I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
201
7
,
p
p
.
2
9
1
9
~
2
9
2
8
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
6
.
p
p
2
9
1
9
-
2928
2919
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
M
a
x
im
u
m
Radia
t
ed E
m
iss
io
ns o
f
P
rinted
Circui
t
Bo
a
rd
U
sing
Ana
ly
tical M
etho
ds
M
o
hd
Z
a
ra
r
M
o
hd
J
enu
,
Ahm
e
d M
.
Sa
y
e
g
h
,
Sy
a
rf
a
Z
a
hi
ra
h Sa
pu
a
n
Re
se
a
rc
h
Ce
n
ter f
o
r
A
p
p
li
e
d
El
e
c
tro
m
a
g
n
e
ti
c
s,
Un
iv
e
rsiti
T
u
n
Hu
ss
e
in
On
n
M
a
lay
sia
,
M
a
la
y
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
1
2
,
2
0
1
7
R
ev
i
s
ed
A
u
g
2
0
,
2
0
1
7
A
cc
ep
ted
Oct
26
,
2
0
1
7
T
h
e
ra
p
id
p
r
o
g
re
ss
o
f
tec
h
n
o
lo
g
y
h
a
s
i
m
p
o
se
d
sig
n
if
ica
n
t
c
h
a
ll
e
n
g
e
s
o
n
P
ri
n
ted
Circu
it
Bo
a
rd
s
(
P
CB)
d
e
sig
n
e
rs
.
On
c
e
o
f
th
o
se
c
h
a
ll
e
n
g
e
s
is
to
sa
ti
sfy
th
e
e
lec
tro
m
a
g
n
e
ti
c
c
o
m
p
a
ti
b
il
it
y
(EM
C)
c
o
m
p
li
a
n
c
e
re
q
u
irem
e
n
ts.
F
o
r
t
h
a
t
re
a
so
n
,
E
M
C
c
o
m
p
li
a
n
c
e
m
u
st
b
e
c
o
n
si
d
e
re
d
e
a
rli
e
r
a
t
th
e
d
e
sig
n
sta
g
e
f
o
r
ti
m
e
a
n
d
c
o
st
s
a
v
in
g
s
.
Co
n
v
e
n
ti
o
n
a
ll
y
,
f
u
ll
wa
v
e
si
m
u
latio
n
is
e
m
p
lo
y
e
d
to
c
h
e
c
k
w
h
e
th
e
r
th
e
d
e
sig
n
e
d
P
CB
m
e
e
t
s
EM
C
sta
n
d
a
rd
s
o
r
n
o
t.
Ho
w
e
v
e
r,
th
is
m
e
th
o
d
is
n
o
t
a
su
it
a
b
le
o
p
ti
o
n
sin
c
e
it
re
q
u
ire
s
in
ten
siv
e
c
o
m
p
u
tatio
n
a
l
ti
m
e
a
n
d
th
u
s
i
n
c
re
a
sin
g
th
e
u
n
it
c
o
st.
T
h
is
p
a
p
e
r
d
e
sc
rib
e
s
n
o
v
e
l
a
n
a
ly
ti
c
a
l
m
o
d
e
ls
f
o
r
e
stim
a
ti
n
g
th
e
ra
d
iate
d
e
m
issio
n
s
(RE)
o
f
P
CB.
T
h
e
se
m
o
d
e
ls
c
a
n
b
e
u
se
d
t
o
h
e
l
p
th
e
c
irc
u
it
d
e
sig
n
e
r
to
m
o
d
if
y
t
h
e
ir
c
ircu
it
b
a
se
d
o
n
th
e
m
a
x
i
m
u
m
a
ll
o
w
a
b
l
e
RE
c
o
m
p
a
rin
g
to
t
h
e
re
lev
a
n
t
EM
C
-
RE
sta
n
d
a
rd
li
m
it
.
A
lt
h
o
u
g
h
th
e
re
a
re
m
a
n
y
RE
so
u
rc
e
s
o
n
P
CB,
th
is
p
a
p
e
r
f
o
c
u
se
s
o
n
th
e
sig
n
i
f
ica
n
t
so
u
rc
e
o
f
RE
o
n
P
CB;
n
a
m
e
l
y
P
CB
-
trac
e
s.
T
h
e
trac
e
g
e
o
m
e
tr
y
,
ter
m
in
a
ti
o
n
im
p
e
d
a
n
c
e
,
d
iele
c
tri
c
ty
p
e
,
e
tc.
c
a
n
b
e
sp
e
c
if
ied
b
a
se
d
o
n
t
h
e
m
a
x
i
m
u
m
a
ll
o
w
a
b
le
e
m
issio
n
s.
T
h
e
p
ro
p
o
se
d
m
o
d
e
ls
w
e
re
v
e
ri
f
ied
b
y
c
o
m
p
a
rin
g
th
e
re
s
u
lt
s
o
f
th
e
p
ro
p
o
se
d
m
o
d
e
ls
w
it
h
b
o
th
sim
u
latio
n
a
n
d
e
x
p
e
rim
e
n
tal
re
su
lt
s.
G
o
o
d
a
g
re
e
m
e
n
ts
we
re
o
b
tain
e
d
b
e
tw
e
e
n
th
e
a
n
a
ly
ti
c
a
ll
y
c
o
m
p
u
ted
re
su
lt
s
a
n
d
sim
u
latio
n
/m
e
a
su
re
m
e
n
t
re
su
lt
s w
it
h
a
c
c
u
ra
c
y
o
f
±3
d
B.
K
ey
w
o
r
d
:
C
o
m
m
o
n
m
o
d
e
Dif
f
r
en
t
ial
m
o
d
e
I
m
b
alan
ce
d
if
f
er
e
n
ce
m
o
d
el
P
r
in
ted
cir
cu
it b
o
ar
d
R
ad
iated
e
m
is
s
io
n
Co
p
y
rig
h
t
©
2
0
1
7
I
n
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ah
m
ed
M.
Sa
y
e
g
h
,
R
esear
ch
C
en
ter
f
o
r
A
p
p
lied
E
lectr
o
m
a
g
n
etics,
Un
i
v
er
s
iti T
u
n
H
u
s
s
ei
n
On
n
Ma
la
y
s
ia
(
UT
HM
)
,
P
ar
it R
aj
a,
B
atu
P
ah
at,
8
6
4
0
0
,
Ma
la
y
s
ia.
E
m
ail: a
h
m
ed
_
s
u
2
0
0
8
@
y
a
h
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
d
esig
n
o
f
elec
tr
o
m
a
g
n
eti
ca
ll
y
co
m
p
atib
le
h
ig
h
s
p
ee
d
elec
tr
o
n
ic
s
y
s
te
m
s
i
s
o
n
e
o
f
th
e
m
o
s
t
s
ig
n
i
f
ica
n
t
ch
alle
n
g
es
in
t
h
e
cir
cu
it
in
d
u
s
tr
y
.
T
h
ese
s
y
s
te
m
s
n
o
r
m
all
y
co
m
p
r
i
s
es
o
f
o
n
e
o
r
m
o
r
e
o
f
P
r
in
ted
C
ir
cu
it
B
o
ar
d
(
P
C
B
)
w
h
ic
h
r
ep
r
esen
t
th
e
h
ea
r
t
o
f
t
h
e
el
ec
tr
o
n
ic
d
ev
ice
s
.
T
h
e
P
C
B
ca
n
p
r
o
d
u
ce
a
h
u
g
e
a
m
o
u
n
t
o
f
r
ad
iated
e
m
i
s
s
io
n
s
(
R
E
)
w
h
ich
m
a
y
i
n
ter
f
er
e
w
it
h
t
h
e
o
p
er
atio
n
o
f
th
e
n
e
ar
b
y
d
ev
ice
s
.
T
h
ese
e
m
is
s
io
n
s
ex
i
s
t
d
u
e
to
d
if
f
er
e
n
tial
-
m
o
d
e
(
DM
)
an
d
co
m
m
o
n
-
m
o
d
e
(
C
M)
cu
r
r
en
ts
.
T
h
u
s
,
it
is
ess
e
n
tial
to
tak
e
in
to
ac
co
u
n
t b
o
th
th
e
DM
a
n
d
C
M
R
E
.
T
h
e
m
ax
i
m
u
m
R
E
ca
n
b
e
q
u
a
n
t
i
f
ied
u
s
i
n
g
s
e
v
er
al
m
et
h
o
d
s
[
1
]
,
[
2
]
.
On
e
o
f
t
h
o
s
e
m
et
h
o
d
s
is
to
s
e
n
d
th
e
elec
tr
o
n
ic
d
ev
ice
f
o
r
m
ea
s
u
r
e
m
en
t
i
n
a
s
e
m
i
an
ec
h
o
ic
ch
a
m
b
er
(
SAC
)
.
Ho
w
e
v
er
,
th
is
m
et
h
o
d
is
ex
p
en
s
iv
e,
r
ath
er
iter
ati
v
e
an
d
tim
e
co
n
s
u
m
i
n
g
tas
k
s
in
ce
it
r
eq
u
ir
es
b
u
ild
in
g
t
h
e
p
r
o
t
o
ty
p
e
f
ir
s
t
b
ef
o
r
e
p
er
f
o
r
m
in
g
t
h
e
m
ea
s
u
r
e
m
e
n
t
p
r
o
ce
s
s
.
T
h
e
o
th
er
o
p
tio
n
is
to
u
s
e
3
D
n
u
m
er
ical
s
o
l
v
er
s
i
m
u
latio
n
.
Ho
w
ev
er
,
t
h
i
s
ap
p
r
o
ac
h
also
r
eq
u
ir
es
ex
ten
s
i
v
e
co
m
p
u
t
at
io
n
al
r
eso
u
r
ce
s
to
an
al
y
ze
t
h
e
d
etails
o
f
ea
ch
tr
ac
e
s
tr
u
ct
u
r
e.
Fu
r
th
er
m
o
r
e,
it
p
r
o
v
id
es
r
elativ
el
y
lit
tle
p
h
y
s
ical
i
n
s
i
g
h
t
o
f
t
h
e
R
E
m
ec
h
a
n
is
m
s
.
