I
n
t
ern
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
E
l
ect
ri
ca
l
a
n
d
C
o
m
p
u
t
er E
n
g
i
n
eeri
n
g
(
I
J
E
C
E
)
V
o
l.
6
,
No
.
5
,
O
c
t
obe
r
20
1
6
, p
p
.
19
39
~
1
947
I
S
S
N
:
2088
-
8708
,
D
O
I
:
10.
11
591/
i
j
ece
.
v
6i
5
.
11
378
1939
Jou
r
n
al
h
om
e
p
age
:
ht
t
p:
/
/
i
ae
s
j
our
nal
.
c
om
/
onl
i
ne
/
i
nde
x
.
ph
p
/
I
J
E
C
E
I
nv
es
t
ig
a
t
io
n a
nd
Ana
ly
s
is
o
f
Spa
ce
Vect
o
r
M
o
dula
t
i
o
n
w
it
h
M
a
t
rix
Co
nv
ert
er
Det
e
r
m
ined
B
a
s
e
d o
n F
u
zz
y
C
-
M
e
an
s
T
uned M
o
dula
t
io
n I
ndex
s
C
h.
A
m
a
r
e
ndr
a
,
K
.
H
a
r
i
na
dh R
e
ddy
D
ep
ar
t
m
en
t
o
f
E
l
ect
r
i
cal
an
d
E
l
ect
r
o
n
i
cs
E
ng
i
ne
e
r
i
ng
,
K
. L
.
U
n
iv
e
r
s
ity
,
I
ndi
a
A
rt
i
cl
e I
n
f
o
AB
S
T
RAC
T
A
r
tic
le
h
is
to
r
y
:
R
ecei
v
ed
Ap
r
28
,
2
01
6
Re
v
i
s
e
d
J
ul
10
,
2
01
6
A
ccep
t
ed
J
ul
29
,
201
6
M
a
t
r
i
x
c
onv
e
r
t
e
r
pe
r
f
or
m
s
e
ne
r
gy
c
onv
e
r
s
i
on by
di
r
e
c
t
l
y
c
onne
c
t
i
ng
i
n
pu
t
pha
s
e
s
w
i
t
h out
put
p
ha
s
e
s
t
hr
oug
h
bi
d
i
r
e
c
t
i
ona
l
s
w
i
t
c
he
s
.
C
onv
e
nt
i
ona
l
p
o
w
er
co
n
v
er
t
er
s
m
ak
e u
s
e o
f
b
u
l
k
y
r
eact
i
v
e el
e
m
en
t
s
w
h
i
ch
ar
e s
u
b
j
ect
ed
t
o
ag
ei
n
g
,
r
ed
u
ce t
h
e s
y
s
t
e
m
r
el
i
ab
i
l
i
t
y
.
T
h
e
m
at
r
i
x
co
n
v
er
t
er
(
M
C
)
s
t
an
d
s
as
an
a
lte
r
n
a
tiv
e
to
c
o
n
v
e
n
tio
n
a
l p
o
w
er
co
n
v
er
t
er
.
F
u
r
t
h
er
m
o
r
e M
C
’
s
pr
ov
i
de
bi
di
r
e
c
t
i
ona
l
p
ow
e
r
f
l
ow
ne
a
r
l
y
s
i
nus
oi
da
l
i
n
pu
t
a
nd s
i
n
us
oi
da
l
out
pu
t
w
a
v
e
f
or
m
a
nd c
ont
r
ol
l
a
b
l
e
i
np
ut
pow
e
r
f
a
c
t
or
.
I
n t
hi
s
w
or
k
,
t
hr
e
e
m
odul
a
t
i
on
m
e
t
hods
ha
v
e
be
e
n s
i
m
ul
a
t
e
d us
i
ng
M
A
T
L
A
B
a
nd c
om
pa
r
e
d on t
he
ba
s
i
s
of
i
np
ut
c
ur
r
e
nt
ha
r
m
oni
c
s
,
out
p
ut
v
ol
t
a
g
e
ha
r
m
oni
c
s
a
nd num
be
r
o
f
s
w
itc
h
in
g
p
er
c
y
cl
e.
T
h
e
t
h
r
ee
t
e
c
hni
que
s
s
i
m
u
l
at
ed
ar
e
,
O
p
ti
m
a
l V
e
n
tu
r
i
ni
m
e
t
hod,
D
i
r
ect
S
p
ace V
ect
o
r
M
odul
a
t
i
on
(
DS
VM
)
an
d
I
n
d
i
r
ect
S
p
ace V
ect
o
r
M
o
d
u
la
tio
n
(IS
V
M
)
on C
o
nv
e
nt
i
o
n
a
l M
a
tr
ix
C
o
n
v
e
rt
e
r (CM
C) a
n
d
o
b
t
a
i
n
e
d
f
or
m
F
uz
z
y
c
-
M
e
a
ns
(
F
C
M
)
.
D
S
V
M
w
i
t
h F
C
M
i
s
pr
o
pos
e
d
f
or
ob
t
a
i
nt
i
ng
be
s
t
r
e
s
ul
t
s
c
om
pa
r
e
d t
o
ot
he
r
t
hr
e
e
t
e
c
hni
que
s
.
Ke
y
wo
rd
:
M
at
r
i
x
C
o
n
v
er
t
er
D
i
r
ect
S
p
ace V
ect
o
r
M
o
d
u
la
tio
n
I
n
d
i
r
ect
S
p
ace V
ect
o
r
M
o
d
u
la
tio
n
F
uz
z
y c
-
M
ea
n
s
(
F
C
M)
C
opy
r
i
g
ht
©
201
6
I
ns
t
i
t
ut
e
o
f
A
d
v
anc
e
d E
ngi
ne
e
r
i
ng
an
d
Sc
i
e
nc
e
.
A
l
l
ri
g
h
t
s re
se
rv
e
d
.
Co
rre
sp
o
n
d
i
n
g
Au
t
h
o
r
:
C
h
.
A
m
ar
en
d
r
a,
R
es
ear
ch
s
ch
o
l
ar
,
D
ep
ar
t
m
e
n
t
o
f
E
l
ect
r
i
cal
an
d
E
l
ect
r
o
n
i
cs
E
n
g
i
n
eer
i
n
g
,
K
. L
. U
n
i
v
e
r
s
i
t
y
,
G
r
een
f
i
el
d
s
,
V
ad
es
w
ar
a
m
,
G
u
n
t
u
r
.
E
m
a
il:
a
m
ar
en
d
r
aa
m
r
i
t
a@
g
m
ai
l
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e m
a
t
r
i
x
co
n
v
er
t
er
s
ar
e
o
n
e s
t
a
g
e co
n
v
er
t
er
s
cap
ab
l
e o
f
p
r
o
v
i
d
i
n
g
s
i
n
u
s
o
i
d
al
v
o
l
t
ag
e an
d
f
r
e
q
ue
nc
y t
r
a
ns
f
o
r
m
a
t
i
o
n.
E
a
c
h o
ut
p
ut
l
i
ne
i
s
l
i
nke
d
t
o
e
a
c
h i
np
ut
l
i
ne
vi
a
a
b
i
d
i
r
e
c
t
i
o
na
l
s
w
i
t
c
h.
