ig
u
r
atio
n
.
T
ab
le
1
.
C
OM
SOL
M
u
ltip
h
y
s
ics 4
.
3
b
Ma
in
So
f
t
w
ar
e
Setti
n
g
s
M
e
sh
e
l
e
me
n
t
si
z
e
o
n
p
a
r
t
i
c
l
e
t
r
a
j
e
c
t
o
r
i
e
s
1
μ
m
max
i
mu
m
M
e
sh
e
l
e
me
n
t
si
z
e
i
n
a
i
r
d
o
m
a
i
n
5
0
μ
m
max
i
m
u
m
R
e
so
l
u
t
i
o
n
o
f
c
u
r
v
a
t
u
r
e
s
0
.
0
0
5
M
a
x
i
m
u
m
e
l
e
m
e
n
t
g
r
o
w
t
h
r
a
t
e
1
.
1
R
e
so
l
u
t
i
o
n
o
f
n
a
r
r
o
w
r
e
g
i
o
n
s
0
.
0
1
S
o
l
v
e
r
t
y
p
e
S
t
a
t
i
o
n
a
r
y
,
M
U
M
P
S
S
o
l
v
e
r
r
e
l
a
t
i
v
e
t
o
l
e
r
a
n
c
e
0
.
0
0
1
P
i
v
o
t
T
h
r
e
sh
o
l
d
0
.
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
5
0
6
–
2
5
1
5
2512
T
ab
le
2
.
E
lectr
ic
Field
Gr
ad
ie
n
t M
A
D
b
et
w
ee
n
th
e
Mat
h
e
m
atica
l a
n
d
Si
m
u
lated
Mo
d
els,
C
y
l
in
d
er
-
P
la
n
e
C
o
n
f
i
g
u
r
atio
n
,
φ
=0
°
d
(
c
m
)
r (μ
m
)
50
5
0
0
1
0
0
0
5
0
0
0
1
4
6
.
8
7
V
/
m
1
9
.
9
2
V
/
m
1
7
.
8
5
V
/
m
8
.
0
9
V
/
m
2
4
6
.
6
3
V
/
m
3
9
.
8
1
V
/
m
1
2
.
7
5
V
/
m
2
5
.
9
6
V
/
m
3
5
9
.
7
6
V
/
m
5
9
.
6
0
V
/
m
5
8
.
5
2
V
/
m
4
5
.
7
2
V
/
m
5
9
2
.
6
0
V
/
m
9
7
.
4
5
V
/
m
9
7
.
5
4
V
/
m
8
5
.
8
2
V
/
m
T
o
v
er
if
y
t
h
e
v
alid
it
y
o
f
th
e
m
at
h
e
m
a
tical
m
o
d
el,
its
r
e
s
u
lt
s
ac
r
o
s
s
o
t
h
er
f
ie
ld
lin
e
s
w
er
e
ex
a
m
in
e
d
as
w
ell.
Usi
n
g
t
h
e
p
ar
ticle
tr
ac
in
g
m
o
d
u
le
p
r
ese
n
t
i
n
C
O
MSO
L
Mu
l
tip
h
y
s
ic
s
,
th
e
tr
ajec
to
r
y
o
f
a
p
ar
ticle
leav
i
n
g
a
n
e
m
i
s
s
io
n
an
g
le
φ
(
Fig
u
r
e
3
)
is
r
ec
o
r
d
ed
an
d
th
e
r
esu
lt
s
ac
r
o
s
s
th
at
tr
aj
ec
to
r
y
ar
e
b
ein
g
co
m
p
ar
ed
to
th
at
d
er
iv
ed
u
s
in
g
t
h
e
m
at
h
e
m
atica
l
m
o
d
el.
T
h
is
tr
aj
ec
to
r
y
co
in
cid
es
w
it
h
th
e
f
ield
lin
e
f
o
r
an
e
m
i
s
s
io
n
an
g
le
φ
,
w
h
ich
i
s
p
er
p
en
d
icu
lar
to
b
o
th
th
e
s
u
r
f
ac
e
o
f
th
e
e
m
it
ter
an
d
th
e
p
lan
e
o
f
s
y
m
m
etr
y
[
1
8
]
.
Si
m
i
lar
l
y
as
b
e
f
o
r
e,
T
ab
les
3
an
d
4
r
esp
ec
ti
v
el
y
d
i
s
p
la
y
t
h
e
M
AD
a
n
d
t
h
e
W
M
A
P
E
b
et
w
ee
n
th
e
p
r
esen
ted
m
at
h
e
m
atica
l
m
o
d
el
an
d
th
e
r
es
u
lts
o
f
t
h
e
FE
A
s
o
f
t
w
ar
e
ac
r
o
s
s
t
h
e
f
ield
lin
e
f
o
r
an
e
m
i
s
s
io
n
an
g
l
e
o
f
3
0
°.
Fig
u
r
e
3
.
P
ar
ticle
T
r
a
j
ec
to
r
ies (
Field
L
i
n
es
)
f
o
r
E
m
is
s
io
n
An
g
les
φ
=
0
° an
d
φ
=
3
0
°
T
ab
le
3
.
