Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 3
,
Ju
n
e
201
6, p
p
. 1
274
~ 12
80
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
3.8
491
1
274
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Anthraq
u
inones A P
r
ob
e to
Enhance Th
e Photovol
t
aic
Prop
erti
es of DS
SCs
Jinchu
I
1
, Jy
ot
hi
R
2
, N
.
Pa
nduranga
n
2
, K. S.
Sreelatha
3
, K
.
A
c
hu
t
h
a
n
1
, C
.
O
.
Sree
kala
1
1
Department of Ph
y
s
ics,
Am
rita
School of Arts
and scien
ces, Amrita
Vishwa Vid
y
ap
eetham, Kollam-690525, Ker
a
la
2
Amrita School
of Biotechnolog
y
,
Amrita Vish
wa Vid
y
ap
eetham, Kollam-690525
, Ker
a
la, Ind
i
a
3
Department of Ph
y
s
ics,
Govt.C
o
lleg
e
, Kottay
a
m- 686013, Kerala, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 26, 2015
Rev
i
sed
Mar
10
, 20
16
Accepted
Mar 26, 2016
Natural d
y
e sensitized solar
cel
ls are a prom
ising
class of photov
oltai
c
cells
with the cap
acity
of gener
a
ting
green
energ
y
at low
production cost
since
no
expensive eq
uip
m
ent is required in th
eir fabr
ication. Photovoltaics are a
precious technolog
y
in
the hasty
worl
d wher
e
energ
y
prices are goes on
increasing with
in seconds. R
e
search
ers
are f
o
cusing to f
a
cilit
ate for
producing eco-fr
iendly
,
low cost
and more
efficient d
y
e sensitized
solar cells.
In the presen
t
work we discuss the comparative photovoltaic studies of
Laws
one,
a n
a
tu
ral d
y
e
from
hen
n
a pl
ant
and Ali
zarin
,
a na
tural
d
y
e
from
th
e
root of madder
for fabricating
the D
y
e sensiti
ze
d solar ce
lls (DSSCs). The
absorption spectrum of Lawsone
and Alizarin is
found to be shi
f
ted to the
longer waveleng
th region after the comple
x formation. As a result there is
a
significant in
crease in short circuit cu
rr
ent density
and
conversio
n efficien
cy
.
This result is
co
mpared with
the
standard d
y
e
i.e.
N719 d
y
e.
Keyword:
Natural sensitizer
Laws
one
Alizarin
Dye sen
s
itized
so
lar cells
Op
en
ci
rcu
it
vo
ltag
e
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
C. O. Sreekala,
Asst
.
Pr
ofes
so
r
,
Am
ri
t
a
Sch
o
o
l
of
B
i
ot
ech
n
o
l
ogy
,
Am
rita Viswa
Vidyapeet
ham
,
C
l
appa
na,
P.
O-
6
9
0
5
2
5
,
Kol
l
a
m
,
Keral
a
, I
ndi
a.
Em
a
il: sreek
alaco
@am
.
a
m
rit
a
.edu
1.
INTRODUCTION
Gene
ratio
n o
f
electricity
fro
m
differe
nt f
u
e
l
sou
r
ces
a
n
d technologies is
very im
portant
since we
can
not
o
v
e
r
l
y
rel
i
a
nt
on
o
n
e t
y
pe of p
o
w
er
ge
nerat
i
o
n.
Gene
rat
i
on
of El
ect
ri
cal
Ener
gy
fr
om
M
uni
ci
pal
Sol
i
d
Wast
e (M
S
W
)
i
s
a co
m
p
l
e
x pr
ocess si
nce t
h
e wast
e ha
s t
o
u
nde
r
go
vari
ous
u
n
i
t
pr
oce
sses bef
o
re i
t
is put
i
n
t
o
t
h
e
p
r
oce
s
s
o
f
e
n
er
gy
pr
od
uct
i
o
n.
A
m
a
t
h
em
at
i
c
al
m
odel
has
be
en st
udi
e
d
fo
r
M
S
WFPG
i
n
I
ndi
a,
co
nsid
eri
n
g the typ
e
o
f
wast
e co
llectio
n
p
r
o
cess an
d th
e
su
itab
ility o
f
waste fo
r i
n
cineratio
n
tak
i
ng
th
e h
eat
val
u
e
o
f
M
S
W
i
n
t
o
acc
o
unt
[
1
]
.
