Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 2
,
A
p
r
il
201
5, p
p
.
19
8
~
20
4
I
S
SN
: 208
8-8
7
0
8
1
98
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Power System Oscillation Da
mping Using New Facts Device
D
.
Na
ra
simha
Ra
o
1
, V.
Sa
rith
a
2
1
Departm
e
nt
of
Ele
c
tri
cal
and
E
l
ectron
i
cs
,
KL U
n
ivers
i
t
y
,
2
Department of Electronics
and
Communica
tion, VR Siddharth
a
Engineering Co
llege
Em
ail:
nar
a
sim
h
arao@kluniv
e
rsi
t
y
.in
,
sar
ithagr
e
e
n
@gm
a
il.Com
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 25, 2014
Rev
i
sed
D
ec 16
, 20
14
Accepte
d Ja
n
6, 2015
This pap
e
r pres
ents about impr
oving st
ability
of the s
y
stem which
can b
e
possible with n
e
w FACTS device with
more
convenien
t. FACTS devices
come under th
e influence of pow
er elect
ronics eq
uipment. Distrib
u
ted Power
Flow Controller
is a FACTS
device
used for damping low frequen
c
y
oscilla
tion with
new control
ling
approach
. It
is valid for
a wide r
a
nge of th
e
operating condition. In this work explai
n th
e basic model and its stead
y
state
operat
i
on, m
a
th
em
atic
al an
al
ys
i
s
inject
ion of current con
t
rol
model of the
DPFC. Using d
a
mping controller used
in DPFC facts device
as input to
im
plem
ent the
ta
sk of power oscillat
i
on
dam
p
ing
.Here th
is work had a bri
e
f
stud
y
on damping, terminal
voltage and
excitation vo
ltage
at different lo
ad
conditions
, simulation r
e
sults demonstr
ate damping low frequency
oscillation
at nominal, ligh
t
and h
eav
y
lo
ading conditions.
Keyword:
Current inje
ction
m
odel
Damping Contro
ller
DPFC
FACT
S De
vic
e
Power Oscilla
tio
n Dam
p
ing
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
D. Nar
a
sim
h
a
Rao,
Department o
f
Electrical and
El
ectronics, K
L Un
iversity
, India
Em
a
il:
narasimharao@kluniv
e
r
s
it
y.in
1.
INTRODUCTION
Because of ra
pid inc
r
easing in load dem
a
nd a
nd
rigid limita
tion of
powe
r gene
ration causes the
p
o
wer syste
m
to
b
e
op
erated
n
ear to
its stab
ilit
y l
i
m
its an
d
p
o
wer system wh
ich
are in
terconn
ected
lead
s to
rise to
l
o
w freq
u
e
n
c
y
o
s
cillatio
n
in th
e rang
e
o
f
0.5H
z
t
o
4
Hz [1
]. Initial
d
a
ys
PSS
are u
s
ed
wh
i
c
h
are
successful t
o
cont
rol
dam
p
ing to so
m
e
extent
but it is very
ha
rd to
dam
p
the
oscillation during large
d
i
stu
r
b
a
n
ce [1
]
.
