Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
84
4
~
85
0
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
540
8
44
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Statisti
cal An
alysis on Preliminary B
r
eak
d
own Pu
lses of
Positive Cloud-to-Ground Lightning in Malaysia
Chin-Le
o
n
g
Wooi,
Z
u
lkur
nain Ab
dul-Malek,
Noor
Az
linda Ahm
a
d
,
Mehrd
a
d
Mokhtari,
Behna
m Sa
limi
Institute of High
Voltag
e
and Hi
gh Current
, Facu
lt
y
of
El
ectrical
Engineering,
Un
iv
ersiti
T
e
knolo
g
i Mal
a
y
s
ia,
Johor Bahru, Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 10, 2015
Rev
i
sed
D
ec 14
, 20
15
Accepte
d Ja
n
6, 2016
This aim of this
paper is to stud
y
the preliminar
y
breakdown pulses (PBP)
of
positive cloud
-t
o-ground (+CG) lightning flash
e
s in Malay
s
i
a
. There is a
differen
ce
in P
B
P
chara
c
ter
i
s
t
i
c
s
when a
co
m
p
aris
on is
m
a
de betw
een
positive
and neg
a
tiv
e flashes. To
the best
of the
authors’ knowledge, this is
the first
tim
e the
PBP charact
eris
tics pr
e
ceding
p
o
sitive l
i
ghtning
in Mala
ysi
a
are r
e
ported. Th
is stud
y
was car
r
ied ou
t in
Johor Bahru, Malay
s
ia using
a
broadband an
ten
n
a s
y
stem durin
g a m
onsoon period (Oct-Dec,
2012). It is
found that th
e PBP for +CG lightning is much more complicated compared
to the positive
cloud-to-ground
(–CG
) lightnin
g
since only
n
e
gativ
e PBP
trains
ar
e us
ual
l
y
pr
es
ent in
the
–CG
lightning
.
Out of 21 analyzed positive
flas
hes
,
four t
ypes
of P
B
P trains
were identifi
e
d accord
ing to
their init
ia
l
polarit
ies.
These
are neg
a
tiv
e PBP (20%), positive PBP (15%), PBP with
polarity
r
e
versal (10%), and PBP with
irregular polarity
(15%)
.
The
balance
40% of flashes is without an
y
PBP.
The effect
of geographical
region may
also cause th
e observed d
i
ff
erence
s in
the cloud d
i
schar
g
e processes
including th
e t
y
pes
of P
B
P
.
M
o
re s
t
udies
are needed to d
e
term
ine th
e
relationship b
e
tween th
e r
e
turn
stroke and
PBP.
Keyword:
C
l
ou
d-t
o
-
g
r
o
u
n
d
Li
ght
ni
n
g
di
sc
har
g
e
Po
sitiv
e ligh
t
n
i
n
g
Pr
elimin
ar
y break
dow
n pu
lses
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Zul
k
ur
nai
n
A
b
dul
-M
al
ek,
In
stitu
te o
f
Hi
gh
Vo
ltag
e
and
High
C
u
rren
t
Facu
lty of Electri
cal Engineering,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia, Jo
ho
r Bahru, Malaysia
Em
a
il: zu
lk
u
r
nain
@u
tm
.
m
y
1.
INTRODUCTION
Li
ght
ni
n
g
i
s
o
n
e
of
t
h
e
nat
u
r
a
l
di
sast
er t
h
at
cause
d m
a
ny
po
we
r fai
l
ure
wo
rl
d
wi
de
[1]
.
A
negat
i
v
e
g
r
ou
nd
ligh
t
n
i
n
g
flash
is
u
s
ually in
itiated
at th
e lowe
r edg
e
o
f
a n
e
g
a
tive ch
arg
e
cen
t
er, an
d th
e
break
down
p
r
o
cess is aided
b
y
th
e electric field
enh
a
n
cem
en
t cau
sed
b
y
a
p
o
sitiv
e ch
arg
e
p
o
c
ket lo
cated
b
e
l
o
w t
h
e
n
e
g
a
tiv
e ch
arge cen
ter kno
wn
as th
e
prelimin
ary brea
kdo
wn
pu
lses (PBP) o
r
in
itial
b
r
eakd
own
p
u
l
ses
[2
].
The feat
ures
o
f
PB
P t
r
ai
ns i
n
ne
gat
i
v
e cl
o
u
d
-
t
o
-g
r
o
u
n
d
(
C
G) fl
as
hes ha
ve bee
n
p
r
evi
o
usl
y
rep
o
rt
e
d
[
3
-
1
4]
.
Th
e ret
u
rn
stro
k
e
o
f
p
o
sitiv
e lig
h
t
n
i
ng
is also
so
m
e
ti
me
s p
r
eced
e
d
b
y
a train
o
f
b
i
po
lar pu
lses (or PBP)
lasting
in
a duration of few
m
illisecond [15].
These pulse
trains m
a
y provi
de inform
a
tion conc
erning the first
event t
h
at lea
d
s t
o
the
electrical
brea
k
d
o
w
n
i
n
t
h
e
c
l
ou
d.
H
o
we
ve
r, t
h
e m
echanis
m
for preliminary
b
r
eakd
own
prio
r to
p
o
sitiv
e lig
h
t
n
i
ng
h
a
s yet
to
b
e
con
f
i
r
m
e
d
[6
, 16
]. Th
e larg
est am
p
litu
d
e
of PBP is u
s
u
a
lly
m
u
ch
s
m
aller t
h
an
t
h
at of th
e
fo
llowing
ret
u
rn
stro
k
e
, bu
t someti
mes it can
b
e
co
m
p
arab
le o
r
ev
en
larg
er t
h
an
th
at of th
e return
strok
e
[8
]. Th
e tim
e in
terv
al b
e
tween
PB
P and
th
e first
retu
rn
strok
e
is i
n
th
e order
o
f
1
0
m
s,
wi
t
h
a
m
a
xim
u
m
and
m
i
nim
u
m
of several
h
u
n
d
r
ed m
i
ll
i
s
econ
ds [
4
,
17
, 1
8
]
and fe
w m
ill
i
s
econ
d
[5
, 1
8
,
19]
,
respect
i
v
el
y
.
T
h
e pe
rcent
a
ge of C
G
l
i
g
ht
ni
n
g
wi
t
h
di
sce
r
n
a
bl
e PB
P vari
e
s
si
gni
fi
ca
nt
l
y
i
n
di
ffe
re
nt
st
udi
e
s
.