T
he
s
e
b
id
ir
e
c
tio
n
a
l s
w
itc
h
e
s
p
r
o
v
id
e
s
to
a
c
q
u
ir
e
v
o
lta
g
e
s
w
it
h
v
a
r
i
a
b
l
e
a
m
p
l
i
t
ud
e
a
nd
f
r
e
q
ue
nc
y a
t
t
he
o
ut
p
ut
s
i
d
e
b
y
s
w
itc
h
i
n
g
i
n
p
u
t v
o
lta
g
e
w
it
h
v
a
r
io
u
s
m
o
d
u
la
tio
n
a
l
g
o
r
ith
m
s
.
T
h
e
m
at
r
i
x
co
n
v
er
t
er
i
s
a s
i
n
g
l
e
s
t
ag
e
co
n
v
er
t
er
w
h
i
ch
h
a
s
an
ar
r
a
y
o
f
m
×
n
b
id
ir
e
c
tio
n
a
l p
o
w
e
r
s
w
itc
h
in
g
to
c
o
n
n
e
c
t d
ir
e
c
tl
y
;
m
-
p
ha
s
e
vo
l
t
a
g
e
s
o
u
r
ce t
o
n
-
p
h
as
e l
o
ad
.
T
h
e
m
at
r
i
x
co
n
v
er
t
er
o
f
3
×
3
s
w
itc
h
e
s
s
h
o
w
n
in
F
ig
ur
e
1
h
as
h
i
g
h
es
t
p
r
act
i
cal
i
n
t
er
es
t
b
ecau
s
e i
t
co
n
n
ect
s
a t
h
r
ee p
h
as
e v
o
l
t
a
g
e s
o
u
r
ce
w
i
t
h
a t
h
r
e
e p
h
as
e l
o
ad
.
N
o
r
m
a
l
l
y
,
t
h
e
m
at
r
i
x
co
n
v
er
t
er
i
s
f
ed
b
y
a
v
o
l
t
ag
e
s
o
u
r
ce
an
d
,
f
o
r
t
hi
s
r
e
a
s
o
n t
he
i
np
ut
t
e
r
m
i
na
l
s
s
ho
u
l
d
no
t
b
e
s
ho
r
t
e
d
.
O
n t
h
e
o
t
he
r
ha
nd
t
he
l
o
a
d
ha
s
t
y
p
i
c
a
l
l
y
a
n i
nd
uc
t
i
ve
na
t
ur
e
a
nd
f
o
r
t
hi
s
r
e
a
s
o
n
a
n
o
ut
p
ut
p
ha
s
e
m
us
t
ne
ve
r
b
e
o
pe
ne
d
.
D
e
f
i
ni
ng t
he
s
w
i
t
c
hi
n
g f
unc
t
i
o
n o
f
a
s
i
n
gl
e
s
w
i
t
c
h
:
S
kj
=
1
s
w
i
tc
h
S
kj
c
l
os
e
d
0
,
s
w
i
tc
h
S
kj
o
p
en
K
=
{
A
,
B
,
C
}
j
=
{
a
,
b
,
c
}
(1
)
T
h
e r
es
t
r
i
ct
i
o
n
i
s
ex
p
r
es
s
ed
as
S
Aj
+
S
BJ
+
S
CJ
=
1
j
=
{
a
,
b
,
c
}
(
2)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
39
–
19
47
1940
F
i
g
ur
e
1
.
3
×3
m
a
t
r
i
x
c
on
v
e
r
t
e
r
t
opol
og
y
T
he
i
np
ut
a
nd
o
ut
p
ut
vo
l
t
a
ge
c
a
n b
e
e
xp
r
e
s
s
e
d
a
s
ve
c
t
o
r
s
d
e
f
i
ne
d
b
y
V
o
=
v
a
(
t
)
v
b
(
t
)
v
c
(
t
)
V
i
=
v
A
(
t
)
v
B
(
t
)
v
C
(
t
)
(3
)
T
h
e i
n
p
u
t
an
d
o
u
t
p
u
t
cu
r
r
en
t
can
b
e ex
p
r
es
s
ed
as
v
ect
o
r
s
d
e
f
i
n
ed
b
y
I
i
=
i
a
(
t
)
i
b
(
t
)
i
c
(
t
)
I
o
=
i
A
(
t
)
i
B
(
t
)
i
C
(
t
)
(4
)
T
h
e r
el
at
i
o
n
s
h
i
p
b
et
w
een
l
o
a
d
an
d
i
n
p
u
t
v
o
l
t
a
g
e ca
n
b
e ex
p
r
es
s
ed
as
v
a
(
t
)
v
b
(
t
)
v
c
(
t
)
=
S
Aa
(
t
)
S
Ba
(
t
)
S
Ca
(
t
)
S
Ab
(
t
)
S
Bb
(
t
)
S
Cb
(
t
)
S
Ac
(
t
)
S
Bc
(
t
)
S
Cc
(
t
)
v
A
(
t
)
v
B
(
t
)
v
C
(
t
)
(5
)
B
y
c
o
n
s
id
e
r
in
g
th
a
t
t
h
e
b
id
ir
e
c
tio
n
a
l
p
o
w
e
r
s
w
itc
h
e
s
w
o
r
k
w
it
h
h
i
g
h
s
w
itc
h
in
g
f
r
e
q
u
e
n
c
y
,
a
lo
w
-
f
r
eq
u
en
c
y
o
u
t
p
u
t
v
o
l
t
a
g
e o
f
v
ar
i
ab
l
e am
p
l
i
t
u
d
e an
d
f
r
eq
u
e
n
c
y
can
b
e g
en
er
at
ed
b
y
m
o
d
u
l
at
i
n
g
t
h
e d
u
t
y
c
y
cl
e
o
f t
h
e
s
w
i
t
c
he
s
u
s
i
ng t
he
i
r
r
e
s
p
e
c
t
i
ve
s
w
i
t
c
hi
n
g f
unc
t
i
o
n.
L
e
t
m
kj
(
t
)
b
e t
h
e d
u
t
y
c
y
cl
e o
f
s
w
i
t
ch
S
k
j
d
ef
i
n
ed
as
m
kj
(t
)=
t
k
j
/
T
s
e
q
.
W
hi
c
h c
a
n ha
ve
t
he
f
o
l
l
o
w
i
n
g
va
l
ue
s
0
< m
k
j
<
1
k=
{
A
,
B
,
C
}
,
j
=
{
a
,
b
,
c
}
.
(
6)
T
h
e
A
ls
i
n
a
a
n
d
V
e
n
t
u
r
in
i M
e
th
o
d
(
A
V
M
e
th
o
d
)
is
th
e
f
ir
s
t
to
pr
o
d
uc
e
s
i
nus
o
i
d
a
l
i
np
ut
a
nd
o
ut
p
ut
w
a
ve
f
o
r
m
s
w
i
t
h
m
i
ni
m
a
l
hi
ghe
r
o
r
d
e
r
ha
r
m
o
ni
c
s
a
nd
n
o
s
ub
ha
r
m
o
ni
c
c
o
m
p
o
ne
nt
s
.
