Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
5
,
No
. 5, Oct
o
ber
2
0
1
5
,
pp
. 93
9~
94
7
I
S
SN
: 208
8-8
7
0
8
9
39
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Desi
gn Cal
c
ulat
ion of
P
a
rab
o
lic Trou
gh Solar Th
erm
al System
and Three-ph
ase Turbo Alternat
or
Theingi H
t
un
*,
Myo Thet T
un**
* Department of
Electrical
Power
Engin
eering
,
M
a
ndalay
Techno
log
y
University
Mandalay
,
M
y
anmar
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 14, 2015
Rev
i
sed
Ju
l 10
,
20
15
Accepte
d
J
u
l 22, 2015
Solar energ
y
can be converted
into th
ermal en
erg
y
with th
e help of solar
coll
ectors
.
El
ec
t
r
icit
y
c
a
n be p
r
oduced di
rec
t
l
y
from
s
o
lar en
erg
y
us
ing
photovoltaic d
e
v
i
ces or ind
i
rectly
from
steam generators using solar th
ermal
coll
ectors
to he
a
t
a working
flui
d. This
r
e
sear
ch
is using th
e co
nversion of
s
o
lar en
erg
y
into
el
ectr
i
ci
t
y
in a
c
l
os
ed c
y
c
l
e
driv
en b
y
n
a
tur
a
l
co
nvect
ion. I
t
would m
ean that el
ec
tric
it
y is
cheap
er than
from
an
y
other
renewabl
e
techno
log
y
and
cheap
er
than
from
fos
s
il fuels
.
Th
is
pap
e
r des
c
r
i
bes
converting th
er
mal energ
y
collected
b
y
so
lar
collector to
electricity
b
y
usin
g
turbine
.
An
y
w
h
e
re in M
y
anm
a
r
will che
a
pl
y us
e el
ectr
i
ci
t
y
b
y
using solar
turbine gen
e
ra
to
r. Rem
o
te are
a
s
will im
prove more and m
o
re when gett
ing
the effi
cien
t ele
c
tri
c
it
y.
The des
i
gn cal
cula
tion a
nd perform
ance predic
atio
n
of 1 M
V
A turbo-alt
e
rnator
/gen
er
ator are
als
o
m
e
ntioned
.
Des
i
gn cal
cula
tion
of absorbed flux, useful heat gain
and
exit
temper
ature
is described. And then
development of
two-tank th
ermal storage
s
y
s
t
em
that uses m
o
lte
n salt as th
e
heat transf
er f
l
uid is descr
i
bed
.
Keyword:
Ex
it tem
p
eratu
r
e
Parab
o
lic trou
gh
co
llecto
r
s
Syn
c
hro
nou
s gen
e
r
a
t
o
r
Therm
a
l stora
g
e
Useful heat
gai
n
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Th
eing
i H
t
un
Depa
rt
m
e
nt
of
El
ect
ri
cal
Po
w
e
r E
ngi
neer
i
n
g, Mandalay Te
ch
no
log
y
Un
i
v
ersity
Man
d
a
lay, My
an
m
a
r
Em
a
il: ap
rillad
y
d
r
eam
@g
m
a
i
l
.co
m
1.
INTRODUCTION
Th
ere are th
ree typ
e
s of so
l
a
r th
erm
a
l g
e
n
e
ratio
n
in
g
e
neral. Th
ey are p
a
rabo
lic d
i
sh
,
p
a
rabo
lic
trough, a
n
d ce
ntral recei
ver
or
powe
r towe
r system
. The
cornerstone of solar
parabo
lic trough
plant
is the
sol
a
r fi
el
d. T
h
e sol
a
r fi
el
d co
nsi
s
t
s
of pa
ra
b
o
l
i
c
t
r
ou
gh c
o
l
l
ect
ors an
d pi
p
i
ng. Pa
rab
o
l
i
c
t
r
o
u
g
h
col
l
ect
o
r
s can
be di
vi
de
d i
n
t
o
t
w
o s
u
bsy
s
t
e
m
s
:
t
h
e sol
a
r c
o
l
l
ect
i
on asse
m
b
ly
(SC
A
) a
nd t
h
e
heat
col
l
ect
i
on el
em
en
t
(HC
E
)
.
The SC
A also include
s the
single-a
x
i
s
t
r
a
c
ki
n
g
eq
ui
pm
ent
an
d su
p
p
o
r
t structure for the HCEs.