Alter
n
ati
v
el
y
,
s
i
m
p
le
n
o
v
el
a
n
al
y
tical
m
o
d
els
ar
e
p
r
o
p
o
s
ed
in
th
is
p
ap
er
f
o
r
co
m
p
u
ti
n
g
t
h
e
m
ax
i
m
u
m
R
E
o
f
th
a
t
P
C
B
-
tr
ac
es
w
h
ic
h
ca
n
b
e
u
s
ed
to
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
1
9
–
2
9
2
8
2920
b
en
ch
m
ar
k
f
o
r
th
e
d
esig
n
p
r
o
ce
s
s
to
f
in
d
t
h
e
o
p
ti
m
u
m
d
esi
g
n
t
h
at
s
ati
s
f
y
E
MC
r
eq
u
ir
e
m
en
ts
as
d
escr
ib
ed
in
th
e
n
e
x
t sec
tio
n
s
.
2.
E
S
T
I
M
AT
I
O
N
O
F
RE
F
RO
M
P
CB
-
T
RACES
US
I
N
G
N
O
VE
L
AN
AL
Y
T
I
CAL M
O
DE
L
S
T
h
e
r
ap
id
in
cr
ea
s
in
g
o
f
th
e
o
p
er
atin
g
f
r
eq
u
e
n
c
y
o
f
P
C
B
t
o
s
ev
er
al
g
i
g
ah
er
tz
h
as
en
h
a
n
ce
d
P
C
B
-
tr
ac
es
to
be
ef
f
icie
n
t
r
ad
iato
r
s
o
f
RE
.
T
h
er
ef
o
r
e,
it
i
s
cr
iticall
y
i
m
p
o
r
ta
n
t
to
co
n
f
ir
m
t
h
at
t
h
e
p
r
o
d
u
ce
d
R
E
s
d
o
n
o
t
ex
ce
ed
t
h
e
R
E
s
tan
d
ar
d
li
m
it
[
1
]
.
T
h
e
e
m
i
s
s
io
n
o
f
th
e
elec
tr
icall
y
s
h
o
r
t
t
r
ac
e
s
(
tr
ac
e
len
g
t
h
is
les
s
t
h
an
o
n
e
ten
th
w
av
ele
n
g
t
h
)
is
co
m
p
u
ted
b
ased
o
n
t
h
e
co
n
ce
p
t
o
f
Her
tzian
d
ip
o
le
an
ten
n
a
[
2
].
I
t is a
s
s
u
m
ed
th
at
th
e
DM
cu
r
r
e
n
t
i
s
u
n
if
o
r
m
l
y
d
is
tr
ib
u
ted
alo
n
g
t
h
e
tr
ac
e
an
d
th
u
s
it
ca
n
b
e
m
o
d
eled
a
s
Her
t
zi
an
d
ip
o
le
an
ten
n
a.
No
w
,
t
h
is
s
itu
a
tio
n
h
as
c
h
an
g
ed
an
d
it
is
in
v
alid
f
o
r
tr
ac
es
lo
n
g
er
t
h
an
o
n
e
ten
t
h
w
a
v
ele
n
g
t
h
.
I
n
t
h
i
s
r
eg
ar
d
,
th
e
tr
ac
e
ca
n
b
e
m
o
d
eled
a
s
an
ar
r
a
y
o
f
Her
tzia
n
d
ip
o
le
s
o
r
as
a
tr
a
v
elli
n
g
w
a
v
e
a
n
te
n
n
a
a
s
d
escr
ib
ed
i
n
d
etails in
t
h
e
n
e
x
t sec
tio
n
s
.
2
.
1
.
DM
-
RE
o
f
E
lect
rica
lly
Sh
o
rt
P
CB
-
t
ra
ce
s
On
P
C
B
,
th
er
e
ar
e
s
ev
er
al
s
o
u
r
ce
s
o
f
R
E
s
u
c
h
a
s
tr
ac
es
,
elec
tr
o
n
ic
co
m
p
o
n
en
ts
,
h
ea
ts
in
k
,
etc.
Ho
w
e
v
er
,
th
e
P
C
B
-
tr
ac
es
ar
e
th
e
d
o
m
in
a
n
t
s
o
u
r
ce
o
f
R
E
.
T
h
ese
R
E
o
f
P
C
B
-
tr
ac
es
ar
e
d
u
e
to
b
o
th
DM
an
d
C
M
cu
r
r
en
t
s
.
C
o
n
v
en
t
io
n
all
y
,
th
e
s
ig
n
al
an
d
r
etu
r
n
tr
ac
es
o
n
P
C
B
ar
e
m
o
d
eled
as
t
w
o
p
ar
allel
Her
tzian
d
ip
o
les
w
it
h
o
p
p
o
s
ite
d
ir
ec
tio
n
s
.
T
h
e
m
a
x
i
m
u
m
DM
elec
tr
i
c
f
ield
,
m
a
x
D
E
ˆ
is
th
e
n
g
iv
e
n
as
[
2
]
r
s
l
f
I
ˆ
10
.
E
ˆ
2
D
-
14
m
ax
D
3
1
6
1
(
1
)
w
h
er
e
I
ˆ
D
d
en
o
tes
DM
cu
r
r
en
t
m
ag
n
i
tu
d
e,
f
is
f
r
eq
u
e
n
c
y
,
l
is
th
e
len
g
t
h
o
f
s
i
g
n
al
tr
ac
e,
s
is
th
e
d
is
tan
ce
b
et
w
ee
n
s
i
g
n
al
tr
ac
e
a
n
d
r
etu
r
n
tr
ac
e,
a
n
d
is
th
e
d
i
s
tan
c
e
f
r
o
m
t
h
e
De
v
ice
Un
d
er
T
est
(
DUT
)
to
th
e
o
b
s
er
v
atio
n
p
o
in
t.
Alt
h
o
u
g
h
C
M
c
u
r
r
en
t
i
s
m
u
c
h
s
m
a
ller
t
h
an
DM
c
u
r
r
en
t,
C
M
RE
ar
e
th
e
m
ai
n
co
n
tr
ib
u
to
r
to
th
e
to
tal
RE
i
n
co
m
p
ar
is
o
n
s
to
DM
R
E
[
2
]
.
Fo
r
th
is
r
ea
s
o
n
,
less
a
tten
t
io
n
h
as
b
ee
n
g
i
v
e
n
to
DM
e
m
is
s
io
n
s
in
th
e
p
ast.
T
o
d
ay
,
th
e
DM
em
is
s
io
n
s
ar
e
a
s
ig
n
i
f
ica
n
t
co
n
tr
ib
u
to
r
s
in
ce
P
C
B
s
cu
r
r
en
tl
y
o
p
er
ates
in
s
ev
er
al
g
ig
a
h
er
tz.
T
h
e
R
E
o
f
P
C
B
-
tr
a
ce
s
is
ch
ar
ac
ter
ized
b
ased
o
n
t
h
e
elec
tr
ical
len
g
t
h
o
f
t
h
e
tr
ac
e.
2
.
2
.
DM
-
RE
o
f
Rel
a
t
iv
ely
E
lect
ri
ca
lly
S
ho
rt
P
CB
-
t
r
a
ce
s
(
l
10
)
C
o
n
v
en
t
io
n
all
y
,
th
e
R
E
s
o
f
P
C
B
tr
ac
es
ar
e
co
m
p
u
ted
b
ased
o
n
th
e
Her
tzia
n
d
ip
o
le
an
ten
n
a
[
2
]
.
Ho
w
e
v
er
,
th
is
m
et
h
o
d
is
li
m
it
ed
to
elec
tr
ically
s
h
o
r
t
tr
ac
es
w
h
er
e
th
e
tr
ac
e
le
n
g
t
h
is
less
t
h
an
o
n
e
te
n
t
h
w
a
v
ele
n
g
t
h
.
T
h
er
ef
o
r
e,
a
m
e
th
o
d
is
p
r
o
p
o
s
ed
to
o
v
er
co
m
e
t
h
e
d
ef
icie
n
cie
s
o
f
co
n
v
en
tio
n
al
m
et
h
o
d
b
y
d
iv
id
in
g
th
e
P
C
B
tr
ac
e
in
to
m
u
ltip
le
s
e
g
m
e
n
t
s
.
E
ac
h
s
eg
m
en
t
is
m
o
d
elled
as
a
Her
tzian
d
ip
o
le
an
d
th
en
a
n
ar
r
ay
o
f
Her
tzia
n
d
ip
o
les is
o
b
tain
ed
as s
h
o
w
n
i
n
Fi
g
u
r
e
1
.
T
h
e
DM
cu
r
r
en
t
d
is
tr
ib
u
t
io
n
o
n
elec
tr
icall
y
lo
n
g
P
C
B
tr
ac
es
v
ar
ies
w
it
h
f
r
eq
u
en
c
y
.
I
n
t
h
is
s
it
u
atio
n
,
th
e
p
h
ase
d
ela
y
i
n
P
C
B
tr
ac
e
s
s
h
o
u
ld
n
o
t
b
e
d
is
r
eg
ar
d
ed
.
T
h
er
ef
o
r
e,
a
P
C
B
tr
ac
e
ca
n
n
o
t
b
e
m
o
d
elled
as
a
s
in
g
le
Her
tzia
n
d
ip
o
le
an
ten
n
a
; it
s
h
o
u
ld
b
e
m
o
d
elled
as a
n
ar
r
ay
o
f
Her
tzia
n
d
ip
o
le
an
te
n
n
a.
T
h
e
co
m
p
u
tatio
n
o
f
to
tal
D
M
R
E
o
f
P
C
B
r
eq
u
ir
es
d
iv
is
i
o
n
o
f
t
h
e
tr
ac
e
i
n
to
m
u
ltip
le
elec
tr
icall
y
s
h
o
r
t
s
eg
m
e
n
ts
,
ea
ch
w
it
h
a
len
g
t
h
∆x
ac
co
r
d
in
g
to
w
a
v
ele
n
g
t
h
o
f
th
e
m
ax
i
m
u
m
f
r
eq
u
e
n
c
y
o
f
in
ter
est.
T
h
e
R
E
o
f
ea
ch
s
e
g
m
e
n
t
w
il
l
th
e
n
b
e
esti
m
ated
u
s
in
g
E
q
u
atio
n
(
1
)
.