Al
s
o
t
h
e m
odel
i
n
g a
n
d si
m
u
l
a
t
i
on o
f
P
V
a
rray
s
[2]
,
a
r
e
do
ne
fo
r t
h
e
bet
t
e
r
h
a
rv
esting
of
so
lar en
erg
y
.
Dye sen
s
itized so
lar cell (D
SSC)
[3
] is sti
m
u
l
a
t
ed
b
y
the energy and electron
tran
sfer m
ech
an
ism
s
in
n
a
tu
ral p
h
o
t
o
s
y
n
th
esis. Th
e m
a
jor
parts
of a dye
sensitized s
o
la
r cell [4] a
r
e
working
el
ect
rode
o
r
ph
ot
o a
n
ode
, el
ec
t
r
ol
y
t
e
and c
o
unter electrode.
The se
nsitizer
[5
] is also
p
l
ays an
im
p
o
r
tan
t
ro
le
t
o
har
v
est
t
h
e
ph
ot
o
n
s a
nd al
l
t
h
e part
s ha
v
e
rel
e
vance i
n
t
h
e ph
ot
o
v
o
l
t
a
i
c
pr
ope
rt
i
e
s. D
y
e-sensi
t
i
zed s
o
l
a
r
cells [6] have attracted extensive acad
em
ic
and comm
ercial interest duri
ng the last 20 years due to their
pot
e
n
t
i
a
l
fo
r l
o
w
co
st
sol
a
r
ene
r
gy
c
o
nve
rsi
o
n.
Wh
en
t
h
e
lig
ht
i
n
c
i
d
e
nt
o
n
the
p
hot
o a
n
o
d
e
t
h
e
d
y
e
m
o
le
c
u
le
s
f
r
o
m
the ph
ot
o
a
n
o
d
e
g
o
t
e
x
c
i
t
e
d f
r
om
the HOMO
la
y
e
r
to
t
h
e
L
U
MO
la
y
e
r
(
F
i
g
ure
1)
.
T
h
e
counter electrode
plays an im
po
rt
ant
rol
e
of gat
h
e
r
i
n
g
el
ect
ro
ns
t
h
at
are g
e
nerat
e
d
at
t
h
e
ph
ot
o-a
n
o
d
e [
7
]
an
d
d
e
liv
ered
throu
g
h
th
e ex
ternal circu
it, b
ack to
th
e el
ectrol
y
te. Since the electrolyte is c
o
rrosi
v
e the c
o
unte
r
electrode
re
qui
res a hi
gh react
ion
rate
to re
duce the iodine i
n
the electrolyte
to an i
odi
de ion.
The im
port
a
nce
of c
o
unter elec
trode [8] to gat
h
er elect
ro
ns th
at are g
e
n
e
rated
at th
e pho
to-electrod
e
is sub
s
tan
tial. Th
e
n
a
tural
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ant
h
r
a
qui
no
ne
s A Pr
o
b
e t
o
E
n
h
a
n
ce T
h
e
Ph
ot
ov
ol
t
a
i
c
Pr
o
p
ert
i
e
s of
D
S
S
C
s (
J
i
n
ch
u I)
1
275
dy
es l
i
k
e
bl
ue
pea fl
owe
r
,
p
o
m
egranat
e
,
r
o
s
e
l
l
a
[9]
et
c are
m
o
re eco-frie
ndly
but
repre
s
ents low c
o
nversion
efficiency. So
we m
odified the
m
by
prep
aring
th
ei
r m
e
tal c
o
m
p
lex
e
s.
2.
R
E
SEARC
H M
ETHOD
2.
1.
Prepar
ati
o
n
of the dye
Laws
one [
2
h
y
d
r
oxy
[
1
,
4
]
–nap
h
t
h
o
qui
no
n
e
]
dy
e and Al
i
zari
n
dy
e i
s
di
ssol
v
e
d
i
n
m
e
t
h
an
ol
. It
s
cor
r
es
po
n
d
i
n
g
Al
um
i
n
i
u
m
com
p
l
e
x i
s
pre
p
a
r
ed
by
a
d
di
n
g
Al
C
l
3
and FeC
l
3
i
n
m
e
t
h
anol
and
t
h
e
n
a
dde
d t
o
the dye
sol
u
tion.
For t
h
e struc
t
ural
a
n
alysis of the
dyes t
h
e a
b
sorption s
p
ectra
of t
h
e
dyes a
r
e take
n.
2.
2.
