I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
2
,
A
p
r
il
201
8
,
p
p
.
1084
~
1
0
9
1
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v8
i
2
.
p
p
1
0
8
4
-
1091
1084
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
No
v
el Sche
m
e
for
Mini
m
a
l
Iterativ
e P
S
O
A
lg
o
rith
m
for
Ex
tending Ne
tw
o
rk Life
ti
m
e of
Wi
reless Sens
o
r
Net
w
o
rk
H
e
m
a
v
a
t
hi P
1
,
Na
nd
a
k
u
m
a
r
A.
N.
2
1
Ja
in
Un
iv
e
rsity
,
Ba
n
g
a
lo
re
,
In
d
ia
2
De
p
t
o
f
Co
m
p
u
ter S
c
ien
c
e
a
n
d
E
n
g
in
e
e
rin
g
,
Ne
w
Ho
rizo
n
Co
l
leg
e
o
f
En
g
in
e
e
rin
g
,
Ba
n
g
a
lo
re
,
I
n
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
1
7
,
2
0
1
7
R
ev
i
s
ed
Dec
2
8
,
2
0
1
8
A
cc
ep
ted
J
an
1
0
,
2
0
1
8
Clu
ste
rin
g
is
o
n
e
o
f
th
e
o
p
e
ra
ti
o
n
s
in
th
e
w
irele
ss
se
n
so
r
n
e
tw
o
rk
th
a
t
o
f
f
e
r
s
b
o
t
h
stre
a
m
li
n
e
d
d
a
ta
ro
u
ti
n
g
se
rv
ice
s
a
s
we
ll
a
s
e
n
e
rg
y
e
ff
icie
n
c
y
.
In
th
is
v
ie
w
p
o
in
t,
P
a
rti
c
le
S
w
a
rm
Op
ti
m
iz
a
ti
o
n
(
P
S
O)
h
a
s
a
lrea
d
y
p
ro
v
e
d
it
s
e
ffe
c
ti
v
e
n
e
ss
in
e
n
h
a
n
c
in
g
c
l
u
ste
rin
g
o
p
e
ra
ti
o
n
,
e
n
e
rg
y
e
ff
ici
e
n
c
y
,
e
tc.
Ho
w
e
v
e
r,
P
S
O
a
lso
su
ff
e
rs
fro
m
a
h
ig
h
e
r
d
e
g
r
e
e
o
f
it
e
r
a
ti
o
n
a
n
d
c
o
m
p
u
tatio
n
a
l
c
o
m
p
lex
it
y
w
h
e
n
it
c
o
m
e
s
to
so
lv
in
g
c
o
m
p
lex
p
ro
b
l
e
m
s,
e
.
g
.
,
a
ll
o
c
a
ti
n
g
tran
sm
it
tan
c
e
e
n
e
r
g
y
t
o
th
e
c
lu
ste
r
h
e
a
d
in
a
d
y
n
a
m
ic
n
e
tw
o
rk
.
T
h
e
re
f
o
re
,
w
e
p
re
se
n
t
a
n
o
v
e
l,
sim
p
le,
a
n
d
y
e
t
a
c
o
st
-
e
ff
e
c
ti
v
e
m
e
th
o
d
th
a
t
p
e
rf
o
r
m
s
e
n
h
a
n
c
e
m
e
n
t
o
f
th
e
c
o
n
v
e
n
ti
o
n
a
l
P
S
O
a
p
p
ro
a
c
h
f
o
r
m
in
i
m
izin
g
th
e
it
e
ra
ti
v
e
ste
p
s
a
n
d
m
a
x
i
m
izin
g
th
e
p
ro
b
a
b
il
it
y
o
f
se
lec
ti
n
g
a
b
e
tt
e
r
c
lu
ste
re
d
.
A
sig
n
if
i
c
a
n
t
re
se
a
rc
h
c
o
n
tri
b
u
ti
o
n
o
f
th
e
p
ro
p
o
se
d
sy
ste
m
is
it
s
a
ss
u
ra
n
c
e
to
w
a
rd
s
m
in
i
m
izin
g
th
e
tran
sm
it
tan
c
e
e
n
e
rg
y
a
s
w
e
ll
a
s
re
c
e
i
v
in
g
e
n
e
rg
y
o
f
a
c
lu
ste
r
h
e
a
d
.
T
h
e
stu
d
y
o
u
tco
m
e
p
ro
v
e
d
p
ro
p
o
se
d
a
sy
st
e
m
to
b
e
b
e
tt
e
r
th
a
n
c
o
n
v
e
n
ti
o
n
a
l
sy
ste
m
in
th
e
f
o
r
m
o
f
e
n
e
rg
y
e
ff
icie
n
c
y
.
K
ey
w
o
r
d
:
C
lu
s
ter
i
n
g
E
n
er
g
y
P
o
w
er
P
SO
W
ir
eless
s
en
s
o
r
n
et
w
o
r
k
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
He
m
a
v
ath
i P
,
J
ain
Un
i
v
er
s
it
y
,
B
an
g
alo
r
e,
I
n
d
ia.
E
m
ail:
h
e
m
a
v
at
h
i.r
esear
c
h
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
er
e
h
as
b
ee
n
e
x
te
n
s
iv
e
r
e
s
ea
r
ch
w
o
r
k
ca
r
r
ied
o
u
t
to
w
ar
d
s
w
ir
eless
s
e
n
s
o
r
n
et
w
o
r
k
f
o
r
s
o
lv
in
g
v
ar
io
u
s
t
y
p
es
o
f
is
s
u
e
s
e.
g
.
en
er
g
y
is
s
u
e
s
[
1
]
,
tr
af
f
ic
m
a
n
ag
e
m
e
n
t
i
s
s
u
es
[
2
]
,
s
ec
u
r
it
y
is
s
u
es
[
3
]
,
r
o
u
tin
g
is
s
u
es
[
4
]
,
lo
ca
lizatio
n
i
s
s
u
es
[
5
]
etc.
T
h
er
e
h
as
b
ee
n
a
v
o
l
u
m
i
n
o
u
s
a
m
o
u
n
t
o
f
i
n
v
esti
g
atio
n
ca
r
r
ied
o
u
t
i
n
th
is
ar
ea
f
o
r
ad
d
r
ess
in
g
s
u
c
h
is
s
u
es,
b
u
t
s
till
m
aj
o
r
it
y
o
f
t
h
e
i
s
s
u
e
s
ar
e
y
et
to
m
ee
t
its
f
u
ll
-
p
r
o
o
f
s
o
lu
tio
n
.
T
h
e
p
r
im
ar
y
ca
u
s
e
o
f
t
h
is
p
r
o
b
le
m
i
s
b
asicall
y
t
h
e
s
e
n
s
o
r
n
o
d
e,
w
h
ic
h
is
v
er
y
s
m
all
i
n
s
ize,
p
o
s
s
es
lo
w
co
m
p
u
tatio
n
al
ca
p
ab
ilit
ies,
an
d
p
o
w
er
ed
b
y
a
b
atter
y
t
h
at
h
as
li
m
i
ted
lif
eti
m
e.
T
h
e
b
ig
g
e
s
t
ch
alle
n
g
e
f
o
r
th
e
r
esear
ch
er
s
to
p
r
o
v
e
th
e
ap
p
licab
ilit
y
o
f
t
h
eir
p
r
esen
ted
s
y
s
te
m
i
n
r
ea
l
-
ti
m
e
s
e
n
s
o
r
n
o
d
e
th
a
t is n
o
t
f
o
u
n
d
to
b
e
d
is
cu
s
s
ed
i
n
m
aj
o
r
ity
o
f
t
h
e
e
x
is
t
in
g
r
esear
c
h
w
o
r
k
.
Ho
w
e
v
er
,
s
o
m
e
o
f
t
h
e
r
esear
ch
er
s
a
v
o
id
s
u
c
h
p
r
o
b
le
m
s
b
y
co
n
s
id
er
i
n
g
eit
h
er
b
en
c
h
m
ar
k
test
b
ed
,
o
r
ad
o
p
t
th
e
co
n
f
i
g
u
r
atio
n
o
f
s
o
m
e
r
ea
l
-
t
i
m
e
m
o
tes
e.
g
.
B
er
k
le
y
Mo
te,
Mic
aZ
m
o
te
[
6
]
,
etc.
Hen
ce
,
o
p
ti
m
izatio
n
i
s
th
e
b
est
p
o
s
s
ib
ilit
y
i
n
s
u
ch
s
ce
n
ar
i
o
o
f
n
o
d
e
r
eso
u
r
ce
s
co
n
s
tr
ain
ts
.
T
h
er
e
ar
e
v
ar
io
u
s
m
et
h
o
d
s
b
y
w
h
ich
o
p
ti
m
izati
o
n
s
h
a
v
e
b
ee
n
ca
r
r
ied
o
u
t
to
war
d
s
i
m
p
r
o
v
in
g
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
s
e
n
s
o
r
n
o
d
e
e.
g
.
n
eu
r
al
n
e
t
w
o
r
k
,
g
e
n
etic
alg
o
r
ith
m
,
s
w
ar
m
i
n
tell
ig
e
n
c
es
etc
[
7
]
.
P
a
r
ticle
S
w
ar
m
Op
ti
m
izat
io
n
(
P
SO)
i
s
o
n
e
s
u
c
h
tec
h
n
iq
u
e
t
h
at
u
s
e
s
m
a
n
y
n
u
m
b
er
s
o
f
iter
atio
n
s
in
o
r
d
er
to
ex
p
lo
r
e
th
e
b
est
s
o
lu
tio
n
a
g
ai
n
s
t
th
e
p
r
o
b
lem
s
p
o
s
ed
[
8
]
,
[
9
]
.
Fr
o
m
co
m
p
u
tatio
n
al
v
ie
w
p
o
i
n
t,
P
SO
en
h
an
ce
s
t
h
e
ca
n
d
id
ate
s
o
l
u
tio
n
in
t
h
e
p
er
s
p
ec
tiv
e
o
f
t
h
e
an
ti
c
ip
ated
o
u
tco
m
e
s
a
n
d
g
iv
e
n
p
r
o
b
le
m
in
w
ir
ele
s
s
s
e
n
s
o
r
n
et
w
o
r
k
.
T
h
e
p
r
o
b
le
m
i
s
o
p
ti
m
ized
b
y
co
n
s
id
er
i
n
g
th
e
ca
n
d
id
ate
s
o
lu
tio
n
an
d
its
p
o
p
u
la
tio
n
(
also
ca
lled
a
s
p
ar
ticles)
an
d
t
h
is
f
o
r
m
o
f
t
h
e
ca
n
d
id
ate
s
o
lu
t
io
n
i
s
s
u
b
j
ec
ted
to
iter
ativ
e
p
r
o
ce
s
s
i
n
g
in
o
r
d
e
r
to
o
b
tain
p
er
s
o
n
al
an
d
g
lo
b
al
b
est
o
u
tc
o
m
e
f
r
o
m
t
h
e
p
o
s
itio
n
a
n
d
v
el
o
cit
y
o
f
th
e
p
ar
ticle
s
.
T
h
e
p
r
i
m
ar
y
r
ea
s
o
n
b
eh
in
d
th
e
ad
o
p
tio
n
o
f
P
SO
is
b
asica
ll
y
it
s
in
telli
g
en
ce
-
b
ased
ap
p
r
o
ac
h
th
at
ca
n
b
e
p
o
s
s
ib
l
y
i
m
p
le
m
e
n
ted
o
n
an
y
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
o
ve
l S
ch
eme
fo
r
Min
ima
l I
tera
tive
P
S
O
A
lg
o
r
ith
m
fo
r
E
xten
d
in
g
N
etw
o
r
k
Lif
etime
o
f …
.
(
Hem
a
va
th
i P
)
1085
p
r
o
b
lem
(
b
e
it
en
g
i
n
ee
r
in
g
o
r
s
cien
t
if
ic)
.
P
SO
is
co
m
p
letel
y
in
d
ep
en
d
e
n
t
o
f
co
m
p
u
ti
n
g
m
u
tatio
n
w
h
ic
h
h
as
n
o
o
v
er
lap
p
in
g
.
T
h
e
v
elo
cit
y
o
f
t
h
e
p
ar
ticle
ca
n
b
e
m
ec
h
an
is
m
f
o
r
in
itiati
n
g
t
h
e
s
ea
r
c
h
p
r
o
ce
s
s
a
n
d
th
is
m
ak
e
s
t
h
e
ca
lc
u
latio
n
p
r
o
ce
s
s
o
f
P
SO
v
er
y
s
i
m
p
le.
I
t
also
o
f
f
er
s
p
o
te
n
tiall
y
b
etter
r
esu
lts
as
co
m
p
ar
ed
to
o
th
er
o
p
ti
m
izatio
n
tec
h
n
iq
u
e
s
ev
er
u
s
ed
i
n
w
ir
eles
s
s
e
n
s
o
r
n
et
w
o
r
k
.