E
lectr
ic
Field
Gr
ad
ie
n
t
W
M
A
P
E
b
et
w
ee
n
t
h
e
Ma
t
h
e
m
at
ical
a
n
d
Si
m
u
la
ted
Mo
d
els,
C
y
lin
d
er
-
P
lan
e
C
o
n
f
i
g
u
r
atio
n
,
φ
=0
°
d
(
c
m
)
r (μ
m
)
50
5
0
0
1
0
0
0
5
0
0
0
1
0
.
0
4
6
%
0
.
0
2
0
%
0
.
0
1
8
%
0
.
0
0
8
%
2
0
.
0
9
1
%
0
.
0
7
9
%
0
.
0
2
5
%
0
.
0
5
2
%
3
0
.
1
7
6
%
0
.
1
7
8
%
0
.
1
7
5
%
0
.
1
3
7
%
5
0
.
4
5
4
%
0
.
4
8
6
%
0
.
4
8
7
%
0
.
4
2
9
%
T
ab
le
4
.
E
lectr
ic
Field
Gr
ad
ie
n
t M
A
D
b
et
w
ee
n
th
e
Ma
t
h
e
m
atica
l a
n
d
Si
m
u
lated
Mo
d
els,
C
y
l
in
d
er
-
P
la
n
e
C
o
n
f
i
g
u
r
atio
n
,
φ
=3
0
°
d
(
c
m
)
r (μ
m
)
50
5
0
0
1
0
0
0
5
0
0
0
1
5
8
.
1
8
V
/
m
2
1
.
5
4
V
/
m
1
9
.
8
2
V
/
m
1
4
.
0
8
V
/
m
2
5
3
.
1
9
V
/
m
4
0
.
7
4
V
/
m
4
0
.
1
7
V
/
m
3
3
.
6
2
V
/
m
3
6
3
.
5
6
V
/
m
6
0
.
3
2
V
/
m
6
0
.
4
5
V
/
m
5
4
.
1
3
V
/
m
5
9
1
.
3
1
V
/
m
3
2
.
6
0
V
/
m
9
9
.
3
1
V
/
m
9
5
.
0
1
V
/
m
Fu
r
t
h
er
m
o
r
e,
s
i
m
u
latio
n
s
w
er
e
r
u
n
f
o
r
c
y
lin
d
er
-
c
y
li
n
d
er
co
n
f
i
g
u
r
atio
n
s
as
w
ell.
T
ab
le
s
5
,
6
,
an
d
7
r
esp
ec
tiv
el
y
d
is
p
la
y
th
e
M
A
D
a
n
d
th
e
W
MA
P
E
b
etw
ee
n
th
e
p
r
es
en
ted
m
at
h
e
m
a
tical
m
o
d
el
an
d
t
h
e
r
es
u
lt
s
o
f
t
h
e
F
E
A
s
o
f
t
w
ar
e
ac
r
o
s
s
t
h
e
f
ield
li
n
e
f
o
r
an
e
m
i
s
s
io
n
a
n
g
le
o
f
0
°
,
f
o
r
a
c
y
lin
d
er
-
to
-
c
y
li
n
d
er
co
n
f
i
g
u
r
at
io
n
.
T
h
e
d
is
tan
ce
d
is
t
h
e
d
is
ta
n
ce
o
f
ea
c
h
elec
tr
o
d
e
f
r
o
m
th
e
p
la
n
e
o
f
s
y
m
m
etr
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
n
a
lytica
l E
s
tima
tio
n
o
f th
e
E
lectro
s
ta
tic
F
ield
in
C
ylin
d
er
-
P
la
n
e
a
n
d
…
(
E
mma
n
o
u
il D.
F
.
)
2513
T
h
e
MA
P
E
er
r
o
r
o
f
all
co
n
f
i
g
u
r
atio
n
s
is
d
elib
er
atel
y
o
m
it
ted
,
as
it
w
as
e
n
tire
l
y
i
n
s
ig
n
i
f
ica
n
t
f
o
r
ev
er
y
co
n
f
i
g
u
r
at
io
n
t
h
at
h
a
s
b
ee
n
test
ed
.
T
ab
le
5
.
E
lectr
ic
Field
Gr
ad
ie
n
t W
M
A
P
E
b
et
w
ee
n
t
h
e
Ma
t
h
e
m
atic
al
a
n
d
Si
m
u
la
ted
Mo
d
els,
C
y
lin
d
er
-
P
lan
e
C
o
n
f
i
g
u
r
ati
o
n
,
φ
=3
0
°
d
(
c
m
)
r (μ
m
)
50
5
0
0
1
0
0
0
5
0
0
0
1
0
.
0
6
0
%
0
.
0
2
3
%
0
.
0
2
1
%
0
.
0
1
6
%
2
0
.
1
1
1
%
0
.
0
8
6
%
0
.
0
8
5
%
0
.
0
7
3
%
3
0
.
1
9
8
%
0
.
1
9
0
%
0
.
1
9
1
%
0
.
1
7
4
%
5
0
.
4
7
5
%
0
.
5
1
3
%
0
.
5
2
1
%
0
.