Prepar
ati
o
n
o
f
D
y
e
sensi
t
iz
ed Nanos
t
ructured TiO
2
Fl
uori
d
e d
ope
d
t
i
n
oxi
de-coat
e
d gl
ass subst
r
at
e (FTO) ha
vi
ng resi
st
ance o
f
10
Ω
/cm
2
was
purc
h
ased
from
Sol
a
roni
x
,
Swi
t
zerl
a
nd,
wi
t
h
a si
ze of
1cm
×
2cm
i
s
cleaned as re
por
t
e
d i
n
[8]
.
A p
hot
o el
ect
rode
wa
s
prepare
d
by
u
s
i
ng nanoc
ry
st
al
li
ne
Ti
O
2
(D
egussa-P
25
)
p
o
wde
r
c
o
at
i
ng on
FT
O
gl
ass subst
r
at
e
by
doct
o
r
blade technique. The coated film
s were dri
e
d at
room
t
e
mperat
ur
e and then were sintered at 450
0
C f
o
r 1
h
.
Th
e th
ick
n
e
ss
o
f
th
e TiO
2
el
ect
rode was a
ppr
oxi
m
a
t
e
ly
12 µm
as
m
e
asured
by
a fi
eld em
i
ssi
on scanni
n
g
el
ect
ron
m
i
cr
oscope
(FES
EM
). Lawso
n
e
(2 hy
dr
ox
y
[1,4]
–na
p
h
t
h
o
qui
n
one)
and Al
i
zari
n
(1,2
-
di
hy
dro
x
y
a
nt
hr
aqui
no
ne) fr
o
m
Al
dri
c
h and i
t
s
m
e
t
a
l
co
mpl
e
x were used as t
h
e dy
e.
Fi
gure 1 sh
ow
s t
h
e
structure of the
fabricated cell and Fi
gu
re 2
(
a) sh
ows t
h
e
m
o
l
ecul
a
r st
ruct
ure of La
wso
n
e d
y
e
and Fi
g
u
re
2(
b
)
shows
the m
o
lecular struct
ure
of
Al
i
zari
n
dy
e.
F
i
gu
r
e
1
.
Stru
c
t
u
r
e
of t
h
e
fab
r
i
c
a
t
e
d
c
e
l
l
F
i
g
u
r
e
2(a).
Str
u
c
t
ur
e
o
f
L
a
ws
one
(b). Str
u
c
t
ur
e
o
f
Alizari
n
2.
3.
P
r
ep
a
r
a
t
io
n
of
cou
n
t
e
r
el
ect
r
o
d
e
In cl
eane
d
FT
O gl
ass s
u
b
s
t
r
at
es a few d
r
o
p
l
e
t
s
of
pl
at
i
n
um
sol
u
t
i
on co
nsi
s
t
i
ng
of
5
m
m
o
l
/
d
m
3
PtCl
4
(98%
, Al
dri
c
h) i
n
i
s
op
r
opa
n
o
l
(9
9.
7%
), M
e
rc
k)
were
sprea
d
an
d
dri
e
d i
n
t
h
e am
bi
ent
t
e
m
p
erat
ur
e.
Fin
a
lly th
e su
bstrate were
fired
in an
o
v
e
n
at 38
5
0
C
for 15
minutes and t
h
en c
oole
d
at
room
te
m
p
erature
[1
0]
.
2.
4.
P
r
ep
a
r
a
t
io
n
of
el
ect
r
o
lyt
e
For
el
ect
rol
y
t
e
pre
p
a
r
at
i
o
n
,
p
o
l
y
et
hy
l
e
ne gl
y
c
ol
(PE
G
)
(M
W
40
0)
p
o
t
a
ssi
um
i
odi
de,
Ac
et
oni
t
r
i
l
e
and i
odi
ne f
r
o
m
Al
dri
c
h
we
re p
r
oc
u
r
ed a
n
d use
d
wi
t
h
o
u
t
furt
her m
odi
fi
cat
i
on.
Det
a
i
l
e
d p
r
oce
d
ure
i
s
gi
ve
n i
n
o
u
r
pr
evi
o
us
rep
o
r
t
[
11]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
12
7
4
– 12
80
1
276
2.
5.
Ass
e
m
b
l
i
ng
of
DS
SC
Fo
r th
e fabricatio
n
o
f
so
lar cells, th
e
ph
o
t
oelectr
odes
wer
e
i
m
m
e
rsed i
n
t
h
e
dy
e s
o
l
u
t
i
ons
at
ro
om
te
m
p
erature for 12
h. T
h
en, the dye-a
d
s
o
rbed electrode was assem
b
led
with
the count
er electrode to form
a
sand
wich
typ
e
DSSC.
