I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
,
p
p
.
2
4
8
3
~2
495
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
5
.
pp
2
4
8
3
-
2495
2483
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
A H
y
bri
d Digita
l
Wa
ter
m
a
r
k
ing
A
ppro
a
ch Using
W
a
v
elets and
LSB
V.
Ash
o
k
K
u
m
a
r
1
,
C.
Dha
r
m
a
ra
j
2
,
Ch.
Srini
v
a
s
a
Ra
o
3
1
De
p
a
rt
m
e
n
t
o
f
El
e
c
tro
n
ics
a
n
d
C
o
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
,
A
ITA
M
Tek
k
a
li
,
A
.
P
.
,
In
d
ia
2
De
p
a
rt
m
e
n
t
o
f
El
e
c
tro
n
ics
a
n
d
C
o
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
,
G
ITA
M
Un
iv
e
rsit
y
,
A
.
P
.
,
I
n
d
ia
3
De
p
a
rt
m
e
n
t
o
f
El
e
c
tro
n
ics
a
n
d
C
o
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
,
JN
T
UK
V
izia
n
a
g
a
ra
m
,
A
.
P
.
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
25
,
2
0
1
6
R
ev
i
s
ed
J
u
n
5
,
2
0
1
7
A
cc
ep
ted
Sep
11
,
2
0
1
7
T
h
e
p
re
se
n
t
p
a
p
e
r
p
ro
p
o
se
d
a
n
o
v
e
l
a
p
p
ro
a
c
h
c
a
ll
e
d
W
a
v
e
let
b
a
se
d
L
e
a
st
S
ig
n
if
ica
n
t
Bit
W
a
ter
m
a
r
k
in
g
(W
L
S
BW
M
)
f
o
r
h
ig
h
a
u
th
e
n
t
ica
ti
o
n
,
se
c
u
rit
y
a
n
d
c
o
p
y
rig
h
t
p
ro
tec
ti
o
n
.
A
lp
h
a
b
e
t
P
a
tt
e
rn
(A
P
)
a
p
p
ro
a
c
h
is
u
se
d
t
o
g
e
n
e
ra
te
sh
u
f
f
led
i
m
a
g
e
in
th
e
f
irst
sta
g
e
a
n
d
P
e
ll
’s
Ca
t
M
a
p
(P
CM
)
i
s
u
se
d
f
o
r
p
ro
v
id
i
n
g
m
o
re
s
e
c
u
rit
y
a
n
d
stro
n
g
p
ro
tec
ti
o
n
f
ro
m
a
tt
a
c
k
s.
P
CM
a
p
p
li
e
d
o
n
e
a
c
h
5
×
5
su
b
im
a
g
e
s.
A
w
a
v
e
let
c
o
n
c
e
p
t
is
u
se
d
to
re
d
u
c
e
t
h
e
d
im
e
n
sio
n
a
li
ty
o
f
th
e
i
m
a
g
e
u
n
ti
l
it
e
q
u
a
ls
to
t
h
e
siz
e
o
f
th
e
w
a
t
e
r
m
a
r
k
i
m
a
g
e
.
Disc
re
te
Co
sig
n
T
ra
n
sf
o
r
m
is
a
p
p
li
e
d
in
t
h
e
f
irst
sta
g
e
;
l
a
ter
N
le
v
e
l
Disc
r
e
te
W
a
v
e
le
t
T
ra
n
s
f
o
r
m
(DWT
)
is
a
p
p
li
e
d
f
o
r
re
d
u
c
in
g
u
p
t
o
t
h
e
siz
e
o
f
th
e
w
a
t
e
r
m
a
r
k
im
a
g
e
.
T
h
e
w
a
ter
m
a
rk
i
m
a
g
e
is
in
se
rted
in
L
H
n
S
u
b
b
a
n
d
o
f
th
e
wa
v
e
l
e
t
im
a
g
e
u
sin
g
L
S
B
c
o
n
c
e
p
t.
S
im
u
latio
n
re
su
lt
s
sh
o
w
th
a
t
th
e
p
ro
p
o
se
d
tec
h
n
iq
u
e
p
r
o
d
u
c
e
s
b
e
tt
e
r
P
S
NR
a
n
d
sim
il
a
rit
y
m
e
a
su
re
.
T
h
e
e
x
p
e
rim
e
n
tal
re
su
lt
s
in
d
ica
te
th
a
t
th
e
p
re
se
n
t
a
p
p
ro
a
c
h
is
m
o
re
re
li
a
b
le
a
n
d
se
c
u
re
e
ff
ici
e
n
t.
T
h
e
ro
b
u
st
n
e
ss
o
f
th
e
p
r
o
p
o
se
d
sc
h
e
m
e
is
e
v
a
lu
a
ted
a
g
a
in
st
v
a
rio
u
s
im
a
g
e
-
p
ro
c
e
ss
in
g
a
tt
a
c
k
s.
K
ey
w
o
r
d
s
:
A
lp
h
ab
et
p
atter
n
D
CT
D
WT
P
ell’
s
ca
t
m
ap
W
ater
m
ar
k
Co
p
y
rig
h
t
©
201
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
V.
Ash
o
k
Ku
m
ar
,
Dep
ar
t
m
en
t o
f
E
lectr
o
n
ics a
n
d
C
o
m
m
u
n
icat
io
n
E
n
g
i
n
ee
r
in
g
,
A
d
it
y
a
I
n
s
tit
u
te
O
f
T
ec
h
n
o
lo
g
y
A
n
d
Ma
n
ag
e
m
e
n
t,
T
ek
k
ali,
An
d
h
r
a
P
r
ad
esh
,
I
n
d
i
a
5
3
2
2
0
1
.
E
m
ail:
v
en
k
u
as
h
1
2
3
@
r
ed
if
f
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
I
n
r
ec
en
t
y
ea
r
s
,
in
cr
ea
s
e
in
u
s
e
o
f
th
e
w
id
e
s
p
r
ea
d
in
ter
n
et
h
as
allo
w
ed
th
e
a
u
th
o
r
s
to
d
is
tr
ib
u
te
th
e
ir
co
n
ten
t
in
d
i
g
ital
f
o
r
m
.
Di
g
ita
l
w
ater
m
ar
k
in
g
i
s
t
h
e
o
n
e
o
f
m
ai
n
r
ich
e
s
t
r
esear
c
h
to
p
ic
i
n
th
e
f
ield
o
f
i
m
ag
e
p
r
o
ce
s
s
in
g
a
n
d
it
h
as
g
r
ea
t
atten
tio
n
f
o
r
r
esear
ch
co
m
m
u
n
it
y
.
C
o
m
p
ar
e
to
au
d
io
an
d
v
id
eo
,
i
m
ag
e
w
ater
m
ar
k
i
n
g
i
s
m
o
r
e
d
ed
icat
ed
an
d
p
o
p
u
lar
b
ec
au
s
e
o
f
m
an
y
p
r
ac
tical
ap
p
lic
atio
n
s
s
u
c
h
as
Au
t
h
e
n
ticatio
n
o
f
co
n
te
n
t
a
n
d
o
b
j
ec
ts
,
C
o
n
te
n
t
id
e
n
ti
f
icatio
n
an
d
m
a
n
ag
e
m
en
t,
co
p
y
r
i
g
h
t
p
r
o
tectio
n
an
d
s
o
o
n
.
T
h
e
co
n
te
n
t
in
cl
u
d
es a
u
d
io
,
v
id
eo
,
d
ig
ital r
ep
o
s
ito
r
ies,
lib
r
ar
ies o
r
w
eb
p
u
b
lis
h
i
n
g
.
W
ater
m
ar
k
i
n
g
is
a
p
r
o
ce
s
s
t
h
at
i
n
s
er
t
s
i
m
ag
e
/tex
t
ca
lled
a
w
a
ter
m
ar
k
i
n
to
an
o
t
h
er
i
m
ag
e
an
d
r
esu
lta
n
t
i
m
a
g
e
ca
l
led
w
ate
r
m
ar
k
ed
i
m
a
g
e
[
1
]
.
I
n
o
r
d
er
to
b
e
s
u
cc
e
s
s
f
u
l,
t
h
e
w
at
er
m
ar
k
s
h
o
u
ld
b
e
u
n
n
o
ticea
b
le
an
d
s
tr
o
n
g
to
d
elib
er
ate
o
r
im
p
u
l
s
iv
e
c
h
an
g
e
s
o
f
th
e
i
m
ag
e.
I
t
s
h
o
u
ld
b
e
r
o
b
u
s
t
a
g
ain
s
t
co
m
m
o
n
i
m
a
g
e
p
r
o
ce
s
s
in
g
o
p
er
atio
n
s
s
u
c
h
as
f
i
lter
in
g
,
cr
o
p
p
in
g
,
b
lu
r
r
in
g
,
r
e
s
izin
g
etc
;
an
d
co
m
m
o
n
i
m
a
g
e
co
m
p
r
es
s
io
n
tec
h
n
iq
u
es [
2
]
.
2.
RE
L
AT
E
D
WO
RK
B
asicall
y
,
t
h
e
w
a
ter
m
ar
k
in
g
c
an
b
e
class
i
f
ied
in
to
t
w
o
m
aj
o
r
ca
teg
o
r
ies
s
u
c
h
as
b
lin
d
an
d
n
o
n
-
b
lin
d
w
ater
m
ar
k
i
n
g
ap
p
r
o
ac
h
es.
I
n
b
lin
d
ap
p
r
o
ac
h
,
o
r
ig
in
al
i
m
ag
e
is
n
o
t
r
eq
u
ir
ed
f
o
r
ex
tr
a
ctio
n
o
f
w
ater
m
ar
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
4
8
3
–
2
4
9
5
2484
i
m
a
g
e
w
h
er
e
as
i
n
n
o
n
-
b
lin
d
ap
p
r
o
ac
h
,
o
r
ig
in
al
i
m
ag
e
is
r
eq
u
ir
ed
.
T
h
e
p
r
esen
t
ap
p
r
o
ac
h
u
s
e
s
t
h
e
b
li
n
d
te
ch
n
iq
u
e.
So
m
a
n
y
ap
p
r
o
ac
h
es
ar
e
av
ailab
le
i
n
th
i
s
ca
te
g
o
r
y
s
u
ch
as
W
a
v
elet
tech
n
o
lo
g
y
,
b
lo
ck
b
ased
ap
p
r
o
ac
h
,
L
SB
b
ased
ap
p
r
o
ac
h
,
an
d
ed
g
e
b
ased
tech
n
iq
u
es
[
3
,
4
,
5
,
6
]
.
I
n
a
p
r
ef
er
r
ed
w
at
er
m
ar
k
i
n
g
s
y
s
te
m
,
th
e
w
ater
m
ar
k
s
h
o
u
ld
b
e
r
o
b
u
s
t
to
co
n
ten
t
p
r
eser
v
in
g
atta
ck
s
i
n
cl
u
d
in
g
g
eo
m
etr
ic
d
ef
o
r
m
atio
n
s
an
d
i
m
a
g
e
p
r
o
ce
s
s
in
g
o
p
er
atio
n
s
[
7
,
8
,
9
,
1
0
,
1
1
]
.
T
y
p
icall
y
,
th
e
f
o
l
lo
w
i
n
g
f
ea
tu
r
e
s
ar
e
co
n
s
id
er
ed
f
o
r
d
er
iv
i
n
g
a
n
o
p
tim
a
l
i
m
a
g
e
w
ater
m
ar
k
i
n
g
s
y
s
te
m
:
P
er
ce
p
tu
al
T
r
an
s
p
ar
en
c
y
,
R
o
b
u
s
t
n
e
s
s
,
Data
R
ate,
Se
cu
r
it
y
,
Ver
i
f
icatio
n
an
d
r
eliab
ilit
y
.
T
h
e
p
r
esen
t
p
ap
er
co
n
s
id
er
s
all
th
e
s
e
f
ea
t
u
r
es
i
n
d
esi
g
n
in
g
d
i
g
ital
w
ater
m
a
r
k
in
g
tec
h
n
iq
u
e
i
n
ef
f
icien
c
y
a
n
d
ef
f
ec
ti
v
e
m
a
n
n
er
.
T
h
e
au
th
o
r
s
[
1
2
,
1
3
]
em
b
ed
d
ed
th
e
w
ater
m
ar
k
in
th
o
s
e
r
eg
io
n
s
th
a
t
ar
e
i
n
v
ar
ia
n
t
to
g
eo
m
e
tr
ic
attac
k
s
to
av
o
id
s
y
n
ch
r
o
n
izati
o
n
er
r
o
r
s
.