Utilisin
g
of
FACTS Dev
i
ce are
addressed
t
o
: in
creasing
fo
r its effectiv
e, to
im
p
r
ov
e
po
wer
syste
m
tran
sm
i
ssio
n
cap
a
b
ility, to
i
m
p
r
o
v
e
first swing
m
a
r
g
in
and
to
activ
ely d
a
m
p
o
s
cillatio
n
,
also
to
h
e
lp
to
stab
ilize weak
l
y
co
up
led
syst
e
m
in
th
e ev
ent o
f
critical
faults [2
]. In
itially
FACTS
Dev
i
ces lik
e SVC, TCSC,
STATC
O
M
,
a
n
d
TC
PS
are
u
s
ed
b
u
t
f
o
r
m
o
re c
o
m
f
ort
s
a
n
d c
o
n
s
i
d
eri
n
g
m
o
re i
n
p
u
t
s
f
r
o
m
bot
h
en
ds,
m
ode
consideration
can be done by using s
h
unt-series co
m
b
ination FACT
S that is
UPFC [3]. Recent FACTS
Device known
as DPFC FACTS
De
vice
i
t
i
s
a
po
we
rf
ul
FAC
T
S
De
vi
c
e
in
FACTS Fa
m
i
l
y
it p
r
ov
ide with
l
o
w co
nt
an
d g
o
o
d
i
n
pe
rf
orm
a
nce
com
p
are to UPFC. T
h
is
Device not us
es a co
mm
on DC link as in UPFC
[4
]. It h
a
s
g
r
eat p
o
t
en
tial for d
a
m
p
in
g
th
e oscillatio
n
s
in
th
e syste
m
. Th
e co
n
t
ri
b
u
tion
of th
is work
is a n
o
v
e
l
cu
rr
en
t i
n
j
ectio
n m
o
d
e
l and d
y
n
a
m
i
c si
mu
latio
n of
D
P
FC fo
r stud
yin
g
low
f
r
e
q
u
en
cy d
a
m
p
ing and
i
n
co
rp
orat
i
n
g i
n
t
h
e t
r
a
n
sm
i
s
si
on sy
st
em
model
[
1
]
.
A ne
w way
d
eal
fo
r p
r
o
p
er
desi
g
n
o
f
D
PFC
da
m
p
i
n
g
cont
rol
l
e
r i
s
wo
rk
g
o
i
n
g
o
n
here i
n
t
h
i
s
pa
per.
The
P
r
o
b
l
e
m
of da
m
p
i
ng co
nt
rol
l
er de
si
g
n
f
o
r
DPFC
i
s
form
u
l
ated
as
a task
. In
th
is p
a
p
e
r PSO tech
n
i
q
u
e
was used
to
con
t
ro
l o
s
cillatio
n
s
[1
]. Vari
o
u
s FACTS
Devi
ces
bel
o
n
g
s t
o
fi
rst
a
n
d
seco
nd
ge
ner
a
t
i
ons
pa
rt
i
c
ul
arl
y
SVC
,
ST
AT
C
ON,
SS
SC
,
UPFC
,
I
PFC
a
r
e
bei
n
g
u
s
ed
in
literature in
ord
e
r to
da
m
p
o
f
th
e
o
s
cillatio
n
in
p
o
wer syste
m
. Th
e
m
a
in
in
terestin
g
wo
rk
in
th
is p
a
p
e
r
i
s
usi
n
g
DPFC
fact
s de
vi
ce
w
i
t
h
pr
o
p
o
s
ed c
u
r
r
ent
i
n
ject
i
o
n m
odel
i
n
a si
m
p
l
e
power
sy
st
em
t
o
dam
p
out
t
h
e
oscillation in differe
nt load c
a
ses [1]. Cost poi
nt of
vie
w
also in place of UPFC the ne
w de
vice DPFC use
d
[6]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Po
wer
S
y
stem
Oscilla
tio
n Damp
i
n
g Usi
n
g
N
e
w Fa
cts
Devi
ce
(D. Narasi
mha R
ao)
19
9
A DPFC FAC
T
S De
vice is a com
b
ination of shunt
and se
ries converte
r w
ith
ou
t a co
m
m
o
n
DC lin
k
t
o
excha
n
ge p
o
we
r bet
w
e
e
n
shu
n
t
an
d
serie
s
converte
r. Shunt converter
ab
sorb
s th
e pow
er
in
on
e fr
eq
u
e
n
c
y
and
ge
ne
rat
i
n
g
p
o
we
r i
n
ot
he
r f
r
eq
ue
ncy
[
6
]
.