On
ce
DM
cu
r
r
en
t
is
k
n
o
w
n
f
o
r
ea
ch
s
e
g
m
e
n
t
,
th
e
to
tal
R
E
ca
n
ea
s
i
l
y
b
e
co
m
p
u
ted
b
y
s
u
p
er
i
m
p
o
s
in
g
t
h
e
R
E
g
e
n
er
ated
b
y
ea
ch
s
e
g
m
e
n
t.
So
,
it
is
n
ec
e
s
s
ar
y
to
co
m
p
u
te
th
e
DM
c
u
r
r
en
t
f
o
r
th
e
esti
m
a
tio
n
o
f
DM
-
R
E
.
T
h
e
cu
r
r
en
t
d
is
tr
ib
u
tio
n
alo
n
g
th
e
elec
tr
icall
y
lo
n
g
tr
ac
e
is
n
o
t
u
n
i
f
o
r
m
.
T
h
u
s
,
it
ca
n
b
e
ch
u
n
k
ed
i
n
to
m
an
y
e
lectr
icall
y
s
m
all
s
e
g
m
e
n
ts
(
l
)
.
As
t
h
e
n
u
m
b
er
o
f
s
e
g
m
en
ts
in
cr
ea
s
es,
t
h
e
ac
c
u
r
ac
y
o
f
ca
lcu
lat
io
n
in
cr
ea
s
es.
Ho
w
e
v
er
,
it
is
n
o
t
g
o
o
d
id
ea
s
in
ce
th
e
co
m
p
u
tat
i
o
n
al
ti
m
e
in
cr
ea
s
e
s
i
n
te
n
s
i
v
el
y
as
t
h
e
n
u
m
b
er
o
f
s
eg
m
e
n
ts
i
n
cr
ea
s
e.
T
h
er
ef
o
r
e
,
it
is
cr
itical
l
y
i
m
p
o
r
tan
t
to
d
eter
m
in
e
th
e
n
u
m
b
er
o
f
s
e
g
m
e
n
t
s
to
ac
h
iev
e
co
m
p
r
o
m
is
e
b
et
w
ee
n
t
h
e
ac
c
u
r
ac
y
a
n
d
th
e
r
eq
u
ir
ed
co
m
p
u
ta
t
io
n
al
ti
m
e.
T
h
e
tr
ac
e
len
g
th
m
u
s
t b
e
d
iv
id
ed
in
to
m
an
y
eq
u
all
y
s
m
all
s
e
g
m
e
n
t
s
(
N
s
eg
m
e
n
ts
)
.
E
ac
h
s
e
g
m
e
n
t
h
a
s
len
g
th
,
∆
x
,
w
h
er
e
10
x
.
T
h
u
s
,
t
h
e
n
u
m
b
er
o
f
s
e
g
m
e
n
ts
i
s
co
m
p
u
te
d
as
l
N
10
(
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Ma
ximu
m
R
a
d
ia
ted
E
mis
s
io
n
s
o
f P
r
in
ted
C
ir
cu
it B
o
a
r
d
u
s
in
g
A
n
a
lytica
l Meth
o
d
s
(
Mo
h
d
Za
r
a
r
Mo
h
d
Je
n
u
)
2921
On
ce
t
h
e
DM
c
u
r
r
en
t
i
s
c
al
cu
lated
,
E
q
u
atio
n
(
1
)
ca
n
b
e
ap
p
lied
to
g
et
th
e
R
E
f
o
r
all
th
e
f
r
eq
u
e
n
cies
co
n
s
id
er
in
g
th
e
c
u
r
r
en
t c
h
an
g
e
alo
n
g
t
h
e
tr
ac
e.
∆
x
Z
s
Z
L
V
s
L
o
a
d
S
o
u
r
c
e
Z
0
A
B
A
'
B
'
x
=
0
x
=
l
x
I
1
I
2
I
3
I
N
I
1
*
I
2
*
I
3
*
I
N
*
S
i
g
n
a
l
t
r
a
c
e
r
e
t
u
r
n
t
r
a
c
e
(
m
i
r
r
o
r
)
(
a)
(
b
)
Fig
u
r
e
1
.
(
a)
Sim
p
le
s
in
g
le
-
s
id
ed
P
C
B
f
o
r
illu
s
tr
atin
g
tr
ac
e
s
eg
m
e
n
tat
io
n
m
eth
o
d
,
(
b
)
eq
u
iv
alen
t c
ir
cu
it o
f
th
e
P
C
B
u
n
d
er
s
tu
d
y
T
h
e
cu
r
r
en
ts
I
1
,
I
2
, I
3
,
…,
I
N
d
ef
i
n
es
th
e
DM
cu
r
r
e
n
ts
o
f
th
e
s
eg
m
e
n
ts
alo
n
g
th
e
s
i
g
n
al
tr
ac
e
w
h
er
ea
s
th
e
I
1
*
,
I
2
*
,
I
3
*
,
…,
I
N
*
r
e
p
r
esen
ts
t
h
e
c
u
r
r
en
t
o
f
t
h
e
s
e
g
m
e
n
t
a
lo
n
g
th
e
m
ir
r
o
r
t
r
ac
e
.
A
cc
o
r
d
in
g
to
t
h
e
ex
p
r
ess
io
n
s
f
o
r
th
e
f
ar
-
f
ield
o
f
t
h
e
Her
tzian
d
ip
o
le,
w
e
ca
n
co
m
p
u
te
t
h
e
r
ad
iated
f
ield
s
,
⃗
,
f
r
o
m
all
t
h
e
s
eg
m
e
n
ts
i
n
F
i
g
u
r
e
1
u
s
i
n
g
t
h
e
f
o
llo
w
in
g
ex
p
r
es
s
io
n
N
k
m
i
r
r
o
r
N
k
s
i
g
n
a
l
t
o
t
a
l
)
f
,
k
(
E
)
f
,
k
(
E
)
f
(
E
1
1
(
3
)
w
h
er
e
⃗
,
an
d
⃗
ar
e
th
e
r
ad
iated
elec
tr
ic
f
ield
s
f
r
o
m
th
e
s
ig
n
a
l
tr
ac
e
s
eg
m
e
n
ts
a
n
d
m
ir
r
o
r
tr
ac
e
s
eg
m
e
n
ts
,
r
esp
ec
ti
v
el
y
.
T
h
is
m
e
th
o
d
h
as
b
ee
n
v
alid
at
ed
u
s
i
n
g
s
e
v
er
al
co
n
f
ig
u
r
atio
n
s
o
f
P
C
B
s
.
T
h
e
r
es
u
lts
o
f
th
i
s
p
r
o
p
o
s
ed
m
et
h
o
d
ar
e
co
m
p
ar
ed
w
it
h
f
u
ll
w
av
e
3
D
s
i
m
u
latio
n
r
es
u
lt
s
w
h
ic
h
ar
e
u
s
ed
as
b
en
c
h
m
ar
k
s
a
n
d
o
b
tain
ed
b
y
co
m
m
er
cial
s
o
f
t
w
ar
e
An
s
y
s
H
FS
S
as il
lu
s
tr
ated
later
in
t
h
e
r
esu
lt
s
an
d
d
is
c
u
s
s
io
n
s
ec
tio
n
.
A
lt
h
o
u
g
h
t
h
i
s
p
r
o
p
o
s
ed
m
e
th
o
d
p
r
o
v
id
es
ac
cu
r
ate
r
es
u
lts
f
o
r
esti
m
ati
n
g
t
h
e
D
M
R
E
f
r
o
m
elec
tr
icall
y
lo
n
g
tr
ac
es,
it
co
n
s
u
m
es
r
elati
v
el
y
lo
n
g
co
m
p
u
t
atio
n
al
ti
m
e
s
i
n
ce
it
n
ee
d
s
to
ca
lcu
late
iter
ati
v
el
y
th
e
R
E
f
o
r
all
t
h
e
s
e
g
m
e
n
t
s
.
T
h
is
p
r
o
ce
s
s
is
s
i
m
ilar
to
t
h
e
n
u
m
er
ical
ca
lc
u
latio
n
.
T
h
u
s
,
it
is
co
n
s
id
er
ed
an
in
ter
m
ed
iate
m
et
h
o
d
f
o
r
co
m
p
u
ti
n
g
th
e
R
E
.
As
a
s
o
lu
t
io
n
,
a
clo
s
ed
-
f
o
r
m
f
o
r
m
u
lati
o
n
w
a
s
d
er
iv
ed
f
o
r
esti
m
a
ti
n
g
t
h
e
DM
f
r
o
m
th
o
s
e
tr
ac
es [
3
]
l
c
o
s
r
s
f
I
ˆ
10
.
E
ˆ
D
-6
m
a
x
1
52
2
(
4
)
w
h
er
e
l
is
t
h
e
tr
ac
e
len
g
th
a
n
d
is
th
e
w
a
v
ele
n
g
th
o
f
t
h
e
s
ig
n
al
o
f
in
ter
est.
2
.
3
.
E
s
t
i
m
a
t
io
n o
f
DM
-
RE
f
ro
m
E
lect
rica
lly
L
o
ng
P
CB
-
t
ra
ce
s
(
>
)
I
n
th
i
s
m
eth
o
d
,
th
e
DM
R
E
o
f
elec
tr
icall
y
lo
n
g
tr
ac
es
a
r
e
ca
lcu
lated
b
ased
o
n
th
e
D
M
cu
r
r
en
t
f
lo
w
i
n
g
o
n
th
e
s
i
g
n
a
l tr
ac
e
in
co
n
j
u
n
ctio
n
o
f
t
h
e
f
ar
-
f
ield
m
ag
n
et
ic
v
ec
to
r
p
o
ten
tia
l c
o
n
ce
p
t.
I
n
f
ac
t,
t
h
e
tr
ac
es
ac
t
as
tr
an
s
m
i
s
s
io
n
lin
e
(
T
L
)
.
T
h
e
DM
cu
r
r
en
t
is
t
h
en
ca
lc
u
l
ated
u
s
i
n
g
t
h
e
T
L
th
eo
r
y
as
lo
n
g
a
s
th
e
o
p
er
atin
g
f
r
eq
u
en
c
y
is
w
ith
in
th
e
QT
E
M
r
an
g
e
[
2
]
.