A
d
r
op
of electro
lyte so
lu
tion
is
injected
betwee
n the two
electrode
s of the cel
l. The
electrolyte is injecte
d
i
n
to t
h
e space
bet
w
ee
n the
phot
oele
ctrode a
n
d the
counter electrode.
Now the
de
vice is
ready
fo
r
c
h
ara
c
terization
.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
3.
1.
Abs
o
rption Spectr
a
The abs
o
r
p
t
i
o
n
spect
ra of La
wso
n
e dy
e i
s
sho
w
n i
n
Fi
gu
r
e
3(a)
. The sp
ect
rum
ranges fr
om
200 t
o
30
0
nm
. The
s
p
ect
ra
o
f
Al
u
m
i
n
i
u
m
and
I
r
o
n
m
e
t
a
l
co
m
p
l
e
xes
of
Law
s
one
s
h
o
w
s
h
i
f
t
i
ng
o
f
t
h
e
s
p
ec
t
r
um
to
30
0
n
m
-
50
0n
m
(Fi
g
u
r
e 3
b
a
nd
3c)
.
T
h
i
s
t
h
e one
of t
h
e re
aso
n
f
o
r t
h
e
be
t
t
e
r per
f
o
r
m
a
nce of t
h
e DS
S
C
m
a
de
fr
om
t
h
i
s
copl
e
x
es.
F
i
gu
re
3
(
a).
Absorption
s
p
ectra of La
ws
one
dye in m
e
thanol (
b
&
c)
Abs
o
rption s
p
ectra
of La
ws
one
dye and
Al m
e
ta
l co
m
p
lex
and
Fe m
e
t
a
l co
m
p
lex
in
meth
an
o
l
F
i
gure
4
(
a
)
.
Ab
sorp
tio
n sp
ectra
o
f
Alizarin dye in
m
e
th
a
n
o
l
(
b
&
c
)
Ab
so
rp
tio
n
sp
ectra of
Alizari
n
dye and
Al m
e
ta
l co
m
p
lex
and
Fe m
e
t
a
l co
m
p
lex
in
meth
an
o
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ant
h
r
a
qui
no
ne
s A Pr
o
b
e t
o
E
n
h
a
n
ce T
h
e
Ph
ot
ov
ol
t
a
i
c
Pr
o
p
ert
i
e
s of
D
S
S
C
s (
J
i
n
ch
u I)
1
277
Fi
gu
re
4 s
h
ow
s t
h
e a
b
s
o
r
p
t
i
o
n s
p
ect
ra
o
f
A
l
i
zari
n
dy
e i
n
m
e
t
h
anol
.
It
s s
p
ect
r
u
m
range
s fr
om
30
0-
60
0
nm
and t
h
e abso
r
p
t
i
on s
p
ect
ra o
f
i
t
s
A
l
m
e
t
a
l
co
m
p
l
e
x sh
o
w
s t
h
e a
b
sor
p
t
i
o
n spect
r
a
fr
om
200-
5
0
0
nm
.
Th
e absorp
tion sp
ectra of Al
u
m
in
iu
m
an
d
Iron
m
e
ta
l co
mplexes of Alizarine
dye
ar
e sh
own
in
Figu
re 4
(
b)
and
(c
).
3.
2.
Current- Voltage
charac
teri
stics
Ph
otoc
ur
r
e
nt
–
voltag
e
c
u
r
v
e
s
of eac
h sam
p
l
e
we
r
e
m
e
a
s
ur
e
d
usi
n
g
a
Ke
ithle
y
Ele
c
tr
ome
t
e
r
24
2
0
.
A
sola
r
sim
u
la
tor
with
3
0
0
W
X
e
lam
p
with a
n
AM
1
.
5
s
p
e
c
t
r
u
m
a
nd a
n
out
put
p
o
w
e
r
of
10
0
m
W
/
c
m
2
wa
s
use
d
to
illum
i
na
te the
a
c
tive
a
r
e
a
,
1
c
m
2
of
th
e
pho
t
o
el
ect
ro
d
e
.
F
i
gure
5.
J-V c
h
aracteristics
of the
fa
bricated
d
e
v
i
ce using
Lawson
e and
its
metal co
m
p
lex
e
s
F
i
gure
6
.