T
he
m
o
s
t
p
o
p
ul
a
r
s
w
itc
h
in
g
a
l
g
o
r
ith
m
i
s
s
p
a
c
e
v
e
c
to
r
m
o
d
u
la
tio
n
t
h
a
t a
llo
w
s
th
e
c
o
n
tr
o
l o
f
i
n
p
u
t c
u
r
r
e
n
t
a
n
d
o
u
tp
u
t
v
o
lta
g
e
v
ect
o
r
s
i
n
d
ep
en
d
en
t
l
y
.
S
p
ace v
ect
o
r
M
o
d
u
l
at
i
o
n
h
a
s
m
a
n
y
ad
v
an
t
a
g
es
w
i
t
h
r
es
p
ect
t
o
A
V
an
d
O
p
t
i
m
al
A
V
m
od
u
l
a
t
i
o
n
t
e
c
hn
i
qu
e
s
,
s
u
c
h
a
s
obt
a
i
n
m
a
x
i
m
um
v
ol
t
a
g
e
t
r
a
n
s
f
e
r
r
a
t
i
o
(
0<
’
q’
<
0.
866
)
w
i
t
h
ou
t
a
ddi
ng
t
h
i
r
d
h
ar
m
o
n
i
cs
,
m
i
n
i
m
i
ze t
h
e n
u
m
b
er
o
f
s
w
i
t
c
h
i
n
g
o
p
er
at
i
o
n
s
p
er
cy
cl
e.
T
h
es
e t
h
r
ee
m
o
d
u
l
at
i
o
n
s
f
o
r
M
at
r
i
x
C
o
n
v
er
t
er
h
av
e b
ee
n
p
r
o
p
o
s
e
d
in
lite
r
a
tu
r
e
[
1]
-
[4
]
.
Man
y
a
s
p
ect
s
s
u
ch
a
s
T
o
t
al
H
ar
m
o
n
i
c D
i
s
t
o
r
t
i
o
n
(
T
H
D
)
,
c
om
pl
e
x
i
t
y
of
i
m
p
l
e
m
e
n
t
a
t
i
on
a
n
d num
be
r
of
s
w
i
t
c
hi
ng
ope
r
a
t
i
on
s
pe
r
c
y
c
l
e
pl
a
y
a
n i
m
por
t
a
n
t
r
ol
e
i
n
de
t
e
r
m
i
n
i
ng
a
n
a
ppr
opr
i
a
t
e
m
odu
l
a
t
i
on
s
tr
a
te
g
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
SSN
:
2088
-
8708
I
nv
e
s
t
i
gat
i
on a
nd A
nal
y
s
i
s
of
Spac
e
V
e
c
t
or
M
od
ul
at
i
on w
i
t
h
M
at
r
i
x C
o
n
ver
t
er
.... (
C
h
. Am
a
r
e
n
d
r
a
)
1941
2.
A
LE
S
I
N
A
–
VE
NT
URI
N
I
M
E
T
H
O
D
(
AV M
E
T
H
O
D)
A
f
ir
s
t s
o
l
ut
i
o
n
i
s
o
b
t
a
i
ne
d
b
y
us
i
n
g t
he
d
ut
y c
yc
l
e
m
a
t
r
i
x a
p
p
r
o
a
c
h.
T
hi
s
s
t
r
a
t
e
g
y a
l
l
o
w
s
t
he
c
o
nt
r
o
l
of
t
h
e
out
pu
t
v
ol
t
a
g
e
s
a
n
d
i
npu
t
po
w
e
r
f
a
c
t
or
,
a
n
d c
a
n
be
s
um
m
a
r
i
z
e
d i
n
t
h
e
f
ol
l
o
w
i
n
g
e
qu
a
t
i
on
,
v
a
l
i
d
f
or
uni
t
y
i
np
ut
p
o
w
e
r
f
a
c
t
o
r
.
m
kj
=
t
kj
T
s
eq
=
1
3
1
+
2
v
k
v
j
V
im
2
f
o
r
k
=A
,
B
,
C
an
d
j
=a,
b
,
c
(7
)
A
s
s
um
i
ng
ba
l
a
n
c
e
d s
u
ppl
y
vol
t
a
g
e
s
a
n
d ba
l
a
n
c
e
d ou
t
pu
t
c
on
di
t
i
on
s
,
t
h
e
m
a
xi
m
um
v
a
l
u
e
of
t
h
e
v
o
lta
g
e
tr
a
n
s
f
e
r
r
a
tio
‘
q
’
i
s
0
.
5
.
T
h
is
lo
w
v
a
l
u
e
r
e
p
r
e
s
e
n
t
s
th
e
m
a
j
o
r
d
r
a
w
b
a
c
k
o
f
t
h
is
m
o
d
u
la
tio
n
s
tr
a
te
g
y
.
3.
A
LE
S
I
N
A
-
VE
NT
URI
N
I
1
9
8
9
(
O
P
T
I
M
U
M
AV
M
ETH
O
D
)
I
n
or
de
r
t
o i
m
pr
ov
e
t
h
e
pe
r
f
or
m
a
n
c
e
o
f
t
h
e
pr
e
v
i
ous
m
o
du
l
a
t
i
on s
t
r
a
t
e
gy
i
n
t
e
r
m
s
of
m
a
x
i
m
u
m
v
o
l
t
ag
e
t
r
an
s
f
er
r
at
i
o
,
a s
eco
n
d
s
o
l
ut
i
o
n
ha
s
b
e
e
n p
r
e
s
e
nt
e
d
i
n [
2]
,
[3
]
.
I
n
th
is
c
a
s
e
th
e
m
o
d
u
la
tio
n
la
w
c
a
n
b
e
de
s
c
r
i
be
d by
th
e
f
o
llo
w
in
g
r
e
la
tio
n
s
h
ip
,
v
a
lid
f
o
r
u
n
it
y
p
o
w
e
r
f
a
c
to
r
,
a
n
d
m
a
x
i
m
u
m
v
o
lta
g
e
tr
a
n
s
f
e
r
r
a
tio
‘
q
’
i
s
0.
866
.
=
1
3
1
+
2
2
+
4
3
√
3
s
in
(
+
)
s
in
(
3
)
(8
)
f
o
r
K
=A
,
B
,
C
an
d
j
=a,
b
,
c
β
K
=
0
,
2
π
3
⁄
,
4
π
3
⁄
fo
r
K
=
A
,
B
,
C
r
es
p
e
c
t
i
v
el
y
.
4.
DI
RE
CT
S
P
A
CE
V
E
C
T
O
R M
O
DUL
AT
I
O
N (
DS
VM
)
T
h
e
D
S
V
M
h
as
f
o
l
l
o
w
i
n
g
ad
v
an
t
a
g
es
co
m
p
ar
ed
t
o
A
V
Met
h
o
d
a
n
d
O
p
t
i
m
al
A
V
M
et
h
o
d
a
.
M
a
x
i
m
u
m
v
o
lta
g
e
tr
a
n
s
f
e
r
r
a
tio
(
0
.
8
6
6
)
w
it
h
o
u
t
u
til
iz
in
g
th
e
th
ir
d
h
a
r
m
o
n
ic
c
o
m
p
o
n
e
n
t in
j
e
c
tio
n
m
e
t
h
o
d
.
b
.