I
n
c
o
n
tr
ast
t
o
p
r
ev
io
u
s
s
t
u
d
ies
[
4
]
,
[
5
]
,
th
e
DM
-
R
E
ca
n
b
e
co
m
p
u
ted
d
ir
ec
tl
y
b
y
a
n
al
y
tic
all
y
d
eter
m
i
n
i
n
g
th
e
a
n
g
le
w
i
th
m
ax
i
m
u
m
R
E
.
T
h
e
an
g
le
w
it
h
m
a
x
i
m
u
m
R
E
ca
n
b
e
d
eter
m
in
ed
i
f
th
e
tr
ac
e
len
g
t
h
a
n
d
t
h
e
w
a
v
ele
n
g
t
h
o
f
i
n
ter
est
ar
e
k
n
o
w
n
w
h
ic
h
f
u
r
t
h
er
r
ed
u
ce
s
t
h
e
co
m
p
u
tatio
n
al
ti
m
e
s
i
g
n
if
ican
t
l
y
as s
h
o
w
n
in
F
ig
u
r
e
2.
T
h
e
m
a
x
i
m
u
m
DM
R
E
o
f
elec
tr
icall
y
lo
n
g
m
icr
o
s
tr
ip
P
C
B
-
t
r
ac
e
is
co
m
p
u
ted
as [
6
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
1
9
–
2
9
2
8
2922
=
−
−
4
+
0
1
1
−
−
2
[
(
1
−
−
(
−
)
−
+
−
2
1
−
(
+
)
+
)
]
×
(5
)
w
h
er
e
=
0
c
os
,
0
is
th
e
w
av
e
n
u
m
b
e
r
,
is
th
e
p
er
m
ea
b
ili
t
y
,
(
)
is
t
h
e
D
M
c
u
r
r
en
t
a
lo
n
g
z
-
d
ir
ec
tio
n
an
d
is
th
e
d
is
tan
ce
f
r
o
m
P
C
B
to
th
e
o
b
s
er
v
atio
n
p
o
in
t.
,
is
th
e
s
o
u
r
ce
-
an
d
lo
ad
-
r
e
f
ec
tio
n
co
ef
f
icie
n
t
s
r
esp
ec
tiv
el
y
.
h
l
r
w
E
y
z
r
I
(
z
)
L
Z
max
h
z
L
Z
max
G
r
o
u
n
d
forwa
rd
bac
kw
ard
f
o
r
w
a
r
d
(
a)
(
b
)
Fig
u
r
e
2
.
(
a)
Sim
p
le
m
icr
o
s
tr
i
p
P
C
B
f
o
r
m
ax
i
m
u
m
DM
-
R
E
,
(
b
)
P
C
B
-
tr
ac
e
ab
o
v
e
g
r
o
u
n
d
p
lan
e
eq
u
iv
a
len
t to
T
W
A
[
6
]
T
h
e
f
ac
to
r
,
F,
ca
n
b
e
w
r
itten
a
s
[
6
]
=
0
ℎ
[
2
(
)
−
]
(
6
)
T
h
e
an
g
le
t
h
at
g
i
v
es t
h
e
m
ax
i
m
u
m
DM
R
E
o
f
elec
tr
icall
y
lo
n
g
P
C
B
tr
ac
e
is
g
i
v
e
n
as [
7
]
=
−
1
(
1
−
2
)
(
7
)
Sev
er
al
co
n
f
i
g
u
r
atio
n
s
o
f
P
C
B
s
ar
e
em
p
lo
y
ed
to
v
er
i
f
y
t
h
is
d
er
iv
ed
ex
p
r
ess
io
n
a
s
d
escr
ib
ed
in
r
esu
lt
an
d
d
is
cu
s
s
io
n
s
ec
tio
n
.
3.
CM
RE
O
F
P
CB
-
T
RACES
USI
N
G
DIPO
L
E
A
NT
E
NN
A
T
H
E
O
RY
B
asicall
y
,
t
h
e
C
M
s
o
u
r
ce
s
o
n
P
C
B
s
tr
u
ct
u
r
e
is
d
u
e
to
t
h
e
i
m
b
alan
ce
o
f
t
h
e
P
C
B
-
s
tr
u
ctu
r
e.
A
lt
h
o
u
g
h
C
M
cu
r
r
en
t
s
is
m
u
ch
s
m
al
ler
th
an
D
M
cu
r
r
en
t,
it
i
s
th
e
s
ig
n
i
f
ican
t
co
n
tr
ib
u
to
r
to
th
e
o
v
e
r
all
e
m
is
s
io
n
s
.
T
h
is
is
d
u
e
to
t
h
e
lo
n
g
er
p
at
h
t
h
at
C
M
c
u
r
r
en
t
f
lo
w
s
t
h
r
o
u
g
h
th
e
cir
cu
it
an
d
its
e
n
v
ir
o
n
m
e
n
t
.
T
h
e
m
ax
i
m
u
m
C
M
R
E
,
m
a
x
,
C
E
o
f
elec
tr
icall
y
s
h
o
r
t tr
ac
e
s
is
esti
m
ated
as [
2
]
⃗
,
≅
1
.
257
×
10
−
6
̂
(
8
)
w
h
er
e
̂
d
en
o
tes
th
e
C
M
cu
r
r
e
n
t.
A
lt
h
o
u
g
h
E
q
u
atio
n
(
8
)
p
r
o
v
id
e
s
g
o
o
d
esti
m
ate
f
o
r
C
M
R
E
,
it
is
in
ac
c
u
r
ate
f
o
r
esti
m
ati
n
g
th
e
C
M
R
E
f
r
o
m
elec
tr
icall
y
lo
n
g
P
C
B
-
tr
ac
es.
T
h
u
s
,
t
h
e
a
u
th
o
r
s
h
ad
d
e
r
iv
ed
a
clo
s
ed
f
o
r
m
ex
p
r
ess
io
n
f
o
r
co
m
p
u
tin
g
th
e
m
ax
i
m
u
m
C
M
R
E
o
f
elec
tr
ica
ll
y
lo
n
g
P
C
B
-
tr
ac
es
s
h
o
r
ter
th
an
o
n
e
w
a
v
ele
n
g
t
h
as [
8
]
⃗
,
≅
120
|
̂
|
[
1
−
(
0
)
]
(
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Ma
ximu
m
R
a
d
ia
ted
E
mis
s
io
n
s
o
f P
r
in
ted
C
ir
cu
it B
o
a
r
d
u
s
in
g
A
n
a
lytica
l Meth
o
d
s
(
Mo
h
d
Za
r
a
r
Mo
h
d
Je
n
u
)
2923
T
h
e
ex
p
r
ess
io
n
(
9
)
h
a
s
o
v
er
co
m
e
t
h
e
li
m
i
tat
io
n
o
f
(
8
)
.
Ho
w
e
v
er
,
it
is
a
ls
o
li
m
i
ted
t
o
tr
ac
es
o
f
m
ax
i
m
u
m
o
n
e
w
a
v
elen
g
t
h
.
T
h
er
ef
o
r
e,
a
n
o
v
el
ap
p
r
o
ac
h
is
p
r
esen
ted
f
o
r
est
i
m
a
tin
g
C
M
R
E
f
r
o
m
P
C
B
-
tr
ac
es
b
y
co
m
b
i
n
in
g
th
e
i
m
b
ala
n
ce
d
if
f
er
e
n
ce
m
o
d
el
an
d
t
h
e
a
s
y
m
m
etr
ical
d
ip
o
le
an
ten
n
a
a
s
d
escr
ib
ed
in
t
h
e
n
e
x
t
s
ec
tio
n
.
I
n
th
is
r
esear
c
h
,
t
h
e
i
m
b
alan
ce
d
if
f
er
en
ce
m
o
d
el
[
9
]
is
a
d
o
p
ted
to
lo
ca
te
an
d
q
u
an
ti
f
y
t
h
e
C
M
v
o
ltag
e
s
o
u
r
ce
o
n
P
C
B
w
ith
e
lectr
icall
y
lo
n
g
tr
ac
e
w
h
ile
t
h
e
s
ig
n
al
tr
ac
e
an
d
th
e
g
r
o
u
n
d
p
lan
e
in
m
icr
o
s
tr
ip
P
C
B
ar
e
m
o
d
elled
as a
s
y
m
m
et
r
ical
d
ip
o
le
an
ten
n
a.
T
h
e
i
m
b
alan
ce
d
if
f
er
en
ce
f
ac
t
o
r
ℎ
ca
n
b
e
d
ef
i
n
ed
as
t
h
e
r
atio
b
et
w
ee
n
t
h
e
C
M
c
u
r
r
en
t
o
n
t
h
e
s
ig
n
al
tr
ac
e
to
th
e
to
tal
C
M
cu
r
r
en
t.
I
t c
an
b
e
ex
p
r
ess
ed
as [
1
0
]
ℎ
=
+
(
1
0
)
w
h
er
e
,
ar
e
th
e
s
tr
a
y
ca
p
ac
itan
ce
o
f
P
C
B
-
tr
ac
e
an
d
P
C
B
b
o
a
r
d
r
esp
ec
tiv
el
y
.
T
h
e
s
tr
a
y
ca
p
ac
itan
ce
o
f
th
e
tr
ac
e
an
d
g
r
o
u
n
d
p
lan
e
ca
n
b
e
co
m
p
u
ted
eith
er
u
s
i
n
g
clo
s
ed
-
f
o
r
m
ex
p
r
ess
io
n
s
[
9
1
]
o
r
b
y
u
s
i
n
g
an
elec
tr
o
m
ag
n
etic
s
i
m
u
latio
n
s
u
c
h
a
s
An
s
y
s
Q3
D
e
x
tr
ac
to
r
.
On
ce
t
h
e
s
tr
a
y
ca
p
ac
itan
ce
s
ar
e
k
n
o
w
n
,
th
e
C
M
v
o
ltag
e
at
t
h
e
p
o
in
t
wh
er
e
th
e
i
m
b
alan
ce
c
h
an
g
e
s
ca
n
b
e
co
m
p
u
ted
as [
1
0
]
(
)
=
∆
ℎ
×
(
)
(
1
1
)
w
h
er
e
∆
ℎ
is
th
e
c
h
an
g
ed
in
t
h
e
i
m
b
a
lan
ce
f
ac
to
r
,
(
)
is
th
e
DM
v
o
ltag
e
a
t
th
e
p
o
in
t
w
h
er
e
th
e
c
h
an
g
e
i
n
i
m
b
alan
ce
o
cc
u
r
s
.