J-V c
h
aracteristics
of the
fa
bricat
ed d
e
v
i
ce Alizari
n
an
d its m
e
ta
l co
m
p
lex
e
s
Fig
u
re
5
co
m
p
ares t
h
e
p
h
o
t
o
c
u
r
ren
t
-vo
ltag
e
cu
rv
e
of
D
SSC
s u
s
i
n
g th
e photo
electrod
e
sen
s
itized
b
y
lawson
e and
its
m
e
tal co
m
p
le
x
e
s.
It is seen
th
at th
e
Lawo
so
n
e
Iron
m
e
ta
l
co
m
p
lex
is g
e
ttin
g
a cu
rren
td
ensity
of 3.
09
m
A
/
c
m
2
and there
by getting a c
o
nve
r
sion efficiency
of
1.
3
3
%
. Si
m
i
l
a
rl
y
Fi
gu
re
6 com
p
ares t
h
e
ph
ot
oc
u
rre
nt
-
v
ol
t
a
ge c
u
r
v
e
of
D
SSC
s
usi
n
g
t
h
e
p
h
o
t
o
el
ect
ro
de se
nsi
t
i
zed
by
A
l
i
zari
n
an
d
i
t
s
m
e
t
a
l
com
p
l
e
xes. Fi
g
u
re
7 re
p
r
ese
n
t
s
t
h
e p
h
o
t
o
c
u
r
r
e
nt
-
vol
t
a
ge c
u
r
v
e o
f
DSSC
s
u
s
i
ng t
h
e p
h
o
t
o
el
ect
rode
sensi
t
i
zed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
12
7
4
– 12
80
1
278
by
N
7
1
9
dy
e.I
m
port
a
nt
p
hot
ov
ol
t
a
i
c
param
e
t
e
rs g
ove
r
n
i
n
g t
h
e e
ffi
ci
enc
y
of t
h
e
DSS
C
s were
det
e
r
m
i
n
ed
fr
om
t
h
e ph
ot
o
-
c
u
r
r
ent
-
v
o
l
t
a
ge c
u
r
v
e,
and t
h
e
results a
r
e
presente
d in Ta
ble1.
F
i
gure
7
.
J-V
c
h
aracteristics
of
the
fa
bri
cat
ed
de
vi
ce u
s
i
n
g
N7
1
9
dy
e
Tabl
e
1.
Ph
ot
o
vol
t
a
i
c
p
a
ram
e
t
e
rs o
f
t
h
e fa
b
r
i
cat
ed de
vi
ces
Th
e
ov
er
all con
v
e
r
s
ion
ef
f
i
ci
en
cy of
t
h
e cell
m
a
d
e
f
r
o
m
t
h
e
d
y
e is
f
ound
to be in
cr
easin
g
wh
ile
attach
in
g
t
h
e
metal co
m
p
lex
e
s to
it. All facto
r
s co
nstitu
tin
g
th
e
o
v
e
rall efficien
cy, th
at is, sho
r
t
-
circu
it cu
rren
t
d
e
nsity (J
sc
),
an
d
fill
facto
r
(FF), sign
ifican
tly in
crease when
th
e m
e
tal c
o
m
p
lex
o
f
t
h
e
n
a
tural d
y
e is
u
s
ed
fo
r
fabricating the
device. This is because in Al co
m
p
lex
and
Fe com
p
lex with the na
tural
dye the photoe
lectric
charge t
r
ans
f
er takes
place at
a m
u
ch faster rate than
the ba
ck reaction,
i
n
whic
h
the electron
recom
b
ine
s
wi
t
h
the oxi
dized dye
m
o
lecule ra
ther than
fl
o
w
i
ng t
h
ro
u
gh t
h
e
ci
rcui
t
and pe
rf
orm
i
ng t
h
e w
o
r
k
. T
h
e i
n
cre
a
se i
n
J
sc
for each
de
vice clearly shows t
h
e
bene
fi
t of the c
o
m
p
le
x form
ation of the
natural dye in the curre
nt work
fo
r i
m
pro
v
i
n
g t
h
e
per
f
o
r
m
a
nce o
f
DSSC
.
4.
CO
NCL
USI
O
N
We m
a
d
e
th
e
metal
co
m
p
lex
o
f
th
e n
a
tural d
y
e, Lawson
e, fro
m
Hen
n
a
plan
t an
d
Alizarin
fro
m
th
e
ro
ot
of m
a
dder
by
addi
n
g
Al
um
i
n
i
u
m
m
e
t
a
l
co
m
p
l
e
x and
Ir
on m
e
t
a
l com
p
l
e
x t
o
it
. It
i
s
fou
n
d
t
h
at
aft
e
r t
h
e
com
p
l
e
x fo
rm
at
i
on m
o
re dy
e
m
o
l
ecules are ads
o
rbed on
the TiO
2
.
