I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
3
,
J
u
n
e
201
7
,
p
p
.
1633
~
1
6
4
2
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
7
i
3
.
p
p
1
6
3
3
-
1642
1633
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Enha
nced P
o
sitio
n Contro
l
for Pn
e
u
m
a
ti
c
Sy
ste
m
by
Applyin
g
C
o
nstra
in
ts in
M
PC
Alg
o
rit
h
m
Siti
F
a
t
i
m
a
h S
ula
i
m
a
n
1
,
M
.
F
.
Ra
h
m
a
t
2
,
A
.
A
.
M
.
F
a
ud
z
3
,
K
ha
irudd
in O
s
m
a
n
4
,
Sy
Na
j
ib Sy
Sa
li
m
5
,
S
.
I
.
Sa
m
s
u
din
6
, A
.
R.
Azir
a
7
1
,
2,
3
De
p
a
rtm
e
n
t
o
f
Co
n
tro
l
a
n
d
M
e
c
h
a
tro
n
ics
En
g
i
n
e
e
rin
g
,
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
1,
4,
6,
7
De
p
a
rtm
e
n
t
o
f
In
d
u
strial
El
e
c
tro
n
ics
,
F
a
c
u
l
ty
o
f
El
e
c
tro
n
ics
a
n
d
C
o
m
p
u
ter E
n
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
l
a
k
a
3
Ce
n
tre f
o
r
A
rti
f
icia
l
In
telli
g
e
n
c
e
a
n
d
R
o
b
o
ti
c
s,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
la
y
sia
5
De
p
a
rtm
e
n
t
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
T
e
c
h
n
o
lo
g
y
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
T
e
c
h
n
o
lo
g
y
,
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
l
a
k
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Feb
3
,
2
0
1
7
R
ev
i
s
ed
A
p
r
19
,
2
0
1
7
A
cc
ep
t
ed
Ma
y
9
,
2
0
1
7
T
h
is
p
a
p
e
r
d
e
m
o
n
stra
tes
th
e
e
ff
e
c
ti
v
e
n
e
ss
o
f
a
p
p
l
y
in
g
c
o
n
stra
in
ts
in
a
c
o
n
tro
ll
e
r
a
lg
o
rit
h
m
a
s
a
str
a
teg
y
to
e
n
h
a
n
c
e
th
e
p
n
e
u
m
a
ti
c
a
c
tu
a
to
r
s
y
ste
m
’s
p
o
siti
o
n
i
n
g
p
e
rf
o
r
m
a
n
c
e
.
T
h
e
a
im
o
f
th
e
p
re
se
n
t
stu
d
y
is
to
r
e
d
u
c
e
th
e
o
v
e
rsh
o
o
t
i
n
t
h
e
p
n
e
u
m
a
ti
c
a
c
tu
a
to
r
p
o
siti
o
n
in
g
sy
ste
m
’s
re
s
p
o
n
se
.
A
n
a
u
to
re
g
re
ss
iv
e
w
it
h
e
x
o
g
e
n
o
u
s in
p
u
t
(A
RX
)
m
o
d
e
l
stru
c
tu
re
h
a
s b
e
e
n
u
se
d
to
m
o
d
e
l
th
e
p
n
e
u
m
a
ti
c
s
y
ste
m
,
wh
il
e
a
m
o
d
e
l
p
re
d
ictiv
e
c
o
n
tro
l
(
M
P
C)
h
a
s
b
e
e
n
e
m
p
lo
y
e
d
a
s
a
c
o
n
tro
l
stra
teg
y
.
T
h
e
in
p
u
t
c
o
n
stra
i
n
t
h
a
s
b
e
e
n
a
p
p
li
e
d
t
o
th
e
c
o
n
tr
o
l
sig
n
a
ls
(o
n
/o
f
f
v
a
l
v
e
s
sig
n
a
ls)
to
e
n
su
re
a
c
c
u
ra
t
e
p
o
siti
o
n
trac
k
in
g
.
Re
su
lt
s
sh
o
w
th
a
t
th
e
s
trate
g
y
w
it
h
c
o
n
stra
in
t
e
f
f
e
c
ti
v
e
l
y
r
e
d
u
c
e
d
o
v
e
rsh
o
o
t
b
y
m
o
re
th
a
n
9
9
.
0
8
3
7
%
a
n
d
9
7
.
0
5
9
6
%
i
n
sim
u
latio
n
a
n
d
re
a
l
-
ti
m
e
e
x
p
e
ri
m
e
n
ts,
re
sp
e
c
ti
v
e
l
y
.
M
o
re
o
v
e
r,
th
e
p
e
rf
o
rm
a
n
c
e
o
f
th
e
p
ro
p
o
se
d
stra
teg
y
in
c
o
n
tro
ll
in
g
th
e
p
n
e
u
m
a
ti
c
p
o
siti
o
n
i
n
g
sy
ste
m
is
c
o
n
sid
e
re
d
g
o
o
d
e
n
o
u
g
h
u
n
d
e
r
v
a
rio
u
s
l
o
a
d
s.
T
h
e
p
ro
p
o
se
d
stra
teg
y
c
a
n
b
e
a
p
p
l
ied
in
a
n
y
in
d
u
stry
th
a
t
u
se
d
p
n
e
u
m
a
ti
c
a
c
tu
a
to
r
i
n
t
h
e
ir
a
p
p
li
c
a
ti
o
n
s,
e
sp
e
c
ially
in
in
d
u
stries
th
a
t
in
v
o
lv
e
d
w
it
h
p
o
siti
o
n
c
o
n
tr
o
l
su
c
h
a
s
in
m
a
n
u
f
a
c
tu
rin
g
,
a
u
to
m
a
ti
o
n
a
n
d
ro
b
o
ti
c
s.
T
h
e
stra
teg
y
p
ro
v
e
d
to
b
e
c
a
p
a
b
le
o
f
c
o
n
tro
ll
in
g
th
e
p
n
e
u
m
a
ti
c
s
y
ste
m
b
e
tt
e
r,
e
sp
e
c
ial
ly
in
th
e
re
a
l
-
ti
m
e
e
n
v
iro
n
m
e
n
t.
K
ey
w
o
r
d
:
C
o
n
s
tr
ain
t
Mo
d
el
p
r
ed
ictiv
e
c
o
n
tr
o
l
Ov
er
s
h
o
o
t
P
n
eu
m
a
tic
a
ctu
a
to
r
P
o
s
itio
n
in
g
c
o
n
tr
o
l
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
M
.
F
.
R
ah
m
at,
Dep
ar
t
m
en
t o
f
C
o
n
tr
o
l a
n
d
Me
ch
atr
o
n
ics E
n
g
in
ee
r
i
n
g
,
Facu
lt
y
o
f
E
lectr
ical
E
n
g
in
ee
r
in
g
,
Un
i
v
er
s
iti T
ek
n
o
lo
g
i M
ala
y
s
ia
.
E
m
ail:
f
u
aa
d
@
f
k
e.
u
t
m
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
A
p
n
eu
m
at
ic
ac
t
u
ato
r
s
y
s
te
m
i
s
a
m
ec
h
a
n
ical
s
y
s
te
m
t
h
at
is
o
f
ten
u
s
ed
in
in
d
u
s
tr
ie
s
t
h
at
ar
e
in
v
o
lv
ed
w
it
h
o
b
j
ec
t
tr
an
s
p
o
r
tatio
n
an
d
m
o
tio
n
co
n
tr
o
l
ap
p
licatio
n
s
.
Ho
w
e
v
er
,
n
o
n
li
n
ea
r
it
y
a
n
d
u
n
ce
r
tain
t
y
i
s
s
u
es
i
n
th
e
s
y
s
te
m
m
a
k
e
t
h
e
u
s
a
g
e
o
f
th
i
s
ac
tu
a
to
r
s
y
s
te
m
li
m
ited
t
o
ce
r
tain
ap
p
licatio
n
s
.
T
h
ese
i
s
s
u
es
h
av
e
ca
u
s
ed
th
e
p
n
e
u
m
atic
ac
t
u
ato
r
s
y
s
te
m
to
f
ail
to
co
n
tr
o
l
its
p
o
s
it
io
n
in
g
s
y
s
te
m
,
i
n
o
r
d
er
to
g
et
g
o
o
d
ac
cu
r
ac
y
.
Ma
n
y
s
tu
d
ie
s
h
av
e
b
ee
n
d
o
n
e
to
t
ac
k
le
t
h
ese
is
s
u
es
a
n
d
h
av
e
co
n
tr
ib
u
ted
to
w
ar
d
s
th
e
cr
e
ati
o
n
o
f
i
n
telli
g
e
n
t
ac
tu
ato
r
s
i
n
1
9
9
2
[
1
]
.
T
h
e
p
n
e
u
m
a
tic
ac
t
u
ato
r
s
y
s
te
m
u
s
ed
i
n
t
h
is
s
t
u
d
y
is
o
f
t
h
i
s
t
y
p
e
;
n
am
el
y
t
h
e
i
n
telli
g
e
n
t
p
n
eu
m
atic
ac
t
u
ato
r
(
I
P
A
)
s
y
s
t
e
m
.
T
h
is
ac
tu
ato
r
in
te
g
r
ates
a
ctu
ato
r
,
m
icr
o
p
r
o
ce
s
s
o
r
an
d
s
en
s
o
r
s
to
g
et
h
er
in
a
s
y
s
te
m
[
2
]
,
[
3
]
.
A
lth
o
u
g
h
t
h
e
I
P
A
is
m
o
r
e
s
o
p
h
is
tica
ted
th
an
an
y
o
th
er
co
n
v
e
n
tio
n
al
p
n
eu
m
atic
ac
tu
a
to
r
s
y
s
te
m
,
t
h
e
co
m
p
lex
it
y
o
f
t
h
e
s
y
s
te
m
h
as
led
to
th
e
c
o
n
tr
o
l
p
r
o
ce
s
s
o
f
th
e
s
y
s
te
m
b
ec
o
m
in
g
m
o
r
e
co
m
p
lica
ted
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
3
3
–
1
6
4
2
1634
L
i
k
e
o
t
h
er
p
n
e
u
m
atic
s
y
s
te
m
s
,
co
n
tr
o
lli
n
g
th
e
I
P
A
is
n
o
t
ea
s
y
,
s
i
n
ce
it
h
a
s
s
ev
er
al
n
o
n
li
n
ea
r
ch
ar
ac
ter
is
tic
s
to
b
e
co
n
s
id
er
ed
,
s
u
c
h
as
v
al
v
e
d
ea
d
zo
n
e,
ai
r
co
m
p
r
es
s
ib
ilit
y
,
air
lea
k
a
g
e,
an
d
f
r
icti
o
n
in
th
e
s
y
s
te
m
’
s
p
ar
a
m
eter
s
[
4
]
,
[
5
]
.
T
h
e
I
P
A
p
o
s
itio
n
in
g
s
y
s
te
m
w
a
s
f
ir
s
t
co
n
tr
o
lled
in
2
0
1
0
u
s
in
g
a
p
r
o
p
o
r
tio
n
al
-
in
te
g
r
al
(
P
I
)
co
n
tr
o
ller
[
2
]
,
[
3
]
,
[
6
]
.
T
w
o
y
ea
r
s
later
,
a
p
o
le
-
p
l
ac
e
m
en
t
f
ee
d
b
ac
k
co
n
tr
o
ller
w
a
s
d
esig
n
ed
f
o
r
th
e
s
a
m
e
p
u
r
p
o
s
e,
an
d
th
e
p
er
f
o
r
m
an
ce
w
a
s
co
m
p
ar
ed
w
it
h
p
r
ev
io
u
s
l
y
d
e
v
elo
p
ed
P
I
co
n
tr
o
l
ler
s
[
7
]
.
Sim
u
latio
n
r
esu
lt
s
s
h
o
w
ed
t
h
at
th
e
latter
c
o
n
tr
o
ller
s
tr
ate
g
y
g
a
v
e
a
m
o
r
e
s
tab
le
co
n
tr
o
l p
er
f
o
r
m
a
n
ce
th
an
t
h
e
P
I
co
n
tr
o
ller
in
tr
ac
k
i
n
g
th
e
d
esire
d
s
et
-
p
o
in
t.