5
0
4
%
T
ab
le
6
.
E
lectr
ic
Field
Gr
ad
ie
n
t M
A
D
b
et
w
ee
n
th
e
Ma
t
h
e
m
a
tical
an
d
Si
m
u
lated
Mo
d
e
ls
,
C
y
l
in
d
er
-
C
y
li
n
d
er
C
o
n
f
i
g
u
r
ati
o
n
,
φ
=0
°
d
(
c
m
)
r (μ
m
)
50
5
0
0
1
0
0
0
5
0
0
0
1
1
8
.
2
0
V
/
m
2
.
5
1
V
/
m
2
.
1
4
V
/
m
0
.
9
1
V
/
m
2
1
0
.
5
4
V
/
m
4
.
6
3
V
/
m
1
.
4
6
V
/
m
2
.
9
3
V
/
m
3
9
.
6
2
V
/
m
6
.
8
8
V
/
m
6
.
7
2
V
/
m
5
.
2
0
V
/
m
5
1
1
.
6
2
V
/
m
1
1
.
3
6
V
/
m
1
1
.
3
4
V
/
m
9
.
8
8
V
/
m
T
ab
le
7
.
E
lectr
ic
Field
Gr
ad
i
e
n
t W
M
A
P
E
b
et
w
ee
n
t
h
e
Ma
t
h
e
m
a
tical
a
n
d
Si
m
u
la
ted
Mo
d
els,
C
y
l
in
d
er
-
C
y
li
n
d
er
C
o
n
f
ig
u
r
at
i
o
n
,
φ
=0
°
d
(
c
m
)
r (μ
m
)
50
5
0
0
1
0
0
0
5
0
0
0
1
0
.
0
3
6
%
0
.
0
0
5
%
0
.
0
0
4
%
0
.
0
0
2
%
2
0
.
0
4
2
%
0
.
0
1
8
%
0
.
0
0
6
%
0
.
0
1
2
%
3
0
.
0
5
7
%
0
.
0
4
1
%
0
.
0
4
0
%
0
.
0
3
1
%
5
0
.
1
1
6
%
0
.
1
1
4
%
0
.
1
1
3
%
0
.
0
9
9
%
A
ll
o
f
th
e
ca
lc
u
lated
er
r
o
r
s
ar
e
m
in
i
m
a
l
an
d
ca
u
s
ed
b
y
t
h
e
co
m
p
u
ti
n
g
ca
p
ab
ilit
ies
o
f
th
e
s
o
f
t
w
ar
e
p
er
f
o
r
m
in
g
t
h
e
ca
lc
u
latio
n
s
.
F
o
r
ex
a
m
p
le,
d
ec
r
ea
s
in
g
t
h
e
s
o
l
v
er
's
to
ler
an
ce
an
d
o
r
r
ed
u
cin
g
t
h
e
m
es
h
ele
m
en
t
s
ize
in
C
OM
SO
L
M
u
ltip
h
y
s
ics
i
n
cr
ea
s
es
t
h
e
co
n
v
er
g
e
n
ce
b
et
w
ee
n
t
h
e
m
a
th
e
m
ati
ca
l
m
o
d
el
an
d
th
e
s
i
m
u
lat
io
n
r
esu
lts
e
v
en
f
u
r
t
h
e
r
,
y
et
at
th
e
s
u
b
s
ta
n
tia
l
ex
p
en
s
e
o
f
co
m
p
u
ti
n
g
ti
m
e.
I
n
ad
d
itio
n
to
th
e
ab
o
v
e,
Mic
r
o
s
o
f
t
E
x
ce
l
is
b
ei
n
g
u
s
e
d
f
o
r
th
e
ca
lc
u
latio
n
o
f
t
h
e
m
at
h
e
m
a
tical
m
o
d
el.
U
s
i
n
g
a
n
ar
b
itra
r
y
p
r
ec
is
i
on
ar
ith
m
etic
ca
lcu
la
to
r
f
o
r
th
e
m
at
h
e
m
a
tical
f
u
n
ctio
n
s
m
a
y
i
n
cr
ea
s
e
th
e
ac
c
u
r
ac
y
o
f
t
h
e
m
at
h
e
m
a
tical
r
esu
lts
ev
en
f
u
r
th
er
,
y
et
t
h
e
y
w
ill
n
o
t
co
in
cid
e
w
it
h
t
h
e
r
es
u
lts
o
f
a
FE
A
m
o
d
el
p
er
f
ec
t
l
y
,
w
h
ic
h
ar
e
also
li
m
ited
b
y
th
e
ca
p
ab
ilit
ies o
f
t
h
e
s
o
f
t
w
ar
e
.
Fig
u
r
e
4
.
Fo
r
m
a
tio
n
o
f
E
q
u
ip
o
ten
tial
L
i
n
es
Su
r
r
o
u
n
d
in
g
a
C
y
li
n
d
r
ical
E
lectr
o
d
e
Facin
g
a
Gr
o
u
n
d
ed
P
lan
e
E
lectr
o
d
e,
f
o
r
V
=
1
k
V,
d
=
3
cm
an
d
r
=
0
.