As sum
m
ari
z
ed by
[
20]
, s
u
c
h
pe
rcent
a
ge appa
re
nt
l
y
vari
es wi
t
h
l
a
t
i
t
ude. The sm
al
l
e
st
percent
a
ge i
s
19
%
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
84
4 – 8
5
0
84
5
reco
rde
d
i
n
S
r
i
Lan
k
a (
7
°
N
).
In
re
gi
o
n
s
of
h
i
ghe
r l
a
t
i
t
udes,
t
h
e pe
rce
n
t
a
g
e
i
s
m
u
ch hi
g
h
e
r, s
u
c
h
as
80
% i
n
Aust
ri
a,
90
% i
n
Fi
nl
an
d, a
n
d
10
0%
i
n
Swe
d
en.
Despite t
h
e
fac
t
that m
a
ny counties al
ready
report
e
d
t
h
e PBP precedi
n
g
positive
ret
u
rn stroke
[4,
6,
16, 21, 22], apart from
our own study
re
ported in [23], thi
s
is the firs
t time prelim
inary
breakdown precedi
n
g
p
o
s
itiv
e ligh
t
nin
g
in
Malaysia is rep
o
rted.
Th
e in
itial p
o
l
arity o
f
PBP in
n
e
g
a
tiv
e clou
d-to-gro
und
(-CG)
lig
h
t
n
i
ng
is always th
e sam
e
as th
at o
f
th
e first re
turn
stro
k
e
. Ho
wev
e
r, th
e situ
atio
n
fo
r
p
o
s
itiv
e clou
d-to-
g
r
ou
nd
(+C
G
) lig
h
t
n
i
ng
is m
u
ch
m
o
re co
m
p
licated
. Op
po
site in
itial
p
o
l
arities b
e
t
w
een
PB
P and
th
e
fo
llowing
return
strok
e
are o
c
casio
n
a
lly o
b
s
erv
e
d
[1
6,
19
]. In
th
is stu
d
y
,
p
o
s
itiv
e ligh
t
n
i
n
g
sh
ows bo
t
h
return
strok
e
cases, ei
th
erwith
o
r
with
ou
t th
e preced
e
d PBP.
Based
o
n
th
ese
findin
g
s
, PBP i
n
po
sitiv
e CG ligh
t
n
i
ng
was classified in
to
four typ
e
s wh
ich
in
clud
es th
e
n
e
g
a
ti
v
e
PBP (-PBP), po
sitiv
e PB
P (+PBP), PB
P with
p
o
l
arity rev
e
rsal, an
d
PBP wi
th
irregu
lar
p
o
l
arity. Fu
rth
e
rmo
r
e, th
e d
a
ta av
ailab
l
e in
th
e literatu
re o
n
PBP of
p
o
s
itiv
e lig
h
t
n
i
n
g
fro
m
trop
ical th
und
ercloud
s is scarce, an
d
th
ere is a
n
e
ed
to
g
a
th
er m
o
re
d
a
ta fro
m
tro
p
i
cal
th
un
d
e
rcloud
s. Th
is p
a
per aim
s
to
in
v
e
stigate th
e n
a
tu
re
an
d
tem
p
o
r
al ch
aracteristic
o
f
th
e PBP train
s
i
n
tr
op
ical r
e
g
i
ons. Th
is stud
y w
a
s carr
i
ed
out in
Jo
ho
r
Bahr
u, Malaysia u
s
in
g
a br
o
a
db
an
d
an
tenn
a syste
m
d
u
r
i
ng
th
e m
o
n
s
oon
p
e
r
i
od
(O
ct-D
ec,
2
012)
. In
ter
e
sti
n
g
l
y
,
an
y v
a
r
i
atio
n in
th
e PBP t
r
ain
s
fo
r
g
e
o
g
rap
h
i
cal
reg
i
o
n
s
m
a
y in
d
i
cate d
i
fferences in
th
e i
n
itial b
r
eak
down
pr
o
cesses i
n
th
e
clo
u
d
s
. Th
erefo
r
e, it is i
m
p
o
r
tan
t
to
analyze and c
o
m
p
are the feat
ures
of t
h
ese
puls
e t
r
ai
n
s
i
n
di
ffe
rent
ge
og
rap
h
i
cal
re
gi
o
n
s.
2.
R
E
SEARC
H M
ETHOD
The
l
i
g
ht
ni
ng
el
ect
ri
c
fi
el
d m
easurem
ent
s
were pe
rf
orm
e
d wi
t
h
i
n
t
h
e m
onsoo
n peri
o
d
(
O
ct
-
D
ec,
2
012
) at t
h
e
Ob
serv
atory,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malays
ia (UTM
), Joho
r. UTM is located
in
t
h
e so
u
t
h
e
rn
p
o
r
tion
o
f
Pen
i
n
s
u
l
ar
Malaysia wh
ich lo
cated
i
n
trop
ical r
e
g
i
on
s. Th
e
O
b
ser
v
at
o
r
y
bu
ildin
g is lo
cated
at 142
m
above t
h
e se
a l
e
vel
.
The co
nfi
g
u
r
at
i
on
of
t
h
e m
easuri
ng
sy
st
em
i
s
sho
w
n i
n
Fi
g
u
re 1
.
The set
u
p i
s
sim
i
l
a
r
t
o
ex
pe
ri
m
e
nt
al
set
ups
used
i
n
[2
4-
2
7
]
.
T
h
e
ve
rt
i
cal
com
pone
nt
of
el
ect
r
i
c fi
el
d
was ca
pt
u
r
ed
usi
n
g
1
.
5m
-
h
e
igh
t
flat
p
l
ate an
tenn
a. Th
e
an
tenn
a
was con
n
ected
to a
d
i
g
ital o
s
cillo
scop
e (LeCro
y
Wav
e
R
u
nn
er 44Xi-A,
8
-
b
it
reso
lu
tion
with
a sam
p
lin
g
rate
of 50
MSs
-1
)
via a
n
electronic buffer ci
rc
uit.
The buffer acts t
o
limit
ove
r
vol
t
a
ges a
nd as a
n
i
m
pedance m
a
t
c
hi
ng bet
w
ee
n t
h
e a
n
t
e
nna a
nd
osci
l
l
osco
pe wi
t
h
a fre
que
ncy
ra
n
g
e
o
f
kHz to GHz. T
h
e buffer circ
uit cons
ists o
f
an
MSK0
033
bu
ffer am
p
lifie
r, capacitor and resistors. T
h
e input
im
pedance of M
S
K0
0
33
i
s
1
0
12
Ω
. RG5
8
coax
ial cab
les were u
s
ed
in
all
co
nn
ection
s
excep
t fo
r th
e
DSO-PC
connection.