T
h
e
w
ell
-
k
n
o
w
n
p
at
ch
w
o
r
k
w
ater
m
ar
k
in
g
m
et
h
o
d
s
[
1
4
,
1
5
]
in
s
er
ted
a
m
e
s
s
a
g
e
b
y
s
u
p
p
o
s
in
g
t
h
at
t
w
o
s
ets
r
an
d
o
m
l
y
s
elec
ted
p
ix
els
ar
e
Ga
u
s
s
ian
d
is
tr
ib
u
ted
with
ze
r
o
m
ea
n
.
T
h
e
p
atch
m
e
th
o
d
is
s
e
n
s
iti
v
e
to
d
e
-
s
y
n
c
h
r
o
n
izatio
n
o
p
er
a
tio
n
s
b
ec
au
s
e
t
h
e
w
ater
m
ar
k
is
h
i
g
h
l
y
r
elate
d
to
t
h
e
p
o
s
itio
n
o
f
th
o
s
e
m
ar
k
ed
p
atch
es.
His
to
g
r
a
m
b
ased
w
a
ter
m
ar
k
i
n
g
s
ch
e
m
e
s
ar
e
also
e
x
p
lo
ited
as
d
u
e
to
r
ef
er
en
ce
f
o
r
r
ev
er
s
ib
le
w
ater
m
ar
k
i
n
g
a
n
d
also
f
o
r
a
u
d
io
wate
r
m
ar
k
i
n
g
i
n
t
h
e
liter
at
u
r
e
[
1
6
,
1
7
,
1
8
,
1
9
]
.
I
n
th
e
liter
atu
r
e
w
ater
m
ar
k
i
n
g
m
eth
o
d
s
b
ased
o
n
Gau
s
s
ia
n
k
er
n
el
f
il
ter
an
d
th
e
h
is
to
g
r
a
m
s
h
ap
e
in
v
ar
ia
n
ce
ar
e
r
ep
o
r
ted
to
en
h
an
ce
t
h
e
r
o
b
u
s
t
n
es
s
[
20
, 2
1
].
W
ater
m
ar
k
i
n
g
is
ap
p
lied
in
f
r
eq
u
e
n
c
y
d
o
m
ai
n
by
ap
p
l
y
in
g
tr
an
s
f
o
r
m
s
li
k
e
D
is
cr
et
e
Fo
u
r
ier
T
r
an
s
f
o
r
m
(
DFT
)
,
Dis
cr
ete
C
o
s
i
n
e
T
r
an
s
f
o
r
m
(
DC
T
)
o
r
Dis
cr
ete
W
av
elet
tr
an
s
f
o
r
m
(
DW
T
)
[
2
1
,
2
2
]
.
R
ec
en
t
l
y
,
t
h
e
r
esear
ch
e
s
f
o
r
m
o
r
e
s
ec
u
r
e
w
ater
m
ar
k
i
n
g
tec
h
n
iq
u
es
h
av
e
r
e
v
ea
led
th
e
f
ac
t
th
at
t
h
e
co
n
te
n
t
of
th
e
i
m
a
g
es
co
u
ld
b
e
u
s
ed
to
i
m
p
r
o
v
e
th
e
in
v
i
s
ib
ilit
y
a
n
d
th
e
r
o
b
u
s
tn
e
s
s
o
f
a
w
ater
m
a
r
k
in
g
s
ch
e
m
e
[
2
4
]
.
Su
m
alat
h
a
a
n
d
Vij
a
y
a
k
u
m
ar
p
r
o
p
o
s
ed
co
n
ten
t
a
u
th
e
n
ticat
io
n
s
c
h
e
m
es
ca
lled
B
lo
ck
b
a
s
ed
C
o
n
te
n
t
C
h
ec
k
s
u
m
W
ater
m
ar
k
i
n
g
m
et
h
o
d
(
B
C
C
W
)
[
2
5
]
an
d
L
o
ca
l
E
d
g
e
B
ased
C
o
n
ten
t
Ha
s
h
m
et
h
o
d
[
2
6
]
f
o
r
ef
f
icien
t
ta
m
p
er
d
etec
tio
n
.
T
h
e
n
o
v
eltie
s
o
f
t
h
ese
m
et
h
o
d
s
ar
e
h
ier
ar
ch
ica
l
in
n
a
tu
r
e
a
n
d
t
h
e
y
s
h
o
w
v
er
y
h
ig
h
p
er
ce
p
tu
al
q
u
alit
y
o
f
e
m
b
ed
d
ed
i
m
ag
e.
T
h
e
B
C
C
W
m
et
h
o
d
o
v
er
co
m
es
th
e
d
r
a
w
b
ac
k
s
o
f
W
alto
n
’
s
[
2
7
]
an
d
C
h
a
n
g
et.
al.
[2
8
]
Sch
e
m
es,
b
y
e
m
b
ed
d
in
g
th
e
c
h
ec
k
s
u
m
co
m
p
u
ted
o
n
th
e
b
lo
ck
in
to
t
h
e
2
×2
s
u
b
b
lo
ck
w
h
ich
h
a
s
t
h
e
m
ax
i
m
u
m
av
er
a
g
e
co
m
p
ar
ed
to
o
th
er
s
u
b
b
lo
ck
s
o
f
t
h
e
b
lo
ck
.
Feth
iB
el
k
h
o
u
ch
e
a
n
d
Uv
ai
s
Q
id
w
ai
[
2
9
]
u
s
ed
o
n
e
d
i
m
e
n
s
i
o
n
al
ch
ao
tic
m
ap
.
I
t
h
as
b
ee
n
s
h
o
w
n
t
h
at
t
h
e
m
et
h
o
d
is
u
s
ed
f
o
r
b
in
ar
y
i
m
a
g
e
en
cr
y
p
tio
n
w
i
th
t
h
e
p
o
s
s
ib
ilit
y
o
f
u
s
i
n
g
s
e
v
er
al
k
e
y
s
s
u
ch
as
th
e
in
itial
s
ta
te,
th
e
e
x
ter
n
al
p
ar
a
m
eter
s
a
n
d
th
e
n
u
m
b
er
o
f
i
ter
atio
n
s
.
I
t
i
s
al
s
o
s
h
o
w
n
t
h
at
t
h
e
s
e
n
s
itiv
it
y
t
o
in
itial
s
tate
p
la
y
s
an
i
m
p
o
r
tan
t
r
o
le
in
ch
ao
tic
en
cr
y
p
tio
n
.
H
u
an
g
-
P
eiXiao
,
G
u
o
-
j
iZ
an
g
[
30
]
p
r
o
p
o
s
e
d
s
ch
e
m
e
u
s
in
g
t
w
o
c
h
ao
tic
s
y
s
te
m
s
b
ased
o
n
th
e
th
o
u
g
h
t
o
f
h
ig
h
er
s
ec
r
ec
y
o
f
m
u
lti
-
s
y
s
te
m
.
O
n
e
o
f
th
e
c
h
ao
tic
s
y
s
te
m
s
i
s
u
s
ed
to
g
en
er
ate
a
ch
ao
tic
s
eq
u
e
n
ce
.
P
o
d
ess
er
,
Sch
m
id
t
an
d
Uh
l
[
3
1
]
p
r
o
p
o
s
ed
a
s
elec
tiv
e
en
cr
y
p
tio
n
alg
o
r
ith
m
f
o
r
th
e
u
n
co
m
p
r
e
s
s
ed
(
r
as
ter
)
i
m
a
g
es,
w
h
ic
h
is
q
u
ite
o
p
p
o
s
ite
f
r
o
m
th
e
f
ir
s
t
m
e
th
o
d
p
r
o
p
o
s
ed
b
y
Dr
o
o
g
en
b
r
o
ec
k
an
d
B
en
ed
ett
[
3
2
]
.
Mo
r
e
r
ec
en
tl
y
,
a
r
ei
n
ed
h
ier
ar
ch
ical
s
ch
e
m
e
o
f
d
ig
i
tal
w
a
ter
m
ar
k
i
n
g
w
as
o
b
tain
ed
b
y
T
ass
a
[
3
3
]
f
r
o
m
s
u
b
tler
p
r
o
p
er
ties
o
f
B
ir
k
h
o
f
f
p
o
ly
n
o
m
ial
in
ter
p
o
lat
io
n
.
I
n
[
3
4
]
,
a
m
et
h
o
d
u
s
i
n
g
L
a
g
r
an
g
e
in
ter
p
o
latio
n
f
o
r
m
u
la
is
p
r
o
p
o
s
ed
to
esti
m
ate
a
n
d
r
ec
o
v
er
th
e
lo
s
t
d
ata.
Sh
er
ee
n
et.
al
[
3
5
]
p
r
o
p
o
s
ed
a
m
o
d
el
ca
lled
A
Ne
w
P
r
o
f
ile
L
ea
r
n
i
n
g
Mo
d
el
f
o
r
s
y
te
m
b
ased
lear
in
g
tech
i
n
u
q
u
e
w
h
ic
h
is
u
s
ed
f
o
r
au
th
o
ticatio
n
o
f
th
e
o
w
n
er
s
h
ip
.
C
o
n
te
n
t
a
u
th
e
n
ticat
io
n
ap
p
licatio
n
s
[3
6
]
w
h
er
e
an
y
ti
n
y
c
h
an
g
e
s
to
th
e
co
n
ten
t
ar
e
n
o
t
s
atis
f
ac
to
r
y
,
th
e
e
m
b
ed
d
in
g
d
is
to
r
tio
n
h
a
s
to
be
r
ew
ar
d
ed
p
er
f
ec
tl
y
.
Ma
n
y
d
i
g
ital
w
a
ter
m
ar
k
in
g
s
ch
e
m
es
p
r
o
p
o
s
ed
in
th
e
liter
atu
r
e
f
o
r
s
till
i
m
a
g
e
s
an
d
v
id
eo
s
a
re
m
ain
l
y
u
s
ed
in
a
p
p
licatio
n
s
.
I
n
al
l
t
h
ese
ap
p
li
ca
tio
n
s
,
ap
ar
t
f
r
o
m
co
p
y
r
i
g
h
t
p
r
o
tectio
n
,
i
lleg
a
l
c
o
p
y
p
r
o
tectio
n
,
p
r
o
o
f
of
o
w
n
er
s
h
ip
p
r
o
b
lem
s
,
id
en
t
if
icatio
n
o
f
m
a
n
ip
u
la
tio
n
s
,
th
er
e
is
a
g
r
o
w
i
n
g
n
ee
d
f
o
r
th
e
au
th
e
n
ticat
io
n
o
f
t
h
e
d
ig
ita
l
co
n
ten
t.
3.
M
O
T
I
VAT
I
O
N
T
h
e
m
o
s
t
es
s
en
tial
p
r
o
p
er
tie
s
o
f
an
y
d
i
g
ital
w
ater
m
ar
k
i
n
g
tec
h
n
iq
u
es
ar
e
r
o
b
u
s
tn
e
s
s
,
s
ec
u
r
it
y
,
i
m
p
er
ce
p
tib
ilit
y
,
co
m
p
le
x
it
y
,
an
d
v
er
if
icatio
n
.
R
o
b
u
s
tn
e
s
s
is
th
e
p
r
o
p
er
ty
w
h
er
e
th
e
w
ater
m
ar
k
ca
n
b
e
id
en
ti
f
ied
ev
en
a
f
ter
s
ta
n
d
ar
d
o
p
er
atio
n
s
s
u
c
h
as
f
i
lter
in
g
,
ad
d
in
g
n
o
i
s
e,
s
ca
li
n
g
,
lo
s
s
y
c
o
m
p
r
es
s
io
n
,
co
lo
r
co
r
r
ec
tio
n
,
o
r
g
eo
m
etr
ic
m
o
d
if
icatio
n
s
.
Secu
r
it
y
is
d
e
f
in
ed
as
th
e
e
m
b
ed
d
ed
w
a
ter
m
ar
k
th
at
ca
n
n
o
t
b
e
r
e
m
o
v
ed
a
w
a
y
f
r
o
m
tr
u
s
t
w
o
r
th
y
d
etec
tio
n
b
y
e
m
b
attled
attac
k
s
.
I
m
p
er
ce
p
tib
ilit
y
m
ea
n
s
t
h
e
w
ater
m
ar
k
ca
n
n
o
t
b
e
s
ee
n
b
y
t
h
e
H
u
m
an
Vis
u
al
S
y
s
te
m
(
HV
S).