I
n
2
0
1
3
,
[
8
]
p
r
o
p
o
s
ed
a
PI
co
n
tr
o
ller
an
d
b
an
g
-
b
a
n
g
co
n
tr
o
ller
in
o
r
d
er
to
ac
ce
s
s
t
h
e
p
o
s
it
io
n
co
n
tr
o
l
p
er
f
o
r
m
an
ce
o
f
I
P
A
s
y
s
te
m
i
n
r
ea
l
-
ti
m
e
e
n
v
ir
o
n
m
en
t.
T
h
e
ap
p
licatio
n
o
f
o
p
tical
s
en
s
o
r
an
d
p
r
ess
u
r
e
s
en
s
o
r
to
d
ev
elo
p
a
r
ea
l
-
ti
m
e
m
o
d
el
s
i
m
ilar
to
th
e
ex
i
s
ti
n
g
I
P
A
s
y
s
te
m
w
a
s
th
e
m
a
i
n
co
n
ce
r
n
i
n
t
h
is
w
o
r
k
.
E
x
p
er
i
m
en
tal
r
es
u
lt
s
s
h
o
w
ed
th
at
b
o
th
s
e
n
s
o
r
s
w
er
e
ca
p
ab
le
ap
p
lied
as
a
f
ee
d
b
ac
k
s
en
s
o
r
s
in
r
ea
l
-
t
i
m
e
s
y
s
te
m
a
n
d
th
e
d
ev
elo
p
ed
m
o
d
el
ca
n
also
b
e
u
s
ed
to
d
ev
elo
p
a
s
y
s
te
m
id
e
n
ti
f
icatio
n
m
o
d
el.
D
u
r
i
n
g
t
h
e
las
t
f
o
u
r
y
ea
r
s
,
r
esear
c
h
er
s
h
a
v
e
s
h
o
w
n
a
g
r
ea
t
in
ter
e
s
t
in
u
s
in
g
a
p
r
ed
ictiv
e
co
n
tr
o
ller
to
co
n
tr
o
l
th
e
I
P
A
p
o
s
itio
n
i
n
g
s
y
s
te
m
[
9
]
–
[
1
3
]
.
Gen
er
alize
d
p
r
ed
ictiv
e
co
n
tr
o
l
(
GP
C
)
an
d
p
r
ed
ictiv
e
f
u
n
ctio
n
al
co
n
tr
o
l (
P
FC
)
ar
e
t
y
p
es o
f
co
n
tr
o
ller
th
at
ar
e
o
f
te
n
u
s
ed
f
o
r
t
h
is
s
y
s
te
m
.
St
u
d
ies
u
s
in
g
b
o
th
t
y
p
es
o
f
co
n
tr
o
ller
f
o
u
n
d
th
at
t
h
e
p
r
ed
ictiv
e
co
n
tr
o
ller
is
s
u
itab
le
f
o
r
p
r
o
v
id
in
g
ac
cu
r
ate
co
n
tr
o
l o
f
th
e
I
P
A
p
o
s
itio
n
i
n
g
s
y
s
te
m
; i
n
b
o
th
s
i
m
u
lat
io
n
an
d
r
ea
l
-
ti
m
e
en
v
ir
o
n
m
e
n
t
s
.
B
ased
o
n
th
is
f
ac
t,
t
h
is
s
tu
d
y
p
r
o
p
o
s
es a
m
o
d
el
p
r
ed
ictiv
e
co
n
tr
o
l (
MP
C
)
as a
n
e
w
co
n
tr
o
l
s
tr
ateg
y
to
co
n
tr
o
l
th
e
I
P
A
p
o
s
iti
o
n
i
n
g
s
y
s
te
m
.
MP
C
w
a
s
co
n
s
id
er
ed
in
t
h
is
s
t
u
d
y
s
in
ce
it
h
as
t
h
e
a
b
ilit
y
to
p
r
ed
ict
th
e
f
u
tu
r
e
p
o
s
itio
n
o
f
th
e
p
n
e
u
m
atic
ac
tu
ato
r
c
y
li
n
d
er
s
tr
o
k
e;
th
u
s
g
u
ar
an
tee
in
g
th
e
ac
c
u
r
ate
tr
ac
k
in
g
o
f
t
h
e
s
y
s
te
m
;
esp
ec
iall
y
w
h
e
n
i
m
p
le
m
e
n
ti
n
g
w
it
h
in
a
r
ea
l
-
ti
m
e
en
v
ir
o
n
m
e
n
t
[
1
4
]
,
[
1
5
]
.
Fu
r
th
er
m
o
r
e,
o
n
e
o
f
t
h
e
ad
v
an
ta
g
es
o
f
u
s
in
g
MP
C
a
s
a
co
n
tr
o
l
s
tr
ate
g
y
i
s
th
a
t
MP
C
ca
n
co
n
s
id
er
i
n
p
u
t
a
n
d
o
u
tp
u
t
co
n
s
tr
ai
n
t
s
p
r
esen
ted
in
th
e
p
ar
ticu
lar
s
y
s
te
m
[
1
6
]
–
[
2
0
]
.
T
h
e
u
s
e
o
f
c
o
n
s
tr
ain
ed
MP
C
to
co
n
tr
o
l
th
e
I
P
A
p
o
s
itio
n
in
g
s
y
s
te
m
w
a
s
p
u
b
lis
h
ed
in
2
0
1
5
[
2
1
]
.
I
n
th
is
w
o
r
k
,
th
e
i
n
p
u
t
c
o
n
s
tr
ain
t
w
a
s
ap
p
lied
to
th
e
o
n
/o
f
f
v
al
v
e
s
i
g
n
a
ls
.
Si
m
u
latio
n
r
es
u
lts
s
h
o
w
ed
th
a
t
th
e
co
n
s
tr
ai
n
ed
MP
C
w
as
m
o
r
e
ef
f
ec
ti
v
e
i
n
g
iv
in
g
a
b
etter
tr
an
s
ie
n
t
r
esp
o
n
s
e
th
an
t
h
e
u
n
co
n
s
tr
ain
ed
MP
C
.
T
h
ese
f
in
d
in
g
s
p
r
o
v
e
th
at
g
i
v
in
g
co
n
s
tr
ain
t
s
to
th
e
co
n
tr
o
ller
’
s
al
g
o
r
ith
m
ca
n
en
h
a
n
ce
t
h
e
tr
ac
k
i
n
g
ac
c
u
r
a
c
y
o
f
th
e
I
P
A
p
o
s
itio
n
i
n
g
s
y
s
te
m
.
Ho
w
ev
er
,
t
h
e
s
t
u
d
y
w
a
s
o
n
l
y
d
o
n
e
i
n
s
i
m
u
lat
io
n
a
n
d
th
e
p
er
f
o
r
m
an
ce
o
f
th
e
co
n
tr
o
ller
in
a
r
ea
l
-
t
i
m
e
e
n
v
ir
o
n
m
e
n
t
is
s
till
u
n
co
n
f
ir
m
ed
.
T
h
is
s
tu
d
y
w
a
s
th
er
e
f
o
r
e
u
n
d
er
ta
k
en
to
v
er
if
y
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
p
r
o
p
o
s
ed
s
tr
ateg
y
in
a
r
ea
l
-
ti
m
e
en
v
ir
o
n
m
e
n
t.
An
o
b
s
er
v
er
is
n
ec
e
s
s
ar
il
y
u
s
ed
i
n
t
h
is
ca
s
e
to
esti
m
ate
t
h
e
r
ea
l
I
P
A
s
y
s
te
m
’
s
s
tates
;
s
o
t
h
at
th
e
MP
C
ca
n
ta
k
e
co
n
tr
o
l
ac
tio
n
ac
co
r
d
in
g
l
y
.
An
o
v
er
s
h
o
o
t
in
th
e
s
y
s
te
m
’
s
r
es
p
o
n
s
e
is
ex
p
ec
ted
to
b
e
h
i
g
h
,
w
h
e
n
t
h
e
co
n
tr
o
ller
is
i
m
p
le
m
e
n
ted
in
a
r
ea
l
-
ti
m
e
en
v
ir
o
n
m
e
n
t
th
a
t
n
o
r
m
al
l
y
co
n
tain
s
n
o
n
l
in
ea
r
itie
s
an
d
u
n
ce
r
tai
n
tie
s
in
t
h
e
s
y
s
te
m
’
s
p
ar
a
m
eter
s
.
C
o
n
s
eq
u
en
t
l
y
,
t
h
is
p
ap
er
p
r
o
p
o
s
es
n
e
w
co
n
tr
o
l
tec
h
n
iq
u
es
u
s
i
n
g
a
co
n
s
tr
ain
ed
MP
C
w
it
h
a
n
o
b
s
er
v
er
s
y
s
te
m
to
en
h
an
ce
t
h
e
I
P
A
p
o
s
itio
n
in
g
s
y
s
t
e
m
’
s
p
er
f
o
r
m
a
n
ce
in
a
r
ea
l
-
ti
m
e
ex
p
er
i
m
en
t.
T
h
e
m
aj
o
r
co
n
ce
r
n
o
f
th
is
p
ap
er
is
to
eli
m
in
ate
(
o
r
r
ed
u
ce
)
o
v
er
s
h
o
o
t
in
t
h
e
s
y
s
te
m
’
s
r
esp
o
n
s
e,
to
en
s
u
r
e
th
a
t
ac
cu
r
ate
an
d
p
r
ec
is
e
p
o
s
i
tio
n
i
n
g
co
n
tr
o
l
o
f
th
e
I
P
A
s
y
s
te
m
ca
n
b
e
ac
h
iev
ed
.
I
n
th
is
s
tu
d
y
,
g
i
v
in
g
co
n
s
tr
ai
n
ts
to
o
n
/o
f
f
v
al
v
es
s
ig
n
al
s
is
v
er
y
i
m
p
o
r
tan
t
as
t
h
ese
s
ig
n
als
wer
e
m
a
in
l
y
u
s
ed
to
co
n
tr
o
l
th
e
in
let
a
n
d
o
u
tlet
air
o
f
th
e
c
y
li
n
d
er
,
in
o
r
d
er
to
p
er
f
o
r
m
th
e
e
x
te
n
s
io
n
an
d
r
etr
ac
tio
n
o
f
t
h
e
c
y
l
in
d
er
s
tr
o
k
e.
I
n
o
th
er
w
o
r
d
s
,
p
o
s
itio
n
in
g
p
er
f
o
r
m
a
n
ce
o
f
I
P
A
s
y
s
te
m
also
d
ep
en
d
h
ig
h
l
y
o
n
th
e
s
ig
n
al
to
t
h
e
o
n
/o
f
f
v
al
v
es.
Si
m
u
latio
n
an
d
r
ea
l
-
ti
m
e
e
x
p
er
i
m
e
n
ts
w
er
e
c
ar
r
ied
o
u
t
to
v
er
i
f
y
t
h
e
e
f
f
ec
tiv
e
n
ess
o
f
th
e
s
tr
ate
g
y
.
B
ec
au
s
e
th
e
MP
C
i
s
a
m
o
d
el
-
b
ased
t
y
p
e
co
n
tr
o
ller
,
w
h
ic
h
is
e
x
p
licitl
y
b
ased
o
n
th
e
p
lan
t
m
o
d
el
it
s
el
f
to
p
r
ed
ict
th
e
f
u
t
u
r
e
p
lan
t
b
eh
av
io
u
r
,
t
h
i
s
s
t
u
d
y
u
s
ed
a
s
y
s
te
m
id
e
n
ti
f
icatio
n
tec
h
n
iq
u
e,
b
ased
o
n
au
to
r
eg
r
es
s
i
v
e
w
i
th
e
x
o
g
e
n
o
u
s
in
p
u
t
(
AR
X)
m
o
d
el
s
tr
u
c
tu
r
e,
to
m
o
d
el
th
e
I
P
A
s
y
s
te
m
.
T
h
e
r
est
o
f
th
e
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
.