The oscillosc
ope
was set
150 m
s
pre-tri
gge
r mode
. The
decaying tim
e constant of the
buffer wa
s
set to
appr
ox
i
m
atel
y 1
0
m
s by ch
ang
i
ng
t
h
e RC con
f
igur
a
tio
n
i
n
sid
e
t
h
e
b
u
ffer. C
r
iteria to
id
en
tify th
e PBP
are sim
i
l
a
r t
o
[
9
, 1
0
, 2
8
]
w
h
i
c
h m
e
nt
i
oned t
h
at
onl
y
pul
se
s with
am
p
l
i
t
u
d
e
larg
er th
an
twice o
f
no
ise level are
in
clu
d
e
d
.
Atm
o
sp
h
e
ric si
gn
co
nv
en
tio
n is u
s
ed
t
h
ro
ugho
u
t
t
h
e
p
a
p
e
r
th
u
s
a
p
o
s
itiv
e return stro
k
e
(+CG)
p
r
od
u
ces in
itially n
e
g
a
tiv
e
field
ch
ang
e
s.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
descri
pt
i
o
n
o
f
t
h
e l
i
g
ht
n
i
ng
det
ect
i
o
n s
y
st
em
3.
R
E
SU
LTS AN
D ANA
LY
SIS
It is co
mm
o
n
t
o
no
tice th
at th
e in
itial
p
o
l
arity o
f
PBP fo
r a -CG flash
is always n
e
g
a
tiv
e, th
at is
th
e
sam
e
p
o
l
arity as th
e n
e
g
a
ti
ve retu
rn
stro
k
e
. Th
e BIL m
o
d
e
l was first propo
sed
b
y
[3
]
,
in
wh
ich
th
e
retu
rn
strok
e
is i
n
itiated
b
y
three sequ
en
tial sections. Th
e i
n
itial
breakdo
wn
(B), o
r
PBP,
is
t
h
e first
step
wh
ich
lasts
for seve
ral
m
i
lliseconds, and
it contains intense electro
m
a
g
n
e
tic rad
i
atio
n. Th
is b
r
eak
down
is fo
llo
wed b
y
an
interm
ediate state (I) with little electri
c field cha
nge
. Fina
lly, a
leader ch
ange (L
) follows the inte
rm
ediate
state, and
th
is is con
s
eq
u
e
n
tly
f
o
l
l
o
we
d by
a ret
u
r
n
st
ro
ke.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
St
at
i
s
t
i
c
al
A
nal
ysi
s
o
n
Prel
i
m
i
nar
y Bre
ak
dow
n P
u
l
s
es
of
P
o
s
i
t
i
ve C
l
oud
-t
o-
Gro
u
n
d
…
(
Z
ul
kur
nai
n A
-
M)
84
6
3.
1. B
I
L
M
o
d
e
l
i
n
Posi
ti
ve
L
i
ghtni
n
g
The B
I
L m
odel
of +C
G wa
s fo
un
d t
o
be
sim
i
l
a
r wi
t
h
B
I
L m
odel
i
n
–C
G [
21]
. H
o
we
ve
r, t
h
e
situ
atio
n
fo
r +CG lig
h
t
n
i
n
g
is
m
u
ch
m
o
re co
m
p
licated
.
Oppo
site in
itia
l p
o
l
arities b
e
tween
PB
P and
the
fol
l
o
wi
n
g
ret
u
r
n
st
r
oke a
r
e oc
casi
onal
l
y
o
b
s
e
rve
d
[
1
4,
16]
.
W
ave
f
orm
s
of
di
ffe
re
nt
t
y
pes of PB
P are
gen
e
ral
l
y
sim
ilar with ea
ch
othe
r.
As
ca
n
be se
e
n
i
n
Figure 2,
each pulse
trai
n usual
l
y starts with one
or two
very
sm
a
l
l
pul
ses
,
fol
l
o
we
d
by
som
e
l
a
rg
est
p
u
l
s
es
of t
h
e t
r
ai
n,
an
d e
n
ds
wi
t
h
p
u
l
s
es
of
dec
r
easi
n
g a
m
pli
t
udes.
Pul
s
es i
n
PB
P
t
r
ai
n are m
a
i
n
ly
bi
pol
ar
. Pul
s
es at
t
h
e begi
n
n
i
n
g an
d m
i
ddl
e of t
h
e t
r
ai
n
u
s
ual
l
y
have
a ve
ry
cl
ear
bi
pol
a
r
f
eat
ure
.
Ho
we
ver
,
at
t
h
e en
d
of
t
h
e
t
r
ai
n,
pul
se
s s
o
m
e
t
i
m
e
s appea
r
as
u
n
i
p
ol
ar.
Suc
h
a
n
exam
pl
e i
s
gi
ven i
n
Fi
gu
re 2. It
can be s
een t
h
at
bef
o
r
e
t
h
e t
i
m
e
of abo
u
t
−
22.35m
s,
pulses are
clearly
b
i
po
lar,
bu
t during
th
e tim
e o
f
−
21
m
s
to
−
20
m
s
, p
u
l
ses see
m
to
b
e
u
n
i
p
o
lar, and
it is d
i
fficu
lt to
tell wh
eth
e
r
th
ey b
e
long
to
PBP or th
e i
n
term
ed
iate state.
Th
e in
term
ed
ia
te stag
e in
th
e
BIL m
o
d
e
l o
f
PBP is th
oug
h
t
to
be
cau
sed
b
y
h
o
ri
zo
n
t
al
p
r
o
p
a
g
a
tio
n
of lead
er
ch
ann
e
l [2
1
]
.
Su
ch
horizon
tal p
r
o
p
a
g
a
tion
p
r
od
u
ces little v
e
rtical
electric field c
h
anges
at the
ground a
n
d makes t
h
e tim
e
in
terv
al
b
e
tween
PB
P an
d th
e
first retu
rn stroke
lo
ng
er.
Fig
u
re
2
.
Flash No
.
27
111
2.21
9 Th
e sam
p
le wav
e
fo
rm
with
n
e
g
a
tiv
e i
n
itial p
o
l
arity d
u
ring
+CG co
m
p
at
ib
le
with
BIL m
o
d
e
l
3.
2. B
L
M
o
del
i
n
P
o
si
ti
ve
L
i
ght
n
i
n
g
Al
t
h
o
u
g
h
t
h
e
B
I
L m
odel
i
s
usef
ul
as
a
ge
neral
de
scrip
tio
n fo
r th
e ligh
t
n
i
ng
ch
aracterizatio
n
,
the
m
a
nner
o
f
t
h
e
brea
k
d
o
w
n p
h
en
om
enon
di
ffe
rs i
n
t
h
e t
h
un
de
rst
o
rm
s.