D
PFC
has t
h
r
ee co
nt
r
o
l
l
e
rs
cent
r
al
c
ont
r
o
l
l
ers
whi
c
h
gene
rat
e
d
refe
rence si
g
n
a
l
s
refere
nce cur
r
ent
an
d re
fe
rence
vol
t
a
ge
gi
ve
n i
n
p
u
t
t
o
al
l
t
h
e shunt
and se
ri
es cont
r
o
l
l
e
rs
[5
]. Each
series co
n
t
ro
llers hav
e
its o
w
n
series co
n
t
ro
l throug
h
th
e lin
e it n
eed
th
e li
n
e
curren
t
, cap
acitor
v
o
ltag
e
an
d
line v
o
ltag
e
s as in
pu
t. A sh
un
t co
n
t
ro
ller h
a
s th
ree
p
h
a
se co
nv
erter co
nn
ect
ed
b
a
ck
to
b
a
ck
wit
h
sin
g
l
e
ph
ase co
nv
er
ter
, thr
e
e ph
ase
shun
t
co
nv
er
ter
tak
e
s pow
er fr
o
m
th
e so
ur
ce and b
a
sed
on
cond
itio
n
s
series conv
erter on
co
n
t
ro
ller in
j
ect a cu
rren
t in
th
ir
d
harm
onic freque
n
cy [5]. In se
ri
es controller used to
in
j
ect requ
ired
co
m
p
en
sated
vo
ltag
e
in
lin
e.
Fi
gu
re
1.
B
a
si
c f
o
rm
at
i
on o
f
DPFC
fr
om
UPFC
Fi
gu
re
2.
P
o
we
r Sy
st
em
m
odel
cont
ai
n
D
P
F
C
M
odel
2.
NEED OF CU
RRE
NT
I
N
JE
CTIO
N MO
D
EL
In
th
is stud
y propo
sing
cu
rren
t in
j
ection
mo
d
e
l fo
r
DPFC
to
stu
d
y
ab
ou
t
lo
w frequ
en
cy
o
s
cillatio
n
.
The i
d
ea
of the curre
nt injec
tion m
odel is t
o
use t
h
e
c
u
r
r
e
nt
s
o
u
r
ce
w
h
i
c
h i
s
c
o
nn
ecte
d
as
shunt inst
ead
of
series voltage
sources
. The t
e
st power syst
e
m
this work
co
n
s
ists two
p
a
rallel lin
es
and
series converte
rs are
d
i
stribu
ted
ov
er th
e lin
es
Figure
3. Electrical System
in
D
P
FC conv
er
t
s
of
case stud
y
tr
an
sf
or
m
a
t
i
o
n
syste
m
In the a
b
ove fi
gure all series conve
r
ters are
repres
e
n
t
as vo
l
t
a
ge sou
r
ces,
as here
we usi
ng a c
once
p
t
of c
u
rre
nt
i
n
je
ct
i
on s
o
urces
.
Fi
gu
re
4
havi
n
g
al
l
t
h
e s
h
unt
an
d se
ri
es co
nve
rt
ers
re
pres
ent
i
n
g
as se
ri
e
s
an
d
s
h
un
t cu
rr
en
t so
ur
c
e
s
.
UPFC
Elim
inate ate
com
m
on DC
Link
Distrib
u
ted Ser
i
es
Co
nv
erter
DPFC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
19
8 – 2
0
4
20
0
Fi
gu
re
4.
R
e
p
r
esent
of
seri
es
vol
t
a
ge
s
o
u
r
ce
s by
c
u
r
r
e
n
t
so
urces
Fi
gu
re
5.
C
u
rre
nt
I
n
ject
i
o
n
m
odel
o
f
DP
FC
Fi
gu
re
6.
D
P
F
C
wi
t
h
l
e
a
d
–l
ag c
ont
rol
l
e
r
M
a
t
h
em
at
i
cal
equat
i
o
n
o
f
s
h
unt
a
n
d se
ri
es
cur
r
ent
base
d
o
n
c
u
r
r
ent
i
n
j
ect
i
on m
odel
:
I
sh
= I
l
+ I
q
(1
)
The p
h
ase an
g
l
e and m
a
gni
tude
s are of se
r
i
es conve
rt
er a
r
e cont
rol
l
a
bl
e
.