T
h
e
p
r
o
ce
s
s
o
f
co
l
lectin
g
t
h
e
in
p
u
t
an
d
o
u
tp
u
t
d
ata
th
r
o
u
g
h
e
x
p
er
i
m
e
n
t
a
n
d
m
o
d
ellin
g
th
e
s
y
s
te
m
u
s
i
n
g
a
s
y
s
te
m
id
e
n
ti
f
icatio
n
tech
n
iq
u
e
ar
e
d
escr
ib
ed
in
Sectio
n
2
.
T
h
e
p
r
o
ce
d
u
r
es
in
d
esig
n
in
g
a
co
n
tr
o
ller
to
p
er
f
o
r
m
t
h
e
co
n
tr
o
l
ta
s
k
ar
e
also
ex
p
lain
ed
i
n
Sectio
n
2
.
T
h
e
s
i
m
u
la
tio
n
an
d
ex
p
er
i
m
en
tal
r
esu
lt
s
u
s
in
g
th
e
p
r
o
p
o
s
ed
s
tr
ateg
y
ar
e
d
is
cu
s
s
ed
in
Sectio
n
3
,
an
d
th
e
o
v
er
all
f
i
n
d
in
g
s
o
f
th
e
s
tu
d
y
a
r
e
co
n
clu
d
ed
in
Sectio
n
4
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
2
.
1
.
E
x
peri
m
e
nta
l desig
n a
nd
s
y
s
t
e
m
m
o
de
lin
g
Fig
u
r
e
1
s
h
o
w
s
a
p
h
y
s
ical
v
ie
w
o
f
th
e
i
n
tell
ig
e
n
t
p
n
e
u
m
atic
ac
tu
ato
r
(
I
P
A
)
s
y
s
te
m
u
s
ed
in
th
i
s
r
esear
ch
.
Fiv
e
m
aj
o
r
co
m
p
o
n
en
ts
p
la
y
m
aj
o
r
r
o
les
in
en
s
u
r
in
g
t
h
at
th
e
I
P
A
s
y
s
te
m
w
o
r
k
s
w
ell;
t
h
e
o
p
tical
s
en
s
o
r
,
laser
s
tr
ip
e
r
o
d
,
p
r
ess
u
r
e
s
en
s
o
r
,
o
n
/o
f
f
v
al
v
es,
a
n
d
th
e
p
r
o
g
r
a
m
m
ab
le
s
y
s
te
m
o
n
c
h
ip
(
P
So
C
)
co
n
tr
o
l
b
o
ar
d
.
E
ac
h
o
f
th
ese
co
m
p
o
n
e
n
ts
h
as
th
e
ir
o
w
n
r
o
le,
an
d
i
s
i
n
ter
co
n
n
ec
ted
w
it
h
ea
ch
o
th
er
.
T
h
e
s
y
s
te
m
u
s
ed
in
t
h
i
s
s
tu
d
y
i
s
ca
lled
“
i
n
tel
li
g
en
t”
b
ec
au
s
e
it
i
n
v
o
l
v
es
a
m
icr
o
co
n
tr
o
ller
b
o
ar
d
(
P
So
C
b
o
ar
d
)
th
at
s
er
v
e
s
a
s
th
e
b
r
ain
to
co
n
tr
o
l
th
e
en
t
ir
e
s
y
s
te
m
o
p
er
atio
n
.
Mo
u
n
ted
o
n
th
e
c
y
l
in
d
er
b
o
d
y
,
th
e
P
So
C
b
o
ar
d
is
also
co
n
s
id
er
ed
a
m
aj
o
r
p
lay
er
;
p
ar
ticu
lar
l
y
w
h
e
n
i
n
v
o
l
v
i
n
g
e
m
b
ed
d
ed
o
p
er
atio
n
s
w
it
h
i
n
t
h
e
s
y
s
te
m
.
I
n
th
i
s
s
t
u
d
y
,
th
e
ef
f
ec
ti
v
en
e
s
s
o
f
t
h
e
p
r
o
p
o
s
ed
co
n
tr
o
ller
,
f
o
r
co
n
tr
o
llin
g
th
e
p
o
s
itio
n
o
f
t
h
e
c
y
li
n
d
er
s
tr
o
k
e
f
o
r
th
e
I
P
A
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
E
n
h
a
n
ce
d
P
o
s
itio
n
C
o
n
tr
o
l fo
r
P
n
eu
ma
tic
S
ystem
b
y
A
p
p
lyin
g
C
o
n
s
tr
a
in
ts
in
.
.
.
.
(
S
iti F
a
ti
ma
h
S
u
la
ima
n
)
1635
s
y
s
te
m
,
w
il
l
b
e
p
r
esen
ted
an
d
d
is
cu
s
s
ed
.
T
o
p
er
f
o
r
m
th
is
t
ask
,
an
o
p
tical
s
en
s
o
r
w
ill
b
e
u
s
ed
.
T
h
is
s
en
s
o
r
,
w
h
ic
h
w
a
s
m
o
u
n
ted
o
n
to
p
o
f
th
e
c
y
li
n
d
er
,
w
ill
b
e
u
s
ed
to
d
etec
t
th
e
p
o
s
it
io
n
o
f
t
h
e
c
y
li
n
d
er
s
tr
o
k
e
b
ased
o
n
th
e
p
o
s
itio
n
r
ea
d
in
g
g
i
v
en
b
y
t
h
e
laser
s
tr
ip
e
r
o
d
.
T
h
e
s
ig
n
al
w
i
ll
th
e
n
b
e
s
en
t
to
th
e
P
So
C
b
o
a
r
d
t
o
b
e
p
r
o
ce
s
s
ed
b
y
t
h
e
u
s
er
.
Oth
er
co
m
p
o
n
e
n
t
s
,
s
u
ch
a
s
th
e
p
r
ess
u
r
e
s
en
s
o
r
an
d
th
e
o
n
/o
f
f
v
alv
e
s
,
also
p
la
y
i
m
p
o
r
tan
t
r
o
les
i
n
co
n
tr
o
lli
n
g
th
e
s
y
s
te
m
.
T
h
e
s
e
t
w
o
co
m
p
o
n
en
t
s
w
er
e
m
ai
n
l
y
u
s
ed
to
co
n
tr
o
l
th
e
i
n
let
a
n
d
o
u
tlet
air
o
f
t
h
e
c
y
li
n
d
er
,
in
o
r
d
er
to
p
er
f
o
r
m
th
e
ex
te
n
s
io
n
a
n
d
r
etr
ac
tio
n
o
f
th
e
c
y
li
n
d
er
s
tr
o
k
e.
T
h
e
m
o
v
e
m
e
n
t
o
f
th
e
I
P
A
s
y
s
te
m
c
y
li
n
d
er
s
tr
o
k
e
is
b
ased
o
n
th
e
o
p
er
atio
n
s
o
f
th
e
o
n
/o
f
f
v
a
lv
es
i.e
.
,
th
e
s
tr
o
k
e
is
ex
ten
d
ed
w
h
e
n
t
h
e
o
n
v
a
lv
e
i
s
ac
tiv
ated
an
d
r
etr
ac
ted
w
h
en
t
h
e
o
f
f
v
al
v
e
is
ac
t
iv
ated
.
Fig
u
r
e
1
.
A
p
h
y
s
ica
l v
ie
w
o
f
t
h
e
I
P
A
s
y
s
te
m
B
ef
o
r
e
th
e
ta
s
k
,
s
u
c
h
a
s
d
esi
g
n
in
g
a
co
n
tr
o
ller
,
m
o
n
ito
r
in
g
,
p
r
ed
ictin
g
,
etc.
,
ca
n
b
e
i
m
p
le
m
en
ted
in
th
e
s
y
s
te
m
,
it
is
v
er
y
i
m
p
o
r
tan
t
to
k
n
o
w
ab
o
u
t
t
h
e
d
y
n
a
m
ics
an
d
b
eh
av
io
u
r
o
f
t
h
e
s
y
s
te
m
u
n
d
er
co
n
tr
o
l.
T
h
is
p
r
o
ce
s
s
is
k
n
o
w
n
a
s
“s
y
s
te
m
m
o
d
eli
n
g
”.
An
e
x
p
er
i
m
e
n
tal
a
p
p
r
o
ac
h
,
k
n
o
w
n
as
“
s
y
s
te
m
id
en
ti
f
icatio
n
”,
is
o
n
e
o
f
th
e
m
et
h
o
d
s
th
at
ca
n
b
e
u
s
ed
f
o
r
th
i
s
p
u
r
p
o
s
e.
T
h
e
co
n
ce
p
t
o
f
s
y
s
te
m
id
e
n
ti
f
icatio
n
co
n
tr
ast
s
w
it
h
an
o
t
h
er
m
et
h
o
d
(
th
eo
r
etica
l
ap
p
r
o
ac
h
)
,
b
ec
au
s
e
it
is
b
ased
o
n
th
e
an
al
y
s
is
o
f
o
b
s
er
v
at
io
n
s
(
ex
p
er
i
m
en
t)
,
n
o
t
f
u
n
d
a
m
en
ta
l
la
w
s
o
f
n
atu
r
e.
T
h
e
m
at
h
e
m
a
tical
r
ep
r
esen
tat
io
n
o
f
th
e
I
P
A
s
y
s
te
m
h
as
a
l
i
m
itat
io
n
to
d
er
i
v
e,
b
ec
au
s
e
t
h
e
s
y
s
te
m
h
as
s
e
v
er
al
u
n
k
n
o
w
n
p
ar
a
m
eter
s
t
h
at
n
e
ed
to
b
e
co
n
s
id
er
ed
.
As
a
n
al
t
er
n
ativ
e,
th
e
s
y
s
te
m
id
en
ti
f
icatio
n
m
e
th
o
d
w
as
ch
o
s
en
to
m
o
d
el
t
h
e
s
y
s
te
m
u
s
ed
in
t
h
is
s
t
u
d
y
.
T
h
i
s
m
eth
o
d
i
s
a
ls
o
v
er
y
s
u
itab
le
i
n
th
e
co
m
p
le
x
s
y
s
t
e
m
o
r
p
r
o
ce
s
s
;
esp
ec
iall
y
i
n
a
p
r
ac
tical
en
v
ir
o
n
m
e
n
t
[
2
2
]
.
Fig
u
r
e
2
ill
u
s
tr
ate
s
th
e
p
r
o
ce
s
s
u
s
ed
to
o
b
tain
th
e
in
p
u
t
a
n
d
o
u
tp
u
t
d
ata
b
ased
o
n
an
ex
p
er
im
e
n
tal
ap
p
r
o
ac
h
.
T
h
e
in
p
u
t
an
d
o
u
tp
u
t
d
ata
co
n
tain
s
1
5
0
0
d
ata
p
o
in
ts
o
f
c
o
n
tin
u
o
u
s
s
tep
i
n
p
u
t
s
i
g
n
als
a
p
p
lied
to
th
e
v
al
v
es
(
1
)
an
d
1
5
0
0
d
ata
p
o
in
ts
o
f
th
e
p
o
s
i
tio
n
s
i
g
n
al
(
1
)
s
a
m
p
lin
g
ev
er
y
0
.
0
1
s
.
Fig
u
r
e
3
s
h
o
ws
th
e
p
lo
t
o
f
in
p
u
t
an
d
o
u
tp
u
t
d
ata
f
r
o
m
t
h
e
r
ea
l
-
ti
m
e
ex
p
er
i
m
e
n
t.
Fo
r
m
o
d
elin
g
u
s
in
g
t
h
e
s
y
s
te
m
id
en
ti
f
icatio
n
m
et
h
o
d
,
th
e
f
ir
s
t
7
5
0
s
am
p
le
s
w
er
e
s
elec
ted
f
o
r
tr
ain
i
n
g
w
h
ile
t
h
e
last
7
5
0
w
er
e
u
s
ed
f
o
r
v
alid
ati
o
n
p
u
r
p
o
s
es.
Fig
u
r
e
2
.
P
r
o
ce
s
s
o
f
co
llectin
g
in
p
u
t a
n
d
o
u
tp
u
t
d
ata
Fig
u
r
e
3
.