The
beha
vi
o
r
of t
h
e l
i
ght
ni
n
g
fl
as
he
s
v
a
ries fro
m
st
u
d
y
to
stud
y, so
it is n
o
t
c
o
m
p
letely
stan
d
a
rd
ized. Th
e ex
isten
ce o
f
so
m
e
PBP wh
ich
is
fol
l
o
we
d di
re
ct
l
y
by
sm
al
l
pul
ses i
s
p
o
ssi
bl
y
an i
n
di
cat
i
on
o
f
l
eader
cha
n
g
e
s an
d t
h
e
n
f
o
l
l
owe
d
by
t
h
e
r
e
t
u
r
n
st
ro
ke wi
t
h
o
u
t
t
h
e i
n
t
e
rm
edi
a
te st
age nam
e
d as B
L
m
odel
.
The B
L
m
odel
of +C
G
has
b
een sh
o
w
n i
n
Fi
gu
re
3. O
n
e reas
o
n
f
o
r t
h
e
di
spa
r
i
t
y
bet
w
een t
h
e
s
e
t
w
o m
odel
of PB
P i
n
+C
G m
a
y
be due t
o
t
h
e di
ffe
rent
di
st
ances
fr
om
obser
vi
n
g
si
t
e
, a
s
i
n
l
a
rge
di
st
an
ce, s
m
al
l
si
gnal
s
p
r
o
d
u
ced
by
st
eppe
d l
e
a
d
er
s
m
a
y
be n
o
t
de
t
ect
ed
,
resu
lting
in
an in
term
ed
iate s
t
ag
e. Howev
e
r, Tin
g
Wu et
al. repo
rted
th
at
th
e d
i
fferen
ces b
e
tween
th
ese two
m
odel
of
PB
P
m
a
y
be d
u
e t
o
di
ffe
re
nt
p
h
y
s
i
cal
pr
ocesses
o
f
prel
i
m
i
n
ary
b
r
eak
d
o
w
n
or
st
eppe
d l
e
a
d
er
[
21]
.
So
m
e
ti
mes, it is d
i
fficu
lt to
d
i
fferen
tiate th
e
B, and
L
part
s,
as
pul
ses
at
t
h
e en
d
of
t
h
e
t
r
a
i
n seem
t
o
gra
d
ual
l
y
chan
ge f
r
om
bi
pol
a
r
t
o
u
n
i
p
ol
ar.
Suc
h
an e
x
am
pl
e i
s
gi
ve
n i
n
Fi
gu
re 3.
It
can be see
n
t
h
at
bef
o
re
about
−
1
0
m
s
, pul
ses a
r
e cl
earl
y
bi
pol
a
r
, b
u
t
du
ri
n
g
−
10
m
s
to
−
1
0
.
50m
s t
i
m
e
, pul
ses see
m
t
o
be uni
pol
ar, an
d
it is d
i
fficu
lt t
o
tell wh
eth
e
r
th
ey b
e
lo
ng
to PBP o
r
step
pe
d leader
pulses
.
In s
u
ch cases
, defi
ning the end
of
PB
P t
r
ai
n i
s
so
m
e
how s
u
bject
i
v
e, an
d i
t
al
so
m
a
y
have up t
o
0.
5m
s erro
r i
n
cal
cul
a
t
i
ng t
h
e d
u
rat
i
o
n
of
PB
P
train
.
Fig
u
re
3
.
Flash No
.
27
111
2.20
9 Th
e sam
p
le wav
e
fo
rm
with
po
sitiv
e an
d neg
a
tiv
e i
n
itial p
o
l
arity d
u
ring +CG
co
m
p
atib
le with
BL m
o
d
e
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
84
4 – 8
5
0
84
7
3.
3. T
y
pes
o
f
PB
P De
tecte
d
i
n
Posi
ti
ve
Cl
oud
-
t
o
-
G
r
o
un
d L
i
gh
tni
n
g
Oth
e
r th
an
BIL and
BL m
o
d
e
ls,
o
ppo
site in
itial p
o
l
arities b
e
tween
PB
P and
th
e
fo
ll
o
w
i
n
g
return
stroke are
occa
sionally observed [16,
19]. Therefore
,
PBP of +CG is classi
fied into
four ty
pes accordi
n
g to its
in
itial p
o
l
aritie
s wh
ich
are –PBP (20
%
), +PBP (15
%
),
PBP with
p
o
l
arity rev
e
rsal (10
%
), and
PBP with
i
rreg
u
l
a
r
pol
a
r
i
t
y
(15%
).
Out
of t
h
e
2
0
fl
as
h
e
s, 8 fl
as
hes
o
ccur
r
ed
wi
t
h
ou
t
any
PB
P (4
0
%
). T
w
o
PB
P
t
r
ai
ns
h
a
d
PBP with
p
o
l
arity rev
e
rsal. Th
e first reg
i
on
m
i
g
h
t
co
nsists o
f
pu
lses
with
po
sitiv
e in
itial p
o
l
arity an
d
t
h
e
secon
d
wit
h
pu
lses o
f
n
e
gativ
e in
itial p
o
l
arity an
d
v
i
ce
v
e
rsa. Two
PB
P train
s
con
t
ain
pu
re po
sitive in
itial
p
u
l
se
(+PBP) an
d
fo
ur PBP train
s
con
t
ain
s
pu
re
n
e
g
a
tiv
e initial p
u
l
se (-PBP). Th
ere are on
ly 3
cases t
h
at
PBP
train
s
co
n
s
ist p
u
l
ses with
i
r
reg
u
l
ar
po
larity. Th
e su
mm
ary o
f
typ
e
s
of
PBP d
e
tected in
po
sitiv
e lightn
i
n
g
in
relatio
n
with
B
I
L an
d BL m
o
d
e
l is as
shown in
Tab
l
e
1
.
Tab
l
e
1
.