R
ed
u
ce t
h
e
ef
f
ect
i
v
e
s
w
i
t
c
h
i
n
g
f
r
eq
u
e
n
c
y
i
n
e
a
c
h c
y
c
l
e
,
a
n
d t
hu
s
t
h
e
s
w
i
t
c
hi
ng
l
os
s
e
s
.
c
.
M
i
ni
m
i
z
i
ng t
he
i
np
ut
c
ur
r
e
nt
a
nd
o
ut
p
ut
vo
l
t
a
ge
ha
r
m
o
ni
c
s
.
A
t
a
n
y s
w
i
t
c
h
i
ng t
i
m
e
,
t
he
r
e
a
r
e
2
7
s
w
i
t
c
h
i
ng
f
o
r
c
o
nne
c
t
i
n
g
o
u
t
p
u
t
p
h
as
e t
o
i
n
p
u
t
p
h
a
s
es
.
T
h
es
e s
w
i
t
ch
i
n
g
co
m
b
i
n
at
i
o
n
s
can
b
e an
al
y
zed
i
n
t
h
r
ee g
r
oups
,
G
ro
u
p
I
-
E
ach
o
u
tp
u
t p
h
a
s
e
is
d
ir
e
c
tl
y
c
o
n
n
e
c
te
d
to
th
r
e
e
i
n
p
u
t
p
h
a
s
e
s
i
n
te
r
n
s
w
it
h
s
ix
s
w
i
tc
h
in
g
c
o
m
b
i
n
a
tio
n
s
.
G
ro
u
p
II
-
T
h
er
e ar
e
1
8
s
w
i
t
c
h
i
n
g
co
m
b
i
n
at
i
o
n
s
i
n
t
h
e s
eco
n
d
g
r
o
u
p
a
ct
i
v
e v
o
l
t
a
g
e
v
ect
o
r
f
o
r
m
ed
at
v
ar
i
ab
l
ea
m
p
l
i
t
u
d
e
a
nd
f
r
e
q
ue
nc
y.
A
m
p
l
i
t
ud
e
o
f
t
he
o
ut
p
ut
vo
l
t
a
ge
d
e
p
e
nd
s
o
n
t
he
s
e
l
e
c
t
e
d
i
np
ut
l
i
ne
vo
l
t
a
ge
s
.
G
ro
u
p
III
-
L
a
s
t
gr
o
up
w
i
t
h t
hr
e
e
s
w
i
t
c
hi
ng
c
o
m
b
i
na
t
i
o
ns
c
o
ns
i
s
t
s
o
f
z
e
r
o
ve
c
t
o
r
s
.
I
n t
hi
s
c
a
s
e
,
a
l
l
t
he
o
ut
p
ut
p
ha
s
e
s
a
r
e
c
o
nne
c
t
e
d
t
o
t
he
i
np
ut
p
ha
s
e
.
O
ut
p
u
t
l
i
ne
vo
l
t
a
ge
a
nd
i
np
ut
c
u
r
r
en
t
s
p
ace v
ect
o
r
s
ar
e
u
s
ed
i
n
t
h
e ap
p
l
i
cat
i
o
n
o
f
t
h
e S
p
ace V
ect
o
r
M
o
d
u
l
at
i
o
n
(
S
V
M)
t
o
t
h
e
m
at
r
i
x
co
n
v
e
r
t
er
.
T
he
d
ut
y
c
y
c
l
e
f
o
r
t
he
f
o
ur
no
n
-
zer
o
v
ect
o
r
s
δ
1
=
(
−
1
)
k
o
+
k
i
+
1
2
m
√
3
co
s
∅
o
′
−
π
2
co
s
(
∅
i
′
−
π
2
)
co
s
(
∆
∅
)
(9
)
δ
2
=
(
−
1
)
k
o
+
k
i
2
m
√
3
co
s
∅
o
′
−
π
2
co
s
(
∅
i
′
+
π
6
)
co
s
(
∆
∅
)
(
10)
δ
3
=
(
−
1
)
k
o
+
k
i
2
m
√
3
co
s
∅
o
′
+
π
6
co
s
(
∅
i
′
−
π
2
)
co
s
(
∆
∅
)
(
11)
δ
4
=
(
−
1
)
k
o
+
k
i
+
1
2
m
√
3
co
s
∅
o
′
+
π
6
co
s
(
∅
i
′
+
π
6
)
co
s
(
∆
∅
)
(
12)
W
h
e
r
e
m
is
th
e
m
o
d
u
la
tio
n
in
d
e
x
,
∆
∅
i
s
t
h
e d
i
s
p
l
acem
e
n
t
an
g
l
e
m
ea
s
u
r
ed
b
et
w
een
i
n
p
u
t
v
o
l
t
a
g
e v
ect
o
r
V
i
a
nd
i
np
ut
c
ur
r
e
nt
ve
c
t
o
r
I
i
, k
v
a
nd
K
i
ar
e t
h
e v
o
l
t
a
g
e an
d
cu
r
r
en
t
s
ect
o
r
s
r
es
p
ect
i
v
el
y
.
∅
o
′
=
∅
o
−
(
k
v
−
1
)
π
6
(
13)
∅
i
′
=
∅
i
−
(
k
i
−
1
)
π
6
(
14)
I
f
t
he
s
i
g
n o
f
a
n
y
d
ut
y
c
yc
l
e
i
s
ne
ga
t
i
ve
t
he
n t
he
ve
c
t
o
r
o
f
gr
o
up
I
I
m
us
t
ha
ve
a
ne
ga
t
i
ve
s
i
g
n.
T
he
d
ut
y c
y
c
l
e
o
f
t
he
z
e
r
o
ve
c
t
o
r
V
s
o
a
nd
I
s
o
i
s
m
uc
h t
ha
t
t
he
t
o
t
a
l
d
ut
y c
yc
l
e
m
u
s
t
b
e
t
he
u
ni
t
at
a
f
i
x
ed
s
a
m
p
l
i
n
g f
r
e
q
ue
nc
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
39
–
19
47
1942
δ
0
=
1
−
δ
1
+
δ
2
+
δ
3
+
δ
4
(
15)
T
ab
l
e 1
.
P
os
i
t
i
on
s
w
i
t
c
h
i
ng
v
e
c
t
or
s
of
g
r
ou
p 2 i
n
t
e
r
m
s
of
t
he
v
ol
t
a
g
e
a
n
d c
u
r
r
e
n
t
s
e
c
t
or
s
,
f
or
e
a
c
h
n
on
-
zer
o
v
ect
o
r
C
u
rre
n
t
S
ec
t
o
r
V
ol
t
a
g
e
S
e
c
t
or
1
o
r
4
2
o
r
5
3
o
r
6
1
o
r
4
9
7
3
1
6
4
9
7
3
1
6
4
2
o
r
5
8
9
2
3
5
6
8
9
2
3
5
6
3
o
r
6
7
8
1
2
4
5
7
8
1
2
4
5
s
1
s
2
s
3
s
4
s
1
s
2
s
3
s
4
s
1
s
2
s
3
s
4
5.