Duri
ng
o
p
e
ration
,
so
lar rad
i
atio
n
is reflected
fro
m
t
h
e SCA
on
to
t
h
e p
a
rabo
lic tro
ugh
’s
fo
cal lin
e,
wh
ere th
e
HCE
r
e
sid
e
s [1
-2
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
939
–
9
47
94
0
Fi
gu
re
1.
Sc
he
m
a
t
i
c
Di
agram
o
f
Pa
rab
o
lic Troug
h So
lar Therm
a
l Electrifi
catio
n
The steam
is
use
d
to
descri
be the
heat exchange
rs
t
h
at
heat
t
h
e w
o
rki
ng
fl
ui
d,
hi
g
h
l
y
press
u
ri
ze
d
water,
from
a com
p
ressed li
qui
d state into a superheat
ed
va
po
r st
at
ei
n
Fi
gu
re
1.
T
h
e pre
h
eated wa
rm
s
the
wo
rki
n
g fl
ui
d
fr
om
co
m
p
ressed l
i
qui
d t
o
sa
t
u
rat
e
d l
i
q
ui
d.
Due t
o
t
h
e l
a
t
e
nt
heat
of ev
apo
r
at
i
o
n t
h
e st
eam
gene
rat
o
r i
s
t
h
e m
o
st
ene
r
g
y
i
n
t
e
nsi
v
e
he
at
exc
h
an
ger
.
Thi
s
pa
per
de
scri
bes
co
n
v
er
t
i
ng t
h
erm
a
l
ener
gy
co
llected
b
y
solar co
llecto
r
to
electricity b
y
u
s
in
g
t
u
rb
in
e. An
ywh
e
re i
n
M
y
an
m
a
r will ch
eap
ly u
s
e elect
ricity
b
y
u
s
ing
so
lar tu
rb
i
n
e g
e
n
e
rato
r. Rem
o
te
areas will i
m
p
r
ov
e m
o
re an
d
m
o
re wh
en
g
e
ttin
g
th
e efficien
t
electricity [3].
2.
DESIG
N
C
A
L
CUL
ATIO
N
Geo
metr
y
of
Wy
arg
y
i
Vi
l
l
age
W
y
arg
y
i v
illag
e
is
situ
ated b
e
t
w
een North
Latitu
de
2
0
˚
25´
an
d Eas
t
Lo
ngi
t
u
de
9
6
̊
09´
.
Th
e
elevation a
b
ove sea level is 74.676×10
-3
m an
d
situ
ated
Man
d
a
lay Regio
n
with
in
trop
ical zo
n
e
. The lo
cal
st
anda
rd t
i
m
e
of m
e
ri
di
an i
s
97
˚
3
0
´
E. The
t
e
m
p
erat
ures
,
sun
s
hi
ne h
o
u
r
,
and t
o
t
a
l
sol
a
r
radi
at
i
o
n o
f
W
y
argy
i
v
illag
e
fo
r t
h
e
year 20
14
are
main
tain
ed
in
Tab
l
e 1
and
Tab
l
e 2
.
Th
e
d
a
ta are ob
tain
ed fro
m
Dep
a
rtmen
t
of
Metero
log
y
and
Hydro
l
og
y (Myan
m
ar –
Wyarg
y
i v
illag
e
).
Fig
u
re 2
shows v
a
riatio
n
of so
lar in
ten
s
ity an
d
ti
m
e
. [4
].
Table 1. T
e
m
p
erature
s
(
̊
C) and
Sun
s
h
i
n
e
Hou
r
of
W
y
arg
y
i Villag
e
Month T
e
m
p
eratu
r
e
̊
C
Sunshine
ho
ur
Januar
y
31.
7
7.
8
Febr
uar
y
36.
3
9.
5
M
a
r
c
h
38.
5
9.
2
Apr
il 40.
1
10.
8
M
a
y 35.
6
11.
2
June
34.
0
9.
3
July
33.
0
9.
0
August
31.
4
9.
2
Septem
ber 32.
2
9.
0
October
31.
4
8.
5
Novem
b
er 31.
3
7.
4
Dece
m
b
er 27.
8
6.
8
Table 2.
T
h
e
T
o
tal
Radiation for Horizontal Surface
Ti
m
e
(hr
)
T
e
m
p
eratu
r
e
̊
C
Sunshine
ho
ur
6-
7 am
0.
2970
7
1.
1156
7 x 10
-5
7-
8 am
0.
9231
7
0.
4151
1
8-
9 am
1.
4922
7
0.
9952
11
9-
10 am
1.
5875
1.
5300
1
11-
12 am
1.
9976
7
1.
9236
12-
1 p
m
2.
2116
7
2.