C
o
m
p
lex
it
y
i
s
d
e
f
in
ed
a
s
t
h
e
e
f
f
o
r
t
an
d
ti
m
e
e
s
s
e
n
tia
l
f
o
r
w
ater
m
ar
k
e
m
b
ed
d
in
g
a
n
d
r
ec
o
v
er
y
.
Fin
a
ll
y
,
v
er
i
f
icat
io
n
i
s
a
p
r
o
ce
s
s
i
n
w
h
ic
h
th
er
e
i
s
a
co
n
f
i
d
en
tial
k
e
y
o
r
p
u
b
lic
k
ey
f
u
n
ctio
n
.
T
h
e
p
r
esen
t
p
ap
er
co
n
s
id
er
s
all
th
ese
p
r
o
p
er
ties
in
d
esig
n
i
n
g
d
i
g
ital
w
ater
m
ar
k
i
n
g
tech
n
iq
u
es.
A
cc
o
r
d
in
g
to
t
h
e
d
if
f
er
en
t
p
r
o
p
er
ties
o
f
w
ater
m
ar
k
i
n
g
,
it
is
ap
p
lied
in
v
ar
io
u
s
f
ield
s
li
k
e
O
w
n
er
s
h
ip
Ass
er
tio
n
,
B
r
o
ad
ca
s
t
M
o
n
ito
r
in
g
,
C
o
p
y
r
i
g
h
t
P
r
o
tectio
n
,
Fi
n
g
er
p
r
in
t
in
g
,
I
D
C
ar
d
Sec
u
r
it
y
,
C
o
n
ten
t
lab
eli
n
g
,
C
o
p
y
C
o
n
tr
o
l
Fra
u
d
an
d
T
am
p
er
De
tectio
n
,
C
o
n
te
n
t
Au
t
h
en
t
icatio
n
,
I
n
teg
r
it
y
Ver
i
f
ica
tio
n
,
Usa
g
e
co
n
tr
o
l,
Me
d
ical
Saf
et
y
a
n
d
C
o
n
ten
t
p
r
o
tectio
n
.
So
m
eti
m
e
s
,
s
ev
er
al
ap
p
licati
o
n
s
ar
e
co
m
b
i
n
ed
in
o
n
e
w
ater
m
ar
k
i
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Hyb
r
id
Dig
ita
l W
a
ter
ma
r
ki
n
g
A
p
p
r
o
a
ch
Usi
n
g
W
a
ve
lets
a
n
d
LS
B
(
V
.
A
s
h
o
k
K
u
ma
r
)
2485
s
ch
e
m
e.
Ho
w
e
v
er
,
it
i
s
i
m
p
o
s
s
ib
le
to
p
u
t
all
th
e
ap
p
licati
o
n
s
i
n
o
n
e
s
c
h
e
m
e
b
ec
au
s
e
d
if
f
er
en
t
ap
p
licatio
n
s
d
em
a
n
d
d
i
f
f
er
en
t
p
r
o
p
er
ties
o
f
w
ater
m
ar
k
i
n
g
s
y
s
te
m
to
d
if
f
er
en
t
ex
te
n
t.
Dep
en
d
in
g
o
n
t
h
e
w
a
ter
m
ar
k
in
g
ap
p
licatio
n
s
a
n
d
p
u
r
p
o
s
e,
d
if
f
er
en
t
p
r
o
p
er
ties
o
r
r
eq
u
ir
em
en
ts
o
f
w
ater
m
ar
k
i
n
g
also
ar
is
e
an
d
r
es
u
lt
i
n
v
ar
io
u
s
d
esi
g
n
is
s
u
e
s
.
T
o
o
v
er
co
m
e
th
e
d
is
ad
v
a
n
ta
g
es,
th
e
p
r
esen
t
p
ap
er
p
r
o
p
o
s
es
a
m
et
h
o
d
ca
lled
W
av
elet
b
ased
L
ea
s
t
Sig
n
i
f
ica
n
t
B
it
W
ater
m
ar
k
i
n
g
(
W
L
SB
W
M)
in
te
g
r
a
tes
t
h
e
alp
h
ab
et
p
atter
n
ap
p
r
o
ac
h
f
o
r
g
en
er
ati
n
g
t
h
e
s
h
u
f
f
led
i
m
a
g
e,
w
av
elet
co
n
ce
p
t
to
r
ed
u
ce
th
e
d
i
m
en
s
io
n
a
lit
y
,
P
ell’
s
ca
p
m
ap
f
o
r
p
r
o
tectio
n
f
r
o
m
a
ttack
s
an
d
L
SB
ap
p
r
o
ac
h
is
u
s
ed
to
in
s
er
t
th
e
w
ater
m
ar
k
i
m
ag
e.
T
h
e
p
r
esen
t
ap
p
r
o
ac
h
is
s
i
m
p
le
tech
n
iq
u
e
t
o
in
s
er
t
th
e
i
m
a
g
e
an
d
p
r
o
v
id
es
h
i
g
h
p
r
o
tectio
n
f
r
o
m
attac
k
s
.
T
h
e
n
o
v
elt
y
o
f
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
is
th
at
d
o
u
b
le
p
r
o
tectio
n
is
p
r
o
v
id
ed
f
o
r
wate
r
m
ar
k
ed
i
m
a
g
e
s
o
t
h
at
it
p
r
o
tect
f
r
o
m
attac
k
s
.
T
h
e
r
est
o
f
th
e
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
.
P
r
o
p
o
s
ed
W
L
SB
W
M
d
escr
ib
ed
in
s
ec
tio
n
4
a
n
d
r
esu
l
ts
ar
e
d
i
s
c
u
s
s
ed
in
s
ec
tio
n
5
.
A
ttac
k
s
o
n
th
e
p
r
o
p
o
s
ed
m
e
th
o
d
ar
e
d
is
cu
s
s
ed
in
s
ec
tio
n
6
an
d
f
i
n
all
y
co
n
cl
u
s
io
n
s
ar
e
g
i
v
e
n
in
s
ec
tio
n
7
.
4.
P
RO
P
O
SE
D
M
E
T
H
O
D
I
n
o
r
d
er
to
p
r
o
v
id
e
co
p
y
r
ig
h
t
p
r
o
tectio
n
f
o
r
th
e
id
e
n
ti
f
i
ca
tio
n
o
f
o
w
n
er
s
h
ip
,
t
h
e
p
r
esen
t
p
ap
er
p
r
o
v
id
es
a
h
y
b
r
id
tec
h
n
iq
u
e
to
in
s
er
t
a
n
d
e
x
tr
ac
t
t
h
e
w
ater
m
ar
k
in
e
f
f
ec
ti
v
e
a
n
d
ef
f
icie
n
t
m
an
n
er
.
T
h
e
p
r
o
p
o
s
ed
W
L
SB
W
M
m
e
th
o
d
co
n
s
i
s
ts
o
f
8
s
i
m
p
le
s
tep
s
f
o
r
i
n
s
er
ti
n
g
th
e
w
ater
m
ar
k
i
m
a
g
e
an
d
8
s
tep
s
f
o
r
ex
tr
ac
t
in
g
th
e
w
ater
m
ar
k
i
m
ag
e.
T
h
e
b
lo
ck
d
iag
r
am
o
f
th
e
in
s
er
ti
n
g
w
ater
m
ar
k
i
m
a
g
e
is
s
h
o
w
n
in
F
ig
u
r
e
1
.
T
h
e
w
ater
m
ar
k
i
n
s
er
tio
n
alg
o
r
it
h
m
is
d
escr
ib
ed
b
elo
w
.
Fig
u
r
e
1
.
b
lo
ck
d
iag
r
a
m
o
f
t
h
e
W
L
SB
W
M
m
et
h
o
d
A.
Wa
t
er
m
a
r
k
in
s
er
t
io
n a
lg
o
rit
h
m
Ste
p
1
:
I
dentif
y
t
he
Alph
a
bet
pa
t
t
er
n:
I
n
in
s
er
tio
n
al
g
o
r
ith
m
s
tep
o
n
e,
f
o
r
p
r
o
v
id
in
g
th
e
s
ec
u
r
it
y
to
p
r
o
tect
f
r
o
m
attac
k
s
th
e
p
r
ese
n
t
ap
p
r
o
ac
h
co
n
v
er
t
s
th
e
o
r
ig
i
n
al
i
m
a
g
e
in
to
s
h
u
f
f
led
i
m
ag
e.
T
h
e
p
r
e
s
en
t
p
ap
er
u
s
es
t
h
e
A
lp
h
ab
et
p
atter
n
s
to
g
e
n
er
ate
th
e
s
h
u
f
f
led
i
m
a
g
e.
T
h
e
g
e
n
er
atio
n
o
f
s
h
u
f
f
led
i
m
a
g
e
h
as
t
w
o
s
u
b
ta
s
k
s
i
.
e.
id
en
ti
f
y
t
h
e
A
lp
h
ab
et
p
atter
n
s
o
n
ea
ch
3
×3
an
d
ch
an
g
e
t
h
e
d
ir
ec
tio
n
o
f
th
e
p
ix
el
v
al
u
es
i
n
r
ev
er
s
e
d
ir
ec
tio
n
.
T
h
e
p
r
esen
t
p
ap
er
u
s
es
‘
T
’
p
atter
n
,
‘
E
’
p
atter
n
,
a
n
d
‘
U
’
p
atter
n
s
.
T
h
e
3
×3
w
i
n
d
o
w
co
n
s
is
ts
o
f
9
p
i
x
els.
T
h
e
p
ix
el
v
alu
e
s
ar
e
in
d
icate
d
b
y
P
1
,
P
2
, P
3
…
P
9
.
T
h
e
3
×3
w
i
n
d
o
w
i
s
s
h
o
w
n
i
n
F
i
g
u
r
e
2
.
P
1
P
2
P
3
P
4
P
5
P
6
P
7
P
8
P
9
Fig
u
r
e
2
.
3
×3
w
i
n
d
o
w
I
n
a
g
i
v
en
w
in
d
o
w
,
i
f
th
e
p
i
x
e
ls
v
al
u
es
o
f
P
1
,
P
2
,
P
3
,
P
5
,
an
d
P
8
ar
e
s
am
e
t
h
e
n
tr
ea
ts
t
h
e3
×3
w
i
n
d
o
w
f
o
r
m
s
t
h
e
‘
T
’
p
atter
n
.
I
f
‘
T
’
p
atter
n
ex
i
s
ted
in
3
×3
w
i
n
d
o
w
th
en
c
h
a
n
g
e
t
h
e
d
ir
ec
ti
o
n
o
f
t
h
e
p
ix
el
p
o
s
itio
n
s
to
f
o
r
m
i
n
v
er
ted
T
p
atter
n
.
T
h
e
f
ig
u
r
e
3
d
ep
icts
t
h
e
in
v
er
ted
‘
T
’
p
atter
n
.
I
f
t
h
e
p
i
x
el
p
o
s
itio
n
s
s
h
o
w
n
in
f
i
g
u
r
e
4
w
h
ic
h
ar
e
h
i
g
h
li
g
h
ted
h
a
s
s
a
m
e
v
al
u
es
t
h
en
3
×3
w
i
n
d
o
w
f
o
r
m
s
t
h
e
E
p
atter
n
an
d
ch
a
n
g
e
th
e
p
ix
el
p
o
s
itio
n
ac
co
r
d
in
g
to
f
ig
u
r
e
4
(
b
)
.
I
n
t
h
e
s
a
m
e
w
a
y
i
f
th
e
3
×3
w
i
n
d
o
w
f
o
r
m
U
p
atter
n
,
ch
a
n
g
e
th
e
p
o
s
itio
n
s
o
f
t
h
e
p
ix
els
ac
co
r
d
in
g
to
f
i
g
u
r
e
5
b
.