Here Vs
1 = Vs2 = Vs
3 = Vs4 =
r
V
i
e
i
λ
. r and
λ
are t
h
e rel
a
t
i
v
e m
a
gni
t
ude
and
ph
ase angle with respec
tive to V
i
res
p
ectively. And the
expressi
ons
of
series c
u
rrent s
o
urce c
o
nve
rte
r
s a
r
e
I
s1
=
V
s1
/ jX
s1
, Is2
= V
s2
/ jX
s2
,
(
2
)
Is
1
1
=
V
1
s1
/ Jx
1
s1
, (3)
I
1
s2
= V
1
s2
/ j
X
1
s2
, (4
)
Th
e activ
e pow
er supp
lied
by th
e sh
un
t
c
u
rrent s
o
urce
can be
shown
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Po
wer
S
y
stem
Oscilla
tio
n Damp
i
n
g Usi
n
g
N
e
w Fa
cts
Devi
ce
(D. Narasi
mha R
ao)
20
1
P
shunt
= R
e
[V
i
(-I
shunt
)]
= -
V
i
I
l
(5
)
P
shunt
= P
series
=
P
s1
+ P
s2
+
P’
s1
+
P’
s2
(6
)
Cu
rren
t i
n
j
ecti
o
n m
o
d
e
l of
DPFC ob
tain
ed
as
I
i
=
I
shunt
–
I
s1
– I
1
s1
(7
)
I
j1
= I
s1
– I
s2
(8
)
I
j2
= I
s2
(9
)
I
1
j1
= I
1
s1
– I
1
s2
(1
0)
I
1
j2
= I
1
s2
(1
1)
From
Eq
uat
i
o
n
7 t
o
11
gi
ves t
h
e c
u
r
r
ent
i
n
je
ct
i
on m
odel
pa
ram
e
t
e
r fol
l
o
w
as
I
i
{2(b
s1
+ b
s2
)[
-r
V
j
si
n(
θ
i
–
θ
j
+
λ
)+r
V
1
sin(
λ
)]
+
2 ( b
1
s1
+b
1
s2
)(
-r
V
j
sin(
θ
i
–
θ
j
)+
rV
i
si
n(
λ
))+
jI
q
}e
j
θ
i
+jb
s1
rV
i
e
j
(1
2)
I
j1
= -jb
s1
rV
i
e
i
λ
+ jb
s2
rV
i
e
i
λ
(1
3)
I
j2
= -jb
s2
rV
i
e
i
λ
(1
4)
I’
j1
=
-jb
1
s1
rV
i
e
i
λ
+ jb
1
s2
rV
i
e
i
λ
(1
5)
I’
j2
=
-jb
1
s2
rV
i
e
i
λ
(1
6)
3.
SIMULATION AND RESULTS
Fig
u
re
7
.
Sing
l
e
Mach
in
e In
fi
n
ite bu
s
with
DPFC wit
h
MATLAB/Sim
u
lin
k
P
has
o
r
s
VT
N
L
T
o
W
o
r
ksp
a
c
e
1
DW
NL
T
o
W
o
r
k
s
pac
e
A
B
C
Thr
e
e
-
P
h
a
s
e
S
o
u
r
c
e
A
B
C
Thr
e
e
-
P
h
a
s
e
Se
r
i
e
s
R
L
C
L
o
a
d
Sy
s
t
em
2
Sy
s
t
em
1
A
B
C
Su
bs
y
s
t
e
m
5
A
B
C
Su
bs
y
s
t
e
m
4
A
B
C
S
ubs
y
s
t
e
m
3
A
B
C
S
ubs
y
s
t
e
m
2
A
B
C
Su
bs
y
s
t
e
m
1
L
i
ne
1b
(
110 k
m
)
1
Li
ne 1b
(
110 k
m
)
Li
ne 1a
(
110 k
m
)
1
Li
ne 1a
(
110 k
m
)
dw
1
Vt
1
A
B
C
A
B
C
Fa
u
l
t
1
C
o
ns
t
ant
1
A
B
C
a
b
c
Br
k
2
A
B
C
a
b
c
Br
k
1
A
B
C
a
b
c
B2
A
B
C
a
b
c
B1
A
B
C
Ar
e
a
1
Ad
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
19
8 – 2
0
4
20
2
Fig
u
re
8
.
Dy
n
a
mic resp
on
se of sp
eed d
e
v
i
atio
n at norm
a
l lo
ad
co
nd
ition
s
Fig
u
re
9
.