So
th
e
C
M
v
o
ltag
e
at
t
h
e
s
o
u
r
ce
/tra
ce
j
u
n
ctio
n
is
co
m
p
u
ted
as
(
0
)
=
ℎ
2
(
0
)
=
+
(
0
)
(
1
2
)
I
n
th
is
p
ap
er
,
a
s
i
m
p
le
m
icr
o
s
t
r
ip
P
C
B
is
e
m
p
lo
y
ed
to
m
o
d
el
C
M
o
f
P
C
B
-
tr
ac
es.
T
h
is
p
r
o
p
o
s
ed
P
C
B
co
n
s
is
t
o
f
o
n
e
tr
ac
e
ce
n
tr
ed
o
n
P
C
B
.
I
t
h
as
s
o
u
r
ce
v
o
ltag
e
an
d
ter
m
i
n
ated
w
it
h
lo
ad
i
m
p
ed
an
ce
as
s
h
o
w
n
i
n
Fig
u
r
e
3
.
T
h
e
tr
ac
e
an
d
its
g
r
o
u
n
d
p
lan
e
ar
e
m
o
d
elled
as
as
y
m
m
etr
ical
d
ip
o
le
a
n
ten
n
a
w
it
h
p
a
r
asi
tic
C
M
v
o
ltag
e
co
m
p
u
ted
as
E
q
u
atio
n
(
1
2
)
.
T
w
o
s
tep
s
ar
e
r
eq
u
ir
ed
to
q
u
an
t
if
y
t
h
e
C
M
R
E
o
f
P
C
B
-
tr
ac
es.
T
h
e
f
ir
s
t
s
tep
is
to
id
en
ti
f
y
an
d
q
u
an
ti
f
y
th
e
C
M
v
o
lta
g
e
s
o
u
r
ce
s
u
s
i
n
g
I
DM
w
h
ile
t
h
e
s
e
co
n
d
s
tep
is
to
ev
alu
ate
t
h
e
C
M
R
E
f
r
o
m
th
e
eq
u
iv
ale
n
t
s
tr
u
c
tu
r
e
u
s
in
g
a
s
y
m
m
etr
ical
d
ip
o
le
a
n
ten
n
a.
I
n
t
h
i
s
p
ap
er
,
th
e
C
M
c
u
r
r
en
t
d
is
tr
ib
u
tio
n
is
esti
m
ated
ac
co
r
d
in
g
to
f
u
n
ct
io
n
s
in
tr
o
d
u
ce
d
b
y
R
.
K
in
g
[
1
1
]
.
R
e
f
er
r
in
g
to
Fi
g
u
r
e
3
,
th
e
as
y
m
m
etr
ica
l a
n
ten
n
a
ca
n
b
e
v
ir
tu
all
y
d
ec
o
m
p
o
s
ed
i
n
to
t
w
o
s
y
m
m
etr
ical
d
ip
o
le
a
n
ten
n
a
s
.
T
h
er
ef
o
r
e,
ea
ch
b
r
an
ch
ca
n
b
e
an
al
y
s
ed
in
d
ep
en
d
en
tl
y
s
i
n
ce
t
h
e
g
eo
m
etr
ical
d
i
m
e
n
s
io
n
s
a
n
d
C
M
v
o
ltag
e/c
u
r
r
en
t
ar
e
d
i
f
f
er
e
n
t.
S
in
ce
th
e
C
M
c
u
r
r
en
t
is
co
m
p
u
te
d
u
s
i
n
g
th
e
ex
p
r
es
s
io
n
s
in
[
12
]
,
th
e
C
M
R
E
ca
n
b
e
esti
m
ated
u
s
i
n
g
th
e
eq
u
i
v
alen
t
a
s
y
m
m
etr
ical
d
ip
o
le
an
ten
n
a.
T
h
e
C
M
R
E
f
r
o
m
t
h
e
d
ip
o
le
an
ten
n
a
i
s
t
h
en
e
s
ti
m
ated
u
s
i
n
g
lin
e
i
n
te
g
r
atio
n
o
f
th
e
C
M
c
u
r
r
en
t a
lo
n
g
th
e
d
ip
o
le
ar
m
s
as
g
iv
e
n
i
n
[
11
]
=
4
s
in
×
{
∫
1
(
)
−
1
1
2
+
∫
2
(
)
−
2
0
−
2
1
0
}
(
1
3
)
w
h
er
e
1
=
√
(
2
+
2
−
2
)
I
n
f
ac
t,
th
e
m
a
x
i
m
u
m
C
M
R
E
co
r
r
esp
o
n
d
in
g
to
ea
ch
f
r
eq
u
en
c
y
i
s
o
b
tain
ed
at
ce
r
tain
a
n
g
le,
w
h
ic
h
ca
n
b
e
co
m
p
u
ted
u
s
in
g
iter
ativ
e
ca
lc
u
latio
n
f
o
r
all
t
h
e
v
al
u
es
o
f
at
th
e
r
a
n
g
e
f
r
o
m
0
to
1
8
0
d
eg
r
ee
s
.
T
o
r
ed
u
ce
th
e
co
m
p
u
tatio
n
al
ti
m
e
f
o
r
ca
lcu
lati
n
g
t
h
e
m
a
x
i
m
u
m
C
M
R
E
,
th
e
a
n
g
le
at
wh
ich
t
h
e
m
ax
i
m
u
m
C
M
R
E
i
s
co
m
p
u
ted
h
av
e
to
b
e
id
en
ti
f
ied
f
ir
s
t
b
ef
o
r
e
ca
l
cu
lati
n
g
t
h
e
C
M
R
E
.
Fo
r
t
h
a
t
p
u
r
p
o
s
e,
a
s
i
m
p
le
an
al
y
tical
ex
p
r
es
s
io
n
i
s
g
i
v
e
n
in
[
12
]
(
)
=
(
∫
(
1
−
|
|
−
1
1
2
+
1
0
∫
(
2
−
|
|
−
2
0
−
2
)
(
1
4
)
On
ce
t
h
e
f
u
n
ctio
n
)
(
f
is
co
m
p
u
te
d
f
o
r
th
e
ce
r
ta
in
f
r
eq
u
e
n
c
y
u
n
d
er
ev
al
u
atio
n
w
i
th
in
t
h
e
r
a
n
g
e
o
f
t
h
eta
an
g
le
s
f
r
o
m
0
0
to
0
180
,
th
e
m
a
x
i
m
u
m
R
E
ca
n
b
e
esti
m
ated
b
y
s
u
b
s
t
itu
ti
n
g
th
e
a
n
g
le
th
eta
w
i
th
t
h
at
s
elec
ted
an
g
le
w
it
h
m
a
x
i
m
u
m
v
al
u
e
o
f
t
h
e
f
u
n
ctio
n
)
(
f
.
T
h
u
s
,
t
h
e
a
n
g
le
m
a
x
is
t
h
e
a
n
g
le
w
it
h
m
a
x
i
m
u
m
co
m
p
u
ted
f
u
n
ctio
n
)
(
f
an
d
it c
an
b
e
d
eter
m
i
n
ed
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
1
9
–
2
9
2
8
2924
(
)
=
0
≤
≤
180
(
)
(
1
5
)
1
l
E
y
r
I
(
x
)
2
l
d
w
2
w
1
(
a)
(
b
)
Fig
u
r
e
3
.
(
a)
Sim
p
le
m
icr
o
s
tr
i
p
P
C
B
f
o
r
m
ax
i
m
u
m
C
M
-
R
E
f
o
r
m
u
latio
n
(
b
)
eq
u
iv
a
len
t a
s
y
m
m
etr
ical
d
ip
o
le
an
ten
n
a
u
s
i
n
g
i
m
b
ala
n
ce
d
if
f
e
r
en
ce
m
o
d
el
4.
RE
S
U
L
T
S
A
ND
AN
AL
Y
SI
S
I
n
o
r
d
er
to
v
er
if
y
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
s
f
o
r
esti
m
ati
n
g
R
E
f
r
o
m
P
C
B
tr
ac
es,
a
s
i
m
p
le
m
icr
o
tr
s
ip
w
it
h
a
5
0
m
m
x
2
0
0
m
m
w
a
s
f
ab
r
icate
d
.
I
t
co
n
s
is
ts
o
f
a
s
ig
n
al
tr
ac
e
o
f
1
-
m
m
w
id
t
h
a
n
d
1
5
0
m
m
le
n
g
th
at
t
h
e
ce
n
tr
e
o
f
th
e
b
o
ar
d
.
T
h
e
r
etu
r
n
p
ath
is
a
g
r
o
u
n
d
p
lan
e
o
n
t
h
e
o
p
p
o
s
ite
s
id
e
o
f
th
e
P
C
B
.
B
o
th
th
e
s
i
g
n
al
tr
ac
e
an
d
g
r
o
u
n
d
p
lan
e
ar
e
e
tch
ed
o
n
a
1
.
6
m
m
t
h
ic
k
n
e
s
s
FR
4
d
iel
ec
tr
ic
m
ater
ial.
T
h
e
s
ig
n
al
tr
a
ce
is
f
ed
b
y
5
V
-
66
-
MH
z
tr
ap
ez
o
id
al
s
ig
n
al
o
s
cil
lato
r
to
p
r
o
d
u
ce
s
ev
er
al
h
ar
m
o
n
ic
s
b
e
y
o
n
d
th
e
o
p
er
atin
g
f
r
eq
u
en
c
y
.
A
7
8
0
5
r
eg
u
lato
r
w
a
s
u
s
ed
to
p
r
o
v
id
e
co
n
s
i
s
ten
t
5
V
d
c
to
t
h
e
6
6
MH
z
o
s
cillato
r
f
r
o
m
9
V
b
a
tter
y
as
s
h
o
w
n
in
Fig
u
r
e
4
.
T
o
b
e
m
o
r
e
p
r
ac
tical,
th
e
f
ar
-
en
d
o
f
t
h
e
tr
ac
e
w
as l
o
ad
ed
w
it
h
1
0
0
-
o
h
m
r
esis
tan
c
e.