T
h
e
s
a
m
e
p
r
o
ce
d
u
r
e
is
ap
p
lied
f
o
r
r
em
ai
n
i
n
g
3
×3
w
in
d
o
w
s
i
n
th
e
e
n
tire
i
m
ag
e
th
e
r
esu
ltan
t i
m
a
g
e
i
s
tr
ea
ted
as sh
u
f
f
led
i
m
a
g
e
Or
i
g
i
na
l
im
a
g
e
A
ppl
y
N
th
l
e
v
e
l
D
W
T
W
a
t
e
rm
a
rke
d
i
m
a
ge
S
h
uf
f
l
e
d
Im
a
ge
Ide
n
t
i
fy
t
h
e
A
l
p
ha
b
e
t
P
a
t
t
e
rn
s
a
n
d
c
ha
n
ge
t
h
e
D
i
r
e
c
t
i
o
n
o
f
pa
t
t
e
rn
s
W
a
t
e
rm
a
rk
i
m
a
ge
A
ppl
y
P
e
l
l
’s
Ca
t
M
a
p
t
e
c
hn
i
q
ue
t
o
ge
n
e
ra
t
e
m
i
xe
d
i
m
a
ge
A
ppl
y
r
e
v
e
r
s
e
P
e
l
l
’s
Ca
p
T
e
c
hn
i
q
ue
D
CT
N
t
h
L
e
v
e
l
D
W
T
i
m
a
ge
W
a
t
e
rm
a
rk
I
n
s
e
r
t
i
o
n
us
i
n
g
L
S
B
i
n
L
H
1
s
ub
b
a
n
d
Ide
n
t
i
fy
t
h
e
A
l
p
ha
b
e
t
P
a
t
t
e
rn
s
a
n
d
c
ha
n
ge
t
h
e
D
i
r
e
c
t
i
o
n
o
f
pa
t
t
e
rn
s
A
ppl
y
N
th
l
e
v
e
l
ID
W
T
ID
CT
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
4
8
3
–
2
4
9
5
2486
P
1
P
2
P
3
P
7
P
8
P
9
P
4
P
5
P
6
P
4
P
5
P
6
P
7
P
8
P
9
P
1
P
2
P
3
(
a)
(
b
)
Fig
u
r
e
3
.
(
a)
T
P
atter
n
(
b
)
I
n
v
er
ted
T
p
atter
n
P
1
P
2
P
3
P
3
P
8
P
1
P
4
P
5
P
6
P
6
P
5
P
4
P
7
P
8
P
9
P
9
P
2
P
7
(
a)
(
b
)
Fig
u
r
e
4
: (
a)
E
Patter
n
(
b
)
I
n
v
er
ted
E
p
atter
n
P
1
P
2
P
3
P
7
P
8
P
9
P
4
P
5
P
6
P
4
P
5
P
6
P
7
P
8
P
9
P
1
P
2
P
3
(
a)
(
b
)
Fig
u
r
e
5
.
(
a)
U
P
atter
n
(
b
)
I
n
v
er
ted
U
p
atter
n
Ste
p 2
:
P
ell’
s
Ca
t
M
a
p
(
P
CM
)
:
Fo
r
p
r
o
v
id
in
g
f
u
r
t
h
er
s
ec
u
r
it
y
an
d
au
t
h
e
n
ticatio
n
,
P
ell’
s
C
a
t
Ma
p
(
P
C
M)
[
3
7
]
is
e
m
p
lo
y
ed
o
n
th
e
5
×5
n
o
n
o
v
er
lap
p
ed
b
lo
ck
s
o
f
s
h
u
f
f
led
i
m
a
g
e.
A
d
is
cr
ete
m
ap
p
in
g
u
s
i
n
g
t
h
e
m
atr
ix
P
=
w
ith
d
eter
m
i
n
an
t
−1
is
s
till
ar
ea
p
r
eser
v
i
n
g
b
u
t
also
o
r
ien
tatio
n
r
e
v
er
s
i
n
g
.
As it
tu
r
n
s
o
u
t t
h
e
m
atr
ix
P
w
il
l g
e
n
er
ate
n
u
m
b
er
s
in
th
e
P
ell
’
s
a
n
d
h
al
f
-
co
m
p
a
n
io
n
P
ell
s
eq
u
en
ce
s
,
s
o
P
to
g
eth
er
w
i
th
th
e
m
o
d
u
lo
N
o
p
er
atio
n
w
ill
h
en
ce
f
o
r
th
b
e
d
en
o
ted
P
ell’
s
c
at
m
ap
as
s
h
o
w
n
in
eq
u
atio
n
(
1
)
(
1
)
W
h
er
e
Ste
p 3
:
Appl
y
DCT o
n
m
i
x
e
d i
m
a
g
e
bef
o
re
ins
er
t
i
ng
t
he
w
a
t
er
m
a
r
k
i
m
a
g
e.
DC
T
h
as
b
ee
n
ex
ten
s
iv
e
l
y
u
s
ed
in
i
m
a
g
e
w
ater
m
ar
k
i
n
g
b
ec
au
s
e
o
f
h
i
g
h
e
n
er
g
y
co
m
p
ac
t
io
n
co
m
p
eten
ce
a
n
d
r
esp
ec
tab
le
r
o
b
u
s
tn
e
s
s
.
Gen
e
r
all
y
,
f
r
o
m
s
p
atial
d
o
m
ai
n
to
f
r
eq
u
en
c
y
d
o
m
a
in
co
n
v
er
s
io
n
Dis
cr
ete
C
o
s
i
n
e
T
r
an
s
f
o
r
m
(
DC
T
)
is
u
s
ed
[
3
8
,
3
9
]
.
I
t
also
d
eliv
er
s
s
u
itab
le
tr
ad
e
-
o
f
f
b
et
w
ee
n
Hu
m
a
n
Vi
s
u
al
S
y
s
te
m
(
HVS)
m
o
d
el
a
n
d
th
e
i
m
ag
e
m
is
r
ep
r
esen
tatio
n
d
eg
r
ee
[
4
0
,
4
1
]
.
DC
T
w
ater
m
ar
k
i
n
g
ca
n
b
e
class
i
f
ied
in
to
t
w
o
ca
teg
o
r
ies:
Glo
b
al
D
C
T
w
ater
m
ar
k
i
n
g
a
n
d
B
lo
ck
-
b
ased
D
C
T
w
ater
m
ar
k
in
g
[
4
2
,
4
3
]
.
T
h
e
DC
T
co
m
p
u
tatio
n
is
p
er
f
o
r
m
ed
o
n
th
e
e
n
tire
i
m
a
g
e
in
Glo
b
al
DC
T
[
4
1
]
,
w
h
er
e
as
th
e
D
C
T
co
m
p
u
tatio
n
is
p
e
r
f
o
r
m
ed
s
ep
ar
atel
y
o
n
ea
ch
n
o
n
-
o
v
er
lap
p
in
g
b
l
o
ck
s
[
4
4
,
4
5
]
to
g
et
lo
w
-
f
r
eq
u
en
c
y
,
m
id
-
f
r
eq
u
e
n
c
y
a
n
d
h
ig
h
-
f
r
eq
u
e
n
c
y
s
u
b
-
b
an
d
s
[
4
3
]
.
Gen
er
ally
,
t
h
e
w
at
er
m
ar
k
is
i
n
s
er
ted
in
to
a
m
id
-
f
r
eq
u
en
c
y
s
u
b
-
b
an
d
,
w
h
ich
p
r
o
v
id
es
p
r
o
tectio
n
f
r
o
m
w
ater
m
ar
k
i
n
g
attac
k
s
an
d
it
is
w
ell
-
m
atch
ed
w
it
h
HVS
m
o
d
el
[
4
6
,
4
7
]
.
Giv
en
an
i
m
a
g
e
f
o
f
s
ize
M
x
N,
th
e
f
o
r
w
ar
d
an
d
in
v
er
s
e
D
C
T
s
ar
e
s
h
o
w
n
i
n
eq
u
atio
n
s
(
2
)
an
d
(
3
)
[
4
8
]
.
T
h
e
p
r
esen
t
p
ap
er
u
tili
ze
s
an
d
ap
p
l
ies
DC
T
o
n
m
ix
ed
i
m
ag
e.
1
0
1
0
1
0
1
0
)
3
(
2
)
1
2
(
c
os
2
)
1
2
(
c
os
)
,
(
)
(
)
(
)
,
(
)
2
(
2
)
1
2
(
c
os
2
)
1
2
(
c
os
)
,
(
)
(
)
(
)
,
(
M
x
N
y
M
x
N
y
N
v
y
M
u
x
v
u
F
v
c
u
c
y
x
f
N
v
y
M
u
x
y
x
f
v
c
u
c
v
u
F
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Hyb
r
id
Dig
ita
l W
a
ter
ma
r
ki
n
g
A
p
p
r
o
a
ch
Usi
n
g
W
a
ve
lets
a
n
d
LS
B
(
V
.
A
s
h
o
k
K
u
ma
r
)
2487
W
h
er
e
and
N
v
M
u
1
0
,
1
0
1
1
,
2
0
,
1
1
1
,
2
0
,
1
N
v
N
v
N
v
c
M
u
M
u
M
u
c
Ste
p 4
:
Appl
y
N
lev
el
DWT
o
n DC
T
i
m
a
g
e
:
I
n
f
r
eq
u
en
c
y
d
o
m
a
in
,
a
n
o
th
er
r
eliab
le
tr
an
s
f
o
r
m
atio
n
tec
h
n
i
q
u
e
is
Dis
cr
ete
W
av
elet
T
r
an
s
f
o
r
m
(
DW
T
)
.
DW
T
is
a
m
a
th
e
m
atica
l
to
o
l
f
o
r
d
is
in
te
g
r
atin
g
an
i
m
ag
e
h
ier
ar
ch
ic
[
3
9
]
.
I
t
d
iv
id
es
th
e
i
m
a
g
e
in
to
f
o
u
r
s
u
b
-
b
an
d
s
w
h
ic
h
ar
e
lo
w
er
r
eso
l
u
tio
n
a
p
p
r
o
x
im
a
tio
n
i
m
a
g
e
(
L
L
)
,
h
o
r
izo
n
tal
(
HL
)
,
v
er
tica
l
(
L
H)
an
d
d
iag
o
n
al
(
HH)
d
etail
s
u
b
-
b
an
d
s
[
3
7
]
.
T
h
is
p
r
o
ce
s
s
o
f
d
iv
i
s
io
n
ca
n
b
e
r
ep
ea
ted
s
ev
er
al
ti
m
es
to
co
m
p
u
te
m
u
lti
-
le
v
el
w
av
e
let
d
ec
o
m
p
o
s
itio
n
.
B
ased
o
n
HVS
m
o
d
el,
th
e
L
L
s
u
b
-
b
an
d
is
n
o
t
s
u
itab
le
f
o
r
th
e
w
a
ter
m
ar
k
e
m
b
ed
d
in
g
,
b
ec
au
s
e
it
co
n
tai
n
s
i
m
p
o
r
tan
t
d
ata
ab
o
u
t
t
h
e
i
m
ag
e
an
d
ca
u
s
es
i
m
a
g
e
d
is
to
r
tio
n
.
H
H
s
u
b
-
b
an
d
i
s
n
o
t
s
u
itab
le
b
ec
au
s
e
o
f
less
h
ea
r
t
y
ag
ai
n
s
t
i
m
ag
e
p
r
o
ce
s
s
in
g
o
p
er
atio
n
s
s
u
ch
a
s
lo
s
s
y
co
m
p
r
e
s
s
io
n
[
4
5
]
.
T
h
u
s
,
th
e
s
u
itab
le
s
u
b
-
b
an
d
s
f
o
r
w
ater
m
ar
k
e
m
b
ed
d
in
g
ar
e
t
h
e
m
id
-
f
r
eq
u
e
n
c
y
s
u
b
-
b
an
d
s
L
H
an
d
H
L
[
4
6
,
4
8
]
.
Fig
u
r
e.
6
illu
s
tr
ates
d
ec
o
m
p
o
s
itio
n
o
f
an
i
m
a
g
e
u
s
i
n
g
2
D
w
a
v
elet
tr
an
s
f
o
r
m
af
ter
3
lev
els o
f
d
ec
o
m
p
o
s
itio
n
.
Fig
u
r
e
6
.
T
h
ir
d
lev
el
w
av
e
let
t
r
an
s
f
o
r
m
A
p
p
l
y
N
th
le
v
el
DW
T
o
n
D
C
T
im
a
g
e
to
i
n
s
er
t
th
e
w
ater
m
ar
k
,
N
le
v
el
d
ep
en
d
s
o
n
t
h
e
Size
o
f
th
e
o
r
i
g
i
n
al
i
m
a
g
e
an
d
w
ater
m
ar
k
i
m
a
g
e.
Su
p
p
o
s
e
th
e
s
ize
o
f
t
h
e
i
m
a
g
e
2
5
6
×2
5
6
an
d
th
e
w
ater
m
ar
k
i
m
ag
e
s
ize
i
s
6
4
X6
4
th
e
2
lev
el
DW
T
is
ap
p
lied
.
I
f
th
e
s
ize
o
f
t
h
e
o
r
ig
i
n
al
i
m
ag
e
is
5
1
2
×5
1
2
th
en
3
lev
els
o
f
t
h
e
DW
T
ap
p
lied
o
n
o
r
ig
in
al
i
m
a
g
e.