1305
1-
2 p
m
2.
2116
7
2.
1305
2-
3 p
m
1.
9976
7
1.
9236
3-
4 p
m
1.
5875
1.
5300
1
4-
5 p
m
1.
4922
7
0.
9952
11
5-
6 p
m
0.
9231
7
0.
4151
1
6-
7 p
m
0.
2970
7
1.
1156
7 x 10
-5
Total(MJ/
m
2
) 17.
018
7
13.
988
8
(W/
m
2
) 4727.
4
166
3885.
8
011
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
C
a
l
c
ul
at
i
o
n
of
Par
a
b
o
l
i
c
Tr
ou
g
h
So
l
a
r
T
h
er
mal
Sy
st
em an
d Thre
e-p
h
a
se
T
u
r
b
o …
(
T
hei
ngi
Ht
un)
94
1
Fi
gu
re
2.
Va
ri
at
i
on
of
S
o
l
a
r
In
t
e
nsi
t
y
and
Ti
m
e
3.
D
E
SIGN
CALC
U
L
A
T
ION
DA
TA
OF PA
RA
BOLIC
TR
OUGH
D
a
te A
p
r
il
15
=4
0.1
̊
C a
n
d Dece
m
b
er
15=
27.8
̊
C
Th
e
d
a
ta in tab
l
e 2 are u
s
ed and
calcu
lated
with
th
e fo
llo
wi
n
g
equ
a
tion
s
for
d
e
sign
calcu
latio
n
of
p
a
r
a
bo
lic tr
ough
.
D
e
si
g
n
calcu
latio
n
r
e
su
lts
sh
ow
i
n
tab
l
e 3.
Specular ref
l
ectivit
y of
th
e concentrat
or surf
ace,
ρ
0.
94
Glass cover trans
m
ittivity for solar
ra
diation,
τ
0.
88
Absorber tube e
m
i
ssivity /absorptivity,
α
0.
96
Intercept f
actor,
γ
z
0.
95
M
a
ss flow r
a
te of water
,
m
0.
09 kg/s
Inlet te
m
p
e
r
ature
60
̊
C
The
e
q
uat
i
o
n
s
of
abs
o
rbe
d
fl
u
x
, use
f
ul
heat
gain, a
n
d exit te
m
p
erature
o
o
b
b
b
b
b
b
D
W
D
r
I
r
I
S
(1
)
a
fi
L
co
R
u
T
T
c
U
S
L
d
W
F
q
(2
)
q
T
mc
p
(3
)
Tabl
e 3.
R
e
s
u
l
t
s
o
f
Abs
o
rbe
d
Fl
ux
, Usef
ul
H
eat
Gain
and
Ex
it Tem
p
ratu
re in
April and
Dece
m
b
er
T
i
m
e
(
h
r)
S
(W
/m
2
) Q
(
k
W
)
T
fo
(
̊
C)
April
Dece
m
b
e
r
April Dece
m
b
e
r
April
Dece
m
b
e
r
6-
7
am
64.
285
9
2.
4142
89.
286
0
-
72.
7649
60.
160
3
59.
869
4
7-
8 am
199.
77
41
89.
829
8
378.
80
27
114.
02
83
60.
679
9
60.
204
7
8-
9 am
322.
92
73
215.
36
38
641.
96
15
382.
27
44
61.
152
2
60.
686
1
9-
10 am
343.
53
51
331.
09
43
685.
99
71
629.
57
21
61.
231
2
61.
129
9
10-
11 am
432.
29
59
416.
26
72
875.
66
48
811.
57
30
61.
571
6
61.
456
6
11-
12 am
478.
60
56
461.
04
04
974.
62
13
907.
24
62
61.
749
2
61.
628
3
12-
1 p
m
478.
60
56
461.
04
04
974.
62
13
907.
24
62
61.
749
2
61.
628
3
1-
2 p
m
432.
29
59
416.
26
72
875.
66
48
811.
57
30
61.
571
6
61.
456
6
2-
3 p
m
343.
53
51
331.
09
43
685.
99
71
629.
57
21
61.
231
2
61.
129
9
3-
4 p
m
322.
92
73
215.
36
38
641.
96
15
382.
27
44
61.
152
2
60.
686
1
4-
5 p
m
199.
77
41
89.
829
8
378.
80
27
114.
02
83
60.
679
9
60.
284
7
5-
6
p
m
64.
774
1
2.
4142
89.
286
0
-
72.
7649
60.
160
3
59.
869
4
T
o
tal 3682.
8
478
3032.
0
194
7292.