Ty
p
e
s of PBP d
e
tect
ed
in po
sitiv
e l
i
g
h
t
n
i
n
g
in
relatio
n
with
BIL an
d BL m
o
d
e
l
Type of
PBP
-PBP
+PBP
PBP with
polar
ity
rever
s
al
PBP with
ir
r
e
gular
polar
ity
W
ithout PBP
BI
L
2
2 -
2 -
BL
2
1
2
-
-
T
o
tal
4
3 2 3 8
Figure
2 s
h
ows a -PBP trai
ns which is one of
the
m
o
st comm
on pulse
trains t
h
at
precede +C
G
flash
e
s. Th
is PBP co
n
t
ai
n
e
d
p
u
l
se
with
n
e
gativ
e in
itial p
o
l
ar
ity. It is n
o
ticed
th
at fro
m
Fig
u
re 2
and
3, if PBP
is v
e
ry stron
g
,
th
e fo
llo
wi
n
g
first return
st
rok
e
always
h
a
pp
en
aftera sho
r
t
ti
m
e
; o
n
th
e o
t
h
e
r
h
a
n
d
, if th
ere is a
lo
ng
wait b
e
tween
PBP an
d th
e first retu
rn
strok
e
, th
e PBP
m
a
y
b
e
weak
co
m
p
ared
with
th
e return stro
ke
(RS). As it can b
e
seen
in
Figu
re
2
,
t
h
e lead
i
n
g
edg
e
o
f
t
h
e
in
itial h
a
lf cycle o
f
t
h
e
–
P
BP
is relativ
ely sm
o
o
t
h
com
p
ared t
o
t
h
at
of the
puls
es in the
othe
r types
of
PB
P
t
r
ai
ns
. Fi
gu
re
3
sh
o
w
s t
h
at
PB
P t
r
ai
ns
ha
d t
w
o
d
i
stin
ct reg
i
o
n
s. Th
e fi
rst reg
i
on
h
a
s
p
u
l
ses o
f
p
o
s
itiv
e i
n
itial p
o
l
arity an
d
t
h
e second
reg
i
on
h
a
s
pu
lses of
n
e
g
a
tiv
e in
itial p
o
l
arity. Th
e two
reg
i
on
s with
p
u
l
ses of
op
po
site p
o
l
arity are g
i
v
e
n
in an
ex
p
a
n
d
ed
ti
m
e
scal
e. P
u
l
s
es i
n
t
h
e
fi
r
s
t
re
gi
on
are
ve
ry
si
m
i
l
a
r i
n
pr
o
f
i
l
e
t
o
t
h
ose
o
f
n
a
rr
ow
bi
pol
a
r
pul
se
t
r
ai
ns
. T
h
e
pul
se
p
r
o
f
ile of th
e seco
nd
reg
i
on
is so
m
e
wh
at si
milar to
th
at
of -
P
B
P
t
r
ai
ns i
n
F
i
gu
re 2. T
h
i
s
F
i
gu
re sh
ow
s t
h
at
t
h
e
mag
n
itu
d
e
o
f
t
h
e
p
u
l
ses in
t
h
e second
reg
i
on
is larg
er th
an th
at in
t
h
e
first
reg
i
on
.
A
n
irregu
lar i
n
itial p
o
l
arity in
po
sitiv
e cloud-to
-groun
d lig
htn
i
n
g
is sh
own
in
Figure
4
.
Fig
u
re
4
.
Flash No
.
27
111
2.21
6 Th
e sam
p
le wav
e
fo
rm
with
irreg
u
l
ar in
itial p
o
l
arity d
u
ring
+CG en
larg
e
co
m
p
atib
le with
BIL m
o
d
e
l
Som
e
i
rregul
ar
pul
se act
i
v
i
t
y
i
s
vi
si
bl
e for a
few m
i
ll
i
s
econds, eve
n
aft
e
r t
h
e ret
u
rn st
r
o
k
e
. Ho
we
ver,
[2
9]
has
o
b
s
erv
e
d th
at
in
a
nu
m
b
er of
p
o
s
itiv
e ret
u
rn stro
k
e
s,
a
pu
lse
b
u
rst appeared immed
i
ately after th
e retu
rn
strok
e
, in
wh
ich
case, th
ere
was no
pu
lse activ
ity
i
mme
d
i
ately p
r
io
r to
th
e return
stroke. H
e
n
c
e, on
e can
no
t
co
nfid
en
tly co
n
c
lud
e
, th
at the p
u
l
ses,
wh
ich
app
ear afte
r
th
e return
strok
e
are con
tinuatio
n
s
of th
e resp
ectiv
e
PB
P t
r
ai
ns
. Th
e du
rat
i
o
n f
r
o
m
t
h
e begi
nni
n
g
o
f
PB
P t
r
ai
n
s
t
o
ret
u
r
n
st
r
o
ke i
n
Fi
gu
re
4
i
s
73m
s and t
h
e
m
ean
wi
dt
h
of t
h
e
pul
ses i
s
4.
5µ
s. The m
ean
pul
se se
parat
i
on i
s
1
1
µs. It
seem
s t
h
at
t
h
i
s
PB
P t
r
ai
ns can be
considere
d
t
o
be differe
n
t
from
ch
ao
tic p
u
l
se train
s
t
h
at
o
c
cu
r m
a
in
ly p
r
io
r to
t
h
e
n
e
g
a
ti
v
e
retu
rn
stroke.
Fi
gu
re
5 s
h
ow
s t
h
e +
P
B
P
t
r
ai
ns
occ
u
r
r
ed
be
fo
re +C
G. T
h
e
+PB
P
a
n
d
−
P
B
P i
n
+C
G
ha
ve al
m
o
st
t
h
e
sam
e
ch
aracteristics ex
cep
t
of th
eir in
itial p
o
l
arity, and
i
t
is sp
ecu
l
ated th
at d
i
fferen
t
in
itial p
o
l
arities are
cause
d by
di
ff
erent
di
rect
i
o
n
s
of c
h
a
nnel
pr
opa
gat
i
o
n. T
h
e
PB
P–R
S
rat
i
o
fo
r B
I
L a
n
d B
L
m
odel
+C
G sho
w
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
St
at
i
s
t
i
c
al
A
nal
ysi
s
o
n
Prel
i
m
i
nar
y Bre
a
k
dow
n P
u
l
s
es
of
P
o
s
i
t
i
ve C
l
oud
-t
o-
Gro
u
n
d
…
(
Z
ul
kur
nai
n A
-
M)
84
8
i
n
fi
g
u
r
es
4 an
d 3
are
0.
2
1
a
n
d 0
.
4
2
,
w
h
i
l
e
t
h
e PB
P
–
R
S
rat
i
o f
o
r
-PB
P
a
n
d +PB
P
i
n
Fi
g
u
re
2 a
n
d 5
are
0.
43
an
d 0.59
.Th
i
s
h
a
d sh
ow
n th
at
th
e
p
eak v
a
l
u
e of
RS is stro
ng
er th
an
PBP.
Fig
u
re
5
.
Flash No
.
271
112
.25
4
Th
e sam
p
le wav
e
fo
rm
with
po
sitiv
e in
itial po
larity du
ri
ng
+CG
Th
e ab
sen
ce of p
r
elim
in
ary b
r
eak
down
pu
lses in
po
sitiv
e
cl
o
ud-to
-groun
d
lig
h
t
n
i
ng
was also
fo
und
.
Th
is is sh
own
in
Fig
u
re 6
.