Ste
p 5
:
E
m
bed
din
g
t
he
w
a
t
e
r
m
a
r
k
:
Fin
d
t
h
e
Size
o
f
th
e
W
ater
m
ar
k
i
m
ag
e
a
n
d
C
o
n
v
er
t
s
th
e
w
a
t
er
m
ar
k
i
m
a
g
e
in
to
a
v
ec
to
r
o
f
ze
r
o
s
an
d
o
n
es.
T
h
e
co
n
d
itio
n
f
o
r
in
s
er
tin
g
t
h
e
w
ater
m
ar
k
i
s
th
e
s
iz
e
o
f
th
e
L
H
n
i
s
eq
u
al
to
s
ize
o
f
th
e
w
ate
r
m
ar
k
i
m
a
g
e.
W
h
er
e
n
is
t
h
e
n
th
le
v
el
DW
T
.
T
h
e
L
SB
o
f
th
e
e
ac
h
v
al
u
e
i
n
L
H
n
s
u
b
-
b
an
d
i
s
r
ep
lace
d
w
it
h
t
h
e
co
r
r
esp
o
n
d
in
g
w
ater
m
ar
k
i
m
a
g
e
b
it v
al
u
e.
T
h
e
n
e
w
L
Hn
s
u
b
b
an
d
is
ca
lled
th
e
w
a
ter
m
ar
k
s
u
b
b
an
d
i
m
a
g
e
Ste
p
6
Appl
y
N
th
i
nv
er
s
e
D
WT
:
A
p
p
l
y
n
th
lev
el
I
n
v
er
s
e
DW
T
o
n
w
ater
m
ar
k
s
u
b
-
b
an
d
i
m
a
g
e
an
d
I
DC
T
is
also
ap
p
lied
.
Ste
p 7
:
T
h
e
r
ev
er
s
e
o
f
s
tep
3
,
in
v
er
s
e
P
C
M
is
ap
p
lied
o
n
th
e
s
h
u
f
f
led
w
ater
m
ar
k
ed
i
m
ag
e.
Ste
p
8
:
T
h
e
r
ev
er
s
e
o
f
s
tep
o
n
e,
I
d
en
tify
t
h
e
A
lp
h
ab
et
p
att
er
n
s
o
n
ea
ch
3
×3
o
f
s
h
u
f
f
led
w
ater
m
ar
k
ed
i
m
ag
e
an
d
ch
a
n
g
e
t
h
e
d
ir
ec
tio
n
o
f
t
h
e
p
ix
e
l
v
a
lu
e
s
i
n
r
ev
er
s
e
d
ir
ec
tio
n
to
o
b
tain
a
s
h
u
f
f
led
i
m
ag
e.
T
h
e
r
esu
lta
n
t
i
m
a
g
e
is
ca
lled
w
ater
m
ar
k
ed
i
m
ag
e.
B.
Wa
t
er
m
a
r
k
e
x
t
ra
ct
io
n a
lg
o
rit
h
m
T
h
e
b
lo
ck
d
iag
r
am
o
f
t
h
e
wat
er
m
ar
k
ex
tr
ac
tio
n
is
s
h
o
w
n
in
F
ig
u
r
e
7
.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
W
av
elet
b
ased
L
SB
W
ater
m
ar
k
E
x
tr
ac
tio
n
(
W
L
SB
W
ME
)
co
n
s
i
s
ts
o
f
8
s
tep
s
as ill
u
s
tr
ated
b
elo
w
.
Ste
p
1
:
I
n
s
tep
o
n
e,
I
d
en
ti
f
y
t
h
e
A
lp
h
ab
et
p
atter
n
s
o
n
ea
ch
3
×3
s
u
b
-
w
i
n
d
o
w
o
f
t
h
e
w
ater
m
ar
k
ed
a
n
d
c
h
an
g
e
th
e
d
ir
ec
tio
n
o
f
t
h
e
p
ix
el
v
al
u
e
s
in
r
ev
er
s
e
d
ir
ec
tio
n
to
o
b
tain
a
s
h
u
f
f
led
w
ater
m
ar
k
ed
i
m
a
g
e.
Ste
p 2
:
A
p
p
l
y
P
ell’
s
C
at
Ma
p
(
P
C
M)
o
n
th
e
ea
ch
5
×5
s
u
b
-
win
d
o
w
o
f
s
h
u
f
f
led
i
m
a
g
e.
Ste
p
3
:
C
o
n
v
er
t
t
h
e
w
a
ter
m
a
r
k
i
m
a
g
e
in
to
a
v
ec
to
r
o
f
ze
r
o
s
an
d
o
n
es
an
d
f
in
d
th
e
Siz
e
o
f
th
e
W
ater
m
ar
k
i
m
a
g
e
Ste
p 4
& 5
:
A
p
p
l
y
DC
T
o
n
w
ater
m
ar
k
ed
s
h
u
f
f
led
i
m
ag
e
a
n
d
g
et
w
ater
m
ar
k
ed
s
h
u
f
f
led
D
C
T
I
m
a
g
e
Ste
p 6
:
A
p
p
l
y
N
le
v
el
DW
T
o
n
DC
T
i
m
a
g
e
to
ex
tr
ac
t t
h
e
wate
r
m
ar
k
i
m
a
g
e.
Ste
p 7
:
A
f
t
er
N
th
DW
T
is
ap
p
l
ied
o
n
i
m
ag
e,
s
to
r
es th
e
L
H1
v
alu
e
s
i
n
to
S.
Ste
p
8
:
ex
tr
ac
t
th
e
L
SB
o
f
t
h
e
ea
c
h
v
alu
e
s
i
n
S,
s
to
r
e
t
h
e
v
al
u
es
in
T
e
m
p
w
h
ic
h
i
s
e
q
u
al
s
ize
o
f
th
e
S.
T
h
e
T
em
p
is
t
h
e
w
ater
m
ar
k
i
m
ag
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
4
8
3
–
2
4
9
5
2488
Fig
u
r
e
7
: b
lo
ck
d
iag
r
a
m
o
f
t
h
e
w
ater
m
ar
k
ex
tr
ac
tio
n
p
r
o
ce
s
s
5.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
e
p
r
o
p
o
s
ed
W
L
SB
W
M
m
e
th
o
d
is
e
x
p
er
i
m
e
n
ted
o
v
er
3
0
i
m
a
g
es
of
s
ize
2
5
6
×2
5
6
.
T
h
e
i
m
a
g
e
s
u
s
ed
i
n
th
is
ap
p
r
o
ac
h
ar
e
s
h
o
w
n
i
n
f
i
g
u
r
e
8
.
T
h
e
p
r
esen
t
m
et
h
o
d
i
s
te
s
ted
w
it
h
t
w
o
d
if
f
er
en
t
w
ater
m
ar
k
i
m
a
g
es.
i.e
.
‘
A
I
T
A
M
’
a
n
d
‘
GI
T
A
M’
lo
g
o
s
o
f
s
ize
6
4
×6
4
an
d
s
h
o
w
n
i
n
f
i
g
u
r
e
9
(
a)
a
n
d
9
(
b
)
r
esp
ec
tiv
el
y
.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
test
e
d
w
it
h
Ma
tlab
s
o
f
t
w
ar
e
o
n
i3
p
r
o
ce
s
s
o
r
an
d
4
GB
R
A
M.
T
h
e
r
esu
lta
n
t
w
ater
m
ar
k
ed
i
m
ag
e
s
af
ter
in
s
er
tin
g
t
h
e
w
ater
m
ar
k
i
m
a
g
e
lo
g
o
s
o
f
‘
GI
T
A
M
’
a
n
d
‘
A
I
T
A
M
’
ar
e
s
h
o
w
n
i
n
F
ig
u
r
e
1
0
an
d
1
1
r
esp
ec
tiv
el
y
Fig
u
r
e
8
:
I
m
ag
e
s
u
s
ed
in
t
h
is
e
x
p
er
i
m
e
n
t (
i
)
L
e
n
a,
(
ii)
B
ar
b
ar
a,
(
iii)
Mo
n
alis
a,
(
iv
)
C
a
m
er
a
m
an
,
(
v
)
T
er
r
au
x
,
(
v
i)
Ho
u
s
e,
(
v
i
i)
A
ir
p
la
n
e,
(
v
ii
i)
Je
tp
lan
e,
(
ix
)
E
ag
le
-
1,
(
x
)
E
ag
le
-
2
,
(
x
i)
MRI
-
1
,
(
x
ii)
M
R
I
-
2
,
(
x
iii)
MRI
-
3
,
(
x
iv
)
Ma
n
d
r
ill,
(
x
v
)
C
T
-
1
,
(
x
v
i)
B
u
tter
f
l
y
,
(
x
v
ii)
C
h
ee
tah
,
(
x
v
iii)
L
an
d
s
ca
p
e,
(
x
i
x
)
C
h
ip
s
,
(
x
x
)
P
ain
t,
(
x
x
i)
P
ep
p
e
r
s
,
(
x
x
ii)
B
ab
y
-
1
,
(
x
x
iii)
B
ab
y
-
2
,
(
x
x
i
v
)
cir
cles,
(
x
x
v
)
J
o
k
er
,
(
x
x
v
i)
Mil
k
d
r
o
p
,
(
x
x
v
ii)
C
h
ar
ac
ter
,
(
x
x
v
i
ii)
Seed
,
(
x
x
i
x
)
T
ile,
(
x
x
x
)
I
r
is
.
(
a)
(
b
)
Fig
u
r
e
9
:
w
ater
m
ar
k
i
m
a
g
es (
a
)
L
o
g
o
o
f
GI
T
A
M
an
d
(
b
)
lo
g
o
o
f
A
I
T
A
M
Fig
u
r
e
1
0
.
W
ater
m
ar
k
ed
i
m
ag
es: a)
Mo
n
alis
a
b
)
E
ag
le
-
1
c)
C
a
m
er
a
m
a
n
d
)
B
ab
y
-
2
e)
MRI
-
1
f
)
L
an
d
s
ca
p
e
g
)
J
etp
lan
e
h
)
Ho
u
s
e
i)
J
o
k
er
k
)
C
h
ee
ta
h
w
h
en
i
n
s
er
t t
h
e
w
ater
m
ar
k
lo
g
o
o
f
‘
GI
T
A
M
‘
Water
M
ark
ed
im
a
g
e
A
pply
N
th
le
v
el
DWT
S
huffl
ed
Im
a
g
e
I
de
n
t
i
f
y
t
h
e
Al
p
h
a
b
e
t
P
a
tt
e
r
n
s
a
n
d
c
h
a
n
ge
t
h
e
D
i
r
e
c
t
i
o
n
o
f
pa
tt
e
r
n
s
F
o
r
m
t
h
e
wa
t
e
r
m
a
r
k
im
a
ge
A
pp
ly
P
e
l
l
’
s
C
a
t
M
a
p
t
e
c
h
ni
qu
e
to
ge
n
e
r
a
t
e
m
i
xe
d
im
a
ge
D
CT
TTT
N
t
h
L
e
v
e
l
D
W
T
im
a
ge
E
xt
ra
c
t
t
h
e
L
S
B
b
i
t
s
f
r
o
m
L
H
1
s
ub
b
a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Hyb
r
id
Dig
ita
l W
a
ter
ma
r
ki
n
g
A
p
p
r
o
a
ch
Usi
n
g
W
a
ve
lets
a
n
d
LS
B
(
V
.
A
s
h
o
k
K
u
ma
r
)
2489
Fig
u
r
e
1
1
.
W
ater
m
ar
k
ed
i
m
ag
es: a)
L
e
n
a
b
)
B
ar
b
ar
a
c
)
MRI
-
2
d
)
MRI
-
3
e)
J
etp
aln
e
f
)
C
h
ip
s
g
)
B
ab
u
-
1
h)
Mil
k
d
r
o
p
i)
J
o
k
er
k
)
C
h
ee
ta
h
w
h
e
n
in
s
er
t th
e
w
ater
m
ar
k
lo
g
o
o
f
‘
A
I
T
A
M
‘
T
o
f
in
d
th
e
ef
f
ec
ti
v
en
e
s
s
o
f
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
,
th
e
p
r
esen
t
p
ap
er
u
s
ed
t
w
o
p
o
p
u
lar
a
n
d
ef
f
ec
tiv
e
cr
iter
ia
ca
lled
No
r
m
a
lized
C
o
r
r
elatio
n
C
o
e
f
f
icien
t
(
NC
C
)
an
d
P
ea
k
Sig
n
al
No
is
e
R
atio
(
P
SNR
)
f
o
r
ev
a
lu
at
in
g
th
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
p
r
o
p
o
s
ed
w
ater
m
ar
k
i
n
g
al
g
o
r
ith
m
.