Ho
w
e
v
er
,
th
er
e
is
al
s
o
ce
r
tain
ass
o
ciate
d
u
s
a
g
e
o
f
P
SO
-
b
ased
m
ec
h
an
is
m
in
w
ir
eles
s
s
en
s
o
r
n
et
wo
r
k
.
P
SO
is
a
s
s
o
ciate
d
w
i
t
h
p
ar
tial
-
o
p
ti
m
izat
io
n
p
r
o
b
lem
th
at
al
s
o
ten
d
to
m
i
n
i
m
ize
th
e
ac
c
u
r
ac
y
lev
e
l
o
f
v
el
o
cit
y
f
ac
to
r
o
f
th
e
p
ar
ticle
as
w
ell
a
s
its
d
ir
ec
tio
n
.
I
t
is
al
s
o
n
o
t
a
p
r
ef
er
r
ed
te
ch
n
iq
u
e
f
o
r
s
o
l
v
i
n
g
th
e
s
ca
t
t
er
in
g
p
r
o
b
lem
s
i
n
a
n
y
w
ir
el
ess
n
et
w
o
r
k
.
Mo
s
t
i
m
p
o
r
tan
tl
y
,
it
is
an
iter
ati
v
e
p
r
o
ce
s
s
a
n
d
it
w
il
l
b
e
r
eq
u
ir
ed
to
s
to
r
e
lo
ts
o
f
in
f
o
r
m
ati
o
n
p
er
tain
in
g
to
its
in
ter
m
ed
iate
p
ass
e
s
in
o
r
d
er
to
p
er
f
o
r
m
co
m
p
ar
ativ
e
an
al
y
s
is
o
f
th
e
elite
o
u
tco
m
e
w
it
h
r
esp
ec
t to
t
h
e
p
er
s
o
n
a
l
an
d
g
lo
b
al
b
est
s
o
l
u
tio
n
.
Ho
wev
er
,
th
er
e
ar
e
v
ar
io
u
s
w
o
r
k
c
ar
r
ied
o
u
t
in
ex
is
ti
n
g
s
y
s
te
m
w
h
er
e
th
e
p
r
o
b
lem
s
ass
o
ciate
d
w
it
h
t
h
e
en
er
g
y
a
n
d
clu
s
ter
i
n
g
in
w
ir
e
less
s
en
s
o
r
n
et
w
o
r
k
h
as
b
ee
n
f
o
u
n
d
s
o
l
v
ed
b
y
P
SO
-
b
ased
ap
p
r
o
ac
h
es.
I
n
r
ea
l
s
en
s
e,
th
er
e
ar
e
o
n
l
y
f
e
w
w
o
r
k
s
in
e
x
is
t
in
g
s
y
s
te
m
w
h
ich
h
as
a
m
en
d
ed
o
r
ig
in
al
P
SO
i
m
p
le
m
en
ta
tio
n
a
n
d
h
en
ce
,
it
is
q
u
ite
ch
a
llen
g
i
n
g
to
ex
p
lo
r
e
th
e
lev
el
o
f
e
f
f
ec
ti
v
en
e
s
s
o
f
ex
i
s
tin
g
s
y
s
te
m
.
T
h
er
ef
o
r
e,
th
e
p
r
o
p
o
s
ed
p
ap
er
in
tr
o
d
u
ce
d
a
n
o
v
el
an
d
s
i
m
p
l
e
atte
m
p
t
w
h
er
e
th
e
P
SO
is
am
en
d
ed
to
g
et
its
el
f
f
r
ee
f
r
o
m
n
u
m
b
er
o
f
in
cr
ea
s
i
n
g
i
ter
ativ
e
s
tep
s
as
a
p
ar
t
o
f
r
esear
ch
co
n
tr
ib
u
t
io
n
.
T
h
e
s
t
u
d
y
o
u
tco
m
e
s
h
o
w
s
th
at
p
r
o
p
o
s
ed
r
ev
is
ed
v
er
s
io
n
o
f
P
SO
o
f
f
er
s
b
etter
b
e
n
ef
ic
ia
l
ch
ar
ac
ter
is
t
ics
to
b
o
th
en
er
g
y
e
f
f
icien
c
y
a
s
w
ell
as
d
ata
d
eli
v
er
y
s
y
s
te
m
i
n
w
ir
eless
s
e
n
s
o
r
n
et
w
o
r
k
.
Sectio
n
1
.
1
d
is
cu
s
s
e
s
ab
o
u
t
t
h
e
e
x
i
s
ti
n
g
li
ter
atu
r
es
w
h
er
e
d
if
f
er
e
n
t
tec
h
n
iq
u
e
s
ar
e
d
is
c
u
s
s
ed
f
o
r
P
SO
b
a
s
ed
s
c
h
e
m
es
u
s
ed
i
n
s
o
lv
i
n
g
m
u
ltip
le
r
an
g
e
s
o
f
p
r
o
b
lem
s
f
o
llo
w
ed
b
y
d
is
c
u
s
s
io
n
o
f
r
e
s
ea
r
ch
p
r
o
b
lem
s
i
n
Sectio
n
1
.
2
an
d
p
r
o
p
o
s
ed
s
o
lu
tio
n
in
1
.
3
.
Sectio
n
2
d
is
cu
s
s
e
s
ab
o
u
t
alg
o
r
ith
m
i
m
p
le
m
en
ta
tio
n
f
o
llo
w
ed
b
y
d
is
c
u
s
s
io
n
o
f
r
esu
lt
an
al
y
s
i
s
in
Secti
o
n
3
.
Fin
all
y
,
th
e
co
n
clu
s
iv
e
r
e
m
ar
k
s
ar
e
p
r
o
v
id
ed
in
Sectio
n
4
.
1
.
1
.
B
a
ck
g
ro
un
d
Ou
r
p
r
io
r
r
esear
ch
w
o
r
k
h
as
d
is
cu
s
s
ed
d
if
f
er
en
t
f
o
r
m
s
o
f
ap
p
r
o
ac
h
es
f
o
r
r
etain
in
g
m
a
x
i
m
u
m
e
n
er
g
y
in
w
ir
eles
s
s
en
s
o
r
n
et
w
o
r
k
[
1
0
]
.
T
h
is
p
ar
t
o
f
th
e
s
tu
d
y
w
ill
f
u
r
t
h
er
ad
d
d
if
f
er
en
t
f
o
r
m
s
o
f
co
n
tr
ib
u
tio
n
s
m
ad
e
b
y
P
SO
in
t
h
e
ar
ea
o
f
w
ir
eless
s
e
n
s
o
r
n
et
w
o
r
k
.
C
l
u
s
ter
in
g
-
b
ased
ap
p
r
o
ac
h
w
as
ad
o
p
ted
f
o
r
en
h
an
ci
n
g
n
et
w
o
r
k
li
f
eti
m
e
u
s
in
g
P
SO
as
s
ee
n
in
t
h
e
w
o
r
k
o
f
Z
h
o
u
et
al.
[
1
1
]
.
Stu
d
y
to
w
ar
d
s
cl
u
s
t
er
h
ea
d
s
elec
tio
n
is
also
ca
r
r
ied
o
u
t
b
y
N
i
et
al.
[
1
2
]
w
h
er
e
P
SO
i
s
u
s
ed
al
o
n
g
w
i
th
F
u
zz
y
lo
g
ic
f
o
r
o
p
ti
m
izi
n
g
cl
u
s
ter
i
n
g
p
er
f
o
r
m
a
n
ce
in
s
e
n
s
o
r
n
et
w
o
r
k
.
P
SO
al
g
o
r
ith
m
w
as
a
ls
o
f
o
u
n
d
to
o
p
ti
m
ize
en
er
g
y
ef
f
icie
n
c
y
ex
cl
u
s
iv
e
l
y
f
o
r
s
o
f
t
w
ar
e
-
d
ef
i
n
ed
asp
ec
ts
i
n
s
en
s
o
r
y
ap
p
licatio
n
.
Xia
n
g
et
al.
[
1
3
]
h
av
e
p
r
esen
ted
a
tec
h
n
iq
u
e
f
o
r
en
er
g
y
co
n
s
er
v
atio
n
f
o
r
s
o
f
t
w
ar
e
-
d
ef
in
ed
s
e
n
s
o
r
n
e
t
w
o
r
k
.
I
s
s
u
e
s
o
f
m
a
in
ta
in
i
n
g
h
ig
h
er
d
eg
r
ee
o
f
f
a
u
lt
to
ler
an
ce
w
h
ile
s
c
h
ed
u
li
n
g
t
h
e
allo
ca
tio
n
p
r
o
ce
s
s
o
f
ta
s
k
ca
n
b
e
als
o
h
an
d
led
b
y
P
SO a
s
s
ee
n
in
th
e
w
o
r
k
ca
r
r
ied
o
u
t b
y
Gu
o
et
al.
[
1
4
]
.
T
h
e
w
o
r
k
ca
r
r
ied
o
u
t
b
y
P
ar
v
in
[
1
5
]
h
as
u
s
e
d
P
SO
f
o
r
o
v
er
co
m
in
g
n
o
n
-
p
a
r
ticip
atio
n
p
r
o
ce
s
s
o
f
n
o
d
es
d
u
r
in
g
a
g
g
r
e
g
atio
n
p
r
o
ce
s
s
.
W
u
a
n
d
L
in
[
1
6
]
h
a
v
e
in
v
esti
g
ated
t
h
e
e
f
f
ec
t
o
f
P
SO
f
o
r
ex
p
l
o
r
i
n
g
th
e
s
p
ec
if
ic
ab
s
o
r
p
tio
n
r
ate
o
f
w
ir
eless
b
o
d
y
ar
ea
n
et
w
o
r
k
.
St
u
d
y
to
w
ar
d
s
allo
ca
tio
n
o
f
tas
k
is
also
ca
r
r
ied
o
u
t
b
y
Yan
g
et
al.
[
1
7
]
w
h
er
e
th
e
f
o
cu
s
w
a
s
laid
o
n
f
o
r
m
u
lat
in
g
t
r
an
s
f
er
f
u
n
ctio
n
a
n
d
u
s
ag
e
o
f
m
u
tatio
n
.
R
a
h
m
a
n
an
d
Ma
ti
n
[
1
8
]
h
a
v
e
p
r
ese
n
t
ed
th
eir
co
n
tr
ib
u
tio
n
to
w
ar
d
s
en
h
an
c
in
g
t
h
e
n
et
w
o
r
k
li
f
eti
m
e
u
s
i
n
g
P
SO
f
o
r
ex
p
lo
r
in
g
t
h
e
b
etter
p
o
s
itio
n
o
f
th
e
b
a
s
e
s
tatio
n
.
Ho
et
al.
[
1
9
]
h
av
e
u
s
ed
P
SO
f
o
r
ass
i
s
ti
n
g
in
r
o
u
tin
g
p
r
o
ce
s
s
f
o
r
u
n
m
an
n
ed
ae
r
ial
v
e
h
icle
u
s
in
g
co
o
p
er
ativ
e
r
ela
y
.
Usa
g
e
o
f
P
SO
w
a
s
s
ee
n
i
n
t
h
e
w
o
r
k
o
f
L
o
s
cr
i
et
al.
[
2
0
]
w
h
o
h
a
v
e
u
s
ed
co
n
s
e
n
s
u
s
a
s
p
ec
ts
f
o
r
s
ea
r
c
h
in
g
b
etter
ar
e
a
in
s
en
s
o
r
n
et
w
o
r
k
f
ield
.
C
h
en
et
al.
[
2
1
]
h
a
v
e
in
tr
o
d
u
ce
d
a
m
ec
h
an
is
m
o
f
c
h
ar
g
in
g
d
ep
lo
y
m
en
t
i
n
o
r
d
er
to
en
h
a
n
ce
t
h
e
o
p
ti
m
al
it
y
o
f
en
er
g
y
p
er
f
o
r
m
an
ce
in
s
en
s
o
r
n
et
w
o
r
k
.
Du
et
al.
[
2
2
]
h
av
e
p
r
esen
ted
a
m
ec
h
a
n
is
m
o
f
eli
m
in
at
in
g
th
e
elec
tr
o
m
ag
n
et
ic
in
ter
f
er
en
ce
w
h
ile
p
er
f
o
r
m
i
n
g
b
ea
co
n
in
g
i
n
w
ir
eless
s
en
s
o
r
n
et
w
o
r
k
u
s
i
n
g
P
SO.
T
h
e
w
o
r
k
ca
r
r
ied
o
u
t
b
y
C
h
e
n
et
al.
[
2
3
]
h
as
u
s
ed
P
SO
a
s
w
ell
a
s
C
u
c
k
o
o
s
ea
r
ch
tec
h
n
iq
u
e
i
n
o
r
d
er
to
s
tr
en
g
t
h
en
th
e
s
ec
u
r
i
t
y
s
y
s
te
m
o
f
W
SN.