Dy
n
a
mic resp
on
se of sp
eed d
e
v
i
atio
n at lig
h
t
l
o
ad con
d
ition
s
Fig
u
re 10
. Dyna
m
i
c
resp
on
se o
f
sp
eed
d
e
v
i
atio
n
at h
e
av
y
load
co
nd
ition
s
0
10
00
200
0
3
000
400
0
5
000
600
0
7000
-6
-4
-2
0
2
4
6
8
x 1
0
-3
Ti
m
e
(
m
s
e
c
)
S
p
eed
D
e
v
i
a
t
i
on
at
N
o
m
i
na
l
Loa
d C
o
ndi
t
i
o
n
0
1
000
2000
3000
4000
50
00
6000
7000
-6
-4
-2
0
2
4
6
8
x 1
0
-3
T
i
m
e
(
m
se
c)
R
o
t
o
r
D
e
v
i
at
i
on a
t
Li
ght
Load C
ondi
t
i
on
0
1
000
2000
3000
4000
50
00
6000
7000
-7
-6
-5
-4
-3
-2
-1
0
1
x 1
0
-3
T
i
m
e
(
m
se
c)
S
p
e
ed D
e
v
i
at
i
on a
t
H
i
gh Load C
ondi
t
i
ons
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Po
wer
S
y
stem
Oscilla
tio
n Damp
i
n
g Usi
n
g
N
e
w Fa
cts
Devi
ce
(D. Narasi
mha R
ao)
20
3
Fig
u
re
11
.
Dyna
m
i
c resp
on
se
o
f
term
in
al v
o
l
tag
e
d
e
v
i
ation
at n
o
m
in
al lo
ad
co
nd
itio
ns
Fig
u
re
12
.
Dyna
m
i
c resp
on
se
o
f
term
in
al v
o
l
tag
e
d
e
v
i
ation
at lig
h
t
lo
ad
con
d
ition
s
Fig
u
re
13
.
Dyna
m
i
c resp
on
se
o
f
term
in
al v
o
l
tag
e
d
e
v
i
ation
at h
eav
y l
o
ad
co
nd
itio
ns
4.
CO
MP
AR
SI
ON
RES
U
LTS AT
DIF
F
ERENT L
O
A
D
C
A
SES
By o
b
s
erv
i
ng
resu
lts fro
m
Fi
g
u
re 8
t
o
13
the ti
m
e
tak
e
n
by th
e ro
tor is less to
reach
its stead
y state
v
a
lu
e if an
y chan
g
e
s o
c
cu
rs in
th
e lo
ad
i
n
g
co
nd
itio
n
an
d
it was o
b
s
erv
e
d
th
at settlin
g
ti
me o
f
ro
tor d
e
v
i
ation
is less at h
e
av
y and
no
m
i
n
a
l lo
ad
con
d
i
t
i
o
n
co
m
p
are t
o
ligh
t
lo
ad
co
nd
itio
n sim
i
l
a
rly ti
m
e
tak
e
n
for
stab
ilizin
g
th
e
termin
al v
o
ltages is also less t
i
m
e
fo
r
no
m
i
n
a
l lo
ad
con
d
iti
o
n
co
m
p
are t
o
lig
h
t
lo
ad
con
d
itio
n
.
Tabl
e
1. C
o
m
p
ari
s
o
n
resul
t
s
a
t
di
ffe
re
nt
l
o
a
d
case
Load conditions
Light load conditio
ns
Norm
al
Load Conditions
Heavy
Load Conditions
Para
m
e
ters
Speed
Deviation
2400 m
s
ec
2000 m
s
ec
2000 m
s
ec
Ter
m
inal Voltage
Deviation
3000 m
s
ec
2000 m
s
ec
1800 m
s
ec
0
10
00
2
000
300
0
4
000
5000
60
00
7000
-1
-0
.
8
-0
.
6
-0
.
4
-0
.
2
0
0.
2
0.
4
Ti
m
e
(
m
s
e
c
)
T
e
r
m
i
n
al
V
o
l
t
age
at
Nom
i
n
a
l
V
o
l
t
age
C
ond
i
t
i
o
n
0
1000
2000
3000
4000
5000
6000
7000
-1
-0.
8
-0.
6
-0.
4
-0.
2
0
0.
2
0.