5
cm
,
i
n
1
0
0
V
s
tep
s
Fig
u
r
e
5
.
E
lectr
ic
Field
Su
r
r
o
u
n
d
in
g
a
C
y
li
n
d
r
ical
E
lectr
o
d
e
Facin
g
a
Gr
o
u
n
d
ed
P
lan
e
E
lectr
o
d
e,
f
o
r
V
=
1
k
V,
d
=
3
cm
an
d
r
=
0
.
5
cm
As
m
e
n
tio
n
ed
in
t
h
e
p
r
ev
io
u
s
s
ec
tio
n
o
f
th
i
s
p
ap
er
,
n
ea
r
th
e
en
d
o
f
t
h
e
eq
u
ip
o
ten
t
ial
m
o
d
ell
in
g
p
ar
ag
r
ap
h
,
v
alid
P
eq
f
ig
u
r
es
r
a
n
g
e
f
r
o
m
ze
r
o
to
V
.
Ε
ac
h
u
m
b
er
P
eq
d
escr
ib
es
a
s
p
ec
if
ic
eq
u
ip
o
ten
tial
li
n
e,
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
5
0
6
–
2
5
1
5
2514
elec
tr
ic
p
o
ten
tial
o
f
w
h
ich
i
s
eq
u
al
to
P
Equation
T
h
er
ef
o
r
e,
if
th
e
r
ad
iu
s
r
o
f
t
h
e
e
m
itter
elec
t
r
o
d
e,
th
e
d
is
tan
ce
d
f
r
o
m
t
h
e
e
m
it
ter
elec
tr
o
d
e
to
th
e
p
lan
e
o
f
s
y
m
m
etr
y
a
n
d
th
e
p
o
ten
tial
V
ap
p
lied
to
th
e
e
m
it
ter
elec
tr
o
d
e
ar
e
all
k
n
o
w
n
,
th
e
e
x
ac
t
f
o
r
m
a
tio
n
o
f
th
e
eq
u
ip
o
ten
tial
li
n
es
i
s
k
n
o
w
n
as
w
ell.
Fi
g
u
r
e
4
illu
s
tr
at
es
th
e
f
o
r
m
atio
n
o
f
eq
u
ip
o
ten
tial
li
n
es
o
f
a
c
y
li
n
d
er
-
p
lan
e
co
n
f
ig
u
r
atio
n
f
o
r
V
=
1
k
V,
d
=
5
cm
an
d
r
=
0
.
5
c
m
,
w
ith
a
P
eq
f
r
o
m
1
0
0
to
9
0
0
,
in
s
tep
s
o
f
1
0
0
.
T
h
ese
r
esu
lt
s
w
er
e
also
s
u
cc
e
s
s
f
u
l
l
y
v
al
id
ated
b
y
co
m
p
ar
i
n
g
t
h
e
o
u
tp
u
t
o
f
t
h
e
m
at
h
e
m
a
tical
m
o
d
el
to
th
at
o
f
th
e
FE
A
s
o
f
t
w
ar
e
as s
h
o
w
n
in
Fig
u
r
e
5
.
5.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
p
r
esen
ted
a
m
at
h
e
m
atica
l
m
o
d
el
f
o
r
th
e
a
n
al
y
ti
ca
l
ca
lcu
lat
io
n
o
f
t
h
e
elec
tr
ic
f
ield
a
n
d
p
o
ten
tial
f
o
r
m
ed
b
et
w
ee
n
c
y
lin
d
er
-
p
la
n
e
o
r
p
ar
allel
cy
li
n
d
er
-
c
y
li
n
d
er
co
n
f
i
g
u
r
atio
n
s
.
C
o
m
p
u
ter
ass
is
ted
s
i
m
u
lat
io
n
s
w
er
e
u
s
ed
to
v
er
i
f
y
th
e
v
al
id
it
y
o
f
t
h
e
m
at
h
e
m
atica
l
m
o
d
el,
w
it
h
e
x
ce
lle
n
t
r
esu
lt
s
,
p
r
o
v
in
g
i
ts
ac
cu
r
ac
y
.
T
h
e
d
ev
elo
p
ed
m
at
h
e
m
a
tical
m
o
d
el
h
as
n
u
m
er
o
u
s
p
r
ac
tical
ap
p
licatio
n
s
,
s
m
all
an
d
lar
g
e
s
ca
le
alik
e.
I
t
ca
n
b
e
u
s
ed
to
ca
lcu
l
ate
th
e
elec
tr
ic
f
ield
s
u
r
r
o
u
n
d
in
g
w
ir
e
-
p
la
n
e
o
r
p
ar
allel
w
ir
e
co
n
f
i
g
u
r
atio
n
s
o
f
an
y
d
i
m
e
n
s
io
n
s
.
S
u
c
h
g
eo
m
etr
ies
ar
e
p
r
esen
t
i
n
a
v
ar
iet
y
o
f
d
ev
ices,
f
r
o
m
e
lectr
o
h
y
d
r
o
d
y
n
a
m
ic
p
u
m
p
s
to
elec
tr
o
s
tatic
p
r
ec
ip
itato
r
s
an
d
io
n
g
e
n
er
ato
r
s
.