P
SO
w
a
s
also
u
s
ed
f
o
r
ad
d
r
ess
i
n
g
t
h
e
s
el
f
-
lo
ca
lizatio
n
p
r
o
b
lem
i
n
w
ir
eles
s
s
e
n
s
o
r
n
e
t
w
o
r
k
b
y
m
o
d
i
f
y
i
n
g
s
o
m
e
o
f
its
f
u
n
ctio
n
al
ities
a
s
s
ee
n
i
n
t
h
e
w
o
r
k
o
f
K
u
n
an
d
Z
h
o
n
g
[
2
4
]
.
T
h
ilag
a
v
ath
i
an
d
Gee
t
h
a
[
2
5
]
h
av
e
p
r
esen
ted
a
s
ea
r
ch
al
g
o
r
ith
m
f
o
r
en
h
an
ci
n
g
t
h
e
r
esid
u
al
en
er
g
y
o
f
W
SN
.
E
lh
ab
y
a
n
et
al.
[
2
6
]
h
av
e
p
r
esen
ted
a
tec
h
n
iq
u
e
f
o
r
en
h
a
n
ci
n
g
t
h
e
clu
s
ter
in
g
o
p
er
atio
n
w
h
ile
H
u
y
n
h
et
al.
[
2
7
]
h
av
e
d
ev
elo
p
ed
a
n
o
n
-
co
n
v
e
n
tio
n
al
P
S
O
alg
o
r
ith
m
f
o
r
p
r
o
lo
n
g
i
n
g
t
h
e
n
et
w
o
r
k
li
f
eti
m
e
ta
k
i
n
g
ca
s
e
s
t
u
d
y
o
f
h
eter
o
g
e
n
eo
u
s
s
e
n
s
o
r
n
et
w
o
r
k
.
I
m
p
le
m
e
n
tatio
n
o
f
b
in
ar
y
P
S
O
f
o
r
ass
is
tin
g
i
n
lo
ca
lizatio
n
p
r
o
b
lem
w
as
s
ee
n
in
t
h
e
w
o
r
k
o
f
Z
ain
a
n
d
Sh
i
n
[
2
8
]
.
C
ao
et
al.
[
2
9
]
h
a
v
e
i
n
v
e
s
tig
a
ted
t
h
e
e
f
f
ec
tiv
e
n
es
s
o
f
P
SO b
y
co
m
p
ar
i
n
g
w
it
h
t
h
e
co
n
v
e
n
tio
n
al
ap
p
r
o
ac
h
f
o
r
s
o
lv
in
g
lo
ca
lizatio
n
p
r
o
b
lem
.
J
in
g
et
al.
[
3
0
]
h
av
e
p
r
esen
ted
a
s
i
m
ilar
ap
p
r
o
ac
h
w
h
er
e
P
SO
w
a
s
f
o
u
n
d
to
en
h
a
n
ce
t
h
e
clu
s
ter
in
g
o
p
er
atio
n
o
f
W
SN.
T
h
e
co
m
b
in
ed
wo
r
k
o
f
R
iaz
an
d
Srir
a
m
m
a
n
o
j
[
31
]
p
r
esen
ted
th
e
s
u
f
f
icie
n
t
au
t
h
en
ticatio
n
m
ec
h
an
i
s
m
a
n
d
ac
h
ie
v
ed
s
ig
n
i
f
ic
an
t
p
o
w
er
r
ed
u
n
d
an
c
y
in
W
S
N
lif
eti
m
e.
A
n
o
v
el
r
ev
ie
w
w
o
r
k
o
n
P
SO
b
ased
c
lu
s
ter
i
n
g
r
o
u
tin
g
p
r
o
to
co
l
in
W
SN
w
as
f
o
u
n
d
in
S
u
n
et
al.
[
32
]
an
d
h
in
ts
f
o
r
p
er
f
o
r
m
a
n
ce
e
n
h
an
c
e
m
e
n
t
i
n
t
h
e
r
o
u
ti
n
g
p
r
o
to
co
l.
R
u
i
et
al.
[
33
]
d
is
cu
s
s
ed
t
h
e
clu
s
ter
i
n
g
r
o
u
tin
g
p
r
o
to
co
l
in
W
SN
an
d
co
m
p
ar
ed
its
p
er
f
o
r
m
a
n
ce
w
it
h
e
x
is
t
in
g
L
E
E
C
H
alg
o
r
ith
m
.
T
h
is
p
r
o
to
co
l
p
r
o
v
id
es
th
e
n
o
d
es
en
er
g
y
b
ala
n
ce
an
d
i
m
p
r
o
v
e
s
th
e
n
et
w
o
r
k
li
f
eti
m
e.
T
h
er
ef
o
r
e,
th
er
e
ar
e
v
ar
io
u
s
v
ar
ian
t
s
o
f
th
e
P
SO
b
ased
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
1
0
8
4
–
1091
1086
ap
p
r
o
ac
h
es
m
ai
n
l
y
to
s
o
l
v
e
clu
s
ter
i
n
g
,
e
n
er
g
y
e
f
f
icie
n
c
y
,
a
n
d
lo
ca
lizatio
n
is
s
u
es
i
n
w
ir
el
ess
s
en
s
o
r
n
et
w
o
r
k
.
T
h
e
n
ex
t
s
ec
tio
n
h
i
g
h
l
ig
h
t
s
th
e
r
esear
ch
p
r
o
b
lem
s
t
h
at
h
as
b
ee
n
id
en
ti
f
ied
f
r
o
m
t
h
e
ab
o
v
e
m
en
tio
n
ed
r
esear
ch
ap
p
r
o
ac
h
es.
1
.
2
.
P
ro
ble
m
I
dentif
ica
t
io
n
T
h
e
p
r
o
b
lem
id
e
n
ti
f
icatio
n
o
f
th
e
p
r
o
p
o
s
ed
s
tu
d
y
is
as
f
o
llo
w
s
:
a.
E
x
is
ti
n
g
ap
p
r
o
ac
h
es
u
s
in
g
P
SO
h
as
th
e
s
p
lit
e
m
p
h
as
is
o
n
cl
u
s
ter
in
g
,
e
n
er
g
y
e
f
f
icie
n
c
y
,
a
n
d
lo
ca
lizatio
n
p
r
o
b
lem
s
w
h
er
e
e
n
er
g
y
h
a
s
n
o
t
y
et
r
ec
eiv
ed
a
f
u
ll p
r
o
o
f
s
o
lu
tio
n
.
b.
T
h
e
ex
te
n
t
o
f
a
m
e
n
d
m
e
n
ts
to
w
ar
d
s
u
s
in
g
th
e
n
e
w
v
er
s
io
n
o
f
P
SO
i
s
v
er
y
les
s
a
n
d
d
o
es
n
'
t
t
u
r
n
o
u
t to
b
e
a
p
r
ac
tically
v
iab
le
s
o
lu
tio
n
i
n
lar
g
e
s
ca
le
an
d
d
en
s
e
n
et
w
o
r
k
s
.
c.
E
x
is
ti
n
g
P
SO
tec
h
n
iq
u
es
a
ls
o
r
en
d
er
s
a
h
i
g
h
er
n
u
m
b
er
o
f
ite
r
atio
n
s
to
o
b
tain
b
etter
co
n
v
er
g
en
ce
p
er
f
o
r
m
a
n
ce
.
T
h
er
ef
o
r
e,
it
lead
s
to
co
m
p
u
tatio
n
al
co
m
p
lex
it
y
.
d.
C
o
m
p
lia
n
ce
w
it
h
s
ta
n
d
ar
d
en
er
g
y
m
o
d
eli
n
g
is
le
s
s
f
o
u
n
d
to
b
e
ad
o
p
ted
in
ex
is
ti
n
g
lite
r
atu
r
e,
w
h
ic
h
w
it
h
o
u
t b
en
c
h
m
ar
k
i
n
g
i
s
v
er
y
h
ar
d
to
f
in
d
it
s
ef
f
ec
ti
v
e
n
es
s
ag
ai
n
s
t e
n
er
g
y
e
f
f
ec
t
iv
e
n
ess
.
T
h
er
ef
o
r
e,
th
e
p
r
o
b
lem
s
tate
m
en
t o
f
th
e
p
r
o
p
o
s
ed
s
tu
d
y
ca
n
b
e
s
tated
as
“
Des
ig
n
in
g
a
co
m
p
u
ta
tio
n
a
l
fr
ien
d
ly
a
p
p
r
o
a
ch
f
o
r
fo
r
mu
la
tin
g
a
n
o
ve
l
s
elec
tio
n
o
f
clu
s
terh
ea
d
to
o
ffer
e
n
erg
y
effic
ien
cy
in
a
w
ir
eless
s
en
s
o
r
n
etw
o
r
k.
”
1
.
3
.
P
ro
po
s
ed
So
lutio
n
T
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
ad
o
p
ts
an
an
al
y
t
ica
l
r
esear
ch
m
et
h
o
d
o
lo
g
y
to
i
m
p
le
m
en
t
th
e
o
p
ti
m
izatio
n
alg
o
r
ith
m
b
y
en
h
a
n
ci
n
g
th
e
o
p
er
atio
n
ca
r
r
ied
o
u
t
b
y
co
n
v
e
n
tio
n
al
P
SO.
Fi
g
u
r
e
1
h
i
g
h
lig
h
t
t
h
e
d
esi
g
n
f
lo
w
s
ig
n
i
f
y
in
g
t
h
at
o
p
ti
m
izat
io
n
o
f
P
SO
w
a
s
ca
r
r
ied
o
u
t
b
y
co
n
s
id
er
in
g
d
ec
i
s
io
n
v
ar
iab
les
f
o
r
m
u
la
ted
b
y
s
en
s
o
r
n
o
d
es
an
d
th
eir
r
esp
ec
tiv
e
p
r
o
b
ab
ilit
y
o
f
b
ec
o
m
i
n
g
a
cl
u
s
ter
h
ea
d
.
T
h
e
d
ec
is
io
n
v
ar
iab
les
ar
e
also
d
ep
en
d
en
t
o
n
its
s
ize
a
n
d
b
o
u
n
d
(
lo
w
er
/
h
ig
h
er
)
f
o
r
ef
f
ec
t
iv
e
co
n
tr
o
l o
v
er
th
e
P
SO iter
atio
n
s
.
A
l
g
o
r
i
t
h
m
f
o
r
o
p
t
i
m
i
z
i
n
g
P
S
O
A
l
g
o
r
i
t
h
m
f
o
r
E
n
h
a
n
c
i
n
g
N
e
t
w
o
r
k
L
i
f
e
t
i
m
e
D
e
c
i
s
i
o
n
V
a
r
i
a
b
l
e
s
S
i
z
e
B
o
u
n
d
P
o
p
u
l
a
t
i
o
n
S
i
z
e
I
n
e
r
t
i
a
W
e
i
g
h
t
I
n
e
r
t
i
a
W
e
i
g
h
t
D
a
m
p
i
n
g
R
a
t
i
o
L
e
a
r
n
i
n
g
C
o
e
f
f
i
c
i
e
n
t
u
p
d
a
t
e
p
b
e
s
t
g
b
e
s
t
A
p
p
l
y
L
i
m
i
t
s
(
p
,
v
)
S
e
l
e
c
t
C
H
M
i
n
i
m
i
z
e
E
T
x
1
s
t
o
r
d
e
r
R
a
d
i
o
-
E
n
e
r
g
y
M
o
d
e
l
Fig
u
r
e
1
.
Desig
n
Flo
w
o
f
P
r
o
p
o
s
ed
S
y
s
te
m
T
h
e
co
n
tr
ib
u
tio
n
o
f
th
e
p
r
o
p
o
s
ed
s
y
s
te
m
i
s
its
n
o
v
elt
y
in
tr
o
d
u
ce
d
in
P
SO
alg
o
r
ith
m
.
T
h
e
alg
o
r
ith
m
u
s
e
s
in
er
tia
l
w
ei
g
h
t,
d
a
m
p
in
g
r
atio
,
an
d
lear
n
in
g
co
ef
f
ici
en
t
(
b
o
th
lo
ca
l
a
n
d
g
lo
b
al)
t
o
in
itiall
y
p
er
f
o
r
m
u
p
d
atin
g
u
s
i
n
g
a
n
o
v
el
e
m
p
ir
i
ca
l
ap
p
r
o
ac
h
to
o
b
tain
p
er
s
o
n
al
b
est
an
d
g
lo
b
al
b
est.
Us
in
g
t
h
e
li
m
its
ap
p
lied
to
p
o
s
itio
n
an
d
v
elo
cit
y
alo
n
g
w
it
h
g
lo
b
al
b
est
o
u
tco
m
e
i
s
u
s
ed
f
o
r
s
elec
ti
n
g
th
e
ef
f
ec
ti
v
e
cl
u
s
ter
h
ea
d
s
.