T
h
e
q
u
alit
y
o
f
th
e
w
ater
m
ar
k
o
r
th
e
f
r
an
g
ib
ilit
y
o
f
th
e
alg
o
r
ith
m
is
as
s
es
s
e
d
b
y
t
h
e
s
i
m
ilar
it
y
m
ea
s
u
r
e
m
e
n
t
N
C
C
b
et
w
ee
n
th
e
r
ef
er
en
ce
d
w
ater
m
ar
k
W
an
d
th
e
ex
tr
ac
ted
w
ater
m
ar
k
W
*
as
g
iv
e
n
in
E
q
u
atio
n
4
.
1
0
2
1
0
))
(
(
)
(
*
)
(
N
i
N
i
i
W
i
W
i
W
N
C
C
(
4
)
W
h
er
e
,
N
is
n
u
m
b
er
o
f
p
ix
el
s
,
w
(
i)
an
d
w*
(
i)
ar
e
th
e
o
r
ig
i
n
a
l
w
ater
m
ar
k
a
n
d
th
e
e
x
tr
ac
ted
w
ater
m
ar
k
.
I
n
t
h
e
ab
o
v
e
eq
u
a
tio
n
ρ
=
1
in
d
icate
s
p
er
f
ec
t
co
r
r
elatio
n
,
w
h
ile
an
ex
tr
e
m
el
y
lo
w
v
al
u
e
r
ev
ea
l
s
t
h
at
th
e
w
ater
m
ar
k
s
ar
e
d
is
s
i
m
ilar
.
I
f
NC
C
v
al
u
e
r
an
g
es
f
r
o
m
0
.
6
5
to
1
.
0
th
en
o
n
e
ca
n
s
a
y
t
h
at
t
h
e
i
m
ag
e
p
r
eser
v
e
s
h
ig
h
q
u
al
it
y
a
f
ter
i
n
s
er
ti
n
g
t
h
e
w
ater
m
ar
k
.
T
h
e
p
r
esen
t
m
et
h
o
d
also
ca
lcu
lates,
t
h
e
d
if
f
er
e
n
ce
b
et
w
ee
n
th
e
o
r
ig
in
al
i
m
ag
e
a
n
d
th
e
w
ater
m
ar
k
ed
i
m
a
g
e
b
y
P
ea
k
Si
g
n
a
l
No
is
e
R
atio
(
P
SNR
)
.
T
h
e
b
ig
g
er
P
SNR
is
,
t
h
e
s
m
aller
is
t
h
e
d
if
f
e
r
en
ce
,
an
d
P
SNR
is
d
ef
in
ed
t
h
r
o
u
g
h
g
iv
e
n
E
q
u
atio
n
(
5
)
.
M
S
E
PS
N
R
2
255
l
o
g
10
(
5
)
W
h
er
e
m
ea
n
s
q
u
ar
ed
er
r
o
r
(
M
SE)
is
ev
al
u
ated
u
s
in
g
E
q
u
atio
n
(
6
)
MN
M
S
E
M
1
i
2
)
N
1
j
Λ
j
i
X
j
i
(X
(
6
)
W
h
er
e
M
an
d
N
ar
e
r
esp
ec
tiv
el
y
th
e
len
g
t
h
an
d
th
e
w
id
t
h
o
f
th
e
h
o
s
t
i
m
a
g
e;
X
ij
d
en
o
tes
th
e
g
r
a
y
le
v
el
o
f
th
e
o
r
ig
in
al
i
m
a
g
e
p
ix
el;
X
'
ij
d
e
n
o
t
es th
e
g
r
a
y
le
v
el
o
f
t
h
e
w
ater
m
ar
k
ed
i
m
ag
e
p
i
x
el.
T
ab
le
1
an
d
2
s
h
o
w
s
th
e
P
SN
R
an
d
NC
C
v
alu
e
s
f
o
r
all
th
e
3
0
im
ag
e
s
w
h
e
n
t
w
o
w
ater
m
a
r
k
i
m
a
g
es
ar
e
u
s
ed
.
Fro
m
t
h
e
T
ab
le
1
an
d
2
,
it
is
clea
r
l
y
ev
id
en
t
t
h
at
al
l
t
h
e
i
m
ag
es
s
h
o
w
s
h
ig
h
P
SNR
an
d
NC
C
v
al
u
es
w
h
ic
h
in
d
icate
s
h
i
g
h
r
o
b
u
s
t
n
es
s
an
d
h
ig
h
q
u
al
it
y
o
f
i
m
ag
e
a
f
ter
w
a
ter
m
ar
k
i
n
s
er
tio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
4
8
3
–
2
4
9
5
2490
T
ab
le
1
.
P
SNR
an
d
NC
C
v
al
u
es o
f
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
w
h
en
i
n
s
er
t t
h
e
lo
g
o
o
f
‘
GI
T
A
M’
S
.
N
o
I
mag
e
P
S
N
R
N
C
C
1
L
e
n
a
4
9
.
1
9
0
.
9
8
5
2
B
a
r
b
a
r
a
5
1
.
6
6
1
3
M
o
n
a
l
i
s
a
5
4
.
1
9
0
.
9
9
5
4
C
a
me
r
a
ma
n
5
0
.
6
1
0
.
9
9
7
5
T
e
r
r
a
u
x
4
9
.
3
6
0
.
9
8
7
6
H
o
u
se
4
9
.
1
1
7
A
i
r
p
l
a
n
e
4
9
.
8
5
0
.
9
8
5
8
Je
t
p
l
a
n
e
5
2
.
0
2
0
.
9
9
3
9
Ea
g
l
e
-
1
5
1
.
1
7
0
.
9
9
5
10
Ea
g
l
e
-
2
5
0
.
6
3
0
.
9
5
5
11
M
R
I
-
1
5
0
.
2
3
0
.
9
6
5
12
M
R
I
-
2
5
1
.
2
1
0
.
9
7
5
13
M
R
I
-
3
5
1
.
8
0
.
9
6
5
14
M
a
n
d
r
i
l
l
4
9
.
6
2
0
.
9
8
5
15
CT
-
1
4
9
.
0
8
0
.
9
8
5
16
B
u
t
t
e
r
f
l
y
4
9
.
0
2
0
.
9
8
3
17
C
h
e
e
t
a
h
4
9
.
8
3
1
18
L
a
n
d
sca
p
e
5
0
.
5
7
0
.
9
5
9
19
C
h
i
p
s
5
1
.
3
1
0
.
9
7
5
20
P
a
i
n
t
4
8
.
5
5
0
.
9
9
3
21
P
e
p
p
e
r
s
4
8
.
4
7
1
22
B
a
b
y
-
1
4
8
.
9
4
1
23
B
a
b
y
-
2
5
1
.
7
5
0
.
9
9
5
24
c
i
r
c
l
e
s
4
9
.
3
7
0
.
9
8
7
25
Jo
k
e
r
4
9
.
8
3
0
.
9
7
5
26
M
i
l
k
d
r
o
p
5
0
.
5
7
0
.
9
6
1
27
C
h
a
r
a
c
t
e
r
4
9
.
8
5
0
.
9
8
3
28
S
e
e
d
s
5
2
.
0
2
0
.
9
5
5
29
T
i
l
e
5
1
.
1
7
0
.
9
6
9
30
I
r
i
s
5
0
.
6
3
0
.
9
7
2
T
ab
le
2
.
P
SNR
an
d
NC
C
v
al
u
es o
f
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
w
h
en
i
n
s
er
t t
h
e
lo
g
o
o
f
‘
A
I
T
A
M
’
S
.
N
o
I
mag
e
P
S
N
R
N
C
C
1
L
e
n
a
4
9
.
7
4
0
.
9
7
5
2
B
a
r
b
a
r
a
5
2
.
2
1
1
3
M
o
n
a
l
i
s
a
5
4
.
7
4
0
.
9
8
5
4
C
a
me
r
a
ma
n
5
1
.
1
6
0
.
9
8
5
5
T
e
r
r
a
u
x
4
9
.
9
1
0
.
9
8
3
6
H
o
u
se
4
9
.
6
5
1
7
A
i
r
p
l
a
n
e
5
0
.
4
0
.
9
7
5
8
Je
t
p
l
a
n
e
5
2
.
5
7
0
.
9
8
5
9
Ea
g
l
e
-
1
5
1
.
7
2
0
.
9
8
6
10
Ea
g
l
e
-
2
5
1
.
1
8
0
.
9
4
5
11
M
R
I
-
1
5
0
.
7
8
0
.
9
4
5
12
M
R
I
-
2
5
1
.
7
6
1
13
M
R
I
-
3
5
2
.
3
5
0
.
9
5
7
14
M
a
n
d
r
i
l
l
5
0
.
1
7
0
.
9
6
5
15
CT
-
1
4
9
.
6
3
0
.
9
7
9
16
B
u
t
t
e
r
f
l
y
4
9
.
5
7
0
.
9
7
5
17
C
h
e
e
t
a
h
5
0
.
3
8
1
18
L
a
n
d
sca
p
e
5
1
.
1
2
0
.
9
4
5
19
C
h
i
p
s
5
1
.
8
6
0
.
9
6
4
20
P
a
i
n
t
4
9
.
1
0
.
9
8
5
21
P
e
p
p
e
r
s
4
9
.
0
2
0
.
9
9
2
22
B
a
b
y
-
1
4
9
.
4
9
1
23
B
a
b
y
-
2
5
2
.
3
0
.
9
8
24
c
i
r
c
l
e
s
4
9
.
9
2
0
.
9
7
5
25
Jo
k
e
r
5
0
.
3
8
0
.
9
7
5
26
M
i
l
k
d
r
o
p
5
1
.
1
2
0
.
9
6
5
27
C
h
a
r
a
c
t
e
r
5
0
.
4
1
28
S
e
e
d
s
5
2
.
5
7
0
.
9
6
5
29
T
i
l
e
5
1
.
7
2
0
.
9
5
5
30
I
r
i
s
5
1
.
1
8
0
.
9
6
7
6.
P
RO
P
O
SE
D
W
L
SB
WM
M
E
T
H
O
D
W
I
T
H
A
T
T
A
CK
S
T
o
f
in
d
th
e
e
f
f
ec
tiv
e
n
es
s
o
f
t
h
e
p
r
o
p
o
s
ed
WL
SB
WM
m
e
th
o
d
,
f
in
d
t
h
e
t
w
o
p
ar
a
m
eter
s
v
alu
es
w
h
e
n
attac
k
s
o
n
th
e
i
m
ag
e.
W
ate
r
m
ar
k
i
n
g
tec
h
n
iq
u
es
ar
e
u
s
u
all
y
te
s
ted
a
g
ai
n
s
t
v
ar
io
u
s
r
o
b
u
s
tn
e
s
s
cr
i
ter
ia.
T
h
e
p
r
o
p
o
s
ed
w
ater
m
ar
k
i
n
g
t
ec
h
n
iq
u
e
i
s
te
s
ted
b
y
u
s
in
g
th
e
d
if
f
er
en
t
g
eo
m
etr
ic
attac
k
s
an
d
tr
an
s
f
o
r
m
atio
n
s
on
B
ar
b
ar
a,
M
o
n
alis
a,
MR
-
1
an
d
E
ag
le
-
1.
T
h
e
r
esu
ltan
t
wate
r
m
ar
k
ed
‘
B
ar
b
ar
a’
w
it
h
d
i
f
f
er
en
t
attac
k
s
l
ik
e
s
alt
an
d
p
ep
p
er
n
o
is
e,
r
o
tatio
n
,
m
ed
ia
n
f
ilter
,
cr
o
p
p
in
g
,
G
au
s
s
ian
n
o
is
e,
co
m
p
r
es
s
io
n
,
Gr
e
y
lev
el
b
l
u
r
r
in
g
,
Mo
tio
n
b
lu
r
r
i
n
g
an
d
S
h
ar
p
en
i
n
g
ar
e
s
h
o
w
n
i
n
F
i
g
u
r
e
1
2
(
a
)
to
1
2
(
i
)
.