(
a)
(
b
)
Fig
u
r
e
4
.
(
a)
m
icr
o
s
tr
ip
P
C
B
u
n
d
er
test
,
(
b
)
Me
asu
r
e
m
e
n
t set
-
u
p
i
n
s
id
e
S
AC
T
h
e
DM
R
E
s
o
f
th
is
m
icr
o
s
t
r
ip
P
C
B
w
er
e
esti
m
ated
u
s
i
n
g
T
R
M
m
et
h
o
d
an
d
E
q
u
atio
n
(
4
)
.
T
h
e
r
esu
lt
s
o
f
DM
R
E
u
s
i
n
g
th
e
s
e
t
w
o
m
e
th
o
d
s
ar
e
th
e
n
v
er
i
f
ie
d
b
y
co
m
p
ar
in
g
t
h
e
m
to
t
h
at
r
esu
lt
s
o
b
tain
ed
o
f
b
o
th
th
e
co
n
v
e
n
tio
n
al
P
au
l’
s
ex
p
r
ess
io
n
(
1
)
an
d
th
e
an
al
y
ti
ca
l
s
o
lu
tio
n
p
r
o
p
o
s
ed
b
y
L
eo
n
e
[
5
]
as
s
h
o
w
n
i
n
V
1
I
2
V
2
2b
2b
2a
2a
-
+
-
+
+
-
V
I
2
I
1
x
=
x
=
x=
l
1
x=
-
l
1
x=
l
1
x
=
l
x=
-
l
2
Gr
o
u
n
d
p
la
x=
-
l
2
S
ig
n
a
l
trac
e
Gr
o
u
n
d
p
lan
I
1
x
=
S
ig
n
al
tr
ac
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Ma
ximu
m
R
a
d
ia
ted
E
mis
s
io
n
s
o
f P
r
in
ted
C
ir
cu
it B
o
a
r
d
u
s
in
g
A
n
a
lytica
l Meth
o
d
s
(
Mo
h
d
Za
r
a
r
Mo
h
d
Je
n
u
)
2925
Fig
u
r
e
5
(
a
)
.
Ver
y
g
o
o
d
ag
r
ee
m
en
ts
w
er
e
o
b
tain
ed
b
et
w
ee
n
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
s
an
d
th
e
L
eo
n
e
’
s
an
a
l
y
t
ical
s
o
lu
tio
n
in
[
5
]
co
n
f
ir
m
i
n
g
th
e
co
r
r
ec
tn
ess
o
f
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
s
.
A
s
e
x
p
ec
ted
,
th
e
E
q
u
atio
n
(
1
)
h
as
f
ai
led
to
esti
m
a
te
ac
cu
r
atel
y
t
h
e
D
M
R
E
o
f
t
h
e
elec
tr
icall
y
lo
n
g
P
C
B
-
tr
ac
es.
Sp
ec
i
f
icall
y
,
D
M
r
ad
iatio
n
b
y
th
e
p
r
o
p
o
s
ed
m
e
th
o
d
r
e
m
ai
n
s
ab
o
v
e
4
0
d
B
an
d
r
ea
ch
es
its
p
ea
k
s
at
6
0
d
B
.
I
ts
d
is
tr
ib
u
tio
n
d
o
es
n
o
t
s
h
o
w
a
s
h
ar
p
d
ec
lin
e
at
an
y
f
r
eq
u
e
n
c
y
.
On
t
h
e
o
th
er
h
a
n
d
,
th
e
est
i
m
a
ted
C
M
e
m
i
s
s
io
n
s
u
s
i
n
g
t
h
e
p
r
o
p
o
s
ed
ex
p
r
ess
io
n
(
9
)
d
if
f
er
s
b
y
ab
o
u
t
40
d
B
co
m
p
ar
ed
to
th
e
co
n
v
e
n
tio
n
al
clo
s
ed
f
o
r
m
ex
p
r
es
s
io
n
(
8
)
as
s
h
o
w
n
i
n
Fi
g
u
r
e
5
(
b
)
.
T
h
is
o
b
s
er
v
atio
n
s
h
o
w
s
th
e
l
i
m
itati
o
n
o
f
t
h
e
c
o
n
v
e
n
tio
n
al
P
au
l’
s
e
x
p
r
ess
io
n
s
i
n
ce
it
is
d
er
iv
ed
b
ased
o
n
t
h
e
th
eo
r
y
o
f
t
h
e
elec
tr
icall
y
s
h
o
r
t tr
ac
es.
Fo
r
f
u
r
t
h
er
v
er
if
icatio
n
,
t
h
e
r
esu
lt
s
o
f
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
ar
e
co
m
p
ar
ed
w
it
h
t
h
e
r
e
s
u
lts
o
f
th
e
ex
is
t
in
g
m
et
h
o
d
s
.
I
t
is
o
b
s
er
v
ed
in
Fi
g
6
t
h
at
t
h
e
m
ea
s
u
r
ed
R
E
d
o
n
o
t
e
x
ce
ed
th
e
u
p
p
er
b
o
u
n
d
s
o
v
er
m
o
s
t
o
f
th
e
f
r
eq
u
e
n
c
y
r
an
g
e,
w
h
ich
i
n
d
icate
s
th
at
th
e
p
r
o
p
o
s
ed
m
o
d
els
ar
e
r
eliab
le
f
o
r
est
i
m
a
ti
n
g
th
e
R
E
o
f
P
C
B
tr
ac
es
as
s
h
o
w
n
in
F
ig
u
r
e
6
.
Mo
r
e
o
v
er
,
th
e
y
s
h
o
w
b
et
ter
ag
r
ee
m
e
n
t
w
it
h
r
ea
l
m
e
asu
r
e
m
en
t
t
h
a
n
d
o
p
r
ed
ef
in
ed
m
o
d
els
co
m
p
u
ted
f
r
o
m
E
q
u
at
io
n
(
1
)
an
d
E
q
u
ati
o
n
(
8
)
w
it
h
o
u
t
s
eg
m
e
n
tatio
n
.
A
g
o
o
d
ag
r
ee
m
e
n
t
b
et
w
ee
n
th
e
p
r
ed
ictio
n
a
n
d
m
ea
s
u
r
e
m
en
t
w
as
o
b
tain
ed
ex
c
ep
t
f
o
r
th
e
h
i
g
h
er
f
r
eq
u
e
n
cies.
Su
c
h
i
m
p
er
f
ec
tio
n
is
ascr
ib
ed
to
th
e
f
ac
t
th
at
p
r
ed
ictio
n
m
o
d
els
d
ev
e
lo
p
ed
b
ased
o
n
E
q
u
atio
n
(
1
)
an
d
E
q
u
atio
n
(
2
)
ar
e
d
esig
n
ated
f
o
r
elec
tr
icall
y
s
h
o
r
t tr
ac
es (
lo
w
f
r
eq
u
e
n
c
y
r
a
n
g
e
)
.
(
a)
(
b
)
Fig
u
r
e
5
.
(
a)
DM
R
E
,
(
b
)
C
M
R
E
o
f
m
icr
o
s
tr
ip
P
C
B
u
n
d
er
test
u
s
in
g
v
ar
io
u
s
m
et
h
o
d
s
Fig
u
r
e
6
.
T
h
e
to
tal
m
ea
s
u
r
ed
an
d
esti
m
ated
R
E
s
o
f
m
icr
o
s
tr
i
p
P
C
B
u
n
d
er
test
A
lt
h
o
u
g
h
th
e
p
r
o
p
o
s
ed
T
SM
a
n
d
th
e
o
th
er
p
r
ev
io
u
s
l
y
d
escr
i
b
ed
m
et
h
o
d
s
p
r
o
v
id
e
a
g
o
o
d
e
s
ti
m
ate
o
f
R
E
,
it
is
ap
p
licab
le
to
tr
ac
es
w
it
h
m
a
x
i
m
u
m
le
n
g
th
o
f
o
n
e
w
a
v
ele
n
g
t
h
.
T
h
er
f
o
r
e,
a
n
o
v
el
an
al
y
tical
s
o
l
u
tio
n
h
as
b
ee
n
d
ev
elo
p
ed
f
o
r
est
i
m
ati
n
g
DM
R
E
f
r
o
m
elec
tr
i
ca
ll
y
lo
n
g
tr
ac
es
o
f
m
u
lt
ip
le
w
a
v
ele
n
g
th
s
.
Fo
r
v
alid
ati
n
g
t
h
e
d
e
v
elo
p
ed
an
al
y
tical
s
o
lu
tio
n
(
5
)
,
a
s
i
m
p
le
m
icr
o
s
tr
ip
P
C
B
w
ith
o
n
e
m
et
er
tr
ac
e
len
g
t
h
a
n
d
2
m
m
tr
ac
e
w
id
t
h
h
as
b
ee
n
f
a
b
r
icate
d
T
h
is
tr
ac
e
is
etch
ed
o
v
er
1
.
6
m
m
o
f
FR
4
d
ielec
tr
ic
m
ater
ial.
T
h
e
n
ea
r
en
d
o
f
th
e
tr
ac
e
is
f
ed
th
r
o
u
g
h
SMT
-
3
s
ig
n
al
g
e
n
er
ato
r
v
ia
s
h
ield
ed
co
ax
ial
ca
b
le.
T
h
e
c
o
ax
ial
ca
b
le
is
also
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
1
9
–
2
9
2
8
29
26
cla
m
p
ed
w
it
h
m
a
n
y
f
er
r
ite
b
ea
ts
ar
o
u
n
d
th
e
f
ee
d
in
g
ca
b
le
to
p
r
ev
en
t
cu
r
r
e
n
t
to
f
lo
w
t
h
r
o
u
g
h
th
e
f
ee
d
i
n
g
ca
b
le.
T
h
e
f
ar
-
en
d
o
f
t
h
e
tr
ac
e
is
ter
m
in
a
ted
w
it
h
8
2
Oh
m
s
in
ce
t
h
e
p
r
ac
tical
d
esig
n
is
m
o
s
tl
y
lo
ad
ed
w
it
h
i
m
p
ed
an
ce
.
T
h
e
p
r
o
d
u
ce
d
f
ee
d
in
g
s
ig
n
al
h
as
1
V
a
m
p
lit
u
d
e
w
i
th
i
n
t
h
e
f
r
eq
u
en
c
y
r
a
n
g
e
5
0
0
MH
z
-
3
GHz
.