I
n
d
i
rect
S
p
a
ce V
ect
o
r
M
o
d
u
l
a
t
i
o
n
(
I
S
V
M
)
T
h
is
m
o
d
u
la
tio
n
te
c
h
iq
u
e
a
p
p
lie
s
t
h
e
w
e
ll d
e
v
e
lo
p
e
d
P
u
ls
e
W
id
th
M
o
d
u
la
tio
n
(
P
W
M)
s
tr
a
te
g
ie
s
o
f
co
n
v
er
t
er
t
o
a
m
a
t
r
i
x
co
n
v
er
t
e
r
m
o
d
u
l
at
i
o
n
al
g
o
r
i
t
h
a
m
.
T
h
e
o
b
j
ect
i
v
e i
s
s
t
i
l
l
t
h
e
s
a
m
e as
d
i
r
ect
s
p
ace
v
ect
o
r
.
S
ynt
he
s
i
z
e
t
he
o
ut
p
ut
vo
l
t
a
ge
ve
c
t
o
r
s
f
r
o
m
t
he
i
np
ut
vo
l
t
a
ge
s
a
nd
t
he
i
np
ut
c
ur
r
e
nt
ve
c
t
o
r
f
r
o
m
t
he
o
u
t
p
ut
c
ur
r
e
nt
s
.
T
he
o
ut
p
ut
vo
l
t
a
ge
s
a
nd
i
np
ut
c
ur
r
e
nt
s
a
r
e
c
o
nt
r
o
l
l
e
d
i
nd
e
p
e
nd
a
nt
l
y
i
n
I
SV
M
.
T
he
a
d
va
nt
a
ge
o
f
t
hi
s
m
o
d
u
la
tio
n
s
c
h
e
m
e
is
t
h
a
t it i
s
e
a
s
ie
r
to
i
m
p
le
m
e
n
t t
h
e
w
e
l
l e
s
ta
b
lis
h
e
d
P
W
M
c
o
n
v
e
r
te
r
m
o
d
u
la
tio
n
to
th
e
M
C.
A
s
t
h
e
m
at
r
i
x
co
n
v
er
t
er
c
an
eq
u
i
v
al
e
n
t
l
y
r
ep
r
es
e
n
t
ed
as
i
n
v
er
t
er
a
n
d
r
ect
i
f
i
er
s
t
a
g
es
s
p
l
itte
d
b
y
a
f
ic
tio
n
D
C
lin
k
th
i
s
is
d
o
n
e
b
y
d
iv
id
in
g
t
h
e
s
w
it
h
c
h
in
g
f
u
n
c
tio
n
s
in
to
th
e
p
r
o
d
u
c
t o
f
r
e
c
tif
ie
r
a
n
d
in
v
e
r
te
r
s
w
itc
h
in
g
f
u
nc
t
i
o
n.
T
w
o
s
p
ace v
ect
o
r
m
o
d
u
l
at
i
o
n
s
f
o
r
cu
r
r
en
t
s
o
u
r
ce r
ect
i
f
i
er
a
n
d
v
o
l
t
a
g
e s
o
u
r
ce i
n
v
er
t
er
s
t
a
ge
s
s
ho
ul
d
be
i
m
pl
e
m
e
n
t
e
d a
n
d t
h
e
n
t
h
e
t
w
o
m
od
u
l
a
t
i
on
r
e
s
u
l
t
s
s
h
ou
l
d
be
c
om
bi
n
e
d.
S
1
1
S
2
1
S
3
1
S
1
2
S
2
2
S
3
2
S
1
3
S
2
3
S
3
3
=
S
7
S
8
S
9
S
1
0
S
1
1
S
1
2
.
S
1
S
3
S
5
S
2
S
4
S
6
(
15)
V
A
V
B
V
C
=
S
7
S
8
S
9
S
1
0
S
1
1
S
1
2
.
S
1
S
3
S
5
S
2
S
4
S
6
.
V
a
V
b
V
c
(
16)
5.
1.
S
V
M
f
o
r t
h
e rect
i
f
i
er s
t
a
g
e
T
h
e r
ect
i
f
i
er
p
ar
t
o
f
t
h
e eq
u
i
v
al
en
t
ci
r
cu
i
t
can
b
e as
s
u
m
e
d
as
a cu
r
r
en
t
s
o
u
r
ce r
ect
i
f
i
e
r
w
ith
t
h
e
av
er
ag
ed
v
al
u
e o
f
I
dc
a
n
d
i
s
r
ep
r
es
en
t
ed
a
s
f
o
llo
w
s
I
d
c
=
√
3
2
I
o
ut
.
m
v
.
c
os
(
θ
o
ut
)
(
17)
I
out
i
s t
h
e p
eak
v
al
u
e o
f
o
u
t
p
u
t
cu
r
r
en
t
out
is
t
h
e
o
u
tp
u
t lo
a
d
d
is
p
la
c
e
m
e
n
t a
n
g
le
a
n
d
m
v
=V
out
/V
dc
.
T
he
i
np
ut
cu
r
r
en
t
s
p
ace v
ec
t
o
r
I
ref
i
s
ex
t
r
act
ed
as
I
r
e
f
=
2
3
(
I
a
+
ᾱ
I
b
+
ᾱ
2
I
c
)
(
18)
T
h
e n
i
n
e r
eci
f
i
er
s
w
i
t
c
h
es
h
av
e n
i
n
e p
er
m
i
t
t
ed
co
m
b
i
n
at
i
o
n
s
av
o
i
d
an
o
p
en
ci
r
cu
i
t
at
t
h
e D
C
-
l
i
n
k.
T
h
es
e co
m
b
i
n
at
i
o
n
s
i
n
cl
u
d
e t
h
r
ee zer
o
an
d
s
i
x
n
o
n
zer
o
i
n
p
u
t
cu
r
r
en
t
s
.
T
h
e
r
ef
er
en
ce i
n
p
u
t
cu
r
r
en
t
v
ect
o
r
i
s
s
ynt
he
s
i
z
e
d
b
y
i
m
p
r
e
s
s
i
n
g t
he
a
d
j
o
i
ni
n
g s
w
i
t
c
hi
n
g ve
c
t
o
r
s
(
I
ɤ
) a
n
d
(I
δ
)
w
i
t
h d
ut
y
c
yc
l
e
(
d
ɤ
) a
n
d
(d
δ
)
r
es
p
ect
i
v
el
y
.
I
r
e
f
=
I
γ
.
d
γ
+
I
δ
.
d
δ
(
19)
T
h
e d
u
t
y
r
at
i
o
s
o
f
act
i
v
e v
ect
o
r
s
ar
e
d
γ
=
T
γ
T
s
=
m
c
s
in
π
3
−
θ
i
(
20)
d
δ
=
T
δ
T
s
=
m
c
s
in
(
θ
i
)
(
21)
d
OC
=
T
OC
T
s
=
1
−
d
δ
−
d
γ
(
22)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
SSN
:
2088
-
8708
I
nv
e
s
t
i
gat
i
on a
nd A
nal
y
s
i
s
of
Spac
e
V
e
c
t
or
M
od
ul
at
i
on w
i
t
h
M
at
r
i
x C
o
n
ver
t
er
.... (
C
h
. Am
a
r
e
n
d
r
a
)
1943
W
h
er
e
θ
i
i
n
d
i
cat
es
t
h
e an
g
l
e
o
f
t
h
e
r
e
f
er
en
ce
c
u
r
r
en
t
v
ect
o
r
.