1
2
(
a)
A
ttack
ed
i
m
a
g
es
w
h
e
n
u
s
in
g
3
×3
,
5
×5
an
d
7
×
7
m
as
k
s
i
n
Me
d
ian
f
ilter
1
2
(
b
)
A
ttack
ed
i
m
a
g
es
w
h
en
5
%,
1
0
%,
1
5
%
C
r
o
p
p
in
g
1
2
(
c)
A
ttack
ed
i
m
a
g
es
w
h
e
n
R
o
tatio
n
(
2
0
,
4
0
,
6
0
)
1
2
(
d
)
A
ttack
ed
i
m
a
g
es
w
h
en
1
0
%,
1
5
%,
2
0
% Salt
an
d
p
ep
p
er
n
o
is
e
ad
d
e
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Hyb
r
id
Dig
ita
l W
a
ter
ma
r
ki
n
g
A
p
p
r
o
a
ch
Usi
n
g
W
a
ve
lets
a
n
d
LS
B
(
V
.
A
s
h
o
k
K
u
ma
r
)
2491
1
2
(
e)
A
ttack
ed
i
m
a
g
es
w
h
e
n
1
0
%,
1
5
%,
2
0
%Gau
s
s
ian
n
o
is
e
ad
d
ed
1
2
(
f
)
A
ttac
k
ed
i
m
a
g
es
w
h
en
9
0
%,
8
0
%,
7
0
%
J
PEG
co
m
p
r
es
s
io
n
ap
p
lied
1
2
(
g
)
A
ttack
ed
i
m
a
g
es
w
it
h
5
%,
1
0
%,
1
5
%
Gau
s
s
ia
n
b
lu
r
r
in
g
1
2
(
h
)
A
ttack
ed
i
m
a
g
es
w
it
h
5
%,
1
0
%,
1
5
%Mo
tio
n
b
lu
r
r
in
g
12
(
i)
A
ttack
ed
i
m
a
g
e
s
w
h
e
n
5
%,
1
0
%,
1
5
%
Sh
ar
p
en
in
g
atta
ck
Fig
u
r
e
12
(a
-
i)
.
A
ttac
k
ed
W
ater
m
ar
k
ed
B
ar
b
ar
a
im
a
g
es
T
h
e
P
SNR
an
d
NC
C
v
al
u
es,
f
o
r
th
e
b
in
ar
y
lo
g
o
o
f
‘
GI
T
A
M
’
an
d
‘
A
I
T
A
M
’
w
i
th
d
i
f
f
er
en
t
attac
k
s
o
n
B
ar
b
ar
a,
Mo
n
alis
a,
M
R
-
1
an
d
ea
g
le
-
1
i
m
ag
e
s
ar
e
lis
ted
o
u
t i
n
T
ab
le
3
an
d
4
.
T
ab
le
3
:
P
SNR
an
d
NC
C
v
alu
es
w
ith
v
ar
io
u
s
attac
k
s
o
f
t
h
e
P
r
o
p
o
s
ed
m
et
h
o
d
w
h
en
i
n
s
er
t
lo
g
o
‘
GI
T
A
M
’
Ty
p
e
o
f
A
t
t
a
c
k
B
a
r
b
a
r
a
M
o
n
a
l
i
s
a
MR
-
1
Ea
g
l
e
-
1
P
S
N
R
N
C
C
P
S
N
R
N
C
C
P
S
N
R
N
C
C
P
S
N
R
N
C
C
M
e
d
i
a
n
f
i
l
t
e
r
(
3
×
3
)
4
8
.
3
1
0
.
9
0
1
4
6
.
8
3
0
.
9
0
2
4
7
.
7
0
.
9
0
3
4
9
.
0
7
0
.
8
9
7
M
e
d
i
a
n
f
i
l
t
e
r
(
5
×
5
)
4
4
.
2
1
0
.
8
5
1
4
5
.
5
1
0
.
8
3
2
4
4
.
6
6
0
.
8
3
3
4
4
.
7
9
0
.
8
3
7
M
e
d
i
a
n
f
i
l
t
e
r
(
7
×
7
)
4
1
.
6
5
0
.
7
6
1
4
0
.
9
9
0
.
7
3
2
4
0
.
4
9
0
.
7
4
3
4
0
.
5
9
0
.
7
4
7
C
r
o
p
p
i
n
g
5
%
4
6
.
6
5
0
.
8
7
1
4
8
.
1
5
0
.
8
7
2
4
6
.
6
2
0
.
8
7
3
4
9
.
0
6
0
.
8
6
7
C
r
o
p
p
i
n
g
1
0
%
4
3
.
2
8
0
.
8
4
1
4
3
.
8
6
0
.
8
0
2
4
4
.
1
7
0
.
8
0
3
4
3
.
9
3
0
.
8
0
7
C
r
o
p
p
i
n
g
1
5
%
4
0
.
6
5
0
.
7
5
1
4
1
.
1
9
0
.
7
3
2
4
0
.
8
3
0
.
7
3
3
4
0
.
6
2
0
.
7
3
7
R
o
t
a
t
e
2
0
4
8
.
7
6
0
.
9
2
1
4
7
.
7
5
0
.
9
2
2
4
6
.
6
5
0
.
9
2
3
4
9
.
7
7
0
.
9
1
7
R
o
t
a
t
e
4
0
4
5
.
5
0
.
8
6
1
4
4
.
9
1
0
.
7
5
2
4
3
.
7
5
0
.
8
1
3
4
4
.
9
8
0
.
8
1
7
R
o
t
a
t
e
6
0
4
2
.
0
9
0
.
7
8
1
4
0
.
8
6
0
.
7
1
2
4
0
.
1
8
0
.
7
3
3
4
1
.
7
7
0
.
7
1
7
S
a
l
t
a
n
d
P
e
p
p
e
r
N
o
i
se
1
0
%
4
8
.
4
3
0
.
9
4
1
4
8
.
8
2
0
.
9
0
2
4
9
.
4
4
0
.
9
0
3
4
7
.
9
4
0
.
8
9
7
S
a
l
t
a
n
d
P
e
p
p
e
r
N
o
i
se
1
5
%
4
5
.
1
8
0
.
8
7
1
4
3
.
7
4
0
.
8
3
2
4
4
.
0
8
0
.
8
1
3
4
5
.
2
3
0
.
8
2
7
S
a
l
t
a
n
d
P
e
p
p
e
r
N
o
i
se
2
0
%
3
9
.
9
5
0
.
7
9
1
4
1
.
3
1
0
.
7
4
2
3
8
.
9
9
0
.
7
4
3
4
4
.
0
8
0
.
7
4
7
G
a
u
ssi
a
n
n
o
i
se
1
0
%
4
8
.
6
5
0
.
9
0
1
4
7
.
8
4
0
.
9
2
2
4
8
.
8
1
0
.
8
9
3
4
8
.
9
9
0
.
9
2
7
G
a
u
ssi
a
n
n
o
i
se
1
5
%
4
4
.
4
5
0
.
8
5
1
4
4
.
9
3
0
.
8
7
2
4
5
.
0
9
0
.
8
1
3
4
4
.
4
3
0
.
8
0
7
G
a
u
ssi
a
n
n
o
i
se
2
0
%
4
0
.
9
9
0
.
7
9
1
4
1
.
6
9
0
.
7
5
2
4
1
.
3
8
0
.
7
6
3
4
1
.
2
4
0
.
7
2
7
JP
EG
C
o
mp
r
e
ssi
o
n
9
0
%
4
9
.
8
7
0
.
9
3
1
4
8
.
8
8
0
.
9
0
2
4
7
.
9
3
0
.
9
2
3
4
9
.
3
3
0
.
8
8
7
JP
EG
C
o
mp
r
e
ssi
o
n
8
0
%
4
5
.
2
9
0
.
8
4
1
4
6
.
2
1
0
.
7
9
2
4
3
.
8
3
0
.
8
3
3
4
4
.
7
5
0
.
8
1
7
JP
EG
C
o
mp
r
e
ssi
o
n
7
0
%
4
1
.
0
9
0
.
7
5
1
3
9
.
8
5
0
.
7
2
2
4
0
.
7
6
0
.
7
6
3
3
9
.
7
2
0
.
7
4
7
G
a
u
ssi
a
n
B
l
u
r
5
%
4
7
.
6
2
0
.
9
2
1
4
8
.
9
6
0
.
9
0
2
4
8
.
9
9
0
.
9
0
3
4
7
.
3
4
0
.
8
9
7
G
a
u
ssi
a
n
B
l
u
r
1
0
%
4
4
.
3
1
0
.
8
4
1
4
2
.
7
5
0
.
8
3
2
4
4
.
3
6
0
.
8
4
3
4
2
.
7
9
0
.
8
0
7
G
a
u
ssi
a
n
B
l
u
r
1
5
%
3
9
.
2
2
0
.
7
5
1
4
0
.
1
7
0
.
7
3
2
4
0
.
2
4
0
.
7
7
3
4
0
.
4
3
0
.
7
1
7
M
o
t
i
o
n
b
l
u
r
r
i
n
g
5
%
4
7
.
3
1
0
.
9
2
1
4
7
.
9
5
0
.
8
7
2
4
7
.
9
5
0
.
8
8
3
4
7
.
9
6
0
.
8
7
7
M
o
t
i
o
n
b
l
u
r
r
i
n
g
1
0
%
4
2
.
8
3
0
.
8
0
1
4
3
.
8
7
0
.
8
2
2
4
4
.
0
7
0
.
7
9
3
4
4
.
2
4
0
.
7
8
7
M
o
t
i
o
n
b
l
u
r
r
i
n
g
1
5
%
3
9
.
1
0
.
7
4
1
4
0
.
1
4
0
.
7
1
2
3
9
.
9
9
0
.
7
4
3
4
0
.
7
1
0
.
7
1
7
S
h
a
r
p
e
n
i
n
g
5
%
4
9
.
2
4
0
.
9
2
1
4
8
.
7
8
0
.
8
6
2
5
0
.
2
2
0
.
8
8
3
4
6
.
7
6
0
.
8
8
7
S
h
a
r
p
e
n
i
n
g
1
0
%
4
5
.
1
8
0
.
8
3
1
4
4
.
1
9
0
.
8
3
2
4
4
.
8
1
0
.
8
3
3
4
3
.
1
6
0
.
8
0
7
S
h
a
r
p
e
n
i
n
g
1
5
%
4
1
.
2
2
0
.
7
6
1
4
0
.
1
8
0
.
7
4
2
4
0
.
5
9
0
.
7
0
3
4
0
.
1
3
0
.
7
3
7
A
v
e
r
a
g
e
4
4
.
4
8
0
.
8
4
1
4
4
.
4
6
0
.
8
1
5
4
4
.
3
2
0
.
8
2
1
4
4
.
5
9
0
.
8
1
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
4
8
3
–
2
4
9
5
2492
T
ab
le
4
: P
SNR
an
d
NC
C
v
alu
es
w
ith
v
ar
io
u
s
attac
k
s
o
f
t
h
e
P
r
o
p
o
s
ed
m
et
h
o
d
w
h
en
i
n
s
er
t
lo
g
o
‘
A
I
T
A
M
’
Ty
p
e
o
f
A
t
t
a
c
k
B
a
r
b
a
r
a
M
o
n
a
l
i
s
a
MR
-
1
Ea
g
l
e
-
1
P
S
N
R
N
C
C
P
S
N
R
N
C
C
P
S
N
R
N
C
C
P
S
N
R
N
C
C
M
e
d
i
a
n
f
i
l
t
e
r
(
3
×
3
)
4
8
.
9
8
0
.
9
0
3
4
7
.
9
0
.
8
9
2
4
7
.
5
1
0
.
9
0
6
4
7
.
7
6
0
.
8
9
7
M
e
d
i
a
n
f
i
l
t
e
r
(
5
×
5
)
4
5
.
5
1
0
.
8
3
3
4
4
.
2
0
.
8
5
2
4
4
.
8
4
0
.
8
2
6
4
4
.
8
5
0
.
8
1
7
M
e
d
i
a
n
f
i
l
t
e
r
(
7
×
7
)
4
1
.
0
7
0
.
7
6
3
4
1
.
9
9
0
.
7
7
2
4
1
.
1
7
0
.
7
5
6
4
1
.
2
3
0
.
7
3
7
C
r
o
p
p
i
n
g
5
%
4
8
.
9
0
.
8
8
3
4
6
.
6
7
0
.
8
8
2
4
6
.
7
6
0
.
8
8
6
4
6
.
8
8
0
.
8
6
7
C
r
o
p
p
i
n
g
1
0
%
4
3
.
8
1
0
.
8
2
3
4
3
.
1
9
0
.
8
4
2
4
3
.
8
8
0
.
8
0
6
4
4
.
2
2
0
.