Th
e o
s
cillo
sco
p
e was set to
sav
e
th
e sign
als 1
5
0
m
s b
e
fore th
e trigg
e
ring
time to
capt
u
re t
h
e w
h
ol
e PB
P t
r
ai
ns
. As i
t
i
s
cl
ear i
n
Fi
gu
re 6 t
h
e fi
rst
ret
u
rn s
t
ro
ke ha
ppe
ne
d at
15
0m
s aft
e
r t
h
e
trig
g
e
r tim
e. Ho
wev
e
r, t
h
ere is no
d
e
tectab
le PBPs
b
e
fo
re
t
h
e retur
n
str
o
k
e
.
T
h
e retur
n
s
t
ro
ke hap
p
e
n
s with
no significa
n
t electric field change ot
h
e
r than
th
at o
f
sm
a
ll step
p
e
d
leader pu
lse foun
d p
r
ior to
th
e retu
rn
stroke.
Fi
gu
re
6.
Fl
ash
N
o
.
2
8
1
1
1
2
.
1
6
4
T
h
e sam
p
l
e
wave
f
o
rm
wi
t
hout
PB
Ps t
r
ai
n
s
d
u
ri
ng
+C
G
4.
CO
NCL
USI
O
N
B
o
t
h
B
I
L a
n
d
B
L
m
odel
s
o
f
PB
P we
re f
o
un
d i
n
+C
G an
d
–C
G.
H
o
w
e
ve
r
,
t
h
e ch
aract
eri
s
t
i
c
of PB
P
in
po
sitiv
e lig
h
t
n
i
ng
was fou
n
d
to
b
e
d
i
fferen
t with
t
h
ose in
n
e
g
a
tiv
e lig
h
t
n
i
ng
.
Acco
rd
ing
to
th
ei
r in
itial
p
o
l
arities, th
e
PBP in po
sitive CG ligh
t
n
i
ng
is classi
fi
ed
in
to
fou
r
typ
e
swh
i
ch
are–PB
P, +PB
P
,
PBP with
pol
a
r
i
t
y
revers
al
, and PB
P
wi
t
h
i
rre
g
u
l
a
r
pol
ari
t
y
. O
u
t
of t
h
e
20
fl
ashes,
8 fl
as
he
s, or
4
0
% o
f
fl
ashes
,
o
ccurred
witho
u
t
an
y PBP.
It is no
ticed
t
h
at if PB
P
is
v
e
ry stron
g
, the du
ration
b
e
t
w
een PBP and RS is
sh
ort.On
the oth
e
r h
a
nd
, if t
h
ere is a lon
g
wait b
e
twee
n
PBP and
th
e fi
rst return
stroke, th
e PBP is always
weak c
o
m
p
are
d
with the RS. The PB
P
–
R
S
rat
i
o
f
o
r B
I
L
and B
L
m
ode
l
s
are 0.
21 a
n
d 0
.
4
2
,
respe
c
t
i
v
el
y
,
wh
ile th
e
PBP–
RS ratio fo
r
-PBP and
+PBP are 0.43
an
d
0
.
5
9
,
respect
i
v
el
y
.
Fo
r t
w
o di
st
i
n
ct
regi
on
s o
f
PB
P,
resu
lts sh
ow th
at th
e m
a
g
n
itu
d
e
o
f
t
h
e pu
l
s
es in
th
e secon
d
reg
i
o
n
, wh
i
c
h
h
a
s a
n
e
gativ
e po
larity, is larg
er
th
an
t
h
at in
the first reg
i
on
(p
o
s
itiv
e
po
larity). Sev
e
ral
p
o
sitiv
e lig
h
t
n
i
ng flash
e
s
o
c
cu
rred
wit
h
ou
t an
y
PBP
pr
ocess
.
The e
ffect
o
f
ge
og
ra
phi
cal
re
gi
o
n
m
a
y
al
so caus
e
t
h
e obse
r
ve
d
di
ffe
rences i
n
t
h
e cl
oud
di
sc
har
g
e
pr
ocesses i
n
cl
udi
ng t
h
e t
y
pes of PB
P
.
M
o
re st
u
d
i
e
s are
neede
d
t
o
det
e
rm
i
n
e t
h
e rel
a
ti
ons
hi
p
bet
w
e
e
n t
h
e
retur
n
stro
ke a
n
d
PBP.
ACKNOWLE
DGE
M
ENTS
Au
t
h
ors
wish
to
th
an
k Un
iversiti Malaysia
Perlis
(Un
i
map
)
,
Min
i
stry o
f
Edu
cation
(MOE),
and
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia (Research
Vo
te
No
. 4F291
an
d 10H61) for th
e fin
a
n
c
ial
aid
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
84
4 – 8
5
0
84
9
REFERE
NC
ES
[1]
T.H. Z
e
ng
, et
a
l
.
, "Stud
y
on Lightning Intrudin
g
Overvolta
g
e
in Yantan Exten
s
ion Substation,"
TE
LKOMNIK
A
Indonesian Jour
nal of Elec
trical Engineering,
vol. 12
, pp
. 2458-2
464, 2014
.
[2]
M.
J.
Murphy
, et
al.
, "
L
ightn
i
n
g
charg
e
anal
ys
es
in s
m
all
Convect
ion and
P
r
ecip
ita
tion
Ele
c
t
r
ific
ation
(CaP
E
)
experiment stor
ms,"
Journal of
Geophysical Rese
arch: Atmospheres (
1984–2
012)
,
vol. 101, pp. 29615-29626
,
1996.
[3]
N. Clar
ence
and
D. Malan, "P
reliminar
y
disch
a
rg
e processes
in
lightning f
l
ashes to ground,"
Quar
terly Journal o
f
the
Royal Meteo
r
ological Society,
vol. 83
, pp
. 161
-172, 1957
.
[4]
W
.
Beas
l
e
y
, e
t
al
.
, "El
ect
ric
fi
eld
s
preced
ing
clou
d-to-ground l
i
gh
tning f
l
ashes,"
Journal of Geoph
ysical Resear
ch:
Oceans (
1978–2012)
,
vol. 87
, pp
. 4883-4902
, 19
82.
[5]
M. Brook, "Breakdown electric
f
i
elds in
winter storms,"
Res. L
e
tt.
Atmos.
El
ectr
,
v
o
l. 12
, pp
. 47-52
, 1992
.
[6]
C. Gom
e
s and V. Cooray
, "R
adiation fi
eld pulses
associat
ed with t
h
e init
iat
i
on of p
o
sitive cloud to
ground lightning
flashes,"
Journal of a
t
mospheric
and
solar-terrestrial physics,
vo
l. 66, pp. 1047-10
55, 2004
.
[7]
J.
S.
Mä
ke
lä
, et al.