T
he
c
ur
r
e
nt
m
o
d
ul
a
t
i
o
n
i
nd
e
x
m
c
d
ef
i
n
es
t
h
e
d
es
i
r
ed
cu
r
r
en
t
t
r
an
s
f
er
r
at
i
o
s
u
ch
a
s
m
c
=
I
r
e
f
I
DC
;
0
≤
m
c
≤
1
5.
2.
F
u
zzy
C
-
M
e
a
ns
f
o
r
SV
M
T
h
e
c
la
s
s
i
f
ic
a
tio
n
o
f
m
o
d
u
la
ti
o
n
i
n
d
e
x
es
ar
e o
b
t
ai
n
ed
i
n
r
ec
t
i
f
i
er
a
n
d
i
n
v
er
t
er
o
f
M
C
w
as
f
i
n
e
-
t
un
e
d
an
d
cl
u
s
t
er
ed
w
i
t
h
h
el
p
o
f
F
u
zz
y
c
-
M
ean
s
.
T
h
e
f
i
n
e
-
t
u
ne
d
m
o
d
ul
a
t
i
o
n i
nd
e
xe
s
(
m
c
, m
v
)
f
or
pu
r
pos
e
of
S
V
M
.
T
h
e
d
e
ta
ile
d
a
lg
o
r
ith
m
w
it
h
F
u
z
z
y
c
-
M
e
a
n
s
a
s
f
o
l
l
o
w
s
A
l
g
o
r
i
th
m
(s
te
p
b
y
s
te
p
)
1.
Fi
x
“
c” i
.
e,
2
≤
c
≤
n
a
n
d
in
itia
liz
e
p
a
r
tit
io
n
m
a
tr
i
x
U
(o)
ϵ
M
c
W
h
er
e U
w
i
t
h
“
c” r
o
w
s
an
d
“n
” co
l
u
m
n
s
2.
C
al
cu
l
at
e t
h
e c ce
n
t
r
e v
ect
o
r
,
v
1
(r)
u
s
i
ng
f
o
l
l
o
w
i
ng e
q
ua
t
i
o
n
V
i
j
=
∑
μ
ik
2
X
kj
n
k
=
1
∑
μ
ik
2
n
k
=
1
(
23)
W
h
er
e i
=1
,
2
,
…
c ,
j
=1
,
2
,
…
.
n
µ
ik
i
s
t
h
e
m
e
m
be
r
s
h
i
p f
un
c
tio
n
3.
U
pda
t
e
U
(r)
cal
cu
l
at
e u
p
d
at
ed
ch
ar
act
er
i
s
t
i
c
s
f
u
n
ct
i
o
n
(
f
o
r
al
l
i
,
k
)
d
i
k
=
∑
X
k
j
−
V
i
j
2
=
0
,
1
,
.
.
=
1
,
…
=
1
,
…
.
1
2
(2
4
)
X
ik
is
th
e
i
np
ut
o
f
S
V
M
.
F
in
d
m
e
m
b
e
r
s
h
ip
v
a
lu
e
o
f
p
a
r
titio
n
m
a
tr
ix
e
le
m
e
n
t
μ
i
k
r
+
1
=
∑
d
ik
r
d
jk
r
2
m
1
−
1
c
j
=
1
−
1
(
25)
W
h
er
e m
1
-
w
e
ig
h
t f
a
c
to
r
4.
I
f
ma
x
[
1
−
0
]
≤
(
t
o
l
er
an
ce l
ev
el
)
s
t
o
p
;
o
t
h
er
w
i
s
e s
et
r
=r
+1
an
d
r
et
u
r
n
t
o
s
t
o
p
.
T
hi
s
f
uz
z
y c
-
m
e
a
n a
l
go
r
i
t
h
m
i
s
u
s
e
d
t
o
f
i
ne
t
u
ne
t
he
c
ur
r
e
nt
m
o
d
ul
a
t
i
o
n i
nd
e
x
m
c
,
v
o
lta
g
e
m
o
d
ul
a
t
i
o
n i
nd
e
x
m
v
.
T
h
e p
r
o
p
o
s
ed
F
u
zz
y
B
as
ed
S
p
ace V
e
ct
o
r
M
o
d
u
l
at
i
o
n
i
s
t
h
e
n
o
v
e
l
m
o
d
u
la
tio
n
s
tr
a
te
g
y
f
o
r
m
at
r
i
x
co
n
v
er
t
er
.
6.
S
I
M
U
LA
TIO
N
R
ES
U
L
TS
In
or
de
r
t
o c
o
m
pa
r
e
t
h
e
pe
r
f
or
m
a
n
c
e
of
di
f
f
e
r
e
n
t
m
odu
l
a
t
i
on
t
e
c
h
ni
qu
e
s
a
ppl
i
e
d t
o t
h
e
m
a
t
r
i
x
co
n
v
er
t
er
vo
l
a
t
ge
so
u
r
ce co
n
n
ect
ed
t
o
el
ect
r
i
cal
ap
p
l
i
an
c
es
i
n
t
h
e
f
i
el
d
o
f
d
o
m
es
t
i
c
an
d
in
d
u
s
tr
ia
l.
I
n
a
s
i
m
u
l
at
i
o
n
el
ect
r
i
cal
ap
p
l
i
an
ce h
as
co
n
s
i
d
er
ed
as
a
p
r
act
i
cal
R
L
s
p
eci
p
i
ed
b
r
an
ce.
s
I
n t
hi
s
w
o
r
k,
t
hr
e
e
m
o
d
u
l
at
i
o
n
m
et
h
o
d
s
f
o
r
Mat
r
i
x
C
o
n
v
er
t
er
h
av
e b
een
s
i
m
u
l
a
t
ed
o
n
M
A
T
L
A
B
/s
i
m
u
lin
k
a
nd c
om
pa
r
e
d on
t
h
e
b
a
s
i
s
o
f
i
np
ut
c
ur
r
e
nt
ha
r
m
o
n
i
c
s
,
o
ut
p
ut
vo
l
t
a
ge
ha
r
m
o
ni
c
s
a
nd
n
u
m
b
e
r
o
f
s
w
itc
h
i
n
g
o
p
e
r
a
tio
n
s
p
e
r
c
y
c
le
.
T
h
e
s
i
mu
l
a
t
i
o
n
d
i
a
gr
a
m
a
s
s
h
o
w
n
i
n
t
he
F
i
gu
r
e
2
t
o
3,
t
he
o
ut
p
ut
vo
l
t
a
ge
w
a
ve
f
o
r
m
s
,
i
np
ut
c
ur
r
e
nt
w
a
ve
f
o
r
m
s
a
nd
T
H
D
a
na
l
y
s
i
s
w
e
r
e
s
ho
w
n
i
n F
i
g
ur
e
4
t
o
8
.
F
C
M
i
s
us
e
d
i
n b
o
t
h I
S
V
M
a
nd
D
S
V
M
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
39
–
19
47
1944
F
i
g
ur
e
2
.
m
a
t
r
i
x c
o
n
ve
r
t
e
r
s
i
m
ul
i
nk d
i
a
gr
a
m
F
i
g
ur
e
3
.