An
alg
o
r
ith
m
f
o
r
en
h
a
n
cin
g
n
et
w
o
r
k
li
f
eti
m
e
is
d
esi
g
n
ed
u
s
i
n
g
1
st
o
r
d
er
R
ad
io
-
E
n
er
g
y
m
o
d
el
f
o
r
co
m
p
u
ti
n
g
en
er
g
y
r
eq
u
ir
ed
to
tr
an
s
m
i
t
a
n
d
r
ec
eiv
e
th
e
d
ata
p
ac
k
e
t.
I
m
p
le
m
e
n
tat
io
n
o
f
t
h
i
s
m
o
d
el
o
n
l
y
e
n
s
u
r
es
t
h
at
p
r
o
p
o
s
ed
s
y
s
te
m
ad
h
er
es
to
an
e
m
p
ir
ical
m
e
th
o
d
o
lo
g
y
wh
er
e
en
er
g
y
m
o
d
elin
g
i
s
f
o
r
m
u
lated
b
y
it
s
r
ea
l
-
d
em
a
n
d
s
o
f
co
m
m
u
n
icatio
n
.
T
h
is
o
p
er
atio
n
is
f
o
llo
w
ed
b
y
m
i
n
i
m
izi
n
g
t
h
e
en
er
g
y
r
eq
u
ir
e
d
f
o
r
tr
an
s
m
i
ttan
c
e
f
o
r
th
e
cl
u
s
ter
h
ea
d
th
a
t
r
es
u
lt
s
i
n
s
ig
n
i
f
ica
n
t
r
ete
n
tio
n
o
f
t
h
e
r
esid
u
al
e
n
er
g
y
f
o
r
a
lo
n
g
r
u
n
o
f
t
h
e
s
e
n
s
o
r
y
ap
p
licatio
n
.
T
h
e
co
m
p
lete
o
p
e
r
atio
n
o
f
s
av
i
n
g
th
e
tr
an
s
m
itta
n
ce
en
er
g
y
is
ca
r
r
ied
o
u
t
in
t
wo
p
h
ases
w
h
er
e
th
e
f
ir
s
t
p
h
a
s
e
f
o
c
u
s
es
o
n
th
e
n
o
d
e
to
clu
s
ter
h
ea
d
an
d
co
m
m
u
n
ica
tio
n
a
m
o
n
g
clu
s
ter
h
ea
d
s
w
h
ile
t
h
e
s
ec
o
n
d
p
h
ase
f
o
c
u
s
e
s
o
n
o
n
l
y
clu
s
ter
h
ea
d
s
to
b
ase
s
tatio
n
.
T
h
e
s
p
ec
if
ic
ag
e
n
d
a
o
f
t
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
is
to
m
i
n
i
m
ize
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
o
ve
l S
ch
eme
fo
r
Min
ima
l I
tera
tive
P
S
O
A
lg
o
r
ith
m
fo
r
E
xten
d
in
g
N
etw
o
r
k
Lif
etime
o
f …
.
(
Hem
a
va
th
i P
)
1087
th
e
iter
atio
n
r
eq
u
ir
ed
to
ex
p
lo
r
e
th
e
g
lo
b
al
b
est
s
o
l
u
tio
n
in
P
SO
th
at
a
s
s
i
s
ts
in
m
i
n
i
m
izi
n
g
o
v
er
h
ea
d
s
an
d
a
n
y
f
o
r
m
o
f
b
o
ttle
n
ec
k
co
n
d
itio
n
o
w
i
n
g
to
i
n
cr
ea
s
i
n
g
tr
af
f
ic
c
o
n
d
itio
n
i
n
a
w
ir
eles
s
s
e
n
s
o
r
n
et
w
o
r
k
.
T
h
e
n
e
x
t
s
ec
tio
n
d
is
c
u
s
s
es
t
h
e
alg
o
r
ith
m
i
m
p
le
m
e
n
ted
to
p
u
r
s
u
e
t
h
e
f
lo
w
o
f
p
r
o
p
o
s
ed
r
ese
ar
ch
o
b
jectiv
es
a
s
s
h
o
w
n
i
n
Fig
u
r
e
1
.
2.
AL
G
O
RI
T
H
M
I
M
P
L
E
M
E
NT
A
T
I
O
N
T
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
o
f
f
er
s
an
alg
o
r
ith
m
t
h
at
is
co
n
s
tr
u
cted
b
y
en
h
an
ci
n
g
th
e
P
S
O
alg
o
r
ith
m
ON
t
w
o
p
u
r
p
o
s
es.
T
h
e
f
ir
s
t
p
u
r
p
o
s
e
s
er
v
e
s
f
o
r
o
p
ti
m
izin
g
th
e
P
SO
p
er
f
o
r
m
a
n
ce
b
y
o
b
tain
i
n
g
a
g
lo
b
al
b
es
t
s
o
lu
tio
n
w
ith
e
x
tr
e
m
el
y
les
s
iter
ativ
e
s
tep
u
n
li
k
e
co
n
v
e
n
ti
o
n
al
P
SO
an
d
th
e
s
ec
o
n
d
p
u
r
p
o
s
e
is
m
ai
n
l
y
t
o
ex
ten
d
th
e
r
esid
u
al
en
er
g
y
o
f
th
e
s
e
n
s
o
r
n
o
d
e
a
s
f
ar
a
s
p
o
s
s
ib
le.
T
h
e
d
is
c
u
s
s
io
n
s
o
f
t
h
e
al
g
o
r
ith
m
ar
e
a
s
f
o
llo
w
s
:
2
.
1
.
Alg
o
rit
h
m
f
o
r
O
pti
m
izi
ng
P
SO
T
h
is
alg
o
r
ith
m
is
m
ai
n
l
y
r
e
s
p
o
n
s
ib
le
f
o
r
en
s
u
r
i
n
g
t
h
at
a
n
ef
f
ec
ti
v
e
cl
u
s
ter
h
ea
d
is
s
elec
ted
f
o
r
o
f
f
er
i
n
g
b
etter
o
p
ti
m
izatio
n
p
er
f
o
r
m
a
n
ce
w
it
h
e
n
er
g
y
e
f
f
i
cien
c
y
.
I
t
i
s
b
elie
v
ed
t
h
at
i
f
th
e
cl
u
s
ter
h
ea
d
is
s
elec
ted
p
r
o
p
er
ly
th
a
n
n
et
w
o
r
k
lif
e
ti
m
e
co
u
ld
b
e
p
o
s
itiv
el
y
en
h
a
n
ce
d
.
Her
e
th
e
s
elec
tio
n
is
co
m
p
letel
y
b
ased
o
n
m
u
ltip
le
p
ar
a
m
eter
s
,
e.
g
.
,
n
u
m
b
er
o
f
n
o
d
es,
t
h
e
p
o
s
it
io
n
o
f
p
ar
ticles,
v
e
lo
cit
y
o
f
p
ar
ticles,
u
p
d
a
tin
g
p
r
o
ce
s
s
,
co
s
t
f
u
n
ct
io
n
in
v
o
l
v
e
d
in
P
SO
m
et
h
o
d
o
lo
g
y
.
T
h
e
alg
o
r
ith
m
f
o
r
o
p
ti
m
izi
n
g
t
h
e
P
SO
is
m
ai
n
l
y
ca
r
r
ied
o
u
t
f
o
r
r
ed
u
cin
g
th
e
n
u
m
b
er
o
f
iter
ati
v
e
s
tep
s
i
n
v
o
l
v
ed
in
e
x
p
lo
r
in
g
th
e
g
lo
b
al
b
est
f
u
n
c
tio
n
in
P
SO.
Fo
r
th
i
s
p
u
r
p
o
s
e,
th
e
al
g
o
r
ith
m
co
n
s
id
er
s
th
e
i
n
p
u
t o
f
η
(
n
u
m
b
er
o
f
p
o
p
u
latio
n
)
,
p
(
p
o
s
itio
n
)
,
v
(
v
el
o
cit
y
)
,
σ
(
v
ar
ian
ce
)
,
an
d
r
m
ax
(
m
ax
i
m
u
m
r
o
u
n
d
s
)
t
h
at
af
ter
p
r
o
ce
s
s
in
g
lead
s
to
th
e
r
esu
lt o
f
s
o
l
best
(
b
est s
o
lu
t
io
n
)
.
A
l
g
o
r
i
t
h
m
f
o
r
o
p
t
i
m
i
z
i
n
g
PSO
In
p
u
t
:
η,
p
,
v
,
σ,
r
max
.
Ou
t
p
u
t
:
so
l
b
e
s
t
S
t
a
r
t
1
.
Fo
r
i
t
=
1
:
r
m
a
x
2
.
Fo
r
i
=
1
:
η
3
.
p
(σ
min
,
σ
s
i
z
e
)
,
v
(σ
s
i
z
e
)
,
c
cf
(
p
a
r
(
i
)
)
,
p
o
s
)
4
.
u
p
d
a
t
e
v
,
p
b
e
s
t
, g
b
e
s
t
5
.
p
a
r
(
i
)
.
v
=
w
.
p
a
r
(
i
)
+
c
1
.
ϕ
(
σ
s
i
z
e
)
.
(
p
a
r
(
i
)
.
p
b
e
s
t
-
p
a
r
(
i
)
.
pos
)
+
c
2
.
ϕ
(
σ
s
i
z
e
)
.
(
g
be
s
t
.
p
o
s
-
p
a
r
(
i
)
.
p
o
s
)
/
/
ϕ
r
a
n
d
6
.
p
a
r
(
i
)
.
[
v
e
l
p
o
s]
=
[
max
m
i
n
v
]
[
max
mi
n
pos
]
7
.
p
a
r
(
i
)
.
p
o
s
=
p
a
r
(
i
)
.
p
o
s
+
p
a
r
(
i
)
.
v
8
.
p
a
r
(
i
)
.
c
=
cf
(
p
a
r
(
i
)
.
p
o
s
)
9
.
If
p
a
r
(
i
)
.
c
<
p
a
r
(
i
)
.
c
b
e
s
t
1
0
.
p
a
r
(
p
o
s
b
e
s
t
c
be
s
t
)
=
p
a
r
(
p
o
sc
)
1
1
.
If
p
a
r
(
i
)
c
b
e
s
t
<
c
(
g
b
e
s
t
)
1
2
.
g
b
e
s
t
=
p
a
r
(
i
)
.
b
e
st
1
3
.
E
n
d
1
4
.
E
n
d
1
4
.
so
l
b
e
s
t
g
be
s
t
1
6
.
E
n
d
1
7
.
E
n
d
E
n
d
T
h
e
n
u
m
b
er
o
f
cl
u
s
ter
s
is
eq
u
iv
ale
n
t
to
th
e
p
r
o
d
u
ct
o
f
t
h
e
n
u
m
b
er
o
f
n
o
d
es
an
d
p
r
o
b
ab
ilit
y
o
f
n
o
d
e
to
o
p
t
f
o
r
b
ec
o
m
i
n
g
a
cl
u
s
ter
h
ea
d
.
T
h
e
alg
o
r
ith
m
i
n
itial
l
y
f
in
d
s
t
h
e
p
o
s
itio
n
,
v
elo
cit
y
,
an
d
co
s
t
o
f
th
e
p
ar
ticle
u
s
i
n
g
m
in
i
m
u
m
v
ar
ian
ce
,
s
ize
o
f
v
ar
ia
n
ce
,
a
n
d
p
o
s
itio
n
attr
i
b
u
tes
(
L
i
n
e
-
3
)
f
o
r
all
n
u
m
b
er
o
f
p
o
p
u
latio
n
s
(
η
)
.
I
t
th
e
n
o
p
ts
f
o
r
u
p
d
at
in
g
t
h
e
v
elo
cit
y
,
p
er
s
o
n
al
b
est
an
d
g
lo
b
al
b
est
(
L
i
n
e
-
4
)
u
s
i
n
g
p
o
s
itio
n
an
d
co
s
t
attr
ib
u
te
o
f
th
e
p
ar
ticle.
T
h
e
n
ex
t
p
ar
t
o
f
th
e
s
t
u
d
y
co
n
s
id
er
s
u
p
d
atin
g
t
h
e
o
th
er
p
ar
a
m
eter
s
f
o
r
m
ax
i
m
u
m
iter
atio
n
r
o
u
n
d
s
u
s
i
n
g
t
h
e
e
m
p
ir
ical
e
x
p
r
ess
io
n
o
f
v
elo
cit
y
v
(
L
in
e
-
5
)
.
T
h
e
n
ex
t
p
ar
t
o
f
t
h
e
al
g
o
r
it
h
m
is
f
o
r
ap
p
l
y
i
n
g
th
e
m
a
x
i
m
u
m
an
d
m
i
n
i
m
u
m
li
m
it
s
o
f
v
elo
cit
y
(
L
in
e
-
6
)
f
o
llo
w
ed
b
y
u
p
d
atin
g
t
h
e
p
o
s
it
i
o
n
p
a
r
ticles
u
s
in
g
e
m
p
ir
ical
e
x
p
r
ess
io
n
h
ig
h
li
g
h
ted
in
L
i
n
e
-
7
.