I
t
also
m
a
y
b
e
u
s
ed
to
est
i
m
a
te
th
e
p
o
ten
tial
at
an
y
p
o
in
t
i
n
t
h
e
s
p
ac
e
s
u
r
r
o
u
n
d
in
g
t
h
ese
c
o
n
f
i
g
u
r
atio
n
s
b
y
f
i
n
d
i
n
g
t
h
e
e
x
ac
t
eq
u
ip
o
ten
tial
li
n
e
t
h
at
cr
o
s
s
e
s
th
at
p
o
i
n
t.
T
h
ese
p
ar
am
eter
s
ar
e
q
u
ite
i
m
p
o
r
tan
t
in
en
g
i
n
ee
r
in
g
d
esi
g
n
,
s
u
c
h
as
f
o
r
p
r
o
p
er
ca
lcu
latio
n
o
f
in
s
u
lat
io
n
an
d
s
a
f
et
y
m
ea
s
u
r
es
.
RE
F
E
R
E
NC
E
S
[1
]
M
.
Kh
a
li
f
a
,
Hig
h
Vo
l
ta
g
e
En
g
in
e
e
rin
g
:
T
h
e
o
ry
a
n
d
Pra
c
ti
c
e
.
Ne
w
Yo
rk
:
M
a
rc
e
l
a
n
d
De
k
k
e
r,
1
9
9
0
.
[2
]
M
.
S
.
Na
i
d
u
a
n
d
V
.
Ka
m
a
ra
ju
,
Hig
h
v
o
lt
a
g
e
e
n
g
in
e
e
rin
g
.
Ne
w
Yo
rk
:
T
a
ta M
c
G
r
a
w
-
Hill
Ed
u
c
a
ti
o
n
,
2
0
1
3
.
[3
]
C.
W
a
d
h
w
a
,
Hig
h
v
o
lt
a
g
e
e
n
g
in
e
e
rin
g
.
Ne
w
De
lh
i:
Ne
w
A
g
e
In
tern
a
ti
o
n
a
l,
2
0
0
7
.
[4
]
L
.
Ya
n
ju
,
C.
Yu
n
d
o
n
g
,
L
.
Ya
n
b
in
,
G
.
Yo
u
h
u
a
,
a
n
d
L
.
X
iao
m
in
g
,
"
De
si
g
n
f
o
r
n
e
w
t
y
p
e
o
f
m
a
in
in
su
latio
n
o
f
3
5
k
V
e
lec
tri
c
p
o
w
e
r
tran
s
f
o
r
m
e
r
b
a
se
d
o
n
e
lec
tri
c
f
ield
a
n
a
ly
sis"
,
in
Au
to
ma
ti
o
n
Co
n
g
re
ss
,
2
0
0
8
.
W
AC
2
0
0
8
.
W
o
rl
d
,
2
0
0
8
;
1
:
1
-
4.
[5
]
E.
D.
F
y
ll
a
d
it
a
k
is,
M
.
P
.
T
h
e
o
d
o
r
i
d
is,
a
n
d
A
.
X
.
M
o
r
o
n
is,
"
Re
v
ie
w
o
n
th
e
Hist
o
ry
,
Re
se
a
r
c
h
,
a
n
d
A
p
p
li
c
a
ti
o
n
s
o
f
El
e
c
tro
h
y
d
ro
d
y
n
a
m
ics
"
,
Pl
a
sm
a
S
c
ien
c
e
,
IEE
E
T
ra
n
s
a
c
ti
o
n
s o
n
,
2
0
1
4
;
4
2
:
3
5
8
-
3
7
5
.
[6
]
D.
M
e
e
k
e
r,
"
F
in
it
e
El
e
m
e
n
t
M
e
th
o
d
M
a
g
n
e
ti
c
s (F
EM
M
),
V
e
rsio
n
4
.
2
"
,
W
e
b
P
a
g
e
:
h
tt
p
://
fem
m.b
e
rli
o
s.d
e
,
2
0
0
6
.
[7
]
J.C.
M
a
téo
-
V
é
lez
,
P
.
De
g
o
n
d
,
F
.
Ro
g
ier,
A
.
S
é
ra
u
d
ie,
a
n
d
F
.
T
h
iv
e
,
"
M
o
d
e
ll
i
n
g
w
ire
-
to
-
w
ir
e
c
o
ro
n
a
d
isc
h
a
rg
e
a
c
ti
o
n
o
n
a
e
ro
d
y
n
a
m
ics
a
n
d
c
o
m
p
a
riso
n
w
it
h
e
x
p
e
rim
e
n
t"
,
J
.
Ph
y
s.
D: A
p
p
l.
Ph
y
s.,
2
0
0
8
;
4
1
:
1
-
1
1
.
[8
]
P
.
G
lu
sh
c
h
e
n
k
o
a
n
d
Y.
K.