D
i
r
e
c
t
S
V
M
s
ub
s
ys
t
e
m
f
o
r
s
w
i
t
c
hi
n
g p
ul
s
e
ge
ne
r
a
t
i
o
n
F
i
g
ur
e
4
.
I
S
V
M
w
i
t
h
F
C
M
O
u
t
p
u
t
V
o
l
t
ag
e T
H
D
an
al
y
s
i
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
SSN
:
2088
-
8708
I
nv
e
s
t
i
gat
i
on a
nd A
nal
y
s
i
s
of
Spac
e
V
e
c
t
or
M
od
ul
at
i
on w
i
t
h
M
at
r
i
x C
o
n
ver
t
er
.... (
C
h
. Am
a
r
e
n
d
r
a
)
1945
F
i
g
ur
e
5
.
D
S
V
M
o
ut
p
ut
vo
l
a
t
ge
w
a
ve
f
o
r
m
F
i
g
ur
e
6
.
I
S
V
M
w
i
t
h F
C
M
o
ut
p
ut
vo
l
a
t
ge
w
a
ve
f
o
r
m
F
i
g
ur
e
7
.
I
S
V
M
w
i
t
h F
C
M
i
np
ut
c
ur
r
e
n
t
ha
r
m
o
ni
c
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
39
–
19
47
1946
F
i
g
ur
e
8
.
D
S
V
M
w
i
t
h
F
C
M
i
np
ut
c
ur
r
e
nt
ha
r
m
o
n
i
c
s
T
h
e t
es
t
p
ar
am
et
er
s
ar
e p
r
es
e
n
t
ed
i
n
T
a
b
le
2.
T
he
s
i
m
ul
a
t
i
o
n
s
w
er
e p
er
f
o
r
m
ed
i
n
M
A
T
L
A
B
/s
i
m
u
li
n
k
,
t
h
e
s
u
mma
r
y
o
f
r
e
s
u
lt
w
e
r
e
ta
b
u
la
te
d
in
T
ab
l
e 3
.
T
ab
l
e 2
.
T
es
t
cas
e s
y
s
t
e
m
p
ar
am
et
er
s
P
AR
AM
E
T
E
R
S
VAL
UE
S
ou
r
c
e
v
o
l
t
a
ge
(
p
e
a
k
)
1
0
0
S
y
s
t
em
f
r
eq
u
en
c
y
5
0
H
z
L
o
ad
R
e
s
i
s
t
an
ce
1
0
o
h
m
s
L
o
a
d
I
n
d
u
c
t
a
n
c
e
1
0
µ
H
S
w
i
t
c
h
i
n
g
f
r
e
q
u
e
n
c
y
2
.
5
K
H
z
M
od
u
l
a
t
i
o
n
i
n
d
e
x
0
.
8
6
6
T
ab
l
e 3
.
Re
s
u
l
t
s S
u
m
m
a
r
y
M
o
d
u
l
a
t
i
o
n
T
e
c
h
n
i
q
u
e
s
O
p
t
im
a
l A
V
Me
t
h
o
d
I
S
V
M w
ith
FC
M
D
S
V
M w
ith
FC
M
I
n
p
u
t
C
u
r
r
e
n
t
H
a
r
m
o
n
i
c
s
2
9
.
63
2
1
.
16
1
8
.
6
7
O
u
t
p
ut
V
o
l
t
a
ge
H
a
r
m
on
i
c
s
3
4
.
55
2
1
.
76
2
0
.
26
N
u
m
b
e
r
o
f
S
w
i
t
c
h
i
n
g
O
p
e
r
a
t
i
o
n
s
p
e
r
C
y
c
l
e
1
0
5
8
5
9
1
7.
CO
NCL
U
S
I
O
N
M
at
r
i
x
C
o
n
v
er
t
er
w
i
t
h s
i
m
pl
e
R
L
l
oa
d h
a
s
be
e
n
s
i
m
u
la
te
d
w
ith
D
ir
e
c
t S
p
a
c
e
V
e
c
to
r
M
o
d
u
la
tio
n
r
ed
u
ced
t
h
e i
n
p
u
t
cu
r
r
en
t
T
H
D
b
y
“9
%
“
,
o
u
t
pu
t
v
ol
t
a
g
e
T
H
D
by
“
14%
”
f
r
o
m
th
e
r
e
s
u
lts
o
f
O
p
ti
m
a
l
A
V
m
e
t
h
od.
S
w
i
t
c
hi
ng
ope
r
a
t
i
on
s
pe
r
c
y
c
l
e
f
or
D
S
V
M
i
s
m
or
e
c
om
pa
r
e
t
o I
S
V
M
a
n
d O
pt
i
m
a
l
A
V
m
e
t
h
o
d
th
is
i
s
b
e
c
a
u
s
e
o
f
th
e
b
e
tte
r
u
til
iz
a
tio
n
o
f
z
e
r
o
s
w
itc
h
in
g
s
ta
te
s
.
E
v
e
n
th
o
u
g
h
D
V
S
M
r
e
s
u
lt
s
m
o
r
e
s
w
itc
h
in
g
o
p
e
r
a
tio
n
s
p
e
r
c
y
c
le
c
o
m
p
a
r
e
w
i
th
th
e
o
t
h
e
r
m
e
th
o
d
s
,
i
n
T
H
D
p
o
in
t o
f
v
ie
w
D
S
V
M
g
i
v
e
s
th
e
b
e
s
t r
e
s
u
lts
c
om
pa
r
e
d w
i
t
h
ot
h
e
r
t
w
o m
e
t
h
ods
w
i
t
h
f
i
ne
t
u
nni
n
g o
f
m
a
d
ul
a
t
i
o
n i
nd
e
xe
s
i
n b
o
t
h i
n
v
e
r
t
e
r
a
nd
r
e
c
t
i
f
i
e
r
st
a
g
e
s
.
NO
M
E
NCL
AT
UR
E
V
a
(t
),
V
b
(t
),
V
c
(
t)
-
O
u
tp
u
t V
o
lta
g
e
s
V
A
(t
),
V
B
(t
),
V
C
(
t)
-
I
np
ut
V
o
l
t
a
ge
s
I
a
(t
),
i
b
(t
),
i
c
(
t)
-
O
ut
p
u
t
C
ur
r
e
nt
s
i
A
(t
),
i
B
(t
),
i
C
(
t)
-
I
np
ut
C
ur
r
e
nt
s
m
M
odu
l
a
t
i
on
I
n
de
x
δ
D
ut
y r
a
t
i
o
out
O
u
t
put
l
oa
d di
s
pl
a
c
e
m
e
n
t
a
ng
l
e
K
i
, K
v
I
np
ut
c
ur
r
e
nt
s
e
c
t
o
r
,
Ou
t
p
u
t v
o
lta
g
e
s
e
c
to
r
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
SSN
:
2088
-
8708
I
nv
e
s
t
i
gat
i
on a
nd A
nal
y
s
i
s
of
Spac
e
V
e
c
t
or
M
od
ul
at
i
on w
i
t
h
M
at
r
i
x C
o
n
ver
t
er
.... (
C
h
. Am
a
r
e
n
d
r
a
)
1947
R
EF
ER
EN
C
ES
[
1]
M
.