7
8
7
C
r
o
p
p
i
n
g
1
5
%
4
0
.
9
1
0
.
7
5
3
4
1
.
3
6
0
.
7
6
2
4
0
.
6
8
0
.
7
4
6
4
0
.
8
9
0
.
7
3
7
R
o
t
a
t
e
2
0
4
9
.
9
1
0
.
9
0
3
4
8
.
8
7
0
.
9
1
2
4
6
.
8
8
0
.
9
1
6
4
6
.
9
4
0
.
9
0
7
R
o
t
a
t
e
4
0
4
5
.
0
2
0
.
8
1
3
4
5
.
4
8
0
.
8
6
2
4
4
.
1
5
0
.
8
0
6
4
4
.
0
9
0
.
8
0
7
R
o
t
a
t
e
6
0
4
1
.
8
0
.
7
3
3
4
2
.
0
9
0
.
7
9
2
3
9
.
8
7
0
.
7
3
6
3
9
.
7
8
0
.
7
1
7
S
a
l
t
a
n
d
P
e
p
p
e
r
N
o
i
se
1
0
%
4
7
.
8
7
0
.
9
0
3
4
7
.
9
1
0
.
9
2
2
4
9
.
0
8
0
.
9
0
6
4
8
.
8
9
0
.
8
8
7
S
a
l
t
a
n
d
P
e
p
p
e
r
N
o
i
se
1
5
%
4
4
.
9
1
0
.
8
4
3
4
5
.
1
8
0
.
8
6
2
4
3
.
6
4
0
.
7
9
6
4
4
.
1
5
0
.
8
0
7
S
a
l
t
a
n
d
P
e
p
p
e
r
N
o
i
se
2
0
%
4
3
.
8
1
0
.
7
7
3
3
9
.
7
6
0
.
8
1
2
3
8
.
8
2
0
.
7
4
6
3
8
.
9
9
0
.
7
3
7
G
a
u
ssi
a
n
n
o
i
se
1
0
%
4
9
.
0
7
0
.
9
1
3
4
8
.
7
0
.
9
0
2
4
8
.
6
5
0
.
9
0
6
4
8
.
8
9
2
0
.
8
8
7
G
a
u
ssi
a
n
n
o
i
se
1
5
%
4
3
.
7
2
0
.
8
0
3
4
3
.
9
1
0
.
8
6
2
4
4
.
5
6
0
.
8
2
6
4
5
.
1
5
0
.
7
9
7
G
a
u
ssi
a
n
n
o
i
se
2
0
%
4
0
.
6
2
0
.
7
2
3
4
1
.
0
1
0
.
8
0
2
4
0
.
7
1
0
.
7
7
6
4
1
.
4
3
0
.
7
4
7
JP
EG
C
o
mp
r
e
ssi
o
n
9
0
%
4
8
.
7
9
0
.
9
0
3
4
9
.
7
8
0
.
9
2
2
4
8
.
0
8
0
.
9
2
6
4
7
.
8
7
0
.
9
1
7
JP
EG
C
o
mp
r
e
ssi
o
n
8
0
%
4
4
.
6
7
0
.
8
3
3
4
5
.
1
5
0
.
8
4
2
4
3
.
7
6
0
.
8
4
6
4
3
.
7
7
0
.
8
2
7
JP
EG
C
o
mp
r
e
ssi
o
n
7
0
%
4
0
.
3
6
0
.
7
6
3
4
0
.
9
0
.
7
6
2
4
0
.
7
1
0
.
7
7
6
4
1
.
4
0
.
7
6
7
G
a
u
ssi
a
n
B
l
u
r
5
%
4
7
.
5
2
0
.
9
1
3
4
7
.
6
8
0
.
9
1
2
4
8
.
9
7
0
.
9
0
6
4
9
.
0
8
0
.
8
9
7
G
a
u
ssi
a
n
B
l
u
r
1
0
%
4
2
.
8
7
0
.
8
2
3
4
4
.
2
8
0
.
8
4
2
4
3
.
8
7
0
.
8
3
6
4
4
.
3
3
0
.
8
3
7
G
a
u
ssi
a
n
B
l
u
r
1
5
%
4
0
.
0
8
0
.
7
3
3
3
8
.
8
3
0
.
7
6
2
3
9
.
8
2
0
.
7
7
6
3
9
.
6
8
0
.
7
7
7
M
o
t
i
o
n
b
l
u
r
r
i
n
g
5%
4
7
.
8
0
.
8
9
3
4
7
.
2
9
0
.
9
1
2
4
7
.
9
8
0
.
8
9
6
4
7
.
8
6
0
.
8
7
7
M
o
t
i
o
n
b
l
u
r
r
i
n
g
1
0
%
4
3
.
7
4
0
.
8
0
3
4
3
.
1
4
0
.
8
0
2
4
3
.
7
5
0
.
8
0
6
4
4
.
1
8
0
.
7
9
7
M
o
t
i
o
n
b
l
u
r
r
i
n
g
1
5
%
4
1
.
0
7
0
.
7
3
3
3
8
.
9
1
0
.
7
4
2
3
9
.
8
6
0
.
7
4
6
3
9
.
7
3
0
.
7
3
7
S
h
a
r
p
e
n
i
n
g
5
%
4
6
.
8
5
0
.
8
9
3
4
9
.
2
6
0
.
9
1
2
5
0
.
2
3
0
.
8
8
6
5
0
.
2
8
0
.
8
8
7
S
h
a
r
p
e
n
i
n
g
1
0
%
4
2
.
7
2
0
.
8
0
3
4
4
.
6
9
0
.
8
3
2
4
4
.
7
6
0
.
8
3
6
4
4
.
7
5
0
.
8
2
7
S
h
a
r
p
e
n
i
n
g
1
5
%
4
0
.
0
6
0
.
7
5
3
4
1
.
1
8
0
.
7
7
2
4
0
.
7
6
0
.
7
1
6
4
0
.
6
6
0
.
7
0
7
A
v
e
r
a
g
e
4
4
.
5
3
0
.
8
2
3
4
4
.
4
2
0
.
8
4
2
4
4
.
2
1
0
.
8
2
6
4
4
.
3
6
0
.
8
1
4
T
h
e
tab
le
3
an
d
4
clea
r
ly
i
n
d
i
ca
te
th
e
r
o
b
u
s
tn
e
s
s
an
d
q
u
ali
t
y
o
f
th
e
i
m
a
g
e
is
n
o
t
d
eg
r
ad
ed
f
o
r
all
attac
k
s
b
y
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
.
Fro
m
th
e
ab
o
v
e
r
e
s
u
l
ts
o
b
s
er
v
e
th
a
t
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
g
iv
e
s
g
o
o
d
r
esu
lts
a
n
d
g
o
t
r
e
aso
n
ab
le
v
al
u
es
o
f
P
SNR
an
d
N
C
C
v
al
u
e
s
w
h
en
v
ar
io
u
s
a
ttack
s
o
n
w
ater
m
ar
k
i
m
as
g
e.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
tes
ted
w
h
e
n
t
wo
w
ater
m
ar
k
i
m
a
g
es
ar
e
in
s
er
t
ed
in
3
0
d
if
f
er
en
t
i
m
a
g
e
s
.
F
r
o
m
t
h
e
ab
o
v
e
s
t
u
d
y
,
o
b
s
er
v
e
th
at
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
m
o
s
t
s
u
i
tab
le
f
o
r
in
s
er
tin
g
th
e
w
a
ter
m
ar
k
i
m
a
g
e.
Co
m
pa
riso
n o
f
t
he
pro
po
s
ed
m
et
ho
d w
it
h o
t
her
ex
is
t
i
ng
m
et
ho
ds
:
T
o
ev
alu
ate
th
e
e
f
f
icie
n
c
y
,
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
co
m
p
ar
ed
w
it
h
t
h
e
ex
i
s
ti
n
g
w
at
er
m
ar
k
i
n
g
ap
p
r
o
ac
h
es
[4
6
,4
7
,
4
8
]
.
T
h
e
m
eth
o
d
p
r
o
p
o
s
ed
b
y
Z
h
u
Yu
e
f
e
n
g
e
t.a
l
[
4
6
]
in
s
er
t
s
a
n
d
e
x
tr
ac
ts
t
h
e
w
ate
r
m
ar
k
i
m
a
g
e
u
s
i
n
g
d
u
al
tr
an
s
f
o
r
m
at
io
n
an
d
s
el
f
-
r
ec
o
v
er
y
ap
p
r
o
ac
h
.
T
h
is
ap
p
r
o
ac
h
an
al
y
ze
s
i
n
s
er
ti
n
g
p
o
s
it
io
n
s
b
y
u
s
i
n
g
D
C
co
ef
f
icie
n
t
a
n
d
in
s
er
ts
t
h
e
w
at
er
m
ar
k
i
m
a
g
e
in
to
o
r
ig
in
al
i
m
ag
e.
Sar
av
j
it
Kau
r
[4
7
]
p
r
o
p
o
s
ed
w
ater
m
ar
k
i
n
g
tech
n
iq
u
e
b
ased
o
n
DW
T
.
T
h
e
in
s
er
tio
n
a
n
d
ex
tr
ac
tio
n
o
f
t
h
e
w
ater
m
ar
k
i
m
a
g
e
in
th
e
g
r
e
y
s
ca
le
i
m
ag
e
s
ar
e
ac
co
m
p
li
s
h
ed
b
y
tr
an
s
f
o
r
m
m
et
h
o
d
s
.
T
h
ir
u
g
n
a
n
a
m
et.
al.
[
4
8
]
P
r
o
p
o
s
ed
a
tech
n
iq
u
e
u
s
in
g
DW
T
an
d
I
n
d
ep
en
d
en
t
C
o
m
p
o
n
e
n
t
An
al
y
s
i
s
(
I
C
A
)
.
T
h
e
p
er
f
o
r
m
a
n
ce
r
esu
lt
s
o
f
th
e
p
r
o
p
o
s
ed
W
L
S
B
W
M
m
et
h
o
d
an
d
o
th
er
ex
i
s
ti
n
g
m
eth
o
d
s
ar
e
lis
t
ed
in
tab
le
5
.
T
ab
le
5
clea
r
l
y
i
n
d
icate
s
th
e
W
L
SB
W
M
m
et
h
o
d
o
u
tp
er
f
o
r
m
s
t
h
e
o
th
er
ex
i
s
ti
n
g
m
et
h
o
d
s
.
T
h
e
g
r
ap
h
ical
r
ep
r
esen
tatio
n
o
f
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
W
L
SB
W
M
m
et
h
o
d
an
d
o
th
er
ex
is
t
in
g
m
eth
o
d
is
s
h
o
w
n
in
F
ig
u
r
e
1
3
.
T
ab
le
5
.
P
er
f
o
r
m
a
n
ce
r
esu
l
ts
o
f
th
e
p
r
o
p
o
s
ed
W
L
SB
W
M
m
e
th
o
d
w
it
h
t
h
e
ex
i
s
ti
n
g
m
et
h
o
d
s
in
ter
m
s
o
f
P
SNR
S
.
N
o
T
e
st
I
mag
e
s
Z
h
u
Y
u
e
f
e
n
g
M
e
t
h
o
d
Sa
r
a
v
j
i
t
K
a
u
r
M
e
t
h
o
d
T
h
i
r
u
g
n
a
n
a
m.
M
e
t
h
o
d
P
r
o
p
o
se
d
W
L
S
B
W
M
1
L
e
n
a
3
9
.
6
3
4
0
.
6
7
3
9
.
9
8
4
9
.
7
4
2
M
a
n
d
r
i
l
l
3
7
.
2
3
8
.
6
4
3
4
.
4
5
5
0
.
1
7
3
P
e
p
p
e
r
s
3
6
.
5
4
4
2
.
1
2
3
6
.
5
6
4
9
.
0
2
4
H
o
u
se
.
3
7
.
8
9
4
0
.
1
9
3
4
.
9
5
4
9
.
6
5
5
B
a
r
b
a
r
a
3
6
.
4
5
4
1
.
1
2
4
1
.
6
2
5
2
.
2
1
6
M
i
l
k
d
r
o
p
3
7
.
6
4
4
0
.
6
1
3
9
.
1
4
5
1
.
1
2
7
A
i
r
p
l
a
n
e
3
3
.
1
2
4
0
.
2
3
4
1
.
1
5
5
0
.
4
8
C
a
me
r
a
ma
n
3
5
.
6
9
3
9
.
9
5
4
0
.
3
2
5
1
.
1
6
Evaluation Warning : The document was created with Spire.PDF for Python.