, "Properties of preliminar
y
breakdown
processes in Scandi
navian lightning,"
Journal of
Atmospheric and
Solar-T
e
rre
strial Phy
s
ic
s,
vol. 7
0
, pp
. 2041-205
2, 2008
.
[8]
A. Nag and
V.A
.
Rakov
, "Electric field
pu
lse tr
ains occurring
prior to th
e f
i
rst str
oke in
negative
cloud-to-ground
lightning
,"
Electromagnetic Com
patibility
, I
E
EE
Transactions on,
vol. 51, pp. 147
-150, 2009
.
[9]
Z.A. B
a
harud
i
n
, et
al.
, "Comparative stud
y
on pr
eliminar
y
br
eakd
o
wn pul
se tr
ains
observed
in Joh
o
r, Malay
s
ia
and
Florida, USA,
"
Atmosphe
ric
re
s
e
arc
h
,
vo
l. 117,
pp. 111-121
, 20
12.
[10]
Z.A. B
a
harudin
, et al.
, "
E
lectr
i
c field
chang
e
s generated b
y
the
pr
eliminar
y
br
eakdown for the n
e
gative
cloud-to
-
ground lightn
i
ng
flashes in
Malay
s
ia and Swed
en
,"
Journal o
f
Atmospheric and S
o
lar-Terrestrial Physics,
vol. 84,
pp. 15-24
, 2012
.
[11]
K. M
e
hranzam
i
r
, et al.
, "Comparative stud
y
of lightning models w
ith lightn
i
ng discharg
es in Mala
y
s
ia
," i
n
Electrica
l
Insula
tion and
Dielectric Ph
enomena (
C
EIDP)
,
2013 I
EEE Conferen
ce on
, pp. 1085-10
88, 2013
.
[12]
B. Salim
i
, et al.
,
"Statisti
cal
Ana
l
y
s
is of
Ligh
tnin
g Ele
c
tr
ic Fi
eld
Measured Under
Equator
i
a
l
Reg
i
on Condition
,
"
Pr
ocedia
T
echn
o
logy,
vol. 11
, p
p
. 525-531
, 201
3.
[13]
Z.A.M.C
.
L. Wooi, Noor Azlind
a Ahma
d, Mehr
dad Mokhtari
an
d Amir Hesam
Khavaridsa, "A Review of Recent
Studies on Positive Lightning
,"
Applied
Mecha
n
ics and Materia
l
s,
In pre
ss.
[14]
Q.
Li
, et
a
l
.
, "Transform of Lightning Electro
m
agne
tic Pulses
Based on Lap
l
ace Wavelet,"
TE
LKOMNIKA
Indonesian Jour
nal of Elec
trical Engineering,
vol. 11
, pp
. 4911-4
917, 2013
.
[15]
C. Schumann
, et al.
, "El
e
ctric f
i
elds changes pro
duced b
y
positiv
es cloud-to-grou
nd lightning fl
ashes,"
Journal of
Atmospheric and
Solar-T
e
rre
strial Phy
s
ic
s,
vol. 9
2
, pp
. 37-42
, 20
13.
[16]
A. Nag and V.
A. Rakov, "Positiv
e l
i
ghtning
: An overview, new
observations, and inferen
c
es,"
Journal of
Geophysical Research:
Atmospheres (
1984–2012
),
vol. 117
, p
.
D0
8109, 2012
.
[17]
E. P
i
er
ce
, "El
e
c
t
ros
t
ati
c
fi
eld-ch
anges due to
lightning discharg
es,"
Quarterly Jour
nal of th
e Ro
yal
Meteorolog
ical
Socie
ty,
vol. 81
,
pp. 211-228
, 19
55.
[18]
Z.A. B
a
harudin
, et al.
, "E
le
ctri
c
field
chang
e
s genera
ted b
y
pr
el
im
inar
y breakdo
wn pulse for positive l
i
ghtnin
g
ground flashes
in Sweden."
[19]
T.
O. Ushio
, et
a
l
.
, "
E
lectr
i
c f
i
elds of in
itial br
eakd
o
wn in positive
ground flash,"
Journal of Geoph
ysical Resear
ch:
Atmospheres (
1984–2012)
,
vol. 1
03, pp
. 14135-1
4139, 1998
.
[20]
A. Nag and V.A. Rakov, "Som
e
inferen
ces
on the role of lower positive ch
arge region in facil
i
t
a
ti
ng different t
y
p
e
s
of ligh
t
ning,"
Geophysical Res
e
a
r
ch Letters,
vol. 36,
2009
.
[21]
T. W
u
, et al.
, "
P
reliminar
y
br
eakdown pulses
of cloud-
to-grou
nd
lightn
i
ng in
winter
thunderstorms in Japan,"
Journal of Atmo
spheric and So
la
r-Terrestrial Physics,
vo
l. 102, p
p
. 91-98
, 2013
.
[22]
Z.A. B
a
harudin
, et al.
, "E
le
ctri
c
field
chang
e
s genera
ted b
y
pr
el
im
inar
y breakdo
wn pulse for positive l
i
ghtnin
g
ground flashes
in Sweden," 201
4.
[23]
C.L. Wooi
, et al.
, "A Com
p
arat
ive Stud
y
on th
e Positive Light
ning Return Stroke Ele
c
tri
c
Fie
l
ds in Different
Meteorolog
ical Conditions,"
Ad
vances in
M
e
teo
r
ology,
vo
l. 201
5, p
.
12
, 2015
.
[24]
N.
Azlinda Ahmad
, e
t
al.
, "The first electric field pulse of cl
oud and cloud-to-grou
nd lightning discharges,"
Journa
l
of Atmospheric
and Solar-T
errestrial Ph
ysics,
v
o
l. 72
, pp
. 143-1
50, 2010
.
[25]
N.
Azlinda Ahmad
, et al.
, "Char
a
cter
istics of narr
ow bipol
ar pulses observed in Malay
s
ia,"
Journal of Atmospheric
and Solar-Terrestrial Ph
ysics,
v
o
l. 72
, pp
. 534-5
40, 2010
.
[26]
B. Salim
i
, et al.
, "Statistical analy
s
is of lightning
electric
field measured under
Malay
s
ian cond
ition,"
Asia-Pa
c
if
ic
Journal of Atmo
spheric Scien
ces
,
vol. 50
, pp
. 133
-137, 2014
.
[27]
Z.A. Baharud
i
n,
"Characteri
zatio
ns of ground f
l
as
hes from tropic to northern
reg
i
o
n
," 2014.