T
h
e
co
s
t
attr
ib
u
te
i
s
f
u
r
t
h
er
e
v
alu
a
ted
co
n
s
i
d
er
in
g
t
h
e
p
ar
ticle
p
o
s
itio
n
(
L
i
n
e
-
8
)
.
I
f
th
e
co
s
t
o
f
th
e
p
ar
ticle
is
f
o
u
n
d
to
b
e
less
th
a
n
th
e
b
est
v
al
u
e
o
f
th
e
co
s
t
(
L
i
n
e
-
9
)
th
a
n
th
e
alg
o
r
ith
m
ch
o
o
s
e
s
to
ass
ig
n
t
h
e
n
o
r
m
al
p
o
s
itio
n
as
b
est
p
o
s
itio
n
an
d
n
o
r
m
al
co
s
t
as
b
est
co
s
t
(
L
in
e
-
1
0
)
.
Ho
w
e
v
er
,
i
f
t
h
e
p
er
s
o
n
al
b
est
co
s
t
o
f
th
e
p
ar
ticle
is
f
o
u
n
d
to
b
e
less
t
h
an
t
h
e
g
lo
b
al
b
est
c
o
s
t
th
a
n
(
L
i
n
e
-
1
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
1
0
8
4
–
1091
1088
th
e
alg
o
r
it
h
m
ap
p
lies
th
e
p
er
s
o
n
al
b
est
co
s
t
to
th
e
g
lo
b
al
b
e
s
t
co
s
t
(
L
in
e
-
1
2
)
.
T
h
is
g
lo
b
al
b
est
co
s
t
is
f
in
all
y
co
n
s
id
er
ed
to
b
e
th
e
b
est
s
o
lu
tio
n
it
s
el
f
(
L
i
n
e
-
1
2
an
d
L
i
n
e
-
1
5
)
.
Fo
r
b
etter
co
n
tr
o
l
o
f
th
e
iter
atio
n
,
th
e
alg
o
r
ith
m
ca
n
r
estrict
th
e
i
ter
atio
n
o
f
b
est
co
s
t
to
an
y
v
a
lu
e
(
in
th
e
p
r
o
p
o
s
ed
s
y
s
te
m
,
w
e
h
a
v
e
iter
ated
it
to
2
0
ti
m
e
s
to
f
o
u
n
d
b
etter
o
u
tco
m
es).
T
h
er
ef
o
r
e,
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
co
u
ld
s
u
cc
ess
f
u
ll
y
o
p
tim
ize
t
h
e
b
est
p
o
s
itio
n
o
f
th
e
p
ar
ticle
w
h
ic
h
i
s
d
ir
ec
tl
y
m
ap
p
ed
to
t
h
e
s
elec
tio
n
p
r
o
ce
s
s
o
f
t
h
e
cl
u
s
ter
h
ea
d
.
He
n
ce
,
o
p
tim
izin
g
t
h
e
ex
i
s
ti
n
g
P
S
O
o
f
f
er
s
b
etter
co
n
tr
o
l
o
f
th
e
s
elec
tio
n
m
ec
h
a
n
is
m
t
h
at
d
ir
ec
tl
y
ef
f
ec
t
s
en
er
g
y
co
n
s
er
v
atio
n
in
t
h
e
d
ata
f
o
r
w
a
r
d
in
g
p
r
o
ce
s
s
.
2
.
2
.
Alg
o
rit
h
m
f
o
r
E
n
ha
ncing
Ne
t
w
o
rk
L
if
et
i
m
e
T
h
is
alg
o
r
ith
m
i
s
r
esp
o
n
s
ib
le
f
o
r
im
p
r
o
v
i
n
g
t
h
e
n
et
w
o
r
k
li
f
eti
m
e
o
f
th
e
s
e
n
s
o
r
n
et
w
o
r
k
w
h
er
e
th
e
f
o
cu
s
is
la
id
to
th
e
e
n
er
g
y
b
ei
n
g
d
ep
leted
b
y
t
h
e
cl
u
s
ter
h
ea
d
its
el
f
.
I
t
is
b
ec
a
u
s
e
i
f
t
h
e
tr
a
n
s
m
i
ttan
ce
e
n
er
g
y
o
f
clu
s
ter
h
ea
d
E
tx
is
r
ed
u
ce
d
th
an
a
s
ig
n
i
f
ica
n
t
a
m
o
u
n
t
o
f
th
e
en
er
g
y
co
u
ld
b
e
p
o
s
tp
o
n
ed
f
o
r
a
f
aster
r
ate
o
f
d
ep
letio
n
o
f
th
e
b
atter
y
o
f
a
n
o
d
e.
T
h
e
alg
o
r
ith
m
tak
e
s
th
e
in
p
u
t
o
f
E
(
r
esid
u
al
en
er
g
y
)
an
d
N
(
n
u
m
b
er
o
f
n
o
d
es)
th
at
a
f
ter
p
r
o
ce
s
s
in
g
le
ad
s
to
a
g
en
er
atio
n
o
f
o
u
tp
u
t a
s
E
out
(
r
ev
is
ed
r
esid
u
al
e
n
er
g
y
)
.
A
l
g
o
r
i
t
h
m
f
o
r
E
n
h
a
n
c
i
n
g
N
e
t
w
o
r
k
L
i
f
e
t
i
m
e
In
p
u
t
:
E,
N
Ou
t
p
u
t
:
E
o
ut
S
t
a
r
t
1
.
D
id
=
E
≤
0
2
.
Fo
r
i
=
1
:
N
ch
3
.
i
d
x
=
(
C
id
=
=
i
)
4
.
E
n
d
5
.
Fo
r
i
=
1
:
N
6
.
E
tx
=
α(
d
,
P
L
)
7
.
E
rx
=
β(
P
L
)
8
.
E
1
=E
-
E
tx
&
E
2
=
E(
C
H
(
i
d
c
)
)
-
E
rx
/
/
i
d
c
i
s
a
ma
t
r
i
x
t
h
a
t
st
o
r
e
s i
d
e
n
t
i
t
y
o
f
t
h
e
c
l
u
st
e
r
e
d
9
.
E
n
d
1
0
.
F
o
r
i
=
1
:
si
z
e
(
C
H
)
1
1
.
E
tx
=
α(
d
,
P
L
+
P
L
*
P
c
o
un
t
(
i
)
)
1
2
.
E(
C
H
(
i
)
)
E(
C
H
(
i
)
)
-
E
tx
1
3
.
E
n
d
1
4
.
If
∑
E(
C
H
)
≤
0
1
5
.
A
p
p
l
y
A
l
g
o
r
i
t
h
m
-
1
1
6
.
C
H
n
e
w
C
H
(
C
C
,
N
ch
,
x
y
,
D
id
)
1
7
.
g
e
t
E
o
ut
E
1
8
.
E
n
d
E
n
d
T
h
e
alg
o
r
ith
m
f
o
r
m
u
late
s
a
s
i
m
p
le
co
n
d
it
io
n
f
o
r
id
en
ti
f
y
i
n
g
d
ea
d
n
o
d
e
D
id
a
s
t
h
e
n
o
d
e
w
it
h
les
s
er
r
esid
u
al
e
n
er
g
y
E
(
L
i
n
e
-
1
)
.
T
h
e
i
n
itial
p
ar
t
o
f
t
h
e
s
t
u
d
y
is
t
o
o
b
tain
th
e
ce
n
ter
p
o
in
t
o
f
t
h
e
clu
s
ter
,
an
d
t
h
en
it
o
b
tain
s
all
th
e
i
n
d
ex
o
f
t
h
e
it
h
clu
s
ter
(
L
in
e
-
3
)
f
o
r
all
t
h
e
v
a
lu
es
o
f
cl
u
s
ter
h
ea
d
s
(
L
i
n
e
-
2
)
.
Fo
r
all
th
e
n
u
m
b
er
o
f
n
o
d
es
(
L
i
n
e
-
5
)
,
t
h
e
al
g
o
r
ith
m
ap
p
lies
t
h
e
f
ir
s
t
o
r
d
er
r
ad
io
-
en
er
g
y
m
o
d
elin
g
to
ap
p
ly
f
u
n
c
tio
n
f
o
r
co
m
p
u
ti
n
g
tr
a
n
s
m
itta
n
ce
en
er
g
y
α
(
L
i
n
e
-
6
)
an
d
r
ec
eiv
in
g
e
n
er
g
y
β
(
L
i
n
e
-
7
)
.
A
clo
s
er
lo
o
k
at
th
e
ex
p
r
ess
io
n
s
h
o
w
s
t
h
at
tr
an
s
m
itta
n
ce
en
e
r
g
y
d
ep
en
d
s
o
n
E
u
cl
id
ea
n
d
i
s
tan
ce
d
an
d
p
ac
k
et
len
g
t
h
P
L
(
L
in
e
-
6
)
w
h
i
le
r
ec
eiv
in
g
e
n
er
g
y
o
n
l
y
d
ep
en
d
s
o
n
p
ac
k
et
le
n
g
t
h
(
L
i
n
e
-
7
)
.
T
h
e
n
ex
t
s
tep
o
f
t
h
e
al
g
o
r
ith
m
is
m
ai
n
l
y
u
s
ed
f
o
r
m
i
n
i
m
izi
n
g
b
o
t
h
tr
an
s
m
itt
a
n
c
e
en
er
g
y
E
1
a
n
d
r
ec
eiv
i
n
g
en
e
r
g
y
E
2
u
s
in
g
t
h
e
e
x
p
r
ess
io
n
s
h
o
w
n
in
L
in
e
-
8
.
T
h
e
co
m
p
lete
p
r
o
ce
s
s
o
f
m
in
i
m
iz
atio
n
o
f
th
e
en
er
g
y
(
E
1
an
d
E
2
)
is
o
n
l
y
f
r
o
m
m
e
m
b
er
n
o
d
e
to
clu
s
ter
h
ea
d
a
n
d
clu
s
ter
h
ea
d
to
an
o
th
er
cl
u
s
t
er
h
ea
d
.
T
h
e
alg
o
r
ith
m
n
o
w
r
ev
is
es
th
e
co
m
p
u
t
at
io
n
b
y
co
n
s
id
er
in
g
o
n
l
y
co
m
m
u
n
icatio
n
f
r
o
m
clu
s
ter
h
ea
d
to
b
ase
s
tatio
n
(
L
i
n
e
-
1
0
)
w
h
er
e
f
ir
s
t
t
h
e
co
o
r
d
in
ates
o
f
th
e
clu
s
ter
h
ea
d
s
ar
e
o
b
tain
ed
f
o
llo
w
ed
b
y
co
m
p
u
tatio
n
o
f
tr
an
s
m
i
ttan
ce
en
er
g
y
E
tx
(
L
in
e
-
1
1
)
b
y
ap
p
l
y
in
g
m
at
h
e
m
atica
l
ex
p
r
ess
io
n
s
o
f
f
ir
s
t
-
o
r
d
er
r
ad
io
-
en
er
g
y
m
o
d
el
co
n
s
id
er
i
n
g
t
h
e
i
n
p
u
t
ar
g
u
m
en
ts
o
f
E
u
clid
e
an
d
is
tan
ce
b
et
w
ee
n
th
e
cl
u
s
ter
h
ea
d
a
n
d
b
ase
s
ta
t
io
n
,
len
g
t
h
o
f
t
h
e
d
ata
p
ac
k
et,
an
d
n
u
m
b
er
o
f
cl
u
s
ter
h
ea
d
.
I
t
th
e
n
r
ed
u
ce
s
th
e
en
er
g
y
b
y
s
u
b
tr
ac
tin
g
i
t
w
it
h
t
h
e
E
tx
r
ec
e
n
tl
y
co
m
p
u
ted
(
L
in
e
-
1
2
)
.
T
h
e
p
r
o
ce
s
s
is
ca
r
r
ied
o
u
t
f
o
r
all
t
h
e
ac
ti
v
e
clu
s
ter
h
ea
d
s
in
t
h
e
s
en
s
o
r
n
et
w
o
r
k
.
I
n
ter
es
tin
g
l
y
,
in
ca
s
e
o
f
th
e
d
ea
d
o
f
an
y
clu
s
ter
h
ea
d
,
th
e
alg
o
r
ith
m
ap
p
lies
p
r
o
p
o
s
ed
P
SO
(
L
i
n
e
-
1
5
)
to
co
m
p
u
te
t
h
e
n
e
w
cl
u
s
ter
h
ea
d
(
L
in
e
-
1
4
)
.
T
h
e
co
m
p
lete
co
m
p
u
t
atio
n
i
s
ca
r
r
ied
o
u
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
o
ve
l S
ch
eme
fo
r
Min
ima
l I
tera
tive
P
S
O
A
lg
o
r
ith
m
fo
r
E
xten
d
in
g
N
etw
o
r
k
Lif
etime
o
f …
.