The
Pt coated c
ounter electrode
is use
d
fo
r m
a
ki
ng t
h
e
san
d
wi
c
h
ed
t
y
pe cel
l
an
d i
o
d
i
ne base
d el
ect
rol
y
t
e
. P
hot
o
v
o
l
t
a
i
c
charact
e
r
i
s
t
i
c
s are
pl
ot
t
e
d a
n
d
th
e p
h
o
t
ovo
ltaic p
a
ram
e
ters a
r
e m
easu
r
ed
. It
is fo
un
d
th
at th
e ph
o
t
o
v
o
ltaic p
a
ram
e
ters o
f
DSSC
with
metal
com
p
l
e
x and d
y
e
i
n
Pt
as count
e
r
el
ect
rode
i
n
creases w
h
e
n
com
p
ared w
i
t
h
t
h
e bare dy
e. Al
so t
h
e res
u
l
t
i
s
com
p
ared
with that of
t
h
e
st
a
nda
r
d
dy
e, N7
19
.
ACKNOWLE
DGE
M
ENT
The
a
u
t
h
o
r
s,
JI
an
d KS
S
ac
k
n
o
wl
e
dge
KSC
S
TE,
G
o
vt
. of
Keral
a
f
o
r
g
r
an
di
n
g
fi
na
nci
a
l
assi
st
ance
i
n
the form
of Research P
r
oj
ect (004/SRSPS/
2014/CSTE
)
.
Sa
m
p
le
J
sc
(m
A
/
cm
2
)
V
oc
(V)
FF
Efficiency
(%
)
L
a
wsone 2.
21
0.
66
0.
65
0.
95
L
a
wsone + Al
m
e
tal co
m
p
lex
2.
89
0.
66
0.
64
1.
23
L
a
wsone +Fe
m
e
tal co
m
p
lex
3.
09
0.
66
0.
66
1.
33
Alizar
in
2.
98
0.
75
0.
67
1.
35
Alizar
in +Al
m
e
tal co
m
p
lex
3.
47
0.
75
0.
63
1.
66
Alizar
in +Fe
m
e
tal co
m
p
lex
4.
19
0.
75
0.
60
2.
11
N719
5.
7
0.
87
0.
62
3.
31
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ant
h
r
a
qui
no
ne
s A Pr
o
b
e t
o
E
n
h
a
n
ce T
h
e
Ph
ot
ov
ol
t
a
i
c
Pr
o
p
ert
i
e
s of
D
S
S
C
s (
J
i
n
ch
u I)
1
279
REFERE
NC
ES
[1]
S.
B.
Ka
ra
jgi,
et al.
, “Modeling o
f
Power Generation using
Municipal Solid Waste in India,”
International Journal
of Electrical and
Comput
er
Eng
i
neer
ing (
I
JEC
E
)
,
vol. 2
,
pp
. 197-
202, 2012
.
[2]
J.
Sury
a Kuma
ri,
et al.
, “Mathematical Modeling and
Simulation of Photovoltaic
C
e
ll using
Matlab-Simulin
k
Environment,” in
International Journal
of Electrical
and
Computer Engin
eering
(
I
JECE)
,
vo
l. 2, p
p
. 26
, 2012
.
[3]
M
.
Gratz
e
l
,
“
D
ye-s
ens
iti
zed s
o
l
a
r ce
lls
,”
Journal of
Photo
c
hemist
ry and Photob
io
logy C:
Photo
c
h
e
mistry Reviews,
vol. 4
,
pp
. 145-1
53, 2003
.
[4]
J. Qu
y
a
ng
,
et al.
, “On the mech
anism of conductivity
enhan
c
ement
in poly
(3
,4-eth
y
l
ened
iox
y
thiophen
e
): po
ly
(sty
ren
e
sulfon
ate) film
through s
o
lvent treatment,”
Po
lymer,
vol.
45, pp
. 8443-
84
50, 2004
.
[5]
J.
Y.
Kim,
et al.
, “Enhan
c
ement of electrical conductivity
of
poly
(3,4
-eth
y
l
enediox
y
th
iophene)
/
poly
(
4-
sty
r
en
esulfonate) b
y
a
ch
ange of
solvents,”
Syn
t
h
e
ti
c Me
tals
, vol/issue: 126(2-3), p
p
. 311-316
, 200
2.