6
668
5543.
8
582
733.
08
88
730.
03
0
0.5
1
1.5
2
2.5
6-7 am
7-8 am
8-9 am
9-10 am
10-11 am
11-12 am
12-1 pm
1-2 pm
2-3 pm
3-4 pm
4-5 pm
5-6 pm
April
Decem
ber
MJ/m²
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
939
–
9
47
94
2
Figure
3. Resul
t
s of absorbe
d
flux,
S in April
and
Decem
ber
Fig
u
re 4
.
Sim
u
latio
n
resu
lts of d
a
ily
lo
ad
profile
in
April
Fi
gu
re
5.
Si
m
u
l
a
t
i
on res
u
l
t
s
o
f
t
h
e
use
f
ul
hea
t
gai
n
Fi
gu
re 6.
Si
m
u
l
a
t
i
on
res
u
l
t
s
o
f
usef
ul
heat
ga
i
n
0
200
400
600
800
1000
6-7 am
7-8 am
8-9 am
9-10 am
10-11 am
11-12 am
12-1 pm
1-2 pm
2-3 pm
3-4 pm
4-5 pm
5-6 pm
Decem
ber
April
0
6
12
18
24
0
20
0
40
0
60
0
80
0
1,
0
0
0
Loa
d (
k
W
)
D
a
ily P
r
o
f
il
e
Ho
ur
0
6
12
18
24
0
200
400
600
800
1,
00
0
Loa
d (
k
W
)
Da
i
l
y
P
r
o
f
i
l
e
H
our
J
a
n
F
eb
M
a
r
A
p
r
M
a
y
J
un
J
u
l
A
ug
S
e
p
O
c
t
N
o
v
D
e
c
0
6
12
18
24
Hour o
f
Da
y
DM
a
p
0
36
0
72
0
1,
0
8
0
1,
4
4
0
1,
8
0
0
kW
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
C
a
l
c
ul
at
i
o
n
of
Par
a
b
o
l
i
c
Tr
ou
g
h
So
l
a
r
T
h
er
mal
Sy
st
em an
d Thre
e-p
h
a
se
T
u
r
b
o …
(
T
hei
ngi
Ht
un)
94
3
Figure
7. Resul
t
s of exit tem
p
erature
in
Apri
l and Decem
be
r
Fi
gu
re 3 s
h
ows
resul
t
s
o
f
abs
o
r
b
ed
fl
u
x
, Si
n
A
p
ri
l
an
d Dece
m
b
er i
n
t
i
m
e
zone
s. The a
b
s
o
rbe
d
fl
u
x
,
S
is the m
o
st at 11-12 am
and
12-1
pm
in April. In
D
ecem
ber, t
h
e a
b
sorbe
d
flux is the most at
11-12
a
m
and
12-1
pm
. Figure
4 a
n
d fi
gure 5 show sim
u
lation re
sults
of
daily load profile in
April and
Decem
ber
with
t
w
el
ve t
i
m
e
zones. T
h
e m
o
st
usef
ul
heat
gai
n
i
s
97
4.
6
2
1
3
k
W
a
nd t
h
e l
east
usef
ul
heat
g
a
i
n
i
s
89.
2
8
6
0
k
W
i
n
Ap
ri
l
.
T
h
e m
o
st
usef
ul
heat
gai
n
i
s
9
0
7
.
2
4
6
2
k
W
i
n
A
p
ri
l
and t
h
e l
east
usef
ul
heat
gai
n
i
s
-
7
2.
76
4
9
k
W
i
n
Decm
ber. Fi
gu
re
6 s
h
ows
si
m
u
l
a
t
i
o
n
res
u
l
t
s
of
us
ef
ul
heat
gai
n
i
n
t
w
el
ve
t
i
m
e
zones.
Fi
gu
re
7
sh
o
w
s
r
e
sul
t
s
of exit tem
p
eraturein April a
n
d
Decem
ber [5].
4.
TWO-T
A
NKS OF THERMAL
STORAGE
In
Th
e two
-
tank
th
erm
a
l sto
r
ag
e can
b
e
in
tegrated
in
to
a
p
a
rab
o
lic troug
h
plan
t. Th
e
b
a
sic o
p
e
rating
strateg
y
is to
ch
arg
e
th
erm
a
l sto
r
ag
e
wh
en
th
e HT
F fl
ow
rate excee
ds the de
sig
n
flow
rate fo
r
stea
m
g
e
n
e
ration
.