(
Hem
a
va
th
i P
)
1089
to
f
in
d
t
h
e
d
ea
d
n
o
d
e
an
d
id
en
ti
f
y
in
g
t
h
e
p
o
s
itio
n
o
f
th
e
d
ea
d
n
o
d
es
s
o
th
at
s
i
m
u
lta
n
e
o
u
s
u
p
d
ates
ca
n
b
e
ca
r
r
ied
o
n
th
e
P
SO
th
at
f
u
r
th
e
r
o
p
tim
izes
t
h
e
o
p
er
atio
n
p
r
o
c
ess
in
v
o
lv
e
s
in
p
r
o
p
o
s
ed
P
SO
alg
o
r
ith
m
.
I
n
th
i
s
ca
s
e,
t
h
e
p
r
o
p
o
s
ed
P
SO
alg
o
r
it
h
m
is
ap
p
lied
co
n
s
id
er
i
n
g
t
h
e
in
p
u
t
ar
g
u
m
e
n
ts
o
f
(
a)
b
est
p
o
s
itio
n
C
C
,
(
b
)
n
u
m
b
er
o
f
clu
s
ter
h
ea
d
s
N
ch
,
(
c
)
p
o
s
itio
n
in
f
o
r
m
atio
n
by
,
an
d
(
d
)
d
ea
d
n
o
d
e
id
en
tit
y
D
id
.
T
h
er
ef
o
r
e,
ir
r
esp
ec
tiv
e
o
f
a
n
y
p
o
s
itio
n
o
f
th
e
s
e
n
s
o
r
n
o
d
e,
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
i
s
m
ea
n
t
f
o
r
r
ed
u
cin
g
t
h
e
tr
an
s
m
itta
n
ce
e
n
er
g
y
o
f
t
h
e
clu
s
ter
h
ea
d
.
He
n
ce
,
t
h
e
n
et
w
o
r
k
li
f
eti
m
e
o
f
t
h
e
w
ir
e
les
s
s
e
n
s
o
r
n
et
w
o
r
k
is
s
ig
n
i
f
ica
n
tl
y
e
n
h
a
n
ce
d
w
i
th
le
s
s
er
d
ep
en
d
en
c
ies
o
n
t
h
e
p
o
s
i
tio
n
o
f
t
h
e
s
en
s
o
r
n
o
d
es
co
n
s
i
d
er
in
g
b
o
t
h
d
en
s
e
an
d
s
ca
r
ce
n
et
w
o
r
k
.
T
h
is
i
n
d
ir
e
ctl
y
m
i
n
i
m
izes
th
e
co
m
p
u
tat
io
n
al
co
m
p
le
x
it
ies
a
s
s
o
ciate
d
w
i
th
th
e
i
m
p
le
m
en
ta
tio
n
o
f
s
w
ar
m
i
n
te
llig
e
n
ce
alg
o
r
it
h
m
i
n
a
w
ir
ele
s
s
s
e
n
s
o
r
n
et
w
o
r
k
.
T
h
e
n
ex
t
s
ec
tio
n
d
is
cu
s
s
e
s
th
e
r
esu
lt
s
o
b
tain
ed
b
y
i
m
p
le
m
e
n
t
in
g
t
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
.
3.
RE
SU
L
T
ANAL
YSI
S
T
h
e
im
p
le
m
e
n
tatio
n
o
f
t
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
i
s
ca
r
r
ied
o
u
t
u
s
in
g
t
h
e
Ma
tlab
an
d
ass
ess
ed
co
n
ce
r
n
i
n
g
b
o
t
h
e
n
er
g
y
an
d
d
ata
d
eliv
er
y
p
ar
a
m
eter
s
f
o
r
ass
ess
in
g
t
h
e
e
f
f
ec
t
o
f
p
r
o
p
o
s
ed
P
SO
-
b
ased
o
p
tim
izatio
n
.
T
h
e
s
tu
d
y
o
u
tc
o
m
e
w
a
s
co
m
p
ar
ed
w
it
h
co
n
v
en
t
io
n
al
L
E
A
C
H
alg
o
r
it
h
m
f
o
r
1
8
0
0
s
i
m
u
la
tio
n
r
o
u
n
d
s
.
T
h
e
o
u
tco
m
es
s
h
o
w
t
h
at
p
r
o
p
o
s
ed
s
y
s
te
m
w
it
h
P
SO
o
f
f
e
r
s
b
etter
n
et
w
o
r
k
li
f
eti
m
e
(
Fig
u
r
e
2
)
an
d
b
etter
th
r
o
u
g
h
p
u
t (
Fi
g
u
r
e
3
)
as c
o
m
p
ar
ed
to
L
E
A
C
H.
Fig
u
r
e
2
.
C
o
m
p
ar
ativ
e
An
al
y
s
is
o
f
N
u
m
b
er
o
f
A
li
v
e
No
d
es
Fig
u
r
e
3
.
C
o
m
p
ar
ativ
e
An
al
y
s
is
o
f
T
h
r
o
u
g
h
p
u
t
T
h
e
o
u
tco
m
e
s
h
o
w
s
th
at
p
r
o
p
o
s
ed
s
y
s
te
m
o
f
f
er
s
s
ig
n
i
f
ica
n
tl
y
i
n
cr
ea
s
ed
r
ete
n
tio
n
o
f
ali
v
e
n
o
d
es
w
it
h
5
0
%
i
m
p
r
o
v
e
m
en
t
as
co
n
s
id
er
ed
to
o
co
n
v
en
tio
n
al
L
E
AC
H
alg
o
r
it
h
m
w
h
er
ea
s
it
a
ls
o
en
s
u
r
es
a
s
m
o
o
t
h
g
r
ad
ien
t
asce
n
t
f
o
r
th
r
o
u
g
h
p
u
t
cu
r
v
e
s
h
o
w
in
g
b
etter
p
r
ed
ictab
ilit
y
o
f
t
h
e
th
r
o
u
g
h
p
u
t
p
er
f
o
r
m
an
ce
w
h
er
ea
s
t
h
e
cu
r
v
e
o
f
L
E
A
C
H
w
it
n
es
s
1
0
0
%
o
f
n
o
d
e
d
ea
th
j
u
s
t
b
e
f
o
r
e
ev
en
co
m
p
leti
n
g
5
0
%
o
f
t
h
e
s
i
m
u
latio
n
iter
atio
n
.
A
t
th
e
s
a
m
e
t
i
m
e,
p
r
o
p
o
s
ed
s
y
s
te
m
d
o
esn
'
t
h
a
v
e
a
n
y
f
o
r
m
o
f
s
to
r
ag
e
d
ep
en
d
e
n
cies,
an
d
h
e
n
ce
it
s
co
m
p
u
tatio
n
al
co
m
p
le
x
it
y
is
h
ig
h
l
y
n
eg
lig
ib
le.
4.
CO
NCLU
SI
O
N
A
t
p
r
es
en
t,
th
e
r
e
a
r
e
v
a
r
i
o
u
s
r
es
ea
r
ch
-
b
ase
d
te
ch
n
iq
u
es
f
o
c
u
s
ed
o
n
im
p
lem
en
tin
g
P
SO
f
o
r
s
o
lv
in
g
m
u
ltip
l
e
p
r
o
b
lem
s
in
a
w
ir
eles
s
s
en
s
o
r
n
etw
o
r
k
th
at
c
o
m
es u
n
d
e
r
th
e
r
an
g
es
o
f
c
lu
s
te
r
in
g
,
e
n
er
g
y
co
n
s
er
v
at
i
o
n
,
an
d
l
o
c
ali
za
t
io
n
.
A
lth
o
u
g
h
ex
is
tin
g
P
S
O
-
b
as
e
d
tech
n
i
q
u
es
h
av
e
m
ad
e
s
o
m
e
g
o
o
d
p
r
o
b
le
m
s
i
n
o
b
t
ain
in
g
th
e
b
et
te
r
o
u
t
c
o
m
e,
w
e
f
in
d
th
at
s
u
ch
s
o
lu
ti
o
n
s
h
av
e
o
v
er
lo
o
k
e
d
th
e
p
r
o
b
l
em
s
ass
o
cia
te
d
w
it
h
th
e
co
m
p
u
tati
o
n
a
l
co
m
p
lex
ity
in
P
S
O
d
u
e
to
its
h
ig
h
er
in
v
o
lv
em
en
t
o
f
it
er
ati
o
n
.
T
h
e
p
r
o
p
o
s
ed
s
y
s
tem
p
r
o
v
ed
th
at
it
is
q
u
it
e
f
ea
s
i
b
le
t
o
co
n
t
r
o
l
th
e
ite
r
a
ti
o
n
o
f
P
SO
an
d
s
t
ill
o
b
t
ain
b
ett
er
en
e
r
g
y
ef
f
icien
cy
an
d
en
h
a
n
ce
d
d
at
a
d
e
liv
e
r
y
p
e
r
f
o
r
m
an
ce
in
a
w
ir
eless
s
en
s
o
r
n
etw
o
r
k
in
c
o
m
p
a
r
is
o
n
t
o
th
e
ex
is
tin
g
s
y
s
tem
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
1
0
8
4
–
1091
1090
RE
F
E
RE
NCES
[1
]
W
.
S
u
n
,
Z
.
Ya
n
g
,
X.
Zh
a
n
g
,
a
n
d
Y.
L
i
u
,
"
E
n
e
rg
y
-
Ef
f
icie
n
t
Ne
ig
h
b
o
r
Dis
c
o
v
e
ry
in
M
o
b
il
e
A
d
H
o
c
a
n
d
W
i
re
les
s
S
e
n
s
o
r
Ne
tw
o
rk
s
:
A
S
u
rv
e
y
,
"
i
n
IE
EE
C
o
mm
u
n
ic
a
t
i
o
n
s
S
u
rv
e
y
s
&
T
u
t
o
ri
a
ls
,
v
o
l
.
1
6
,
n
o
.
3
,
p
p
.
1
4
4
8
-
1
4
5
9
,
T
h
ir
d
Qu
a
rte
r
2
0
1
4
.
[2
]
Y.
G
u
,
F
.
Re
n
,
Y.
Ji
a
n
d
J
.
L
i
,
"
T
h
e
Ev
o
l
u
t
i
o
n
o
f
S
i
n
k
M
o
b
i
li
ty
M
a
n
a
g
e
m
e
n
t
i
n
W
i
re
le
ss
S
e
n
s
o
r
Ne
tw
o
rk
s
:
A
S
u
rv
e
y
,
"
i
n
IE
E
E
C
o
mm
u
n
i
c
a
t
i
o
n
s
S
u
rv
e
y
s &
T
u
t
o
r
i
a
l
s
,
v
o
l
.
1
8
,
n
o
.
1
,
p
p
.
5
0
7
-
5
2
4
,
F
irs
t
q
u
a
rt
e
r
2
0
1
6
[3
]
K.
A
.
S
h
im
,
"
A
S
u
rv
e
y
o
f
P
u
b
l
ic
-
Ke
y
Cry
p
t
o
g
ra
p
h
ic
P
rim
i
t
iv
e
s
i
n
W
i
re
l
e
ss
S
e
n
s
o
r
Ne
tw
o
rk
s
,
"
i
n
IE
E
E
Co
mm
u
n
ic
a
ti
o
n
s
S
u
rv
e
y
s &
T
u
t
o
r
ia
ls
,
v
o
l
.
1
8
,
n
o
.
1
,
p
p
.
5
7
7
-
6
0
1
,
F
irs
t
q
u
a
rt
e
r
2
0
1
6
.
[4
]
M
.
Z.
Ha
sa
n
;
H.
A
l
-
Rizz
o
;
F
.
A
l
-
T
u
r
jm
a
n
,
"
A
S
u
rv
e
y
o
n
M
u
lt
i
p
a
t
h
R
o
u
t
i
n
g
P
r
o
t
o
c
o
l
s
f
o
r
Q
o
S
A
ss
u
r
a
n
c
e
s
i
n
Re
a
l
-
T
im
e
W
irel
e
ss
M
u
lt
im
e
d
ia
S
e
n
s
o
r
Ne
tw
o
rk
s
,
"
i
n
I
EE
E
C
o
mm
u
n
ic
a
t
io
n
s
S
u
rv
e
y
s
&
T
u
to
ri
a
ls
,
v
o
l.
P
P
,
n
o
.
9
9
,
p
p
.
1
-
1
[5
]
S
.
R.
J
o
n
d
h
a
le
,
R
.
S
.
D
e
s
h
p
a
n
d
e
,
S
.
M
.
W
a
lk
e
,
a
n
d
A
.
S
.
J
o
n
d
h
a
le,
"
Iss
u
e
s
a
n
d
c
h
a
ll
e
n
g
e
s
i
n
R
S
S
I
b
a
s
e
d
t
a
r
g
e
t
lo
c
a
l
iz
a
t
i
o
n
a
n
d
tr
a
c
k
i
n
g
i
n
w
ire
les
s
se
n
s
o
r
n
e
tw
o
rk
s
,
"
2
0
1
6
I
n
te
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
A
u
t
o
m
a
ti
c
Co
n
tr
o
l
a
n
d
Dy
n
a
m
ic O
p
t
im
iza
t
i
o
n
T
e
c
h
n
i
q
u
e
s (
ICA
CDO
T
)
,
P
u
n
e
,
2
0
1
6
,
p
p
.