V
e
nt
ur
i
ni
a
n
d A
.
A
l
e
s
i
na
,
“
G
e
ne
r
a
l
i
s
e
d t
r
a
ns
f
or
m
e
r
:
a
ne
w
bi
di
r
e
c
t
i
ona
l
,
s
i
n
us
oi
da
l
w
a
ve
f
or
m
f
r
e
que
nc
y
c
onv
e
r
t
e
r
w
i
t
h
c
ont
i
n
uo
us
l
y
a
dj
u
s
t
a
bl
e
i
nput
pow
e
r
f
a
c
t
or
,
”
in
t
h
e
I
E
E
E
P
o
w
er
E
l
ect
r
o
n
i
cs
S
p
eci
a
l
i
s
t
s
C
o
n
f
er
en
ce
(
P
E
SC
’
80)
,
A
t
l
an
t
a,
G
a,
U
S
A
,
pp.
2
42
–
25
2
.
[
2]
A
.
A
l
e
s
i
na
a
nd M
.
G
.
B
.
V
e
nt
ur
i
ni
,
“
A
na
l
y
s
i
s
a
nd de
s
i
g
n of
opt
i
m
um
-
a
m
pl
i
t
ude
ni
ne
-
s
w
itc
h
d
ir
e
c
t A
C
-
AC
co
n
v
er
t
er
s
”,
I
E
E
E
T
r
a
ns
ac
t
i
ons
o
n P
ow
e
r
E
l
e
c
t
r
ons
.
[
3]
L
.
H
ube
r
a
nd D
.
B
or
oj
e
v
i
c
,
“
S
pa
c
e
ve
c
t
or
m
odul
a
t
e
d t
hr
e
e
pha
s
e
t
o t
hr
e
e
-
p
h
as
e m
at
r
i
x
co
n
v
er
t
er
w
i
t
h
i
n
p
u
t
p
o
w
er
f
a
ct
o
r
co
r
r
ect
i
o
n
,
”
I
E
E
E
T
r
ans
ac
t
i
ons
on
I
nd
us
t
r
y
A
p
pl
i
c
a
t
i
o
ns
,
vo
l
/
i
ssu
e
:
31
(
6
)
,
p
p.
12
34
–
12
46
,
1
995
.
[
4]
Ch
.
A
m
ar
en
d
r
a
an
d
P
.
V
.
P
a
tta
b
h
ir
a
m
“
C
o
m
pa
r
a
t
i
v
e
s
t
ud
y
of
D
S
V
M
a
nd I
S
V
M
f
or
m
a
t
r
i
x
c
on
v
er
t
er
,
”
I
n
d
i
an
J
our
n
al
o
f
A
ppl
i
e
d R
e
s
e
ar
c
h (
I
J
A
R
)
,
v
ol
/is
s
u
e
:
3
(
6
)
,
20
16
.
B
I
O
G
RAP
H
I
ES
O
F
AUT
H
O
RS
C
h.
A
m
a
r
e
ndr
a
w
a
s
bor
n i
n I
ndi
a
on j
u
l
y
25,
19
90
.
H
e
r
e
c
i
v
e
dB
,
T
e
c
h D
e
g
r
e
e
i
n E
l
e
c
t
r
i
c
a
l
a
nd
E
l
e
c
t
r
oni
c
s
E
ng
i
ne
e
r
i
ng
F
r
om
A
m
r
i
t
a
S
c
hool
of
E
ng
i
ne
e
r
i
ng
i
n 2
01
1,
I
ndi
a
.
H
e
c
om
pl
e
t
e
d
M
.
T
e
c
h de
g
r
e
e
i
n P
ow
e
r
E
l
e
c
t
r
o
ni
c
s
a
nd D
r
i
v
e
s
f
r
o
m
K
.
L
.
U
ni
ve
r
s
i
t
y
i
n 201
3,
I
n
d
i
a.
P
r
es
en
t
l
y
h
e i
s
a p
ar
t
t
i
m
e r
es
ear
ch
s
ch
o
l
ar
i
n
K
.
L
.
U
n
i
v
er
s
i
t
y
.
H
i
s
r
es
e
a
r
ch
i
n
t
r
es
r
t
s
i
n
cl
u
d
es
m
at
r
i
x
co
n
v
er
t
er
,
P
ar
t
i
cl
e s
w
ar
m
o
p
t
i
m
i
z
at
i
o
n
,
E
l
ect
r
i
cal
D
r
i
v
es
an
d
P
o
l
y
p
h
as
e D
r
i
v
es
.
D
r
.
K
.
H
a
r
i
na
dha
R
e
ddy
w
a
s
bor
n
i
n I
n
di
a
on
j
ul
y
02,
1
97
4.
H
e
r
ecei
v
ed
B
.
E
.
d
eg
r
ee i
n
E
l
ect
r
i
cal
a
nd E
l
e
c
t
r
o
ni
c
s
E
ng
i
ne
e
r
i
ng
f
r
om
K
.
U
.
i
n
19
97,
I
n
di
a
.
H
e
c
om
pl
e
t
e
d M
.
T
e
c
h de
g
r
e
e
i
n
E
l
ect
r
i
cal
P
o
w
er
S
y
s
t
e
m
s
E
m
p
h
as
i
s
H
i
g
h
V
o
l
t
ag
e E
n
g
i
n
eer
i
n
g
f
r
o
m
J
.
N
.
T
.
U
n
i
v
er
s
i
t
y
-
K
a
k
i
na
da
C
a
m
pus
i
n 2006,
I
n
di
a
.
H
e
obt
a
i
ne
d P
h.
D
d
eg
r
ee i
n
E
l
ect
r
i
cal
P
o
w
er
S
y
s
t
e
m
s
f
r
o
m
A
ndhr
a
U
ni
v
e
r
s
i
t
y
C
a
m
pus
i
n t
he
y
e
a
r
2012
.
A
t
pr
e
s
e
nt
he
i
s
w
or
k
i
ng
a
s
P
r
of
e
s
s
or
i
n E
l
e
c
t
r
i
c
a
l
a
nd E
l
e
c
t
r
oni
c
s
E
ng
i
ne
e
r
i
ng
de
p
a
r
t
m
e
nt
a
t
K
L
U
ni
v
e
r
s
i
t
y
,
I
ndi
a
.
10
pa
pe
r
s
a
r
e
p
ubl
i
s
he
d
i
n
v
a
r
i
ous
na
t
i
o
na
l
a
nd i
nt
e
r
na
t
i
ona
l
j
our
na
l
s
.
H
i
s
r
e
s
e
a
r
c
h i
nt
e
r
e
s
t
s
i
nc
l
ude
A
I
t
e
c
hni
que
s
a
nd t
he
i
r
ap
p
l
i
cat
i
o
n
s
t
o
P
o
w
er
S
y
s
t
e
m
,
E
l
ect
r
i
cal
D
r
i
v
es
,
F
A
C
T
d
ev
i
c
e
s
an
d
I
n
t
eg
r
at
ed
R
en
ew
ab
l
e
E
n
e
r
g
y S
ys
t
e
m
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.