T
h
e
p
lo
t
o
f
in
p
u
t a
n
d
o
u
tp
u
t d
ata
0
5
10
15
0
50
100
130
y1
I
n
p
u
t
a
n
d
o
u
t
p
u
t
s
i
g
n
a
l
s
0
5
10
15
-
2
5
5
-
2
0
0
-
1
0
0
0
100
200
255
T
i
m
e
(
s
e
c
o
n
d
)
u1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
3
3
–
1
6
4
2
1636
I
n
s
y
s
te
m
id
en
ti
f
icatio
n
,
th
e
r
e
ar
e
s
ev
er
al
p
ar
am
etr
ic
m
o
d
el
s
tr
u
ctu
r
es
t
h
at
ca
n
b
e
u
tili
ze
d
to
r
ep
r
esen
t
th
e
s
y
s
te
m
,
s
u
ch
as
au
to
-
r
e
g
r
ess
i
v
e
w
it
h
ex
o
g
en
o
u
s
i
n
p
u
t
(
A
R
X)
,
au
to
-
r
eg
r
e
s
s
i
v
e
m
o
v
in
g
av
er
a
g
e
w
it
h
e
x
o
g
e
n
o
u
s
i
n
p
u
t
(
AR
M
AX)
,
o
u
tp
u
t
er
r
o
r
(
OE
)
,
an
d
b
o
x
J
en
k
in
s
(
B
J
)
[
2
3
]
.
I
n
th
is
s
t
u
d
y
,
o
n
l
y
A
R
X
w
ill
b
e
co
n
s
id
er
ed
as
a
m
o
d
el
s
tr
u
ctu
r
e
to
r
ep
r
esen
t
t
h
e
m
at
h
e
m
atica
l
m
o
d
el
o
f
I
P
A
s
y
s
te
m
.
T
h
e
i
n
p
u
t
an
d
o
u
tp
u
t
d
ata
th
at
w
a
s
co
llected
d
u
r
in
g
th
e
r
ea
l
-
t
i
m
e
e
x
p
er
i
m
e
n
t
will
b
e
u
s
ed
f
o
r
th
is
p
u
r
p
o
s
e.
E
q
u
a
tio
n
(
1
)
is
th
e
id
en
ti
f
ied
d
is
cr
ete
AR
X
tr
an
s
f
er
f
u
n
ct
io
n
,
w
h
i
le
E
q
u
atio
n
(
2
)
is
th
e
d
is
cr
ete
s
tate
-
s
p
ac
e
I
P
A
s
y
s
te
m
m
o
d
el
u
s
ed
in
t
h
i
s
s
t
u
d
y
.
(
−
1
)
(
−
1
)
=
0
.
0016
−
1
1
−
1
.
869
0
−
1
+
0
.
997
6
−
2
−
0
.
1284
−
3
(
1
)
=
[
0
1
0
0
0
1
0
.
1284
−
0
.
9976
1
.
8690
]
,
=
[
0
0
1
]
,
=
[
0
.
0016
0
0
]
,
=
[
0
]
.
(
2
)
T
h
e
p
lan
t
m
o
d
el
id
en
ti
f
ied
u
s
in
g
th
e
AR
X
m
o
d
el
s
tr
u
ctu
r
e,
s
u
f
f
icie
n
tl
y
r
ep
r
esen
ts
t
h
e
I
P
A
s
y
s
te
m
;
s
in
ce
it
g
i
v
es
a
9
1
.
0
9
%
f
it
with
th
e
ac
t
u
al
p
la
n
t
a
n
d
a
lo
wer
er
r
o
r
v
alu
e.
Acc
ep
tan
ce
o
f
th
i
s
m
o
d
el
i
s
al
s
o
co
n
f
ir
m
ed
,
as th
e
m
o
d
el
is
als
o
s
tab
le.
2
.
2
.
Co
ntr
o
ller
des
ig
n
A
m
o
d
el
p
r
ed
ictiv
e
co
n
tr
o
l
(
MP
C
)
is
th
e
t
y
p
e
o
f
co
n
tr
o
ll
er
th
at
w
ill
b
e
u
s
ed
to
co
n
tr
o
l
th
e
I
P
A
p
o
s
itio
n
in
g
s
y
s
te
m
co
n
s
id
er
ed
in
th
is
s
tu
d
y
.
MP
C
is
a
m
o
d
e
l
-
b
ased
co
n
tr
o
ller
th
at
p
r
ed
icts
th
e
f
u
t
u
r
e
o
u
tp
u
t
s
an
d
tak
e
s
co
n
tr
o
l
ac
tio
n
ac
c
o
r
d
in
g
l
y
b
y
s
o
lv
in
g
t
h
e
o
p
ti
m
al
f
u
t
u
r
e
co
n
tr
o
l
ac
tio
n
s
(
co
s
t
f
u
n
ctio
n
an
d
co
n
s
tr
ain
t)
.
I
n
th
i
s
s
t
u
d
y
,
MP
C
w
il
l
b
e
u
s
ed
to
d
eter
m
i
n
e
t
h
e
f
u
t
u
r
e
ad
j
u
s
t
m
en
ts
o
f
t
h
e
s
i
g
n
al
to
th
e
v
al
v
e
s
to
en
s
u
r
e
t
h
at
t
h
e
s
tr
o
k
e
o
f
t
h
e
c
y
li
n
d
er
is
at
t
h
e
as
s
i
g
n
ed
p
o
s
itio
n
s
.
E
q
u
atio
n
s
(
3
)
a
n
d
(
4
)
d
escr
ib
e
th
e
co
s
t
f
u
n
ctio
n
an
d
o
p
ti
m
al
co
n
tr
o
l s
ig
n
a
l o
f
t
h
e
MP
C
alg
o
r
ith
m
.
=
(
−
(
)
)
(
−
(
)
)
+
∆
(
)
̅
∆
(
)
(
3
)
W
h
er
e
=
[
1
1
⋯
1
]
⏞
(
)
;
(
)
=
(
)
+
Φ
∆
(
)
;
=
[
2
3
⋮
]
;
Φ
=
[
2
⋮
−
1
0
⋮
−
2
0
0
⋮
−
3
⋯
⋯
⋯
⋯
0
0
0
0
−
]
∆
(
)
=
(
Φ
Φ
+
̅
)
−
1
(
−
(
)
)
(
4
)
T
h
e
o
p
tim
al
co
n
tr
o
l si
g
n
al
in
E
q
u
atio
n
(
4
)
ca
n
also
b
e
r
ep
r
e
s
en
ted
as i
n
E
q
u
atio
n
(
5
)
.
∆
(
)
=
(
)
−
(
−
1
)
(
5
)
w
h
er
e
is
t
h
e
co
s
t
f
u
n
ctio
n
,
th
e
s
et
-
p
o
i
n
t,
th
e
p
r
ed
icted
o
u
tp
u
t,
∆
is
th
e
o
p
ti
m
al
co
n
tr
o
l
s
i
g
n
a
l,
̅
is
th
e
d
iag
o
n
al
m
atr
i
x
(
=
×
(
≥
0
)
)
,
(
)
is
t
h
e
s
tat
e
v
ar
iab
le
at
ti
m
e
,
(
)
is
t
h
e
s
et
-
p
o
in
t
s
i
g
n
al
at
t
i
m
e
,
is
th
e
p
r
ed
ictio
n
h
o
r
izo
n
,
an
d
is
th
e
co
n
tr
o
l
h
o
r
izo
n
.
I
n
th
is
s
tu
d
y
,
th
e
v
al
u
e
o
f
u
s
e
d
is
2
0
,
w
h
ile
th
e
v
alu
e
o
f
is
3
.
On
e
o
f
t
h
e
ad
v
a
n
ta
g
es
o
f
u
s
in
g
MP
C
i
s
t
h
at
it
h
as
th
e
p
o
s
s
i
b
ilit
y
to
ea
s
il
y
ac
co
u
n
t
f
o
r
co
n
s
tr
ain
t
s
.
I
n
th
is
s
t
u
d
y
,
t
w
o
ca
s
es
o
f
co
n
tr
o
l
s
ig
n
al
ar
e
in
v
es
tig
ated
.
Fo
r
th
e
u
n
co
n
s
tr
ai
n
ed
ca
s
e,
n
o
l
i
m
itat
io
n
h
as
b
ee
n
g
iv
e
n
to
th
e
s
ig
n
al
t
h
at
ca
m
e
o
u
t
o
f
th
e
co
n
tr
o
ller
.
Me
an
wh
ile,
f
o
r
th
e
co
n
s
tr
ai
n
ed
ca
s
e,
th
e
s
i
g
n
al
w
i
ll
b
e
co
n
s
tr
ain
ed
/l
i
m
ited
b
et
w
ee
n
th
e
m
a
x
i
m
u
m
a
llo
w
ab
le
v
alu
e
s
(
±
2
5
5
o
r
±
5
V)
.
T
h
is
is
b
ec
a
u
s
e
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
E
n
h
a
n
ce
d
P
o
s
itio
n
C
o
n
tr
o
l fo
r
P
n
eu
ma
tic
S
ystem
b
y
A
p
p
lyin
g
C
o
n
s
tr
a
in
ts
in
.
.
.
.
(
S
iti F
a
ti
ma
h
S
u
la
ima
n
)
1637
u
n
co
n
s
tr
ai
n
ed
s
i
g
n
a
l
to
th
e
v
a
lv
es
n
o
r
m
al
l
y
co
n
tr
ib
u
te
s
to
t
h
e
lar
g
er
v
al
u
e
o
f
o
v
er
s
h
o
o
t
a
n
d
lo
w
e
r
ac
c
u
r
ac
y
;
esp
ec
iall
y
w
h
e
n
i
m
p
le
m
e
n
ted
in
r
ea
l
-
t
i
m
e
e
n
v
ir
o
n
m
en
t.
I
n
th
is
s
t
u
d
y
,
a
n
o
b
s
er
v
er
s
y
s
t
e
m
is
r
eq
u
ir
ed
f
o
r
u
s
e
in
th
e
MP
C
alg
o
r
ith
m
,
i
n
o
r
d
er
to
es
ti
m
ate
t
h
e
in
ter
n
a
l
s
ta
tes
o
f
t
h
e
I
P
A
s
y
s
te
m
;
esp
ec
iall
y
in
th
e
r
ea
l
-
t
i
m
e
e
n
v
ir
o
n
m
en
t
e
x
p
er
i
m
e
n
t
s
.
T
h
e
L
u
e
n
b
er
g
er
o
b
s
er
v
er
is
u
s
ed
i
n
th
i
s
s
t
u
d
y
a
n
d
ca
n
b
e
r
ep
r
esen
ted
as f
o
llo
w
s
.
̂
̇
(
)
=
̂
(
)
+
(
)
+
(
(
)
−
̂
(
)
)
(
)
=
(
)
(6
)
w
h
er
e
is
th
e
s
y
s
te
m
s
tate
s
,
̂
is
th
e
e
s
ti
m
ated
s
tate
s
,
is
th
e
i
n
p
u
t
v
ar
iab
le,
is
t
h
e
ac
t
u
al
o
u
tp
u
t,
̂
is
t
h
e
esti
m
ated
o
u
tp
u
t,
a
n
d
is
th
e
o
b
s
er
v
er
g
ai
n
.
T
h
e
o
b
s
er
v
er
s
y
s
te
m
is
b
e
n
ef
icial,
a
s
it
e
s
ti
m
ates
t
h
e
i
n
ter
n
al
s
ta
tes
o
f
t
h
e
I
P
A
s
y
s
te
m
,
f
r
o
m
m
ea
s
u
r
ed
in
p
u
t
a
n
d
o
u
tp
u
t,
t
o
p
r
o
v
id
e
s
y
s
te
m
co
r
r
ec
tio
n
s
b
ased
o
n
er
r
o
r
r
ea
d
in
g
.
(
−
̂
)
(
as
s
h
o
w
n
i
n
E
q
u
atio
n
6
)
is
th
e
ter
m
u
s
ed
t
o
p
r
o
v
id
e
th
e
co
r
r
ec
tio
n
to
en
h
an
ce
th
e
I
P
A
s
y
s
te
m
’
s
p
o
s
iti
o
n
in
g
p
er
f
o
r
m
a
n
ce
.