During
ch
arg
i
n
g
,
m
o
l
t
en
salt lea
v
es th
e co
ld
tan
k
ex
tracts
h
e
at fro
m
th
e HTF, and
th
en
en
t
e
rs th
e
h
o
t
tank
. Th
e
te
m
p
eratu
r
e of th
e HTF h
eat
ed
b
y
d
i
sch
a
rgin
g
salt will b
e
lo
wer th
an
th
e HTF tem
p
eratu
r
e
directly from
the s
o
lar field because t
h
e
heat
has
pas
s
ed
through two heat
excha
n
gers
a
n
d a
n
as
sociated heat
lo
ss in
sid
e
t
h
e
h
o
t
tank
. Th
is
d
ecrease i
n
tem
p
eratu
r
e
will resu
lt in
a
d
e
crease in
p
o
wer g
e
n
e
ration
.
Th
e ho
t
and c
o
l
d
st
o
r
a
g
e t
a
n
k
s as s
h
ow
n i
n
Fi
g
u
re
8 we
re i
d
e
n
tical with
on
ly the te
m
p
eratu
r
e
o
f
salt
v
a
rying. For a
desire
d increas
e in therm
a
l stora
g
e, the tank volum
e a
nd area
m
u
st increase. The surfa
ce
area is 39 m
e
ter and
tall tan
k
is
1
9
meter. Th
e h
e
i
g
h
t
was app
r
oxi
m
a
ted
to
b
e
11
.7
m
e
ters. [6
].
Fi
gu
re
8.
Sc
he
m
a
t
i
c
of a T
w
o
-
t
a
n
k
T
h
erm
a
l
St
ora
g
e
Sy
st
em
58.5
59
59.5
60
60.5
61
61.5
62
6
‐
7
am
7
‐
8
am
8
‐
9
am
9
‐
10
am
10
‐
11
am
11
‐
12
am
12
‐
1
am
1
‐
2
pm
2
‐
3
pm
3
‐
4
pm
4
‐
5
pm
5
‐
6
pm
April
December
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
939
–
9
47
94
4
5.
DESIG
N
C
A
L
CUL
ATIO
N
OF TH
REE-
PHA
S
E 1
M
V
A
AC
S
Y
N
C
H
RO
NO
US
G
E
NER
A
TOR
Specification
Three-phase
turb
o alternator gene
rator
Output capacity
1 MVA
Gener
a
tor
output voltage
11 kV
Phase voltage
6350 V
Power
factor
0.
8,
lagging
Speed 3000
r
p
m
Fr
equency 50
Hz
Nu
m
b
er
of poles
2 poles
T
y
pe of Dr
ive
Steam
T
u
r
b
ine
Equ
a
tio
n
s
of t
h
ree-p
h
a
se turbo
altern
ator for p
a
rabo
lic tro
u
g
h
so
lar th
ermal
s
n
v
D
(4
)
s
n
K
Q
L
D
'
2
(5
)
p
D
p
(6
)
ph
w
p
T
fk
E
44
.
4
(7
)
i
t
t
t
L
b
N
B
(8
)
f
f
ml
f
a
T
L
R
(9
)
dav
s
ph
R
k
R
I
I
(1
0)
o
o
s
s
s
s
b
h
b
b
h
b
h
b
h
4
3
2
1
2
3
(1
1)
c
s
s
ph
o
s
T
L
I
2
2
(1
2)
p
k
I
T
AT
w
ph
ph
a
35
.
1
(1
3)
R
C
S
AT
AT
a
fo
.
.
(1
4)
f
p
f
f
f
f
P
S
d
T
I
h
4
10
(1
5)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
C
a
l
c
ul
at
i
o
n
of
Par
a
b
o
l
i
c
Tr
ou
g
h
So
l
a
r
T
h
er
mal
Sy
st
em an
d Thre
e-p
h
a
se
T
u
r
b
o …
(
T
hei
ngi
Ht
un)
94
5
Tabl
e 4. Sy
m
b
ol
an
d Desc
ri
pt
i
on f
o
r Th
ree-
p
h
ase
T
u
rb
o Al
t
e
rnat
or
Sy
m
bol
Speed
(rp
m
)
D
Internal dia
m
e
t
er
of
stator
p
Pole pitch
t
B
Width of
tooth at gap surf
ace
φ
Pole arc
t
N
Nu
m
b
er
of teeth p
e
r
pole arc
F
R
Resistance of stator
winding per
phase
ml
L
M
ean length of tur
n
dav
k
Average loss f
actor
s
Specif
i
c slot per
m
enance
1
h
Space coupled by
i
n
sulated cond
uctor in the slot
2
h
Space above the c
onductor and belo
w the wedge
3
h
Space occupied by wedge
4
h
Space occupied by wedge
o
b
Slot opening
s
Slot leakage f
l
ux
a
AT
Ar
m
a
tu
re a
m
p
e
re
t
u
rn
s p
e
r p
o
l
e
fo
AT
No load am
per
e
tu
r
n
per
pole
f
h
Height of field coil
f
d
Depth of field coil
f
S
Space f
actor
f
P
Perm
issible
loss/
m
2
As t
h
e
rot
o
r sl
ot
pi
t
c
h i
s
8
.