T
h
e
P
C
B
is
th
e
n
p
lace
d
o
n
1
×
1
alu
m
i
n
u
m
s
h
ee
t to
co
n
s
id
er
o
n
l
y
t
h
e
DM
R
E
.
T
h
is
al
u
m
in
u
m
s
h
ee
t
r
ep
r
esen
ts
th
e
g
r
o
u
n
d
p
lan
e
o
f
th
e
P
C
B
to
r
ed
u
ce
C
M
R
E
as
s
h
o
w
n
in
F
ig
u
r
e
7
.
(
a)
(
b
)
Fig
u
r
e
7
.
Me
asu
r
e
m
en
t
s
etu
p
o
f
elec
tr
icall
y
lo
n
g
P
C
B
in
s
id
e
SAC
T
h
e
R
E
s
o
f
th
i
s
P
C
B
ar
e
t
h
en
m
ea
s
u
r
ed
i
n
S
AC
lo
ca
t
ed
at
th
e
R
esear
c
h
C
e
n
ter
f
o
r
A
p
p
lied
E
lectr
o
m
a
g
n
etics
(
E
Mc
e
n
ter
)
,
Un
iv
er
s
iti
T
u
n
H
u
s
s
ein
O
n
n
Ma
la
y
s
ia
(
UT
HM
)
.
A
s
s
h
o
w
n
in
Fi
g
u
r
e
7
(
a
)
,
th
e
PC
B
u
n
d
er
tes
t
is
p
lace
d
o
n
a
0
.
8
m
tall
w
o
o
d
en
tab
le
ab
o
v
e
t
h
e
g
r
o
u
n
d
p
la
n
e
i
n
S
AC
an
d
r
o
tated
3
6
0
°
to
d
etec
t
th
e
m
ax
i
m
u
m
R
E
.
A
h
o
r
n
an
ten
n
a
is
e
m
p
lo
y
ed
to
m
ea
s
u
r
e
th
e
R
E
i
n
th
e
f
r
eq
u
en
c
y
r
a
n
g
e
f
r
o
m
1
GHz
to
3
GHz
as
s
h
o
w
n
i
n
Fi
g
u
r
e
7
(
b
)
.
T
h
e
f
r
eq
u
en
c
y
r
a
n
g
e
i
s
s
e
lecte
d
to
s
atis
f
y
t
h
e
co
n
d
itio
n
o
f
elec
tr
icall
y
lo
n
g
tr
ac
es
w
h
er
e
th
e
P
C
B
-
tr
ac
e
b
e
co
m
e
s
m
u
ltip
les
o
f
w
av
e
le
n
g
th
.
T
h
e
d
is
ta
n
ce
b
et
w
ee
n
t
h
e
P
C
B
u
n
d
er
te
s
t
a
n
d
th
e
r
ec
eiv
i
n
g
a
n
ten
n
a
w
as
ab
o
u
t
3
m
w
h
ile
t
h
e
elec
tr
o
m
ag
n
etic
in
ter
f
er
e
n
ce
r
ec
eiv
er
w
a
s
lo
ca
ted
o
u
ts
id
e
th
e
ch
a
m
b
er
to
r
ec
o
r
d
th
e
m
a
x
i
m
u
m
R
E
as
t
h
e
tab
le
r
o
tates
3
6
0
°.
T
h
e
R
E
s
f
o
r
f
r
eq
u
e
n
cie
s
b
elo
w
t
h
a
n
1
GHz
ar
e
o
b
tain
ed
u
s
i
n
g
t
h
e
s
a
m
e
m
ea
s
u
r
e
m
en
t
-
s
etu
p
e
x
ce
p
t
t
h
at
t
h
e
r
ec
eiv
i
n
g
a
n
te
n
n
a
is
r
ep
lace
d
b
y
a
lo
g
-
p
er
io
d
ic
an
ten
n
a
i
n
s
tead
o
f
h
o
r
n
an
ten
n
a.
T
h
e
esti
m
a
ted
r
esu
lts
ar
e
i
n
g
o
o
d
ag
r
ee
m
e
n
t
w
i
th
th
e
m
ea
s
u
r
e
m
en
t r
es
u
lt
s
as
s
h
o
w
n
i
n
F
i
g
u
r
e
8
.
T
h
e
p
r
o
p
o
s
ed
m
o
d
el
s
u
cc
e
s
s
f
u
ll
y
esti
m
ated
th
e
R
E
f
r
o
m
P
C
B
w
it
h
lo
ad
.
T
h
er
e
ar
e
a
f
e
w
d
ec
ib
els
in
d
is
cr
ep
an
c
y
b
et
w
ee
n
th
e
p
r
o
p
o
s
ed
m
o
d
el
an
d
th
e
m
ea
s
u
r
e
m
e
n
t.
Ho
w
ev
er
,
it
s
till
ac
ce
p
tab
le
f
r
o
m
th
e
d
e
s
ig
n
p
o
in
t
o
f
v
ie
w
s
in
ce
i
t d
o
es n
o
t e
x
ce
ed
3
d
B
a
t
th
e
w
o
r
s
t c
ase.
Fig
u
r
e
8
.
T
h
e
m
ea
s
u
r
ed
an
d
es
ti
m
ated
R
E
s
o
f
elec
tr
icall
y
lo
n
g
P
C
B
-
tr
ac
e
5.
CO
NCLU
SI
O
N
I
n
th
i
s
p
ap
er
,
n
o
v
el
an
al
y
tical
m
o
d
els
ar
e
p
r
esen
ted
f
o
r
esti
m
ati
n
g
t
h
e
r
ad
iated
e
m
is
s
io
n
s
o
f
p
r
in
ted
cir
cu
it
b
o
ar
d
tr
ac
es.
T
h
ese
an
al
y
tical
m
o
d
els
ar
e
d
e
v
elo
p
ed
,
f
o
r
b
o
th
d
if
f
er
en
tial
m
o
d
el
a
n
d
co
m
m
o
n
m
o
d
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Ma
ximu
m
R
a
d
ia
ted
E
mis
s
io
n
s
o
f P
r
in
ted
C
ir
cu
it B
o
a
r
d
u
s
in
g
A
n
a
lytica
l Meth
o
d
s
(
Mo
h
d
Za
r
a
r
Mo
h
d
Je
n
u
)
2927
R
E
,
b
ased
o
n
d
ip
o
le
an
ten
n
a
a
n
d
i
m
b
ala
n
ce
d
if
f
er
en
ce
co
n
c
ep
t.
Var
io
u
s
P
C
B
s
ar
e
e
m
p
lo
y
ed
to
v
alid
ate
th
ese
p
r
o
p
o
s
ed
m
o
d
els
a
n
d
g
o
o
d
ag
r
ee
m
e
n
ts
ar
e
o
b
tain
ed
b
et
w
ee
n
t
h
e
r
esu
lts
o
f
t
h
e
p
r
o
p
o
s
ed
m
o
d
el
an
d
th
e
s
i
m
u
lated
/
m
ea
s
u
r
ed
r
es
u
lt
s
.
T
h
ese
an
al
y
tical
m
o
d
els
ar
e
h
el
f
u
l
f
o
r
cir
cu
i
t
d
esi
g
n
er
s
to
av
o
id
d
ela
y
i
n
m
ar
k
et
in
g
an
d
r
ed
u
ce
th
e
u
n
it
co
s
t.
T
h
u
s
,
th
ese
m
o
d
els
ca
n
b
e
en
h
a
n
ce
d
in
f
u
t
u
r
e
to
in
clu
d
e
th
e
o
th
er
p
o
s
s
ib
le
s
o
u
r
ce
s
o
f
R
E
.
Fin
a
ll
y
,
all
t
h
e
m
o
d
el
s
ar
e
p
r
o
g
r
a
m
m
ed
to
b
e
as
a
s
o
f
t
w
ar
e
to
o
l
w
h
ic
h
ca
n
b
e
u
s
ed
ev
en
f
o
r
n
o
n
-
e
x
p
er
t E
MC u
s
er
s
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
s
w
o
u
ld
li
k
e
to
ac
k
n
o
w
led
g
e
Un
i
v
er
s
i
ti
T
u
n
H
u
s
s
ein
O
n
n
Ma
la
y
s
ia
(
UT
HM
)
f
o
r
th
eir
f
u
n
d
i
n
g
o
f
th
is
r
e
s
ea
r
ch
u
n
d
er
P
o
s
td
o
cto
r
al
Fello
w
s
h
ip
C
o
n
tr
ac
t
Gr
a
n
t
a
n
d
al
s
o
t
h
e
R
AGS
r
esear
c
h
g
r
an
t
R
0
6
9
.
W
e
also
w
o
u
ld
li
k
e
to
th
an
k
t
h
e
R
esear
ch
C
e
n
ter
f
o
r
A
p
p
lied
E
lectr
o
m
a
g
n
et
ics,
(
E
MCen
ter
)
,
UT
HM
f
o
r
p
er
f
o
r
m
in
g
t
h
e
m
ea
s
u
r
e
m
e
n
t
of
R
E
in
t
h
e
S
AC
.
RE
F
E
R
E
NC
E
S
[1
]
Ott
H.
W
.
,
“
E
lectr
o
m
ag
n
etic
C
o
m
p
atib
ilit
y
E
n
g
i
n
ee
r
in
g
”,
N
e
w
J
e
r
s
e
y
,
USA
:
J
o
h
n
W
i
l
e
y
&
S
o
n
s
,
L
t
d
;
2
0
0
9
.
[2
]
P
au
l,
C
.
R
.
,
“
I
n
t
r
o
d
u
c
t
i
o
n
t
o
E
l
e
c
t
r
o
m
a
g
n
e
t
i
c
C
o
m
p
a
t
i
b
i
l
i
t
y
”,
Ne
w
Yo
r
k
,
US
A
: W
ile
y
;
2
0
0
6
.
[3
]
A
.
M.
Sa
y
eg
h
a
n
d
M.
Z
.