[28]
A. Nag and V.A. Rakov,
"Pulse trains that are
ch
aracteristic of
pr
eliminar
y
br
eakd
o
wn in cloud-to-
g
round lightnin
g
but ar
e no
t follo
w
ed b
y
r
e
turn stroke pulses,"
Jo
urnal of Geoph
ysical
Re
search:
Atmospheres
(
1984–2012)
,
vol.
113, 2008
.
[29]
V. Coora
y
, "Further cha
r
ac
ter
i
sti
c
s of positiv
e ra
diation f
i
elds fro
m
lightning in Sweden,"
Journal of Geophysical
Research: Atmospheres
(
1984–2012)
,
vol. 89
, pp
.
11807-11815, 1
984.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
St
at
i
s
t
i
c
al
A
nal
ysi
s
o
n
Prel
i
m
i
nar
y Bre
a
k
dow
n P
u
l
s
es
of
P
o
s
i
t
i
ve C
l
oud
-t
o-
Gro
u
n
d
…
(
Z
ul
kur
nai
n A
-
M)
85
0
BIOGRAP
HI
ES OF
AUTH
ORS
Chin-Leong Wooi received th
e
B.Sc. degr
ee in
electrical
and electron
i
c eng
i
neering from the
Universiti Malaysia Sabah
,
Mala
y
s
ia,
in 2011
, th
e M.E. d
e
gree in
electr
i
cal
engin
eering
from th
e
Universiti Tekn
ologi
Mal
a
y
s
ia, Johor,
Malay
s
i
a
,
in 2013,
and is
current
l
y
pursu
ing the Ph.D.
degree in e
l
e
c
tr
ica
l
engine
ering
at the Ins
titut
e
of High Voltage and High Current (IVAT),
Universiti T
e
kn
ologi Mala
ysi
a
.
His research i
n
te
rest in
clud
es the high volt
a
ge engine
ering
,
ele
c
trom
agnet
i
c
field
and
ligh
t
ni
ng m
eas
urem
ent
.
Z. Abdul-Malek
received th
e B
.
E. d
e
greein electrical
and
computer s
y
stems from Monash
University
, Melbourne, Australia, in 1989,
the
M.
Sc.degr
ee in
electri
cal and
electromagnetic
engineering with
industrial appli
cations from the University
of
Wa
les Cardiff,
Cardiff, U.K., i
n
1995 and th
e Ph
.D.degr
ee
in hig
h
voltag
e
eng
i
neer
ing from Card
iff University
, Cardiff, U.K
.,
in
1999. He was a Lecturer with U
n
iversiti
Teknol
ogi
Malay
s
ia (U
TM) for 25
y
ear
s, where he is
currently
a Professor of
High Vo
ltag
e
Engineerin
gwith
the Faculty
of Electrical Engineer
ing. He
is currentl
y
the
Director of th
eIn
s
titute of Hi
gh V
o
ltag
e
and High
Current (IVAT),
UTM. He has
publishedtwo bo
oks, and has authored and co-
a
uthor
ed more than
100 papers in v
a
rioustechnical
journals and
con
f
erence proceed
ings. His research
inter
e
sts inclu
d
ehigh-vol
ta
ge
inst
rume
nt
a
t
i
o
n,
lightning protection, detection
a
nd warning s
y
stems, partial d
i
s
c
harges
, n
a
no
diel
ectr
i
cs
, and
condition monitoring of power equipment. Dr.
Abdul-Malek
is actively
invo
lved in man
y
nation
a
l committees. He is the
Chairman, Wo
r
k
ing Group on High-Voltage
an
d High-Current
Test Te
chniques
.
He is also a m
e
m
b
er of IEC Certifi
cat
ion Bod
y
Manag
e
m
e
nt Com
m
ittee
,
Techn
i
cal Com
m
ittee on High
Voltage Power
Transm
ission,
Working Group
on High Volt
age
Switchgear and Controlgears,
Technical
Working
Group for Electrical Test
ing, an
d
Department
of Standards IEC 17025 Technical Assessors. He is
amember of
the Power
and
Energ
y
Society
,
Diele
c
tri
c
s
and
Ele
c
tri
cal
Ins
u
la
t
i
on S
o
ci
et
y,
and
CIGRE.
Noor Azlinda Ahm
a
d received
her B.Eng. (E
le
ct
ri
cal) and M
.
Eng. (El
ectr
i
c
a
l)
Degree from
Universiti Tekn
ologi Malay
s
ia
in 2001 and 20
03,
respect
ivel
y. She com
p
leted her PhD in
Atmospheric Discharge from Uppsala
University
, Sweden in 2011. At present she
is a lecturer
at
Institute of High
Voltage and Hi
gh Current
(IVAT) Universiti
Teknologi Malay
s
ia. Her m
a
jor
res
earch
in
teres
t
s
are
ligh
t
ning pr
otec
tion,
m
eas
ur
em
ent,
det
ect
ion
and
char
ac
teri
za
tion.
M. Mokhtari
received
the B
.
Sc.
degree in
electr
ical
engin
eering
from the Univer
sity
of Science
and Technolog
y, Tehran
, Ir
an,
in 2003, the M.E.
degr
ee in
electr
i
cal
engineering from the
Universiti Tekn
ologi
Mal
a
y
s
ia, Johor,
Malay
s
i
a
,
in 2013,
and is
current
l
y
pursu
ing the Ph.D.
degree in e
l
e
c
tr
ica
l
engine
ering
at the Ins
titut
e
of High Voltage and High Current (IVAT),
Universiti
Tekn
ologi Mal
a
y
s
ia
.
His research
int
e
re
st
includ
es th
e high vo
lt
age
e
ngineer
ing,
the
power s
y
stem tr
ansient simulatio
n
, software
dev
e
lopment for high
-frequency
grou
nding s
y
stems,
and insulation
coordination
.
B. S
a
lim
i rece
iv
ed the B.S
c
. de
gree in el
ectr
i
c
a
l
engine
ering fr
om
the Azad Univers
i
t
y
(S
aveh
Branch), Ir
an, in
2008, the M.E
.
degree in
elec
tr
i
cal eng
i
neering
from
the Universiti Tekno
logi
Malay
s
ia, Johor
, Malay
s
ia, in 2
011, and
is curr
ently
pursuing
the Ph.D.
d
e
gree in electrical
engine
ering at t
h
e
Institu
te
of High
Voltag
e
a
nd High Curren
t
(IVAT), Univ
ersiti
Tekno
logi
M
a
la
y
s
ia
. His
r
e
s
earch
int
e
res
t
includ
es
the
L
i
ghtning Dis
c
h
a
rges
, power s
y
s
t
em
trans
i
en
t
sim
u
lation,
and
i
n
sulation
coordi
nation
.
Evaluation Warning : The document was created with Spire.PDF for Python.