4
Ti
m
e
(
m
s
e
c
)
T
e
rm
i
nal
V
o
l
t
age
V
a
r
i
at
i
ona at
Li
ght
Load
C
oni
t
i
on
0
10
00
200
0
30
00
400
0
5
000
600
0
7
000
-1
-0.
8
-0.
6
-0.
4
-0.
2
0
0.
2
0.
4
T
i
m
e
(
m
se
c)
T
e
rm
i
n
a
l
V
o
l
t
a
ge D
e
v
i
at
i
on at
H
i
g
h
Loa
d C
ond
i
t
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
19
8 – 2
0
4
20
4
5.
CO
NCL
USI
O
N
In t
h
is work, t
h
e ne
w
FACT
S De
vice DPFC can re
gu
late the line reacti
v
e and active
powe
r flow t
o
pr
o
v
i
d
e en
ou
g
h
dam
p
i
ng t
h
e
sy
st
em
osci
l
l
at
i
on usi
n
g co
nt
r
o
l
l
e
r of l
ead – l
a
g com
p
ensat
i
o
n and
w
e
go
ne
th
ro
ugh
in
th
ree d
i
fferen
t
load
con
d
ition
usin
g
lead
lag
co
n
t
ro
ller techn
i
qu
e and
o
b
serv
i
n
g
th
e termin
a
l
vol
t
a
ge
, spee
d
devi
at
i
o
n. F
u
r
t
her we ca
n o
b
s
erve c
h
a
nge
o
f
ge
nerat
e
d o
u
t
put
an
d exci
t
a
t
i
on v
o
l
t
a
ge, a
nd i
f
appl
y
i
n
g
neu
r
a
l
or
ge
net
i
c
al
g
o
ri
t
h
m
s
can
ge
t
bet
t
e
r
per
f
o
r
m
a
nce.
REFERE
NC
ES
[1]
Amin Safari, Behrouz Soulat,
Ali Ajam
i. Modelling
and unified tuning of dis
t
ributed power f
l
ow controller f
o
r
damping of pow
er s
y
s
t
em oscillations.
Ain Shams
Engin
eering
Jo
unal
. f
e
b 2013
[2]
Jam
e
s F. Gronquist, W
ill
iam
A.
Sethar
es, Fr
ena
do L. Alvar
a
do
Robert H.
L
a
sseter
.
Power Oscilla
tion d
a
m
p
ing
control str
a
teg
i
es for FACTS devices
using lo
ca
l m
easurabl
e
qu
antit
ies.
I
E
EE tr
ansaction on Po
wer Systems
. V
o
l.
10, No. 3, August 1995: 1598
–
1605.
[3]
Hingorani JNG, Gy
ug
i L. Understanding FACTS: Concepts
and
technolog
y
of
Flexible
AC transmission
sy
stem.
New
y
ork: IEEE
Press 2000.
[4]
Ahmed jamshid
i
, S. Masoud Bara
kati, M. Mor
a
di Ghahderijan
i
. Impact of
distributed power f
l
ow controller to
improve power quality
b
a
sed on sy
n
c
hronous ref
e
rence frame method.
IACSIT International Journ
a
l of Engineerin
g
&
Technology
.
Vol. 4
,
No. 5, October
2012, 581
-585.
[5]
O. Sushma, Dr. K.S.R. Anjaney
u
lu
. Modelling of
Distributed Power
Flow Controller (DPFC) Using
Matlab/Sim
u
la
ti
on
. Internationa
l Journal of
Eng
i
neer
ing
Resear
ch
&
Technology (
I
JERT)
. ISSN: 2278 -0181
, V
o
l.
2, Issue 1
,
Janu
ar
y
2013, 1-7.
[6]
Sarimalla Ped
a
k
o
taiah and Santo
s
h. Simulation o
f
Distributed po
wer flow contro
ller (DPFC).
International Journ
a
l
o
f
E
n
gi
n
e
e
r
i
n
g Sc
i
e
nc
e
. ISBN: 2
319 -6483, ISSN: 2278 –
4721, V
o
l.
2
,
Issue 1, Januar
y
2013, 25-
32.
Evaluation Warning : The document was created with Spire.PDF for Python.