S
ti
sh
k
o
v
,
"
M
o
d
e
li
n
g
o
f
th
e
th
ro
u
g
h
EH
D
-
f
lo
w
stru
c
tu
re
in
a
w
ire
-
w
ire
s
y
ste
m
"
,
S
u
rfa
c
e
En
g
i
n
e
e
rin
g
a
n
d
A
p
p
li
e
d
E
lec
tro
c
h
e
mistry
,
2
0
0
7
;
4
3
:
2
5
7
-
2
6
4
.
[9
]
L
.
Zh
a
o
,
E
.
D.
Cru
z
,
K.
A
d
a
m
ia
k
,
A
.
Be
re
z
in
,
a
n
d
J.
Ch
a
n
g
,
"
A
n
u
m
e
rica
l
m
o
d
e
l
o
f
a
w
ire
-
p
late
e
lec
tro
sta
ti
c
p
re
c
ip
it
a
to
r
u
n
d
e
r
e
lec
tro
h
y
d
ro
d
y
n
a
m
ic
f
lo
w
c
o
n
d
it
io
n
s
"
,
in
CD
–
R
OM
p
ro
c
e
e
d
in
g
s
o
f
t
h
e
in
ter
n
a
ti
o
n
a
l
c
o
n
fer
e
n
c
e
o
n
a
ir
p
o
ll
u
ti
o
n
a
b
a
tem
e
n
t
tec
h
n
o
lo
g
ies
-
F
u
tu
re
c
h
a
ll
e
n
g
e
s,
Ca
ir
n
s,
Au
stra
l
ia
,
2
0
0
6
.
[1
0
]
F
.
L
a
i
a
n
d
K.W
.
L
a
i,
"
EHD
-
e
n
h
a
n
c
e
d
d
ry
in
g
w
it
h
w
ire ele
c
tro
d
e
"
,
Dr
y
in
g
T
e
c
h
n
o
l
o
g
y
,
J
u
ly
2
0
0
2
;
2
0
:
1
3
9
3
-
1
4
0
5
.
[1
1
]
S
.
Ku
ro
k
a
w
a
,
J.
P
.
F
il
h
o
,
M
.
C.
T
a
v
a
re
s,
C.
M
.
P
o
rtela
,
a
n
d
A
.
J.
P
ra
d
o
,
"
Be
h
a
v
io
r
o
f
o
v
e
rh
e
a
d
tr
a
n
sm
is
sio
n
li
n
e
p
a
ra
m
e
ters
o
n
th
e
p
re
se
n
c
e
o
f
g
ro
u
n
d
w
ires
"
,
Po
we
r De
li
v
e
r
y
,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
,
2
0
0
5
;
2
0
:
1
6
6
9
-
1
6
7
6
.
[1
2
]
A
.
M
a
,
D.
Xu
,
Z.
Z
h
a
n
g
,
F
.
L
i
,
a
n
d
L
.
Z
h
a
o
,
"
T
h
e
n
o
m
in
a
l
f
ield
stre
n
g
th
c
a
lcu
latio
n
o
f
UH
V
DC
tra
n
sm
issio
n
li
n
e
s
b
a
se
d
o
n
su
rf
a
c
e
c
h
a
rg
e
m
e
th
o
d
"
,
in
Po
we
r
S
y
ste
m
T
e
c
h
n
o
lo
g
y
(
POW
ER
CON),
2
0
1
4
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
,
2
0
1
4
;
1
:
2
2
4
2
-
2
2
4
6
.
[1
3
]
A
.
I.
S
id
o
ro
v
,
I.
S
.
Ok
ra
in
sk
a
y
a
,
a
n
d
S
.
P
.
G
lad
y
s
h
e
v
,
"
M
e
a
su
re
m
e
n
t
o
f
su
p
e
r
h
ig
h
v
o
lt
a
g
e
tran
s
m
issi
o
n
li
n
e
e
lec
tri
c
f
ie
ld
e
ff
e
c
ti
n
g
o
n
th
e
e
n
v
iro
n
m
e
n
t
"
,
in
El
e
c
tro
/In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
(
EIT
),
2
0
1
1
IEE
E
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
on
,
2
0
1
1
;
1
:
1
-
4.
[1
4
]
J.
Ku
f
fe
l,
E.
Ku
f
f
e
l,
a
n
d
W
.
Zae
n
g
l,
Hig
h
v
o
lt
a
g
e
e
n
g
in
e
e
r
in
g
f
u
n
d
a
me
n
ta
ls
:
Ne
w
n
e
s,
2
0
0
0
.
[1
5
]
K.R.
K.
Ra
jag
o
p
a
la,
K.P
.
V
i
tt
a
l,
a
n
d
H.
L
u
n
a
v
a
th
,
"
Co
m
p
u
tatio
n
o
f
e
lec
tri
c
f
ield
a
n
d
th
e
rm
a
l
p
ro
p
e
rti
e
s
o
f
3
-
p
h
a
se
c
a
b
le"
,
T
EL
KOM
NIKA
(
T
e
lec
o
m
mu
n
ica
t
io
n
Co
m
p
u
ti
n
g
El
e
c
tro
n
ics
a
n
d
Co
n
tro
l)
,
2
0
1
2
;
1
0
:
2
6
5
-
2
7
4
.
[1
6
]
S
.
M
p
a
n
g
a
,
W
.
F
e
n
g
,
a
n
d
C.