T
h
e
o
b
s
er
v
er
s
y
s
te
m
u
s
ed
i
n
t
h
is
s
t
u
d
y
i
s
as
y
m
p
to
tica
ll
y
s
ta
b
le,
as
th
e
m
atr
ic
−
h
as
a
ll
t
h
e
eig
en
v
al
u
es
in
s
id
e
th
e
u
n
it
cir
cle.
T
h
e
id
e
n
ti
f
ied
p
lan
t
m
o
d
el
is
also
co
n
tr
o
llab
le
an
d
o
b
s
er
v
ab
le
as
i
t
co
m
p
lies
w
it
h
th
e
co
n
tr
o
llab
ilit
y
a
n
d
o
b
s
er
v
ab
ilit
y
test
s
(
h
a
s
f
u
ll r
o
w
r
a
n
k
a
n
d
f
u
ll c
o
lu
m
n
r
a
n
k
)
.
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
T
h
is
p
ap
er
p
r
o
p
o
s
ed
a
m
o
d
el
p
r
ed
ictiv
e
co
n
tr
o
l (
MP
C
)
w
it
h
o
b
s
er
v
er
s
y
s
te
m
,
as
a
s
tr
ate
g
y
to
co
n
tr
o
l
th
e
i
n
tell
ig
e
n
t
p
n
eu
m
at
ic
ac
t
u
ato
r
(
I
P
A
)
p
o
s
itio
n
in
g
s
y
s
te
m
.
T
h
e
ai
m
is
to
co
n
tr
o
l
a
n
d
m
ai
n
tai
n
t
h
e
I
P
A’
s
c
y
li
n
d
er
s
tr
o
k
e
at
a
d
esire
d
p
o
s
itio
n
,
s
o
th
at
a
n
ac
cu
r
ate
p
o
s
itio
n
in
g
co
n
tr
o
l
o
f
t
h
e
I
P
A
s
y
s
te
m
ca
n
b
e
ac
h
iev
ed
.
T
w
o
ca
s
e
s
o
f
co
n
t
r
o
l
s
tr
ateg
y
w
er
e
v
alid
ated
(
u
n
co
n
s
tr
ai
n
ed
an
d
co
n
s
tr
ain
e
d
MP
C
)
an
d
b
o
th
s
tr
ateg
ie
s
w
er
e
i
m
p
le
m
e
n
ted
in
s
i
m
u
latio
n
a
n
d
r
ea
l
-
ti
m
e
e
x
p
er
i
m
en
ts
.
3
.
1
.
Unco
ns
t
ra
ined ca
s
e
Fig
u
r
e
4
s
h
o
w
s
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
co
n
tr
o
ller
to
co
n
tr
o
l
a
n
d
m
ai
n
tai
n
th
e
c
y
l
in
d
er
s
tr
o
k
e
p
o
s
itio
n
o
f
th
e
I
P
A
s
y
s
te
m
a
t
1
0
0
m
m
in
s
i
m
u
latio
n
a
n
d
r
ea
l
-
ti
m
e
e
x
p
er
im
e
n
t.
A
t
th
is
ti
m
e,
n
o
lo
ad
is
attac
h
ed
at
th
e
en
d
o
f
t
h
e
c
y
li
n
d
er
s
tr
o
k
e
f
o
r
th
e
p
u
r
p
o
s
e
o
f
tr
a
n
s
p
o
r
tin
g
t
h
e
o
b
j
ec
t.
T
h
e
s
i
m
u
la
tio
n
r
es
u
lt
in
d
icate
s
t
h
at
at
s
i
m
u
lat
io
n
ti
m
e
0
.
3
9
0
0
s
,
th
e
s
tr
o
k
e
s
tr
a
y
ed
ab
o
u
t
1
.
3
3
1
4
m
m
f
r
o
m
i
ts
o
r
ig
i
n
al
p
o
s
iti
o
n
(
1
0
0
m
m
)
.
T
h
is
s
i
m
u
lat
io
n
r
es
u
lt
w
a
s
later
co
n
f
ir
m
ed
in
r
ea
l
-
ti
m
e
e
x
p
er
im
en
t.
R
es
u
lt
f
r
o
m
t
h
e
e
x
p
er
im
en
t
s
h
o
w
th
at
th
e
c
y
li
n
d
er
s
tr
o
k
e
o
v
er
s
h
o
o
ts
b
y
m
o
r
e
t
h
an
7
0
%
f
r
o
m
i
ts
o
r
ig
i
n
al
p
o
s
itio
n
at
t
h
e
b
eg
i
n
n
i
n
g
o
f
th
e
e
x
p
er
i
m
e
n
t.
I
t
h
as
b
ee
n
d
e
m
o
n
s
tr
ated
th
a
t
o
v
er
s
h
o
o
t
i
n
t
h
e
s
y
s
te
m
’
s
r
e
s
p
o
n
s
e
i
s
th
e
m
ai
n
f
ac
to
r
th
at
r
estricts
ac
c
u
r
ate
p
o
s
itio
n
in
g
co
n
tr
o
l
o
f
t
h
e
p
n
e
u
m
a
tic
s
y
s
te
m
f
r
o
m
b
ein
g
ac
h
iev
ed
.
T
h
i
s
m
a
y
b
e
d
u
e
to
i
s
s
u
es
in
t
h
e
s
y
s
te
m
its
el
f
,
s
u
ch
as
air
co
m
p
r
ess
ib
ilit
y
an
d
lea
k
a
g
e,
f
r
ict
io
n
,
v
al
v
e
d
ea
d
zo
n
e,
an
d
u
n
ce
r
tain
ti
es
in
t
h
e
s
y
s
te
m
’
s
p
ar
am
eter
s
.
T
o
test
th
e
r
o
b
u
s
tn
es
s
o
f
t
h
e
co
n
tr
o
ller
in
r
ea
l
-
ti
m
e
ex
p
er
i
m
en
t,
s
ev
er
al
v
al
u
e
o
f
lo
ad
s
(
1
k
g
,
3
k
g
,
5
k
g
,
a
n
d
9
k
g
)
w
er
e
attac
h
ed
at
th
e
en
d
o
f
t
h
e
c
y
li
n
d
er
s
tr
o
k
e.
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
co
n
tr
o
ller
to
tr
an
s
p
o
r
t
th
e
o
b
j
ec
t
(
lo
ad
)
w
h
en
t
h
e
p
o
s
itio
n
to
b
e
ac
h
ie
v
ed
b
y
th
e
s
tr
o
k
e
is
f
ix
ed
a
t
1
0
0
m
m
is
s
h
o
w
n
in
Fi
g
u
r
e
5
.
Me
an
w
h
ile,
Fi
g
u
r
e
6
s
h
o
w
s
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
co
n
tr
o
lle
r
w
h
e
n
th
e
p
o
s
itio
n
to
b
e
ac
h
i
ev
ed
b
y
t
h
e
s
tr
o
k
e
is
u
n
f
ix
ed
an
d
co
n
s
ta
n
tl
y
c
h
a
n
g
in
g
.
An
al
y
s
es
f
o
r
b
o
th
s
i
m
u
l
atio
n
an
d
ex
p
er
i
m
en
t a
r
e
s
u
m
m
ar
ized
in
T
ab
le
1
.
Fig
u
r
e
4
.
Si
m
u
latio
n
v
s
.
r
ea
l
-
ti
m
e
ex
p
er
i
m
en
t
p
er
f
o
r
m
a
n
ce
s
f
o
r
th
e
u
n
co
n
s
tr
ain
ed
ca
s
e
(
n
o
lo
ad
attac
h
ed
)
Fig
u
r
e
5
.
R
ea
l
-
t
i
m
e
e
x
p
er
i
m
e
n
t
p
er
f
o
r
m
a
n
ce
s
f
o
r
th
e
u
n
co
n
s
tr
ain
ed
ca
s
e
(
f
i
x
ed
p
o
s
itio
n
)
0
5
10
15
20
0
20
40
60
80
100
120
140
160
180
T
i
m
e
(
s
e
c
o
n
d
)
P
o
s
i
t
i
o
n
(
m
m
)
R
e
f
e
r
e
n
c
e
S
i
m
u
l
a
t
i
o
n
E
x
p
e
r
i
m
e
n
t
0
5
10
15
20
0
20
40
60
80
100
120
140
160
180
T
i
m
e
(
s
e
c
o
n
d
)
P
o
s
i
t
i
o
n
(
m
m
)
R
e
f
e
r
e
n
c
e
N
o
l
o
a
d
L
o
a
d
=
1
k
g
L
o
a
d
=
3
k
g
L
o
a
d
=
5
k
g
L
o
a
d
=
9
k
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
3
3
–
1
6
4
2
1638
Fig
u
r
e
6
.
R
ea
l
-
t
i
m
e
e
x
p
er
i
m
e
n
t
p
er
f
o
r
m
a
n
ce
s
f
o
r
th
e
u
n
co
n
s
t
r
ain
ed
ca
s
e
(
u
n
f
i
x
ed
p
o
s
itio
n
)
T
ab
le
1
.
C
o
m
p
ar
is
o
n
b
et
w
ee
n
Si
m
u
latio
n
an
d
R
ea
l
-
T
i
m
e
E
x
p
er
im
e
n
t
s
f
o
r
th
e
U
n
co
n
s
tr
ain
ed
C
ase
(
Fix
ed
at
1
0
0
m
m
)
S
i
mu
l
a
t
i
o
n
R
e
a
l
-
t
i
me
e
x
p
e
r
i
me
n
t
L
o
a
d
N
o
l
o
a
d
N
o
l
o
a
d
1
k
g
3
k
g
5
k
g
9
k
g
R
i
se
t
i
me
(
)
0
.
1
7
2
2
s
0
.
6
6
5
8
s
0
.
6
5
1
3
s
0
.
6
4
7
4
s
0
.
6
7
2
7
s
0
.
6
8
8
0
s
S
e
t
t
l
i
n
g
t
i
me
(
)
0
.
2
9
7
0
s
2
.
8
8
2
7
s
2
.
7
0
7
3
s
1
9
.
8
6
3
7
s
1
7
.
2
3
8
5
s
1
9
.
6
5
8
3
s
O
v
e
r
sh
o
o
t
(
)
1
.
3
3
1
4
mm
7
0
.
1
7
9
8
mm
6
6
.
5
9
6
7
mm
7
0
.
1
1
6
8
mm
6
8
.
6
8
8
2
mm
7
0
.
3
7
1
5
mm
S
t
e
a
d
y
-
st
a
t
e
e
r
r
o
r
(
)
0
mm
0
.
4
7
mm
0
.
1
1
mm
1
.
5
5
mm
0
.
0
9
mm
0
.
9
5
mm
3
.
2
.
Co
ns
t
ra
ined ca
s
e
As
p
r
ev
io
u
s
l
y
d
escr
ib
ed
,
t
h
e
c
o
n
s
tr
ain
ed
ca
s
e
is
d
i
f
f
er
en
t
to
th
e
u
n
co
n
s
tr
ai
n
ed
ca
s
e.
I
n
th
is
ca
s
e,
t
h
e
s
ig
n
al
to
t
h
e
v
a
lv
e
s
h
a
s
b
ee
n
li
m
ited
to
a
m
a
x
i
m
u
m
v
al
u
e
th
a
t
ca
n
b
e
ac
ce
p
ted
b
y
th
e
v
a
lv
e
s
(
±
2
5
5
)
;
co
m
p
ar
ed
to
t
h
e
u
n
co
n
s
tr
ai
n
e
d
ca
s
e,
in
w
h
ic
h
n
o
li
m
itat
io
n
h
as
b
ee
n
g
i
v
en
to
th
e
v
al
v
es.
Fig
u
r
e
7
s
h
o
w
s
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
co
n
tr
o
ller
f
o
r
th
e
co
n
s
tr
ain
ed
ca
s
e
to
co
n
tr
o
l
an
d
m
ai
n
tai
n
th
e
p
o
s
itio
n
o
f
c
y
lin
d
er
s
tr
o
k
e
o
f
th
e
I
P
A
s
y
s
te
m
at
1
0
0
m
m
.
Si
m
ilar
to
th
e
u
n
co
n
s
tr
ai
n
ed
ca
s
e;
n
o
lo
ad
s
a
r
e
attac
h
ed
at
th
e
en
d
o
f
th
e
c
y
li
n
d
er
s
tr
o
k
e
w
h
e
n
t
h
e
s
i
m
u
latio
n
is
p
er
f
o
r
m
ed
.