[6]
M. S.
Ro
y
,
et
al.
, “Dy
e
-
s
ensit
i
z
e
d sol
a
r cell base
d on R
o
se
bengal d
y
e and na
n
o
cr
y
s
tall
i
n
e
Ti
O2
,”
Sol
ar En
ergy
Mat
e
ri
al
s
and S
o
l
a
r C
e
l
l
s
,
v
o
l
/
i
s
s
u
e
:
92(
8)
, pp. 9
09-
913, 2008.
[7]
M.
S.
P. Sha
ffe
r,
et al.
, “Dispersion and p
ack
ing
of carbon
nano
tubes,”
Carbon
,
vol/issue: 36
(11)
, pp. 1603- 1612
,
1998.
[8]
J. H. Sung,
et al.
, “Nanofibrous Membranes Prepared b
y
Multiw
alled Carbon Nanotube/Poly
(
meth
y
l
meth
acr
y
l
ate)
Composites,”
M
a
cr
omolecul
e
s
,
vol/issue:
37(26)
, pp
. 9899–9902
, 2004.
[9]
Y. Satio
,
et al.
, “I
−
/I3
−
r
e
dox
reaction b
e
havio
r
on poly
(3
,4-th
y
lene
d
i
ox
y
t
hio
phene) counter
electrode
in
d
y
e
-
sensitiz
ed solar
cel
ls,”
Journal of
Photo
c
hemistry
and Photobio
l
ogy A: Ch
emistry,
vol/issue: 16
4(1-3), pp. 153-
157, 2004
.
[10]
C. O. Sreekala,
et al.
“Influ
ence of Solven
ts and
Surface tr
eatment
on Photovoltaic response of
DSSC based on
natura
l cu
rcum
in
d
y
e,
”
I
E
EE Jou
r
nal of
Photovo
l
taics
, vol. 2
,
pp
312-319, 2012
.
[11]
C. S. Nair,
et
al
., “Functionali
zed m
u
lti-walled
car
bon nanotubes
for enhanced ph
otocurren
t
in d
y
e-sensiti
zed solar
cel
ls
,”
Journal o
f
Nanostructure
in Chemistry,
vo
l.3, pp. 19, 2013.
BIOGRAP
HI
ES OF
AUTH
ORS
Ms. Jinchu I. is
currently
workin
g as Faculty
Associ
ate in Department of Ph
y
s
ics, Amrita School
of
Arts and Science, Amritapur
i
an
d also
a par
t
time
Research
Scho
lar
in Dept.Ph
y
s
i
cs. She obtained
M.Sc, degree (Ph
y
sics) from Mahath
ma Gandhi University
in 20
10. She was wor
k
ing as a Resear
ch
As
s
o
ciate in CR
EATE@ Am
rita
, Am
rita Vishwa Vid
y
apeeth
am in various DST projects for fou
r
ye
ars
.
S
h
e was
a
l
s
o
conferr
e
d B
.
Ed.
in P
h
y
s
ic
al
S
c
ienc
e,
Kera
la
Univers
i
t
y
in 20
07
Ms. J
y
othi R. currently
s
e
rves
as Senior
Lectur
er at th
e Amrita School
of
Biotechnolog
y
,
Amrita
Vishwa Vid
y
ap
eeth
a
m
,
Am
rita
puri c
a
m
pus, Kollam
.
She
re
ce
ived h
e
r M.Sc
i
n
Chem
istr
y fro
m
Mahatma Gandh
i University
,
in
2002. She was
also c
onferr
e
d
B
.
Ed. in
Ph
y
s
ical Science,
M
a
hatma
Gandhi University
,
in 2003. She is working
as a S
ubject Matter
Expert in
Ch
emistr
y
in d
i
ffer
e
nt
DST projects,
V
ALUE@ Amr
ita
and fo
r th
e Onl
i
n
e l
a
bs a
t
CREA
TE @
Am
rita.
Mr. N. Pandurangan is working as Senior
Res
earch Fello
w
(CSIR-
SRF)
in Department of
Ph
y
t
och
e
mistr
y
, Amrita School
of Biotechnolo
g
y
, Amritapuri from 2009
Aug
u
st. He obtained
M.Sc., degr
ee (
C
hemistr
y
)
fro
m Periy
a
r Univ
ersi
ty
in 2006
. He was working as a Resear
ch
Associate in R
& D, Merchem
Limited
,
Cochin
for 3
y
e
ars on hetero
cy
clic co
mpounds and their
applications to rubber industries
al
so dealing with s
y
nthesis of sp
ecialty
ch
emicals. After join
ing
this school, h
e
worked on extr
action of medicin
a
l
plants and
isolated the
p
r
oducts. He was award
e
d
CSIR-SRF fellowship in 2013 af
ter star
ting his r
e
sear
ch. He is also working on s
y
nthesis of organic
compounds. He is well-versed
with
the moder
n
techniques of
isol
ation and
characterization of
natural and s
y
nthetic products.