1
4
cm
, so t
h
e t
w
o co
n
duct
o
rs
wi
t
h
3
.
8 m
m
si
de can
be acc
om
m
odat
e
d i
n
t
h
e sl
ot
f
o
e 1 MVA
,
w
i
d
t
h
w
i
se. [7
],
[8
].
As a
resu
lt, 47 con
d
u
c
tors
wi
ll b
e
arrang
ed
in
a slo
t
, d
e
p
t
h wise for
1
M
V
A. In
su
latio
n p
r
ov
id
ed
in
th
e slo
t
m
u
st be in
a
po
sitio
n
to
withstand
.
(i)
Great m
echani
cal stresses a
nd
(i
i
)
The fa
ct
or
s w
h
i
c
h a
r
e d
u
e t
o
expa
nsi
on
o
f
sl
ot
co
nt
ent
s
h
a
vi
n
g
di
ffe
rent
t
h
erm
a
l
expan
s
i
on c
o
ef
fi
ci
en
t
.
In
su
latio
n on
t
h
e
field
co
il is
p
r
ov
id
ed
as
fo
llo
ws:
(i)
0
.
5
mm
h
a
rd
m
i
ca cell is p
r
ov
id
ed all ro
und
fi
eld
co
il.
(ii)
Ove
r
t
h
e hard mica
cell,
a 1.5 mm flexible mica cell is
provided on t
h
e
field c
o
il.
(iii)
Lastly a steel of
0
.
6
mm
en
clo
s
e th
e
wh
o
l
e
field
co
il
[9
],
[10
]
.
In
add
ition
to
th
e ab
ov
e,
v
a
rio
u
s
turn
s slo
t
h
e
ig
h
t
is separated
fro
m
ea
ch
o
t
h
e
r b
y
0
.
3
mm p
r
essed
m
i
ca
separat
o
rs
.
Sl
ot
wi
dt
h
m
m
Space occ
upie
d
by
copper
conductor, 2 ×
3.8
7.6
M
i
ca separat
o
r
,
1
×
0.
3
0.
3
Har
d
m
i
ca cel
l
on
t
h
e c
o
nd
uct
o
r
,
3 ×
0
1.
5
Fl
exi
b
l
e
m
i
ca cel
l
on t
h
e c
o
n
duct
o
r
,
3 ×
1.
5
4.
5
St
eel
cel
l
ove
r
t
h
e co
n
duct
o
r
,
2 ×
0.
6
1.
2
Mica str
i
p
in the slop
,
2
× 0.6
1
.
2
Sl
ackne
ss
0.
9
Tot
a
l
sl
ot
wi
dt
h
17
.2
m
m
1
.
7
2
c
m
Sl
ot
de
pt
h:
m
m
Co
pp
er cond
u
c
to
r
s
, 47
× 4
1
8
8
.
0
Mica sep
a
r
a
to
rs,
(47
‒
1) × 0.
3
13
.8
Har
d
m
i
ca cel
l
on
t
h
e c
o
nd
uct
o
r
,
3 ×
0.
5
1.
5
Fl
exi
b
l
e
m
i
ca cel
l
on t
h
e c
o
n
duct
o
r
,
3 ×
1.
5
4.
5
St
eel
cel
l
ove
r
t
h
e co
n
duct
o
r
,
2 ×
0.
6
1.
2
M
i
ca bot
t
o
m
st
ri
p i
n
t
h
e
sl
ot
2.
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
939
–
9
47
94
6
Co
pp
er str
i
p un
d
e
r
t
h
e
w
e
dg
e
2
5
.0
Sl
ackne
ss
1.
9
Tot
a
l
sl
ot
de
pt
h
23
7.
9
m
m
2
3
.
7
9
c
m
Tabl
e
5. R
e
s
u
l
t
s
f
o
r
Th
ree-
p
h
a
se Tu
r
b
o
Al
t
e
rnat
or
ge
nerat
o
r
Resistance of the field winding
2.