Fro
m
Fi
g
u
r
e
7
,
th
e
s
i
m
u
latio
n
r
es
u
lt i
n
d
icate
th
at
t
h
e
s
tr
o
k
e
s
tr
a
y
ed
ab
o
u
t
0
.
0
1
2
2
m
m
at
t
h
e
b
eg
i
n
n
i
n
g
o
f
t
h
e
s
i
m
u
latio
n
,
w
h
i
le
v
er
i
f
icatio
n
t
h
r
o
u
g
h
r
ea
l
-
ti
m
e
e
x
p
er
i
m
e
n
t
s
h
o
w
s
t
h
at
th
e
r
es
u
lti
n
g
o
v
e
r
s
h
o
o
t
f
o
r
th
is
ca
s
e
w
as
j
u
s
t
2
.
0
6
3
6
m
m
,
co
m
p
ar
ed
to
7
0
.
1
7
9
8
m
m
i
n
th
e
u
n
co
n
s
tr
ai
n
ed
ca
s
e.
T
h
is
p
r
o
v
es th
at
th
e
ap
p
licatio
n
o
f
co
n
s
t
r
ain
ts
i
n
t
h
e
co
n
tr
o
l s
tr
ateg
y
s
u
cc
es
s
f
u
ll
y
r
ed
u
ce
d
th
e
o
v
er
s
h
o
o
t
in
th
e
s
y
s
te
m
’
s
r
esp
o
n
s
e.
T
h
e
p
e
r
f
o
r
m
a
n
ce
o
f
th
e
co
n
tr
o
ller
w
h
e
n
th
e
p
o
s
it
io
n
to
b
e
ac
h
iev
ed
b
y
t
h
e
s
tr
o
k
e
i
s
f
i
x
ed
at
1
0
0
m
m
is
s
h
o
w
n
i
n
Fi
g
u
r
e
8
.
Me
an
w
h
ile,
Fi
g
u
r
e
9
s
h
o
w
s
th
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
co
n
tr
o
ller
w
h
en
t
h
e
p
o
s
itio
n
t
o
b
e
ac
h
iev
ed
b
y
t
h
e
s
tr
o
k
e
is
u
n
f
i
x
ed
an
d
co
n
s
ta
n
tl
y
ch
a
n
g
in
g
.
B
o
th
Fi
g
u
r
e
8
an
d
Fig
u
r
e
9
co
n
s
id
er
ed
lo
ad
s
in
th
e
ir
r
esp
o
n
s
es.
A
ll
f
i
n
d
in
g
s
,
f
o
r
b
o
th
s
i
m
u
latio
n
an
d
ex
p
er
i
m
e
n
t,
ar
e
s
u
m
m
ar
ized
in
T
ab
le
2
.
T
h
e
ad
d
itio
n
o
f
co
n
s
tr
ai
n
ts
in
t
h
e
co
n
tr
o
ller
al
g
o
r
ith
m
u
n
d
en
iab
l
y
ca
u
s
ed
th
e
co
n
tr
o
ller
to
b
e
less
ag
g
r
es
s
i
v
e;
h
o
w
ev
er
,
t
h
e
f
i
n
d
in
g
s
(
as
s
h
o
w
n
i
n
T
ab
le
2
)
d
em
o
n
s
tr
at
e
th
at
t
h
e
p
r
o
p
o
s
ed
s
tr
ateg
y
is
s
till
r
ele
v
an
t to
b
e
u
s
ed
an
d
th
e
r
esp
o
n
s
e
i
s
co
n
s
id
er
ed
f
ast en
o
u
g
h
f
o
r
a
p
n
eu
m
a
tic
s
y
s
te
m
.
0
3
6
9
12
15
18
20
0
30
60
90
120
T
i
m
e
(
s
e
c
o
n
d
)
P
o
s
i
t
i
o
n
(
m
m
)
R
e
f
e
r
e
n
c
e
N
o
l
o
a
d
L
o
a
d
=
1
k
g
L
o
a
d
=
3
k
g
L
o
a
d
=
5
k
g
L
o
a
d
=
9
k
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
E
n
h
a
n
ce
d
P
o
s
itio
n
C
o
n
tr
o
l fo
r
P
n
eu
ma
tic
S
ystem
b
y
A
p
p
lyin
g
C
o
n
s
tr
a
in
ts
in
.
.
.
.
(
S
iti F
a
ti
ma
h
S
u
la
ima
n
)
1639
Fig
u
r
e
7
.
Si
m
u
latio
n
v
s
.
r
ea
l
-
ti
m
e
ex
p
er
i
m
en
t
p
er
f
o
r
m
a
n
ce
s
f
o
r
th
e
co
n
s
tr
ain
ed
ca
s
e
(
n
o
lo
ad
attac
h
ed
)
Fig
u
r
e
8
.
R
ea
l
-
t
i
m
e
e
x
p
er
i
m
e
n
t
p
er
f
o
r
m
a
n
ce
s
f
o
r
th
e
co
n
s
tr
ain
ed
ca
s
e
(
f
i
x
ed
p
o
s
itio
n
)
Fig
u
r
e
9
.
R
ea
l
-
t
i
m
e
e
x
p
er
i
m
e
n
t
p
er
f
o
r
m
a
n
ce
s
f
o
r
th
e
co
n
s
tr
ai
n
ed
ca
s
e
(
u
n
f
i
x
ed
p
o
s
itio
n
)
T
ab
le
2
.
C
o
m
p
ar
is
o
n
b
et
w
ee
n
Si
m
u
latio
n
an
d
R
ea
l
-
T
i
m
e
E
x
p
er
im
e
n
t
s
f
o
r
th
e
C
o
n
s
tr
ain
ed
C
ase
(
Fix
ed
at
1
0
0
m
m
)
S
i
mu
l
a
t
i
o
n
R
e
a
l
-
t
i
me
e
x
p
e
r
i
me
n
t
L
o
a
d
N
o
l
o
a
d
N
o
l
o
a
d
1
k
g
3
k
g
5
k
g
9
k
g
R
i
se
t
i
me
(
)
0
.
5
3
3
0
s
0
.
6
6
3
3
s
0
.
6
4
9
8
s
0
.
6
4
5
7
s
0
.
6
9
6
1
s
0
.
6
8
6
4
s
S
e
t
t
l
i
n
g
t
i
me
(
)
0
.
7
3
3
1
s
1
.
1
6
6
6
s
0
.
8
4
9
6
s
1
8
.
7
6
0
1
s
1
8
.
6
6
5
8
s
1
9
.
8
9
6
8
s
O
v
e
r
sh
o
o
t
(
)
0
.
0
1
2
2
mm
2
.
0
6
3
6
mm
1
.
1
3
8
3
mm
2
.
9
8
6
9
mm
0
.
8
9
5
9
mm
0
.
2
6
6
7
mm
S
t
e
a
d
y
-
st
a
t
e
e
r
r
o
r
(
)
0
mm
0
.
6
6
mm
0
.
1
5
mm
1
.
5
7
mm
0
.
4
6
mm
1
.
2
3
mm
4.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
p
r
esen
ts
t
h
e
m
o
d
el
in
g
an
d
p
o
s
i
tio
n
i
n
g
co
n
tr
o
l
o
f
an
i
n
tel
lig
e
n
t
p
n
e
u
m
a
tic
ac
t
u
ato
r
(
I
P
A
)
s
y
s
te
m
.
A
s
y
s
te
m
id
e
n
ti
f
icati
o
n
tech
n
iq
u
e,
u
s
in
g
a
n
au
to
-
r
eg
r
ess
i
v
e
w
it
h
e
x
o
g
e
n
o
u
s
in
p
u
t
(
AR
X)
m
o
d
el
s
tr
u
ct
u
r
e,
w
a
s
u
s
ed
to
r
ep
r
es
en
t
th
e
p
n
e
u
m
atic
s
y
s
te
m
’
s
b
eh
av
io
u
r
.
Me
a
n
w
h
ile,
m
o
d
el
p
r
e
d
ictiv
e
co
n
tr
o
l
(
MP
C
)
w
a
s
u
s
ed
a
s
a
co
n
tr
o
ll
er
to
en
s
u
r
e
ac
c
u
r
ate
p
o
s
it
io
n
in
g
co
n
tr
o
l
o
f
t
h
e
s
y
s
te
m
.
T
h
e
ai
m
o
f
th
is
p
ap
er
w
a
s
to
d
em
o
n
s
tr
ate
th
e
e
f
f
ec
ti
v
en
e
s
s
o
f
ap
p
l
y
i
n
g
co
n
s
tr
ai
n
ts
o
n
th
e
in
p
u
t
s
i
g
n
al
o
f
th
e
co
n
tr
o
ller
alg
o
r
ith
m
to
r
ed
u
ce
o
v
er
s
h
o
o
t
in
t
h
e
s
y
s
te
m
r
esp
o
n
s
e.
Si
m
u
latio
n
s
an
d
r
ea
l
-
ti
m
e
e
x
p
er
i
m
e
n
t
s
s
h
o
w
t
h
at
co
n
s
tr
ai
n
t
s
o
n
th
e
in
p
u
t
s
ig
n
al
ar
e
v
er
y
ef
f
ec
ti
v
e
at
r
ed
u
cin
g
o
v
er
s
h
o
o
t;
esp
ec
iall
y
i
n
a
r
ea
l
-
ti
m
e
e
n
v
ir
o
n
m
en
t.
Ver
if
icat
io
n
th
r
o
u
g
h
r
ea
l
-
ti
m
e
e
x
p
er
i
m
e
n
t
s
s
h
o
w
ed
th
at
ap
p
l
y
i
n
g
co
n
s
tr
ain
ts
ca
n
r
ed
u
ce
o
v
er
s
h
o
o
t
b
y
ap
p
r
o
x
i
m
atel
y
9
7
.
0
5
9
6
%,
9
8
.
2
9
0
8
%,
9
5
.
7
4
0
1
%,
9
8
.
6
9
5
7
%,
an
d
8
6
.
6
6
9
%
f
o
r
lo
ad
=
0
k
g
,
1
k
g
,
3
k
g
,
5
k
g
,
an
d
9
k
g
,
r
esp
ec
tiv
el
y
.
I
n
clu
d
i
n
g
co
n
s
tr
ain
ts
i
n
th
e
co
n
tr
o
ller
alg
o
r
ith
m
h
a
s
ca
u
s
ed
t
h
e
co
n
tr
o
ller
to
b
e
less
ag
g
r
es
s
iv
e
as
it
r
eq
u
ir
es
m
o
r
e
co
m
p
u
tati
o
n
al
e
f
f
o
r
t
to
o
p
ti
m
ize
t
h
e
co
s
t
f
u
n
ctio
n
,
co
m
p
ar
ed
to
t
h
e
u
n
co
n
s
tr
ai
n
ed
ca
s
e.
0
5
10
15
20
0
10
20
30
40
50
60
70
80
90
100
110
T
i
m
e
(
s
e
c
o
n
d
)
P
o
s
i
t
i
o
n
(
m
m
)
R
e
f
e
r
e
n
c
e
S
i
m
u
l
a
t
i
o
n
E
x
p
e
r
i
m
e
n
t
0
5
10
15
20
0
10
20
30
40
50
60
70
80
90
100
110
T
i
m
e
(
s
e
c
o
n
d
)
P
o
s
i
t
i
o
n
(
m
m
)
R
e
f
e
r
e
n
c
e
N
o
l
o
a
d
L
o
a
d
=
1
k
g
L
o
a
d
=
3
k
g
L
o
a
d
=
5
k
g
L
o
a
d
=
9
k
g
0
3
6
9
12
15
18
20
0
30
60
90
120
T
i
m
e
(
s
e
c
o
n
d
)
P
o
s
i
t
i
o
n
(
m
m
)
R
e
f
e
r
e
n
c
e
N
o
l
o
a
d
L
o
a
d
=
1
k
g
L
o
a
d
=
3
k
g
L
o
a
d
=
5
k
g
L
o
a
d
=
9
k
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
3
3
–
1
6
4
2
1640
Ho
w
e
v
er
,
th
e
p
r
o
p
o
s
ed
s
tr
ate
g
y
is
s
till
r
ele
v
a
n
t
to
b
e
u
s
ed
an
d
th
e
r
e
s
p
o
n
s
e
i
s
co
n
s
id
er
ed
f
ast
e
n
o
u
g
h
f
o
r
a
p
n
eu
m
atic
s
y
s
te
m
.