5
9
4
-
598.
[6
]
Y.
M
.
Y
u
s
o
f
,
A
.
K
.
M
.
M
.
I
sla
m
a
n
d
S
.
Ba
h
a
r
u
n
,
"
A
n
e
x
p
e
r
ime
n
t
a
l
st
u
d
y
o
f
W
S
N
tr
a
n
sm
iss
i
o
n
p
o
w
e
r
o
p
ti
m
is
a
t
i
o
n
u
s
i
n
g
M
IC
Az
m
o
te
s,
"
2
0
1
5
I
n
te
r
n
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
A
d
v
a
n
c
e
s
i
n
E
lec
tr
ica
l
E
n
g
i
n
e
e
ri
n
g
(
ICA
E
E)
,
D
h
a
k
a
,
2
0
1
5
,
p
p
.
1
8
2
-
185
[7
]
S
a
t
c
h
i
d
a
n
a
n
d
a
De
h
u
ri
,
"
I
n
teg
ra
ti
o
n
o
f
S
w
a
rm
I
n
tel
l
ig
e
n
c
e
a
n
d
A
rt
if
i
c
ial
N
e
u
ra
l
N
e
tw
o
rk
,
"
W
o
rl
d
S
c
ie
n
t
if
ic
,
2
0
1
1
[8
]
P
a
rs
o
p
o
u
l
o
s
,
K
o
n
s
ta
n
t
i
n
o
s
E
,
P
a
rt
icle
S
w
a
rm
Op
ti
m
iza
ti
o
n
,
a
n
d
I
n
t
e
ll
ig
e
n
c
e
:
A
d
v
a
n
c
e
s
a
n
d
A
p
p
l
ica
t
io
n
s:
A
d
v
a
n
c
e
s
a
n
d
A
p
p
l
ica
ti
o
n
s
,
IG
I
G
l
o
b
a
l,
2
0
1
0
[9
]
M
a
u
r
ice
C
lerc
,
P
a
r
ti
c
le
S
w
a
rm
O
p
t
im
iza
ti
o
n
,
Jo
h
n
W
i
ley
&
S
o
n
s
,
2
0
1
3
[1
0
]
He
m
a
w
a
th
i
.
p
a
n
d
T
G
Ba
sa
v
a
r
a
j
u
,
“
A
n
I
n
v
e
st
ig
a
ti
o
n
a
l
S
t
u
d
y
o
f
E
n
e
rg
y
Co
n
se
rv
a
ti
o
n
T
e
c
h
n
iq
u
e
s
i
n
H
iera
rc
h
i
c
a
l
Ro
u
ti
n
g
P
r
o
t
o
c
o
ls
i
n
W
ir
e
les
s
S
e
n
s
o
r
Ne
tw
o
rk
”
,
I
n
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Co
m
p
u
ter
Ap
p
l
ic
a
t
i
o
n
s
1
0
1
(
7
)
:
1
4
-
1
9
,
S
e
p
tem
b
e
r
2
0
1
4
.
[1
1
]
Y.
Z
h
o
u
,
N.
W
a
n
g
,
a
n
d
W
.
Xia
n
g
,
"
C
l
u
st
e
r
i
n
g
H
iera
rc
h
y
P
r
o
t
o
c
o
l
i
n
W
i
re
les
s
S
e
n
s
o
r
N
e
tw
o
rk
s
U
si
n
g
a
n
Im
p
r
o
v
e
d
P
S
O A
lg
o
r
i
th
m
,
"
i
n
I
EE
E
Ac
c
e
ss
,
v
o
l
.
5
,
n
o
.
,
p
p
.
2
2
4
1
-
2
2
5
3
,
2
0
1
7
.
[1
2
]
Q.
Ni
,
Q
.
P
a
n
,
H
.
Du
,
C
.
Ca
o
,
a
n
d
Y.
Z
h
a
i,
"
A
No
v
e
l
Cl
u
s
ter
He
a
d
S
e
lec
t
i
o
n
A
lg
o
r
it
h
m
Ba
se
d
o
n
F
u
z
z
y
Cl
u
s
ter
i
n
g
a
n
d
P
a
rt
ic
le
S
w
a
rm
Op
t
im
iza
t
i
o
n
,
"
in
I
E
EE
/A
CM
T
r
a
n
s
a
c
t
io
n
s
o
n
C
o
m
p
u
t
a
ti
o
n
a
l
B
io
l
o
g
y
a
n
d
Bi
o
i
n
f
o
r
ma
t
ics
,
v
o
l
.
1
4
,
n
o
.
1
,
p
p
.
7
6
-
8
4
,
Ja
n
.
-
F
e
b
.
[1
3
]
W
.
X
i
a
n
g
,
N.
W
a
n
g
,
a
n
d
Y
.
Z
h
o
u
,
"
A
n
E
n
e
rg
y
-
Ef
f
ici
e
n
t
R
o
u
t
i
n
g
A
lg
o
r
it
h
m
f
o
r
S
o
f
tw
a
re
-
De
f
i
n
e
d
W
irele
ss
S
e
n
s
o
r
Ne
tw
o
rk
s,"
i
n
I
E
EE
S
e
n
s
o
rs
J
o
u
r
n
a
l
,
v
o
l
.
1
6
,
n
o
.
2
0
,
p
p
.
7
3
9
3
-
7
4
0
0
,
O
c
t
.
1
5
,
2
0
1
6
.
[1
4
]
W
.
G
u
o
,
J
.
L
i,
G
.
C
h
e
n
,
Y.
N
i
u
a
n
d
C
.
C
h
e
n
,
"
A
P
S
O
-
O
p
ti
m
i
z
e
d
Re
a
l
-
T
im
e
F
a
u
l
t
-
T
o
le
ra
n
t
T
a
sk
A
ll
o
c
a
t
i
o
n
A
lg
o
r
it
h
m
i
n
W
ire
les
s
S
e
n
s
o
r
N
e
t
w
o
rk
s,"
i
n
IE
E
E
T
r
a
n
s
a
c
t
io
n
s o
n
P
a
r
a
l
le
l
a
n
d
D
ist
ri
b
u
te
d
S
y
st
e
ms
,
v
o
l
.
2
6
,
n
o
.
1
2
,
p
p
.
3
2
3
6
-
3
2
4
9
,
D
e
c
.
1
,
2
0
1
5
.
[1
5
]
J.
Re
j
i
n
a
P
a
rv
i
n
a
n
d
C.
V
a
s
a
n
t
h
a
n
a
y
a
k
i,
"
P
a
rt
ic
le
S
w
a
rm
Op
ti
m
iz
a
ti
o
n
-
Ba
se
d
C
l
u
st
e
r
in
g
b
y
P
re
v
e
n
t
i
n
g
Re
s
i
d
u
a
l
No
d
e
s
i
n
W
i
re
les
s
S
e
n
s
o
r
Ne
tw
o
r
k
s,"
i
n
IE
E
E
S
e
n
so
rs
J
o
u
r
n
a
l
,
v
o
l
.
1
5
,
n
o
.
8
,
p
p
.
4
2
6
4
-
4
2
7
4
,
A
u
g
.
2
0
1
5
.
[1
6
]
T
.
Y.
W
u
a
n
d
C.
H
.
L
i
n
,
"
L
o
w
-
S
A
R
P
a
t
h
Disc
o
v
e
ry
b
y
P
a
r
ti
c
le
S
w
a
rm
Op
ti
m
iza
t
i
o
n
A
lg
o
ri
t
h
m
in
W
irele
ss
B
o
d
y
A
re
a
Ne
tw
o
rk
s
,
"
i
n
I
EE
E
S
e
n
s
o
r
s
J
o
u
r
n
a
l
,
v
o
l
.
1
5
,
n
o
.
2
,
p
p
.
9
2
8
-
9
3
6
,
F
e
b
.
2
0
1
5
.
[1
7
]
J.
Ya
n
g
,
H
.
Z
h
a
n
g
,
Y.
L
i
n
g
,
C.
P
a
n
,
a
n
d
W
.
S
u
n
,
"
T
a
sk
A
ll
o
c
a
ti
o
n
f
o
r
W
i
re
le
ss
S
e
n
s
o
r
Ne
tw
o
rk
Us
i
n
g
M
o
d
if
ie
d
Bi
n
a
ry
P
a
r
ti
c
le
S
w
a
rm
Op
t
im
iza
t
i
o
n
,
"
in
IE
EE
S
e
n
s
o
r
s J
o
u
r
n
a
l
,
v
o
l
.
1
4
,
n
o
.
3
,
p
p
.
8
8
2
-
8
9
2
,
M
a
rc
h
2
0
1
4
.
[1
8
]
M
.
N
.
Ra
h
m
a
n
a
n
d
M
.
A
.
M
a
t
i
n
,
"
Ef
f
icie
n
t
a
lg
o
r
i
t
h
m
f
o
r
p
r
o
l
o
n
g
i
n
g
n
e
tw
o
rk
l
if
e
t
im
e
o
f
w
ire
les
s
se
n
so
r
n
e
tw
o
rk
s
,
"
in
T
s
i
n
g
h
u
a
S
c
ie
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l.
1
6
,
n
o
.
6
,
p
p
.
5
6
1
-
5
6
8
,
De
c
.
2
0
1
1
.
[1
9
]
D.
T
.
Ho
,
E
.
I.
G
r
ø
t
li
,
P
.
B.
S
u
j
it
,
T
.
A
.
Jo
h
a
n
se
n
a
n
d
J.
B
.
De
S
o
u
sa
,
"
Per
f
o
rm
a
n
c
e
e
v
a
l
u
a
t
i
o
n
o
f
c
o
o
p
e
r
a
ti
v
e
re
l
a
y
a
n
d
P
a
r
t
icle
S
w
a
rm
O
p
ti
miz
a
ti
o
n
p
a
t
h
p
l
a
n
n
i
n
g
f
o
r
UA
V
a
n
d
w
ire
les
s
se
n
so
r
n
e
t
w
o
rk
,
"
2
0
1
3
I
EE
E
G
l
o
b
e
c
o
m
W
o
rk
s
h
o
p
s
(G
C
W
k
s
h
p
s
)
,
A
tl
a
n
ta
,
G
A
,
2
0
1
3
,
p
p
.
1
4
0
3
-
1408
[2
0
]
V.
L
o
sc
ri
,
E
.
Na
ta
li
z
i
o
,
F
.
G
u
e
rr
ie
ro
,
G
.
A
l
o
i
,
"
P
a
r
ti
c
le
sw
a
rm
o
p
ti
m
iza
ti
o
n
sc
h
e
m
e
s b
a
se
d
o
n
c
o
n
se
n
s
u
s
f
o
r
w
ire
les
s
se
n
s
o
r
n
e
tw
o
rk
s
,
"
A
CM
D
ig
i
ta
l
L
ib
ra
ry
,
p
p
.
7
7
-
8
4
,
2
0
1
2
[2
1
]
Y.
C
.
C
h
e
n
a
n
d
J.
R.
J
ia
n
g
,
"
P
a
rt
i
c
le
S
w
a
rm
O
p
ti
miz
a
t
io
n
f
o
r C
h
a
r
g
e
r De
p
l
o
y
me
n
t
i
n
W
i
re
l
e
ss
Re
c
h
a
r
g
e
a
b
le S
e
n
s
o
r
Ne
tw
o
rk
s
,
"
2
0
1
6
2
6
t
h
I
n
te
r
n
a
t
i
o
n
a
l
T
e
lec
o
m
m
u
n
ica
t
i
o
n
Ne
tw
o
rk
s
a
n
d
A
p
p
li
c
a
ti
o
n
s
C
o
n
f
e
re
n
c
e
(
IT
NA
C)
,
D
u
n
e
d
i
n
,
2
0
1
6
,
p
p
.
2
3
1
-
236.
[2
2
]
J.
D
u
,
L
.
L
i
u
,
a
n
d
Y.
L
i
n
g
,
"
A
n
e
rr
o
r
b
e
a
c
o
n
f
il
ter
i
n
g
a
l
g
o
r
it
h
m
b
a
se
d
o
n
p
a
rt
ic
le
s
wa
rm
o
p
t
im
iz
a
ti
o
n
f
o
r
u
n
d
e
rw
a
ter
wi
re
le
ss
se
n
s
o
r
n
e
t
w
o
rk
s
,
"
2
0
1
6
I
EE
E
I
n
te
rn
a
t
i
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
U
b
i
q
u
it
o
u
s
W
i
re
l
e
ss
Br
o
a
d
b
a
n
d
(IC
UW
B)
,
Na
n
j
i
n
g
,
2
0
1
6
,
p
p
.
1
-
4.
[2
3
]
Z.