88 oh
m
Copper loss in each field coil
184.32 W
T
o
tal losses in all
coils
364.
64 W
Brush contact loss with 1 vo
lt, drop at each brush
16 W
T
o
tal field copper
losses
384.
64 W
I
nput to the exciter
437.
09 W
E
x
citer
losses
54.
45 W
Fr
iction and winding losses
8 kW
Ar
ea of the tooth,
A
t
0.
0164 m
2
Volu
m
e
of the tooth
0.
0021
1
m
3
No of teeth
24
Volu
m
e
of all teeth
0.
0506
4
m
3
W
e
ight of the teeth
394.
99
2 kg
Flux density
in the teeth
1.
78 T
e
sla(
assu
m
e
d)
L
o
sses per
kg of
m
a
ter
i
als for
0.
5
m
m
plates
28 W
Total losses in the
teeth
11.06 kW
Sectional ar
ea of the stator
cor
e
0.
2902
m
2
Volu
m
e
of the stator
cor
e
1.
522
m
3
W
e
ight of the stator
cor
e
601.
19 k
g
Flux density
in the teeth
1.
2 T
e
sla(
assu
m
e
d
)
L
o
sses per
kg of
m
a
ter
i
als for
0.
5
m
m
plates
12 W
T
o
tal losses in the
stator
cor
e
7.
224 kW
T
o
tal ir
on losses
18.
284 kW
Efficiency,
Total losses
kW
Total iron l
o
ss
es
18.28
Total losses
of
stator
2.83
To
tal f
i
eld copp
er lo
sses
0.385
Exciter l
o
sses
0.
052
Friction and
wi
ndi
ng losse
s
8
29.55
kW
O
t
pu
t of
t
h
e alter
n
at
o
r
=1
×1
0
³
×0
.8
=800
kW
Efficiency=
4
.
96
55
.
29
800
800
%
6.
CO
NCL
USI
O
N
Techn
i
cal ev
alu
a
tio
n
o
f
a So
l
a
r Parab
o
lic Tro
ugh
Syste
m
was p
e
rfo
r
m
e
d
in
W
y
arg
y
i v
illag
e
, Th
azi
Town
sh
ip in
Man
d
a
lay Di
visio
n
.
Fro
m
th
e te
m
p
eratu
r
e
d
a
ta of
year
20
14
, th
e
ma
x
i
mu
m
t
e
mp
e
r
a
t
u
r
e
i
s
occurre
d at April and the minim
u
m
te
m
p
e
r
ature is
occurred at Decem
ber.
T
h
e heat gain from
colle
ctor t
o
receiver, worki
ng
fluid
heat e
n
ergy, an
d the
stora
g
e system are also conce
r
ne
d with tem
p
erature
va
riation. In
t
h
i
s
pape
r,
de
vel
o
pm
ent
of t
w
o
-
t
a
n
k
st
ora
g
e sy
st
em
th
at u
s
es m
o
lten
salt as th
e h
eat tran
sfer fl
u
i
d
is
descri
bed
.
The
det
a
i
l
desi
gn
cal
cul
a
t
i
ons
of
abso
rbe
d
fl
ux
,
t
h
e usef
ul
hea
t
gai
n
, exi
t
t
e
m
p
erat
ure, an
d
t
h
ree-
pha
se t
u
rb
o al
t
e
rnat
or
desi
gn
are
prese
n
t
e
d
a
n
d
cal
cul
a
t
e
d
.
Sim
u
l
a
t
i
on res
u
l
t
s
o
f
dai
l
y
l
o
ad
pr
ofi
l
e
a
n
d
usef
ul
h
eat g
a
i
n
in
Ap
ril and
Decem
b
er in
twelve ti
m
e
zo
n
e
s are presen
ted.
At presen
t,
th
ere is still n
o
practical
expe
rience i
n
the ope
r
ation
of this
p
o
we
r
pl
ant
t
ech
nol
ogy
i
n
M
y
anm
a
r.
Th
e so
lar th
ermal syste
m
can
red
u
ce
carbon em
ission a
n
d cost of transm
ission los
s
es.