T
h
e
s
tead
y
-
s
tate
er
r
o
r
(
)
f
o
r
b
o
th
ca
s
es
also
w
i
th
i
n
th
e
li
m
it
allo
w
ed
(
±
2
m
m
)
,
w
h
ich
i
s
ac
ce
p
tab
le
f
o
r
co
n
tr
o
l
s
y
s
te
m
en
g
in
ee
r
i
n
g
.
F
u
t
u
r
e
w
o
r
k
i
n
v
esti
g
a
tin
g
t
h
e
tech
n
iq
u
e
to
i
m
p
r
o
v
e
th
e
tr
a
n
s
ie
n
t
r
esp
o
n
s
e
o
f
t
h
e
p
r
o
p
o
s
ed
c
o
n
tr
o
l stra
teg
y
w
i
ll b
e
co
n
s
id
er
ed
f
o
r
th
e
n
e
x
t s
tag
e
o
f
t
h
i
s
s
t
u
d
y
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
s
w
o
u
ld
li
k
e
to
ac
k
n
o
w
led
g
e
U
n
i
v
er
s
iti
T
ek
n
o
lo
g
i
Ma
la
y
s
ia
(
UT
M)
,
Un
iv
er
s
i
t
i
T
ek
n
ik
a
l
Ma
la
y
s
ia
Me
lak
a
(
UT
eM
)
an
d
Min
is
tr
y
o
f
Hi
g
h
er
E
d
u
ca
tio
n
(
MO
HE
)
o
f
Ma
la
y
s
ia
f
o
r
th
ei
r
s
u
p
p
o
r
t.
RE
F
E
R
E
NC
E
S
[1
]
P
.
S
tri
c
k
lan
d
,
e
t
a
l.
,
“
In
tell
ig
e
n
t
A
c
tu
a
to
rs,"
in
Pro
c
e
e
d
in
g
s
o
f
S
i
n
g
a
p
o
re
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
In
telli
g
e
n
t
Co
n
tro
l
a
n
d
In
stru
me
n
ta
ti
o
n
(
S
ICICI'
9
2
)
,
v
o
l.
1
,
p
p
.
6
3
0
-
6
3
5
,
1
9
9
2
.
[2
]
A.
A.
M
.
F
a
u
d
z
i,
e
t
a
l.
,
“
De
v
e
lo
p
m
e
n
t
o
f
a
n
In
telli
g
e
n
t
Ch
a
ir
T
o
o
l
S
y
ste
m
A
p
p
l
y
in
g
Ne
w
In
telli
g
e
n
t
P
n
e
u
m
a
ti
c
A
c
tu
a
to
rs,”
Ad
v
a
n
c
e
d
R
o
b
o
ti
c
s
,
v
o
l
/i
ss
u
e
:
24
(
10
)
,
p
p
.
1
5
0
3
–
1
5
2
8
,
2
0
1
0
.
[3
]
A.
A.
M
.
F
a
u
d
z
i,
e
t
a
l.
,
“
De
v
e
lo
p
m
e
n
t
o
f
P
n
e
u
m
a
ti
c
A
c
tu
a
te
d
S
e
a
ti
n
g
S
y
ste
m
to
A
id
Ch
a
ir
De
sig
n
,
”
in
IEE
E/
AS
M
E
I
n
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
A
d
v
a
n
c
e
d
In
tell
ig
e
n
t
M
e
c
h
a
t
ro
n
ics
(
AIM
)
,
p
p
.
1
0
3
5
–
1
0
4
0
,
2
0
1
0
.
[4
]
K.
Os
m
a
n
,
e
t
a
l.
,
“
S
y
ste
m
Id
e
n
ti
f
ica
ti
o
n
a
n
d
Em
b
e
d
d
e
d
Co
n
tro
ll
e
r
De
sig
n
f
o
r
P
n
e
u
m
a
ti
c
A
c
tu
a
to
r
w
it
h
S
ti
f
f
n
e
ss
Ch
a
ra
c
teristic,”
M
a
th
e
ma
ti
c
a
l
Pro
b
lem
s in
En
g
in
e
e
rin
g
,
v
o
l.
2
0
1
4
,
p
p
.
1
3
,
2
0
1
4
.
[5
]
S.
N.
S
.
S
a
li
m
,
e
t
a
l.
,
“
Ro
b
u
ts
t
Co
n
tro
l
S
trate
g
y
f
o
r
P
n
e
u
m
a
ti
c
Driv
e
S
y
ste
m
v
i
a
En
h
a
n
c
e
d
No
n
li
n
e
a
r
P
ID
Co
n
tr
o
l,
”
I
n
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
Co
mp
u
ter
E
n
g
i
n
e
e
rin
g
,
v
o
l
/
issu
e
:
4
(
5
)
,
p
p
.
6
5
8
-
6
6
7
,
2
0
1
4
.
[6
]
A.
A.
M
.
F
a
u
d
z
i,
“
De
v
e
lo
p
m
e
n
t
o
f
In
telli
g
e
n
t
P
n
e
u
m
a
ti
c
Ac
tu
a
to
rs
a
n
d
T
h
e
ir
A
p
p
li
c
a
ti
o
n
s
to
P
h
y
sic
a
l
Hu
m
a
n
-
M
a
c
h
in
e
In
tera
c
ti
o
n
S
y
ste
m
,
”
Ph
D
T
h
e
sis
,
T
h
e
G
r
a
d
u
a
te
S
c
h
o
o
l
o
f
Na
tu
ra
l
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
Ok
a
y
a
m
a
Un
iv
e
rsit
y
,
2
0
1
0
.
[7
]
A.
A.
M
.
F
a
u
d
z
i,
e
t
a
l.
,
“
Co
n
tr
o
ll
e
r
De
sig
n
f
o
r
S
im
u
latio
n
Co
n
tro
l
o
f
In
telli
g
e
n
t
P
n
e
u
m
a
ti
c
A
c
tu
a
to
rs
(IP
A
)
S
y
st
e
m
,
”
Pro
c
e
d
ia
En
g
in
e
e
rin
g
,
v
o
l.
4
1
,
p
p
.
5
9
3
–
5
9
9
,
2
0
1
2
.
[8
]
A.
A.
M
.
F
a
u
d
z
i,
e
t
a
l.
,
“
Re
a
l
-
ti
m
e
P
o
sit
io
n
Co
n
tro
l
o
f
In
telli
g
e
n
t
P
n
e
u
m
a
ti
c
A
c
tu
a
to
r
(I
P
A
)
S
y
ste
m
U
sin
g
Op
ti
c
a
l
En
c
o
d
e
r
a
n
d
P
re
ss
u
re
S
e
n
so
r,
”
S
e
n
so
r R
e
v
iew
,
v
o
l
/i
ss
u
e
:
33
(
4
)
,
p
p
.
3
4
1
–
3
5
1
,
2
0
1
3
.
[9
]
A.
A.
M
.
F
a
u
d
z
i,
e
t
a
l
.
,
“
G
P
C
Co
n
tro
ll
e
r
De
sig
n
f
o
r
a
n
In
telli
g
e
n
t
P
n
e
u
m
a
ti
c
A
c
tu
a
to
r,
”
Pro
c
e
d
ia
E
n
g
i
n
e
e
rin
g
,
v
o
l
.
4
1
,
p
p
.
6
5
7
–
6
6
3
,
2
0
1
2
.
[1
0
]
K.
Os
m
a
n
,
e
t
a
l
.
,
“
P
re
d
ictiv
e
F
u
n
c
ti
o
n
a
l
Co
n
tro
ll
e
r
De
sig
n
f
o
r
P
n
e
u
m
a
ti
c
A
c
tu
a
to
r
w
it
h
S
ti
f
f
n
e
ss
Ch
a
ra
c
teristic,”
in
IEE
E
/S
ICE
In
ter
n
a
ti
o
n
a
l
S
y
m
p
o
siu
m
o
n
S
y
ste
m In
teg
ra
ti
o
n
(
S
II)
,
p
p
.
6
4
1
–
6
4
6
,
2
0
1
3
.
[1
1
]
A.
A.
M
.
F
a
u
d
z
i,
e
t
a
l.
,
“
P
o
siti
o
n
T
ra
c
k
in
g
o
f
P
n
e
u
m
a
ti
c
A
c
tu
a
to
r
w
it
h
L
o
a
d
s
b
y
u
sin
g
P
re
d
ictiv
e
a
n
d
F
u
z
z
y
L
o
g
ic
Co
n
tr
o
ll
e
r,
”
A
d
v
a
n
c
e
d
M
a
ter
ia
ls
Res
e
a
rc
h
,
v
o
l.
5
2
9
,
p
p
.
2
5
9
–
2
6
6
,
2
0
1
4
.
[1
2
]
A.
A.
M
.
F
a
u
d
z
i,
e
t
a
l.
,
“
F
o
rc
e
Co
n
tr
o
l
f
o
r
a
P
n
e
u
m
a
ti
c
C
y
l
in
d
e
r
Us
i
n
g
G
e
n
e
ra
li
z
e
d
P
re
d
ic
ti
v
e
Co
n
tr
o
ll
e
r
A
p
p
ro
a
c
h
,
”
M
a
th
e
ma
t
ica
l
Pr
o
b
le
ms
in
En
g
i
n
e
e
rin
g
,
v
o
l.
2
0
1
4
,
2
0
1
4
.
[1
3
]
K.
Os
m
a
n
,
e
t
a
l.
,
“
P
re
d
ictiv
e
F
u
n
c
ti
o
n
a
l
C
o
n
tr
o
l
w
it
h
Ob
se
rv
e
r
(P
F
C
-
O)
De
sig
n
a
n
d
L
o
a
d
in
g
Ef
f
e
c
ts
P
e
rf
o
rm
a
n
c
e
f
o
r
a
P
n
e
u
m
a
ti
c
S
y
ste
m
,
”
Ara
b
ia
n
J
o
u
r
n
a
l
fo
r
S
c
ien
c
e
a
n
d
En
g
in
e
e
rin
g
,
v
o
l
/
issu
e
:
40
(
2
)
,
p
p
.
6
3
3
–
6
4
3
,
2
0
1
5
.
[1
4
]
D.
S
c
h
in
d
e
le
a
n
d
H.
A
sc
h
e
m
a
n
,
“
No
n
li
n
e
a
r
M
o
d
e
l
P
re
d
ictiv
e
C
o
n
tr
o
l
o
f
a
Hig
h
-
S
p
e
e
d
L
in
e
a
r
Ax
is
Driv
e
n
b
y
P
n
e
u
m
a
ti
c
M
u
sc
les
,
”
in
Ame
ric
a
n
Co
n
tro
l
Co
n
fer
e
n
c
e
,
p
p
.
3
0
1
7
–
3
0
2
2
,
2
0
0
8
.
[1
5
]
D.
S
c
h
in
d
e
le,
e
t
a
l
.
,
“
No
n
li
n
e
a
r
M
o
d
e
l
P
re
d
ictiv
e
Co
n
tr
o
l
o
f
a
n
El
e
c
tro
p
n
e
u
m
a
ti
c
Clu
tch
f
o
r
T
ru
c
k
A
p
p
li
c
a
ti
o
n
s,”
in
Pre
p
ri
n
ts
o
f
th
e
7
th
Vi
e
n
n
a
Co
n
fer
e
n
c
e
o
n
M
a
t
h
e
ma
ti
c
a
l
M
o
d
e
ll
in
g
(
M
a
th
mo
d
),
Vi
e
n
n
a
,
2
0
1
2
.
[1
6
]
J.
M
.
M
a
c
iejo
w
sk
i,
“
P
re
d
ictiv
e
Co
n
tr
o
l:
w
it
h
C
o
n
stra
in
ts,
”
P
e
a
rso
n
Ed
u
c
a
ti
o
n
,
2
0
0
2
.