C
h
e
n
,
X.
L
i
,
B
.
L
v
a
n
d
M
.
Jia
,
"
A
S
e
l
f
-
A
d
a
p
t
ive
W
ire
les
s
S
e
n
s
o
r
Ne
tw
o
rk
C
o
v
e
r
a
g
e
M
e
t
h
o
d
f
o
r
I
n
tr
u
s
i
o
n
T
o
le
ra
n
c
e
B
a
se
d
o
n
P
a
rt
icl
e
S
w
a
rm
O
p
ti
m
iz
a
ti
o
n
a
n
d
C
u
c
k
o
o
S
e
a
rc
h
,
"
2
0
1
5
I
EE
E
T
ru
stc
o
m
/B
i
g
Da
ta
S
E
/I
S
P
A
,
He
ls
i
n
k
i
,
2
0
1
5
,
p
p
.
1
2
9
8
-
1
3
0
5
.
[2
4
]
L
.
Z
h
i
-
K
u
n
a
n
d
L
.
Zh
o
n
g
,
"
N
o
d
e
se
l
f
-
lo
c
a
l
iz
a
t
i
o
n
a
l
g
o
r
it
h
m
f
o
r wir
e
les
s
s
e
n
s
o
r n
e
t
w
o
rk
s b
a
s
e
d
o
n
m
o
d
i
f
ie
d
p
a
rt
ic
l
e
sw
a
rm
o
p
ti
miz
a
ti
o
n
,
"
T
h
e
2
7
t
h
C
h
i
n
e
s
e
C
o
n
tr
o
l
a
n
d
D
e
c
i
s
i
o
n
C
o
n
f
e
r
e
n
c
e
(
2
0
1
5
CCD
C)
,
Qi
n
g
d
a
o
,
2
0
1
5
,
p
p
.
5
9
6
8
-
5971.
[2
5
]
S
.
T
h
il
a
g
a
v
a
t
h
i
a
n
d
B
.
G
.
G
e
e
t
h
a
,
"
E
n
e
rg
y
-
A
w
a
re
S
w
a
rm
Op
t
im
iza
ti
o
n
w
i
t
h
I
n
terc
l
u
s
ter
S
e
a
rc
h
f
o
r
W
irele
ss
S
e
n
s
o
r
Ne
tw
o
rk
,
"
Hi
n
d
a
wi
P
u
b
li
s
h
i
n
g
C
o
r
p
o
r
a
ti
o
n
-
S
c
ie
n
ti
f
ic W
o
r
l
d
J
o
u
r
n
a
l
,
2
0
1
5
[2
6
]
R.
S
.
E
lh
a
b
y
a
n
a
n
d
M
.
C.
E
.
Y
a
g
o
u
b
,
"
P
a
rt
icl
e
s
w
a
rm
o
p
ti
mi
za
ti
o
n
p
r
o
t
o
c
o
l
f
o
r
c
l
u
s
ter
i
n
g
i
n
w
ire
les
s
se
n
s
o
r
n
e
tw
o
rk
s:
A
re
a
l
is
ti
c
a
p
p
r
o
a
c
h
,
"
P
r
o
c
e
e
d
i
n
g
s
o
f
t
h
e
2
0
1
4
IE
E
E
1
5
t
h
I
n
te
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
In
f
o
rm
a
t
i
o
n
Re
u
se
a
n
d
I
n
teg
ra
ti
o
n
(
IE
EE
IRI
2
0
1
4
)
,
Re
d
w
o
o
d
C
i
ty
,
CA
,
2
0
1
4
,
p
p
.
3
4
5
-
350.
[2
7
]
T
ro
n
g
-
T
h
u
a
H
u
y
n
h
,
A
n
h
-
Vu
D
i
n
h
-
D
u
c
,
C
o
n
g
-
H
u
n
g
T
ra
n
a
n
d
T
u
a
n
-
A
n
h
L
e
,
"
B
a
l
a
n
c
e
P
a
rt
ic
le
S
w
a
rm
Op
t
imi
za
t
i
o
n
a
n
d
g
r
a
v
it
a
ti
o
n
a
l
se
a
r
c
h
a
l
g
o
r
it
h
m
f
o
r
e
n
e
r
g
y
e
ff
ic
ie
n
t
i
n
h
e
ter
o
g
e
n
e
o
u
s
wi
re
le
ss
se
n
so
r
n
e
t
w
o
rk
s
,
"
T
h
e
2
0
1
5
I
E
E
E
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
o
ve
l S
ch
eme
fo
r
Min
ima
l I
tera
tive
P
S
O
A
lg
o
r
ith
m
fo
r
E
xten
d
in
g
N
etw
o
r
k
Lif
etime
o
f …
.
(
Hem
a
va
th
i P
)
1091
RI
VF
I
n
te
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
C
o
m
p
u
t
i
n
g
&
C
o
m
m
u
n
ic
a
t
i
o
n
T
e
c
h
n
o
l
o
g
ies
-
Re
se
a
rc
h
,
I
n
n
o
v
a
t
io
n
,
a
n
d
Vis
io
n
f
o
r
F
u
t
u
re
(
RI
VF)
,
Ca
n
T
h
o
,
2
0
1
5
,
p
p
.
1
7
5
-
1
7
9
.
[2
8
]
I.
F
.
M
.
Zai
n
a
n
d
S
.
Y
.
S
h
i
n
,
"
Di
str
i
b
u
te
d
L
o
c
a
li
za
t
io
n
f
o
r
W
i
re
l
e
s
s
S
e
n
s
o
r
Ne
t
w
o
rk
s
Us
i
n
g
Bi
n
a
ry
P
a
rt
i
c
le
S
w
a
rm
Op
ti
miz
a
ti
o
n
(
B
PS
O)
,
"
2
0
1
4
I
EE
E
7
9
t
h
Ve
h
ic
u
lar
T
e
c
h
n
o
l
o
g
y
C
o
n
f
e
re
n
c
e
(
V
T
C
S
p
r
i
n
g
)
,
S
e
o
u
l,
2
0
1
4
,
p
p
.
1
-
5.
[2
9
]
C.
Ca
o
,
Q
.
Ni
a
n
d
X.
Y
i
n
,
"
C
o
mp
a
r
is
o
n
o
f
P
a
rt
ic
le
S
w
a
rm
O
p
t
imi
z
a
t
i
o
n
a
l
g
o
ri
t
h
ms
i
n
W
ire
les
s
S
e
n
s
o
r
Ne
t
w
o
r
k
n
o
d
e
l
o
c
a
l
iz
a
ti
o
n
,
"
2
0
1
4
IE
E
E
In
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
S
y
ste
m
s,
M
a
n
,
a
n
d
Cy
b
e
r
n
e
ti
c
s
(S
M
C)
,
S
a
n
Die
g
o
,
CA
,
2
0
1
4
,
p
p
.
2
5
2
-
257.
[3
0
]
Z.
J
i
n
g
,
T
.
L
e
a
n
d
Z
.
S
h
u
a
i
b
i
n
g
,
"
A
n
o
v
e
l
c
l
u
s
ter
i
n
g
a
l
g
o
ri
t
h
m
b
a
se
d
o
n
p
a
r
t
icle
s
wa
rm
o
p
t
imi
z
a
t
i
o
n
f
o
r
w
ire
les
s
se
n
s
o
r
n
e
tw
o
rk
s,
"
T
h
e
2
6
t
h
Ch
i
n
e
se
C
o
n
tr
o
l
a
n
d
De
c
i
si
o
n
C
o
n
f
e
r
e
n
c
e
(
2
0
1
4
C
CDC
)
,
Ch
a
n
g
s
h
a
,
2
0
1
4
,
p
p
.
2
7
6
9
-
2772.
[3
1
]
S
K
.
Ria
z
,
V.
S
ri
ra
m
m
a
n
o
j,
"
S
u
f
f
icie
n
t
A
u
t
h
e
n
t
ica
ti
o
n
f
o
r
E
n
e
rg
y
Co
n
s
u
m
p
ti
o
n
i
n
W
i
re
l
e
ss
S
e
n
so
r
Ne
tw
o
rk
s"
,
T
E
L
K
OM
NI
KA
(
T
e
lec
o
mm
u
n
ic
a
ti
o
n
C
o
m
p
u
t
i
n
g
El
e
c
tr
o
n
ics
a
n
d
C
o
n
tr
o
l)
Vo
l
.
1
6
,
N
o
.
2
,
p
p
.
3
1
6
~
3
2
2
,
No
v
e
m
b
e
r
2
0
1
5
.
[3
2
]
E
n
y
a
n
S
u
n
,
Ch
u
a
n
y
u
n
W
a
n
g
,
F
e
n
g
T
ia
n
,
"
A
S
u
rv
e
y
o
n
Cl
u
ste
ri
n
g
R
o
u
t
i
n
g
P
r
o
t
o
c
o
ls
Ba
s
e
d
o
n
P
S
O
i
n
W
S
N"
,
T
E
L
K
OM
NI
KA
(
T
e
lec
o
mm
u
n
ic
a
ti
o
n
C
o
m
p
u
t
i
n
g
El
e
c
tr
o
n
ics
a
n
d
C
o
n
tr
o
l)
Vo
l
.
1
2
,
N
o
.
7
,
p
p
.
5
4
8
4
~
5
4
9
0
,
Ju
ly
2
0
1
4
.
[3
3
]
[3
3
]
W
u
R
u
i
,
X
ia
Ke
w
e
n
,
Ba
i
Jia
n
c
h
u
a
n
,
Z
h
a
n
g
Z
h
iw
e
i
,
"
A
No
v
e
l
Clu
ste
ri
n
g
R
o
u
t
i
n
g
P
ro
t
o
c
o
l
i
n
W
irele
ss
S
e
n
s
o
r
Ne
tw
o
rk
"
,
T
E
L
KOM
N
IK
A
(
T
e
lec
o
mm
u
n
ic
a
t
i
o
n
C
o
m
p
u
t
i
n
g
E
lec
tr
o
n
i
c
s a
n
d
C
o
n
tr
o
l)
Vo
l
.
1
2
,
No
.
6
,
p
p
.
4
2
8
3
~
4
2
8
9
,
Ju
n
e
2
0
1
4
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
H
e
m
a
v
a
th
i
P
o
b
tain
e
d
B.
E
f
ro
m
M
a
n
ip
a
l
In
st
it
u
te
o
f
Tec
h
n
o
lo
g
y
,
M
a
n
ip
a
l
(U
n
iv
e
rsity
o
f
M
A
HE)
,
In
d
ia.
S
h
e
c
o
m
p
lete
d
M
.
T
e
c
h
f
ro
m
Dr.
Am
b
e
d
k
a
r
In
stit
u
te
o
f
T
e
c
h
n
o
l
o
g
y
B
a
n
g
a
lo
re
,
(V
T
U)
In
d
ia.
He
r
a
re
a
s o
f
in
tere
st ar
e
W
ir
e
les
s
S
e
n
so
r
Ne
tw
o
rk
s,
A
d
h
o
c
Ne
tw
o
r
k
s.
Cu
rre
n
tl
y
,
sh
e
is
p
u
rsu
in
g
P
h
.
D
.
a
t
Ja
in
Un
iv
e
rsity
,
Ba
n
g
a
lo
re
.
Dr
.
Na
n
d
a
k
u
m
a
r
A
N
o
b
tain
e
d
h
is
B.
S
c
in
1
9
7
2
,
BE
d
e
g
re
e
in
1
9
7
6
b
o
t
h
f
ro
m
Un
iv
e
rsit
y
o
f
M
y
so
re
,
In
d
ia,
a
n
d
P
h
.
D.
f
ro
m
Be
rh
a
n
p
u
r
u
n
iv
e
rsity
in
th
e
y
e
a
r
2
0
0
8
a
f
ter
g
e
tt
in
g
M
.
Tec
h
f
ro
m
Un
iv
e
rsit
y
O
f
Ro
o
rk
e
e
(p
re
s
e
n
t
IIT
ROO
R
KEE)
in
th
e
y
e
a
r
1
9
9
0
.
He
is
w
o
rk
in
g
a
s
P
ro
f
e
ss
o
r,
Ne
w
Ho
rizo
n
Co
l
leg
e
o
f
En
g
in
e
e
rin
g
i
n
th
e
De
p
a
rt
m
e
n
t
o
f
Co
m
p
u
ter
s
c
ien
c
e
a
n
d
e
n
g
in
e
e
rin
g
,
Ba
n
g
a
lo
re
.
His
re
se
a
rc
h
is
in
t
h
e
f
ield
o
f
Im
a
g
e
p
ro
c
e
ss
in
g
,
p
a
tt
e
rn
re
c
o
g
n
it
i
o
n
,
in
ter
n
e
t
o
f
th
i
n
g
s
a
n
d
o
t
h
e
rs
.
He
is
a
li
f
e
m
e
m
b
e
r
o
f
IS
T
E.
Evaluation Warning : The document was created with Spire.PDF for Python.