Ch
u
n
,
"
El
e
c
tro
m
a
g
n
e
ti
c
F
ield
Ev
a
lu
a
ti
o
n
o
f
a
5
0
0
k
V
Hig
h
Vo
lt
a
g
e
Ov
e
rh
e
a
d
L
in
e
"
,
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
,
2
0
1
3
;
1
1
:
7
8
9
-
7
9
6
.
[1
7
]
S
.
Ko
las
sa
a
n
d
W
.
S
c
h
ü
tz,
"
A
d
v
a
n
tag
e
s
o
f
th
e
M
A
D/M
E
A
N
ra
ti
o
o
v
e
r
th
e
M
A
P
E"
,
Fo
re
sig
h
t:
T
h
e
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
A
p
p
li
e
d
Fo
re
c
a
sti
n
g
,
2
0
0
7
;
1
:
4
0
-
4
3
.
[1
8
]
A.
X
.
M
o
r
o
n
is,
N.
S
im
o
u
,
K.N
.
Kio
u
sis,
a
n
d
E
.
D.
F
y
ll
a
d
it
a
k
is,
"
A
m
o
d
e
l
f
o
r
d
e
term
in
in
g
th
e
u
n
i
p
o
lar
io
n
ic
sa
tu
ra
ti
o
n
c
u
rre
n
t
i
n
p
a
ra
ll
e
l
w
ire
-
c
y
li
n
d
e
r
e
lec
tro
d
e
s
d
u
ri
n
g
c
o
ro
n
a
d
isc
h
a
rg
e"
,
Die
lec
trics
a
n
d
El
e
c
trica
l
In
su
la
ti
o
n
,
I
EE
E
T
r
a
n
s
a
c
ti
o
n
s o
n
,
2
0
1
4
;
2
1
:
1
0
3
5
-
1
0
4
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
n
a
lytica
l E
s
tima
tio
n
o
f th
e
E
lectro
s
ta
tic
F
ield
in
C
ylin
d
er
-
P
la
n
e
a
n
d
…
(
E
mma
n
o
u
il D.
F
.
)
2515
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
E
m
m
a
n
o
u
il
D.
Fy
ll
a
d
ita
k
is
re
c
e
iv
e
d
a
B.
S
c
d
e
g
re
e
in
e
lec
tri
c
a
l
e
n
e
rg
y
e
n
g
in
e
e
rin
g
f
ro
m
th
e
T
e
c
h
n
o
lo
g
ica
l
Ed
u
c
a
ti
o
n
a
l
In
stit
u
te (T
EI)
o
f
A
th
e
n
s,
A
th
e
n
s,
G
re
e
c
e
,
in
2
0
1
0
,
a
n
M
.
S
c
d
e
g
re
e
in
e
n
e
rg
y
w
it
h
d
isti
n
c
ti
o
n
f
ro
m
th
e
He
rio
t
-
W
a
tt
Un
iv
e
rsit
y
,
Ed
i
n
b
u
rg
h
,
S
c
o
tl
a
n
d
,
in
2
0
1
2
,
w
h
e
re
h
e
re
c
e
iv
e
d
a
p
ri
z
e
f
o
r
o
u
tstan
d
i
n
g
m
e
rit
,
a
n
d
a
P
h
.
D
d
e
g
re
e
f
ro
m
t
h
e
El
e
c
tro
n
ics
a
n
d
C
o
m
p
u
ter
En
g
in
e
e
rin
g
d
e
p
a
rtm
e
n
t
o
f
th
e
B
ru
n
e
l
Un
iv
e
rsity
L
o
n
d
o
n
,
U.K
,
i
n
2
0
1
6
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
th
e
stu
d
y
o
f
c
o
ro
n
a
d
isc
h
a
rg
e
s,
e
le
c
tro
h
y
d
ro
d
y
n
a
m
ic
e
ff
e
c
ts,
re
n
e
w
a
b
le
e
n
e
rg
y
s
y
ste
m
s,
e
n
e
rg
y
c
o
n
se
rv
a
ti
o
n
in
b
u
il
d
in
g
s,
e
n
g
in
e
e
rin
g
e
d
u
c
a
ti
o
n
a
n
d
d
i
sta
n
c
e
lea
rn
in
g
s
y
ste
m
s.
He
c
u
rre
n
tl
y
is
a
n
e
x
tern
a
l
re
se
a
rc
h
a
ss
o
c
iate
a
t
Bru
n
e
l
U
n
iv
e
rsity
Lo
n
d
o
n
a
n
d
t
h
e
T
e
c
h
n
o
l
o
g
ica
l
Ed
u
c
a
ti
o
n
a
l
I
n
stit
u
te (T
EI)
o
f
A
th
e
n
s.
An
to
n
io
s
X
.
M
o
r
o
n
is
wa
s
b
o
rn
in
A
th
e
n
s,
G
r
e
e
c
e
,
in
1
9
6
7
.