[1
7
]
Y.
W
a
k
a
sa
,
e
t
a
l.
,
“
S
e
rv
o
Co
n
tr
o
l
o
f
P
n
e
u
m
a
ti
c
S
y
st
e
m
s
Co
n
sid
e
rin
g
In
p
u
t
a
n
d
O
u
tp
u
t
Co
n
str
a
in
ts,
”
in
IEE
E
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
o
n
C
o
n
t
ro
l
Ap
p
li
c
a
ti
o
n
s (
CCA
2
0
0
7
)
,
p
p
.
1
–
3
,
2
0
0
7
.
[1
8
]
J.
A
.
Ro
ss
it
e
r,
“
M
o
d
e
l
-
b
a
se
d
P
re
d
ictiv
e
Co
n
tro
l
:
a
P
ra
c
ti
c
a
l
A
p
p
ro
a
c
h
,”
CRC
P
re
ss
,
2
0
1
3
.
[1
9
]
H
.
G
.
Da
e
p
p
a
n
d
W
a
y
n
e
J.,
“
Co
m
p
li
a
n
t
P
o
siti
o
n
Co
n
tro
l
o
f
a
P
n
e
u
m
a
ti
c
S
y
ste
m
f
o
r
Hu
m
a
n
In
tera
c
ti
o
n
A
p
p
li
c
a
ti
o
n
s,” G
e
o
rg
ia In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
,
2
0
1
5
.
[2
0
]
L
.
W
a
n
g
,
“
M
o
d
e
l
p
re
d
ictiv
e
c
o
n
tro
l
sy
ste
m
d
e
sig
n
a
n
d
im
p
lem
e
n
tatio
n
u
sin
g
M
A
TL
A
B®
,”
S
p
ri
n
g
e
r
S
c
ien
c
e
&
Bu
sin
e
ss
M
e
d
ia,
2
0
0
9
.
[2
1
]
S.
F
.
S
u
laim
a
n
,
e
t
a
l.
,
“
De
sig
n
o
f
Un
c
o
n
stra
in
e
d
a
n
d
C
o
n
stra
i
n
e
d
M
o
d
e
l
P
re
d
ictiv
e
Co
n
tr
o
l
f
o
r
P
n
e
u
m
a
ti
c
Ac
tu
a
to
r
S
y
st
e
m
:
S
e
t
-
P
o
in
t
T
ra
c
k
in
g
,
”
in
IEE
E
Co
n
fer
e
n
c
e
o
n
S
y
ste
m a
n
d
P
ro
c
e
ss
Co
n
tro
l
(
ICS
PC
2
0
1
5
)
,
p
p
.
1
8
–
2
0
,
2
0
1
5
.
[2
2
]
L
.
L
ju
n
g
a
n
d
T
.
G
lad
,
“
M
o
d
e
li
n
g
o
f
D
y
n
a
m
ic S
y
ste
m
s
,
”
P
T
R
P
re
n
t
ice
Ha
ll
En
g
lew
o
o
d
Cli
f
f
s,
1
9
9
4
.
[2
3
]
L
.
L
ju
n
g
,
“
S
y
ste
m
Id
e
n
ti
f
ica
ti
o
n
T
o
o
lb
o
x
TM
Us
e
r'
s
G
u
id
e
,
”
M
a
th
W
o
rk
s,
2
0
1
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
E
n
h
a
n
ce
d
P
o
s
itio
n
C
o
n
tr
o
l fo
r
P
n
eu
ma
tic
S
ystem
b
y
A
p
p
lyin
g
C
o
n
s
tr
a
in
ts
in
.
.
.
.
(
S
iti F
a
ti
ma
h
S
u
la
ima
n
)
1641
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
S
iti
Fa
ti
m
a
h
S
u
l
a
i
m
a
n
re
c
e
iv
e
d
B.
E
n
g
.
(In
d
u
strial
El
e
c
tro
n
ics
)
f
ro
m
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
lak
a
in
2
0
0
9
a
n
d
M
.
En
g
.
(El
e
c
tri
c
a
l
–
M
e
c
h
a
tro
n
ics
a
n
d
A
u
to
m
a
ti
c
Co
n
tro
l)
f
ro
m
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
i
n
2
0
1
2
.
S
h
e
is
c
u
rre
n
tl
y
p
u
rsu
i
n
g
P
h
.
D.
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
a
t
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
.
H
e
r
m
a
in
re
se
a
r
c
h
in
tere
st
is
i
n
t
h
e
f
ield
o
f
c
o
n
tro
l
s
y
ste
m
d
e
si
g
n
,
sy
ste
m
id
e
n
ti
f
ica
ti
o
n
,
m
e
c
h
a
tro
n
ics
,
a
u
t
o
m
a
ti
o
n
,
a
n
d
in
str
u
m
e
n
tatio
n
.
M
.
F.
Ra
h
m
a
t
c
o
m
p
lete
d
B
.
En
g
.
(El
e
c
tri
c
a
l)
f
ro
m
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
in
1
9
8
9
.
He
o
b
tai
n
e
d
th
e
M
a
ste
r
d
e
g
re
e
(Co
n
t
ro
l
S
y
ste
m
En
g
in
e
e
rin
g
)
f
ro
m
T
h
e
Un
iv
e
rsit
y
o
f
S
h
e
ff
ield
,
UK
in
1
9
9
3
a
n
d
re
c
e
iv
e
d
P
h
.
D.
d
e
g
re
e
in
El
e
c
tro
n
ic
I
n
stru
m
e
n
tatio
n
En
g
in
e
e
ri
n
g
f
ro
m
S
h
e
ff
ield
Ha
ll
a
m
Un
iv
e
rsit
y
,
UK
in
1
9
9
6
.
He
is
c
u
rre
n
tl
y
a
P
r
o
f
e
ss
o
r
in
t
h
e
De
p
a
rtm
e
n
t
o
f
Co
n
tro
l
a
n
d
M
e
c
h
a
tro
n
ics
En
g
in
e
e
ri
n
g
,
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
,
S
k
u
d
a
i,
Jo
h
o
r.
He
h
a
s
a
lso
n
o
w
b
e
e
n
a
p
p
o
in
ted
a
s
a
De
a
n
o
f
UTM
S
p
a
c
e
,
S
k
u
d
a
i,
Jo
h
o
r.
His
f
ield
o
f
sp
e
c
i
a
li
z
a
ti
o
n
in
c
lu
d
e
s
s
y
ste
m
id
e
n
ti
f
ic
a
ti
o
n
,
sig
n
a
l
p
r
o
c
e
ss
in
g
,
p
ro
c
e
ss
to
m
o
g
r
a
p
h
y
,
p
ro
c
e
ss
c
o
n
tr
o
l
a
n
d
i
n
stru
m
e
n
tatio
n
,
se
n
so
rs
,
a
n
d
a
c
tu
a
t
o
rs.
A
.
A.
M.
Fa
u
d
z
i
o
b
tain
e
d
B.
E
n
g
.
a
n
d
M
.
E
n
g
.
f
ro
m
Un
iv
e
r
siti
Tek
n
o
lo
g
i
M
a
lay
sia
in
2
0
0
4
a
n
d
2
0
0
6
,
re
sp
e
c
ti
v
e
l
y
.
In
2
0
1
0
,
h
e
re
c
e
iv
e
d
Dr.
En
g
.
in
S
y
ste
m
In
teg
ra
ti
o
n
f
ro
m
Ok
a
y
a
m
a
Un
iv
e
rsiti
,
Ja
p
a
n
.
Cu
rre
n
tl
y
,
h
e
is
a
n
A
ss
o
c
iate
P
r
o
f
e
ss
o
r
in
t
h
e
De
p
a
rtm
e
n
t
o
f
Co
n
tro
l
a
n
d
M
e
c
h
a
tro
n
ics
En
g
in
e
e
ri
n
g
,
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
,
S
k
u
d
a
i,
Jo
h
o
r.
He
is
m
a
in
ly
e
n
g
a
g
e
d
in
th
e
re
se
a
rc
h
f
ield
s
o
f
p
n
e
u
m
a
ti
c
a
c
tu
a
to
rs,
so
f
t
a
c
tu
a
to
rs,
ro
b
o
ti
c
s au
to
m
a
ti
o
n
a
n
d
th
e
ir
a
p
p
li
c
a
ti
o
n
s.
K
h
a
irud
d
in
O
s
m
a
n
re
c
e
iv
e
d
B
.
En
g
.
i
n
El
e
c
tro
n
ics
En
g
i
n
e
e
rin
g
(In
d
u
strial
El
e
c
tr
o
n
ics
)
f
ro
m
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
si
a
n
d
M
.
En
g
.
in
E
lec
tri
c
a
l
En
g
in
e
e
rin
g
(
El
e
c
tri
c
a
l
–
M
e
c
h
a
tro
n
ics
a
n
d
A
u
to
m
a
ti
c
Co
n
tro
l
)
f
ro
m
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
si
a
.
In
2
0
1
4
,
h
e
c
o
m
p
lete
d
P
h
.
D.
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
f
ro
m
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
.
H
e
is
c
u
rre
n
tl
y
a
s
e
n
io
r
lec
tu
re
r
a
t
th
e
F
a
c
u
lt
y
o
f
En
g
i
n
e
e
rin
g
T
e
c
h
n
o
lo
g
y
,
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
si
a
M
e
lak
a
,
M
a
la
y
sia
.
His
in
tere
sts
a
re
in
m
e
c
h
a
tro
n
ics
,
p
n
e
u
m
a
ti
c
a
c
tu
a
to
r,
i
n
d
u
strial
e
lec
tro
n
ics
,
a
n
d
ro
b
o
ti
c
s.
Sy
Na
jib
S
y
S
a
li
m
is
a
se
n
io
r
l
e
c
tu
re
r
a
t
th
e
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
T
e
c
h
n
o
lo
g
y
,
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
lak
a
,
M
a
la
y
sia
.
His
Ba
c
h
e
lo
r
d
e
g
re
e
is
i
n
M
e
c
h
a
tro
n
ics
a
n
d
M
a
ste
r
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
.
He
re
c
e
iv
e
d
P
h
.
D.
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
f
ro
m
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
in
2
0
1
5
.
Hi
s
in
tere
sts
a
re
in
c
o
n
tr
o
l
sy
ste
m
d
e
sig
n
,
i
n
stru
m
e
n
ta
ti
o
n
a
n
d
a
u
to
m
a
ti
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
3
3
–
1
6
4
2
1642
S
.
I.
S
a
m
s
u
d
in
o
b
tain
e
d
h
e
r
P
h
.
D.
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
ri
n
g
f
ro
m
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
la
y
sia
in
2
0
1
6
.
S
h
e
is
n
o
w
a
se
n
io
r
lec
tu
re
r
a
t
t
h
e
F
a
c
u
l
ty
o
f
El
e
c
tro
n
ics
a
n
d
C
o
m
p
u
ter
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
la
k
a
,
M
a
la
y
sia
.
S
h
e
h
a
s
a
lso
n
o
w
b
e
e
n
a
p
p
o
in
ted
a
s
a
He
a
d
o
f
De
p
a
rt
m
e
n
t
o
f
Dip
lo
m
a
S
tu
d
y
a
t
F
a
c
u
lt
y
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
p
u
ter
E
n
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
l
a
k
a
.
A
.
R
.
Az
ir
a
is
c
u
rre
n
tl
y
p
u
rsu
in
g
M
a
st
e
r
d
e
g
re
e
in
El
e
c
tro
n
ic E
n
g
in
e
e
rin
g
a
t
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
lak
a
.
S
h
e
o
b
tai
n
e
d
B.
E
n
g
.
(In
d
u
strial
El
e
c
tro
n
ic
s)
f
ro
m
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
la
k
a
in
2
0
0
9
.
He
r
m
a
in
re
se
a
r
c
h
in
tere
st
is
in
th
e
field
o
f
c
o
n
tro
l
sy
st
e
m
d
e
si
g
n
,
s
y
ste
m
id
e
n
ti
f
i
c
a
ti
o
n
a
n
d
a
u
to
m
a
ti
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.