He
is also study
ing the bioactivies
includes computation
a
l ch
emistr
y
of various natural and s
y
nth
e
tic fl
avonoids. Presen
tly
he
is dev
e
lop
i
ng a div
e
rsity
o
r
iented s
y
n
t
hesis
for various
biolo
g
ical studies.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
12
7
4
– 12
80
1
280
Dr.K.S
.S
reel
atha
current
l
y
work
i
ng as
As
s
i
s
t
ant P
r
ofessor, Department of
Ph
y
s
ics, Govt.Colleg
e
Kottay
a
m. She received her PhD in Non linear
d
y
namics from CUSAT, Ke
rala in 2000. She has
m
o
re than 15
ye
aras
of
t
each
ing and
res
e
arc
h
exper
i
en
ce.
S
h
e has
produ
ce
d two P
h
Ds
an
d
supervising two
more, in th
e ar
eas of photovoltaics
and nonlinear
d
y
n
a
mics. She
had more than
3
0
intern
ation
a
l pu
blic
ations in
her
cred
it.
Her Are
a
s of Inte
re
st
include
s N
online
a
r d
y
nam
i
c
s,
Opti
c
a
l
solitons and wave guide modelling,
Photovoltaics & DSSC, nanomater
ials and
their
applicatio
ns
etc
.
S
h
e
is
a
l
s
o
working as
a f
acul
t
y
cons
ul
ta
n
t
in
Value@Am
rita
virtu
a
l
lab
projec
t @Am
r
it
a
University
.
Dr. Krishnashree Achuthan
received
the MS
de
gree
in Chemical Eng
i
neering from Clarkson
University
, USA and PhD degr
ee in Semicond
uc
tor Fabricatio
n from
Sandia National Labs,
New
Mexico,
in 1994
and 1998 respectiv
ely
.
She
is th
e Pr
incip
a
l Institute Coordin
a
tor
for the project on
virtual labs b
y
MHRD under th
e National Mission on Edu
cation th
rough IC
T scheme at Amrita
Univers
i
t
y
. S
h
e
i
s
currentl
y
the D
ean of P
G
P
program
s
in Am
rita Vis
h
wa Vid
y
ap
e
e
tham
Univers
i
t
y
,
India and
als
o
th
e P
r
incip
a
l Inv
e
s
tigator
of VALUE
Virtua
l l
a
bs, I
n
terna
ti
onal EU
Programs and
the
CEO
of Amrita Techno
log
y
B
u
siness Incubator.
She has over 15
y
e
ars of
worldwide indu
stry
experi
enc
e
and
teach
ing. S
h
e
is
the author o
f
over 50 Inter
n
ation
a
l J
ournal
and Conferenc
e
Publicat
ions as
well as m
o
re th
an 29 US Pate
nts. Dr. Achuth
a
n was a recip
i
ent of th
e World
Education Awar
d
s 2013 for B
e
st Innovation in
O
p
en an
d
Distan
ce Edu
cation (Vir
tual lab
Project)
.
Dr. C.O. Sreekala currently
serves
as Assistant Professor in Depart
ment of Ph
y
s
ics
,
Amrita School
of Arts and Sciences. She was
co
nferred with a P
h
D in Ph
y
s
ics fr
om Amrita University
in 2011
. S
h
e
pla
y
s
a k
e
y ro
le
as Princip
a
l Inv
e
stigato
r
s in so
m
e
of the s
i
gn
ifi
cant DS
T pro
j
e
c
ts
. S
h
e
als
o
m
a
k
e
s
her presence as a Subject Matter
Expert in Ph
y
s
ics of VALUE
@Amrita Nov 1
0
, 2008 to Present.
S
h
e has
m
o
re than fift
een
ye
ars
of tea
c
hing exp
e
rienc
e
and res
ear
ch exper
i
enc
e
. H
e
r are
a
of int
e
res
t
includ
es Photov
oltaics, B
i
osensors, Mi
croflu
idics and Micro
contact pr
inting
.
Evaluation Warning : The document was created with Spire.PDF for Python.