He
re
c
e
iv
e
d
a
d
ip
lo
m
a
in
e
lec
tri
c
a
l
e
n
g
in
e
e
rin
g
f
ro
m
th
e
A
risto
tl
e
Un
iv
e
rsity
o
f
T
h
e
ss
a
lo
n
ik
i,
G
r
e
e
c
e
,
in
1
9
9
0
,
a
n
d
a
P
h
D
d
e
g
re
e
in
e
lec
tri
c
a
l
e
n
g
in
e
e
rin
g
f
ro
m
th
e
Na
ti
o
n
a
l
T
e
c
h
n
ica
l
Un
iv
e
rsity
o
f
A
th
e
n
s
in
1
9
9
5
.
Fr
o
m
2
0
0
1
t
o
2
0
0
6
h
e
w
a
s
A
ss
istan
t
P
ro
f
e
ss
o
r
w
it
h
th
e
En
e
rg
y
En
g
in
e
e
rin
g
De
p
a
rtme
n
t
o
f
T
e
c
h
n
o
lo
g
ica
l
Ed
u
c
a
ti
o
n
a
l
In
stit
u
te,
A
th
e
n
s,
G
re
e
c
e
.
Cu
rre
n
tl
y
h
e
is
a
n
A
s
so
c
iate
P
ro
f
e
ss
o
r
a
t
th
e
sa
m
e
De
p
a
rtme
n
t
a
n
d
d
irec
to
r
o
f
th
e
El
e
c
tro
tec
h
n
o
l
o
g
y
a
n
d
M
e
a
su
rin
g
S
y
st
e
m
s
lab
o
ra
to
ry
.
H
e
is
th
e
a
u
th
o
r
o
f
m
o
re
th
a
n
4
5
a
rti
c
les
i
n
sc
ien
ti
f
ic
jo
u
rn
a
ls
a
n
d
c
o
n
f
e
re
n
c
e
p
ro
c
e
e
d
i
n
g
s.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
d
iele
c
tri
c
s
a
n
d
e
lec
tri
c
a
l
in
su
latio
n
,
e
lec
tro
h
y
d
ro
d
y
n
a
m
i
c
s,
h
ig
h
v
o
lt
a
g
e
a
p
p
li
c
a
ti
o
n
s,
e
a
rth
in
g
s
y
ste
m
s
i
n
e
lec
tri
c
a
l
in
sta
ll
a
ti
o
n
s,
a
n
d
f
a
u
lt
d
iag
n
o
sis
a
n
d
p
re
d
ictiv
e
m
a
in
ten
a
n
c
e
o
f
e
lec
tri
c
p
o
w
e
r
s
y
s
tem
c
o
m
p
o
n
e
n
ts.
Dr.
M
o
r
o
n
is
is
a
m
e
m
b
e
r
o
f
th
e
Tec
h
n
ica
l
Ch
a
m
b
e
r
o
f
G
re
e
c
e
.
M
ich
a
e
l
P.
Th
e
o
d
o
r
id
is
r
e
c
e
iv
e
d
th
e
B.
S
c
.
d
e
g
re
e
in
e
n
e
rg
y
e
n
g
in
e
e
rin
g
f
ro
m
th
e
T
e
c
h
n
o
lo
g
ica
l
Ed
u
c
a
ti
o
n
a
l
In
stit
u
te
(T
EI)
o
f
A
th
e
n
s,
A
th
e
n
s,
G
re
e
c
e
,
in
2
0
0
0
,
th
e
M
.
S
c
.
d
e
g
re
e
in
p
o
w
e
r
e
lec
tro
n
ics
a
n
d
d
riv
e
s
j
o
in
tl
y
f
ro
m
th
e
Un
iv
e
rsit
y
o
f
Bir
m
in
g
h
a
m
,
Bir
m
in
g
h
a
m
,
U.K.,
a
n
d
th
e
U
n
iv
e
rsity
o
f
No
tt
in
g
h
a
m
,
No
tt
i
n
g
h
a
m
,
U.K.,
in
2
0
0
2
,
a
n
d
th
e
P
h
.
D.
d
e
g
re
e
in
e
lec
tri
c
a
l
e
n
g
in
e
e
rin
g
f
ro
m
th
e
Un
iv
e
rsit
y
o
f
Bir
m
in
g
h
a
m
in
2
0
0
5
.
F
r
o
m
2
0
0
0
t
o
2
0
0
1
,
h
e
w
a
s
a
t
Ol
y
m
p
i
c
A
ir
w
a
y
s,
A
th
e
n
s,
G
re
e
c
e
.
F
ro
m
2
0
0
5
t
o
2
0
1
1
,
h
e
w
a
s
w
it
h
th
e
De
p
a
rtm
e
n
t
o
f
En
e
r
g
y
T
e
c
h
n
o
lo
g
y
,
T
EI
o
f
A
th
e
n
s.
He
is
c
u
rre
n
tl
y
w
it
h
Bru
n
e
l
U
n
iv
e
rsity
L
o
n
d
o
n
,
U.K.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
h
ig
h
-
f
re
q
u
e
n
c
y
c
o
n
v
e
rters
,
e
lec
tri
c
a
l
m
a
c
h
in
e
s
a
n
d
d
riv
e
s,
a
n
d
re
n
e
w
a
b
le
e
n
e
rg
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.