ACKNOWLE
DGE
M
ENTS
The a
u
t
h
or i
s
deepl
y
grat
ef
ul
t
o
he
r
pare
nt
s,
U T
u
n
Ky
i
an
d Da
w
O
h
m
Ky
i
n
fo
r t
h
ei
r s
u
pp
o
r
t
s
an
d
en
courag
em
en
t to
attain
h
e
r
destin
atio
n
witho
u
t
an
y tr
oubl
e and all the
persons
wh
o share the t
r
ouble of the
au
tho
r
on
an
y situ
atio
n
i
n
tryin
g
th
is
p
a
p
e
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
C
a
l
c
ul
at
i
o
n
of
Par
a
b
o
l
i
c
Tr
ou
g
h
So
l
a
r
T
h
er
mal
Sy
st
em an
d Thre
e-p
h
a
se
T
u
r
b
o …
(
T
hei
ngi
Ht
un)
94
7
More
ove
r, t
h
e
author would like to tha
n
k
sisters.
T
h
anks
to all her teachers
,
friends, and fam
ily
m
e
m
b
ers, f
o
r
i
n
spi
r
i
ng a
n
d
m
o
ti
vat
i
ng
her
.
The a
u
t
h
o
r
i
s
dee
p
l
y
grat
e
f
ul
t
o
al
l
t
h
e
pers
o
n
s w
h
o
hel
p
e
d
directly or indi
rectly towards
the accom
p
lishment of this
pa
per.
REFERE
NC
ES
[1]
Michael West, Ph.D. June. Solar
Energ
y
B
a
sics
and More. (1993)
.
[2]
John a. Duffie &
Willi
am
a. Beck
m
a
n.
Solar
Engi
neering
of
Ther
m
a
l.
[3]
Bradshaw, R.W., C.E. Ty
n
e
r,
1988, Ch
emical and Engineer
ing. Factors
Affecting Solar Central Receiver
Applications of
Ternar
y
Mo
lten
Salts, Sand
ia National Laboratorie
s Report, SAND88-8686.
[4]
Anon
y
m
ous; Renewable Energ
y
World Global
Concentr
at
ed
Solar Power Ind
u
str
y
to Reach
25 GW b
y
202
0
http://www.renewable energ
y
world.
com/rea/n
e
ws/aricle/2009
/05/global-
c
oncent rated solar-
power-industr
y
-
to
reach-25-gw-b
y
-
2020 cm
pid=W
N
L-Frida
y
-Ma
y
8-2009
[5]
Simulation and
performance ev
aluation of parabolic trough
solar power s
y
stem by
A
ngela M. Patnode et
al
http://www.solar
2006.org/pr
esen
tati
ons/tureechsessions/t38-A029.pdf..
[6]
Herrmann, UIF, et al.2002,
“Overview on Thermal Storage Sy
stems,
“Flabeg Solar Inter
n
ation
a
l Gmblt”,
Workshop on Th
ermal Storag
e fo
r Trough Power
S
y
stems.
[7]
Sawhney
,
A.
K.:
A Course in
Electrical Mach
ine
Design, Dhanp
a
t Rai & Sons, (19
84).
[8]
Say
,
M.G.: Per
f
ormance and
Design of Alterna
ting Curr
ent Machines, Pitman and Sons, Ltd., 3
rd
Edition,
University
of
Lo
ndon, (1976)
.
[9]
Shoichi Oda, S.:
Alternating Curr
ent Mach
ines
, Electr
i
cal Engineer
g
Course,
(1959)
.
[10]
Mittle
V.N.
and
Mittnal
A.
Desig
n
of E
l
e
c
tri
cal
M
achin
es, De
lhi
Standard Publ
isher
Distributors,
20
00.
BIOGRAP
HI
ES OF
AUTH
ORS
The author’s name is Ms. Thein
g
i Htun. She was born on 1
t
h
Ju
ne 1983. She got ME degree in
Electrical Power
Engineer
ing fro
m Mandalay
Te
chnological University
, M
y
anmar. And she is
also working as an assistant lecturer
at Tech
n
o
logical Univer
sity
(
T
aungg
y
i
)
.
Now, she is
attending Ph.D d
e
gree in
Electr
ical Power
in Ma
n
d
alay
Technolog
ical
University
, M
y
anmar.
She
achieved
ICSE paper that
held
in
In
y
a
r Lak
e
h
o
tel
and In
ternational pap
e
r fro
m ICTAEECE
Conference that
held in Bangkok
during this
y
ear
.
Her main inter
e
st is in Renewable Energ
y
and
Generator
Desig
n
. Her
em
ail
is
a
p
rillad
y
d
r
eam
@
g
m
a
il.com
.
Dr.M
y
o
Th
et Tu
n, As
s
o
ciate P
r
o
f
es
s
o
r, Departm
e
nt of Electrical
Powe
r Engineer
ing, Mandalay
Techno
logical University
, M
y
an
mar.
Evaluation Warning : The document was created with Spire.PDF for Python.