Mo
h
d
J
en
u
,
“
P
r
ed
ictio
n
o
f
r
ad
iated
e
m
is
s
io
n
s
f
r
o
m
h
i
g
h
-
s
p
ee
d
p
r
in
ted
cir
cu
it
b
o
ar
d
tr
ac
es
u
s
in
g
d
ip
o
le
a
n
t
en
n
a
an
d
i
m
b
ala
n
ce
d
if
f
er
en
c
e
m
o
d
el
,
”
I
E
T
S
ci.
Mea
s
.
Tec
h
n
o
l.,
v
o
l.
10
,
pp.
28
–
37
,
2
0
1
6
.
[4
]
B
.
W
.
-
J.
W
o
n
g
an
d
A
.
C
an
to
n
i,
“
Mo
d
elin
g
an
d
a
n
al
y
s
i
s
o
f
r
ad
iated
e
m
i
s
s
io
n
s
a
n
d
s
ig
n
al
in
te
g
r
it
y
o
f
ca
p
ac
itiv
el
y
lo
ad
ed
p
r
in
ted
cir
cu
it
b
o
ar
d
in
ter
co
n
n
ec
t
io
n
s
,”
I
E
E
E
Tr
a
n
s
.
E
lectro
n
ma
g
n
.
C
o
mp
a
t
.,
v
o
l.
5
4
,
p
p
.
1
0
8
7
–
1
0
9
6
,
2
0
1
2
.
[5
]
M.
L
eo
n
e,
“
C
lo
s
ed
-
f
o
r
m
ex
p
r
ess
io
n
s
f
o
r
th
e
elec
tr
o
m
a
g
n
etic
r
ad
iatio
n
o
f
m
icr
o
s
tr
ip
s
ig
n
a
l
tr
ac
es
,”
I
E
E
E
Tr
a
n
s
.
E
lectro
n
ma
g
n
.
C
o
mp
a
t
.,
v
o
l.
4
9
,
p
p
.
3
2
2
–
328
,
2
0
0
7
.
[6
]
A
.
M.
Sa
y
e
g
h
,
M.
Z
.
Mo
h
d
J
en
u
,
S.
Z
.
Sap
u
a
n
a
n
d
S.
H.
Dah
la
n
,
“
An
al
y
tical
s
o
lu
tio
n
f
o
r
m
a
x
i
m
u
m
d
if
f
er
e
n
tial
-
m
o
d
e
r
ad
iate
d
e
m
is
s
io
n
s
o
f
m
icr
o
s
tr
ip
tr
ac
e,
”
I
E
E
E
Tr
a
n
s
.
E
lectro
ma
g
n
.
C
o
mp
a
t.
,
v
o
l.
58
,
p
p
.
1
4
1
7
-
1
4
2
4
,
2
0
1
6
.
[7
]
B
alan
is
C
.
A
.
,
“
An
t
e
n
n
a
T
h
eo
r
y
:
An
al
y
s
is
a
n
d
Des
ig
n
.
H
o
b
o
k
e
n
”
,
N
e
w
J
e
r
s
e
y
,
USA
:
J
o
h
n
W
i
l
e
y
&
S
o
n
s
;
2
0
1
2
.
[8
]
A
.
M.
Sa
y
eg
h
a
n
d
M.
Z
.
J
en
u
,
“
C
lo
s
ed
-
f
o
r
m
ex
p
r
es
s
io
n
s
f
o
r
esti
m
ati
n
g
m
a
x
i
m
u
m
r
ad
i
ated
e
m
is
s
io
n
s
f
r
o
m
t
h
e
tr
ac
es
o
f
a
P
r
in
t
ed
C
ir
cu
it
B
o
ar
d
,
”
in
A
s
ia
-
P
a
cific
S
ymp
o
s
iu
m
o
n
E
le
ctro
ma
g
n
etic
C
o
mp
a
tib
ilit
y
(
A
P
E
M
C
)
-
2015,
A
P
E
MC
,
2
0
1
5
,
p
p
.
6
2
0
–
6
2
3
.
[9
]
T
.
W
atan
ab
e,
O.
W
a
d
a,
T
.
Mi
y
as
h
ita
a
n
d
R
.
Ko
g
a,
“
C
o
m
m
o
n
m
o
d
e
cu
r
r
e
n
t
g
e
n
er
ati
o
n
ca
u
s
ed
b
y
d
if
f
er
e
n
ce
o
f
u
n
b
alan
ce
o
f
tr
a
n
s
m
i
s
s
io
n
li
n
es
o
n
a
p
r
in
ted
cir
cu
it
b
o
a
r
d
w
i
th
n
ar
r
o
w
g
r
o
u
n
d
p
att
er
n
,
”
I
E
I
C
E
Tr
a
n
s
.
C
o
mmu
n
.,
v
o
l.
E
8
3
-
B
(
3
)
,
p
p
.
5
9
3
–
5
9
9
,
2
0
0
0
.
[1
0
]
H.
W
.
Sh
i
m
an
d
T
.
H.
Hu
b
i
n
g
,
“
Der
iv
at
io
n
o
f
a
clo
s
ed
-
f
o
r
m
ap
p
r
o
x
i
m
ate
ex
p
r
es
s
io
n
f
o
r
th
e
s
el
f
-
c
ap
ac
itan
ce
o
f
a
p
r
in
ted
cir
c
u
it
b
o
ar
d
tr
ac
e,
”
I
E
E
E
Tr
a
n
s
.
E
lectro
ma
g
n
.
C
o
mp
a
t
.
,
v
o
l.
4
7
,
p
p
.
1
0
0
4
–
1
0
0
8
,
2
0
0
5
.
[1
1
]
R
.
Ki
n
g
,
“Asy
mme
tr
ica
lly
d
r
i
ve
n
a
n
ten
n
a
s
a
n
d
s
leev
e
d
ip
o
le,
”
P
r
o
ce
ed
in
g
s
o
f
t
h
e
I
R
E
J
o
u
r
n
al
,
v
o
l.
3
8
(
,
1154
–
1
1
6
4
,
1
9
5
0
.
[1
2
]
N.
Z
h
a
n
g
,
J
.
Kim
,
S.
R
y
u
,
a
n
d
W
.
Nah
,
“
P
r
ed
ictio
n
o
f
co
m
m
o
n
-
m
o
d
e
r
ad
iated
e
m
is
s
io
n
o
f
P
C
B
w
it
h
an
attac
h
ed
ca
b
le
u
s
in
g
i
m
b
al
an
c
e
d
if
f
er
e
n
ce
m
o
d
el
,
”
I
E
I
C
E
T
r
a
n
s
a
ctio
n
o
n
C
o
mmu
n
ica
tio
n
,
v
o
l.
E
9
8
-
B
,
p
p
.
6
3
8
–
6
4
5
,
2
0
1
5
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
M
o
h
d
Z
a
r
a
r
B
in
M
o
h
d
J
e
n
u
r
e
c
e
iv
e
d
th
e
Ba
c
h
e
lo
r’s
d
e
g
re
e
i
n
En
g
in
e
e
rin
g
(e
lec
tri
c
a
l)
f
ro
m
Un
iv
e
rsiti
Tek
n
o
lo
g
i
M
a
la
y
sia
,
B
a
h
ru
,
M
a
lay
sia
,
in
1
9
8
4
,
a
n
d
th
e
M
a
ste
r’s
d
e
g
r
e
e
in
En
g
in
e
e
rin
g
a
n
d
t
h
e
P
h
.
D.
d
e
g
re
e
f
ro
m
th
e
Un
iv
e
rsit
y
o
f
Esse
x
,
Co
lch
e
ste
r,
U.K.,
i
n
1
9
8
6
a
n
d
1
9
9
4
,
re
sp
e
c
ti
v
e
l
y
.
He
is
c
u
rre
n
tl
y
w
it
h
th
e
Re
se
a
rc
h
C
e
n
ter
f
o
r
A
p
p
li
e
d
El
e
c
tro
m
a
g
n
e
ti
c
s,
Un
iv
e
r
siti
T
u
n
Hu
ss
e
in
On
n
M
a
lay
sia
(U
THM
),
Ba
tu
P
a
h
a
t
,
M
a
lay
sia
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
EM
C,
e
lec
tro
m
a
g
n
e
ti
c
sh
ield
in
g
,
b
io
e
le
c
tro
m
a
g
n
e
ti
c
s,
a
n
d
c
o
m
p
u
tati
o
n
a
l
e
lec
tro
m
a
g
n
e
ti
c
s.
Dr.
Je
n
u
is
a
n
In
tern
a
ti
o
n
a
l
A
ss
o
c
iatio
n
f
o
r
Ra
d
io
,
T
e
lec
o
m
m
u
n
ica
ti
o
n
s,
a
n
d
El
e
c
tro
m
a
g
n
e
ti
c
s
c
e
rti
f
ied
EM
C
En
g
in
e
e
r,
se
rv
e
s
th
e
IEE
tec
h
n
ica
l
p
a
n
e
l
o
n
El
e
c
tro
m
a
g
n
e
ti
c
s,
a
n
d
w
a
s
f
o
r
m
e
rl
y
th
e
V
ice
-
Ch
a
ir
o
f
th
e
M
T
T
/
A
P
/E
M
C
C
h
a
p
ter
IE
EE
M
a
lay
si
a
S
e
c
ti
o
n
.
He
h
a
s
p
u
b
li
sh
e
d
n
u
m
e
ro
u
s
c
o
n
f
e
re
n
c
e
p
ro
c
e
e
d
in
g
s
a
s
w
e
ll
a
s
p
a
p
e
rs
in
lo
c
a
l
a
n
d
i
n
tern
a
ti
o
n
a
l
jo
u
rn
a
l
s.
T
o
d
a
te,
h
e
h
a
s
re
c
e
iv
e
d
2
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
1
9
–
2
9
2
8
2928
m
e
d
a
ls
a
n
d
s
p
e
c
ial
a
w
a
rd
s
a
t
n
a
ti
o
n
a
l
a
n
d
in
tern
a
ti
o
n
a
l
e
x
h
i
b
it
io
n
s
f
o
r
h
is
re
se
a
rc
h
p
ro
d
u
c
ts.
T
h
e
Ce
n
ter
f
o
r
El
e
c
tro
m
a
g
n
e
ti
c
Co
m
p
a
ti
b
il
it
y
,
U
T
HM
w
a
s
h
is
b
ra
in
c
h
il
d
a
n
d
is
re
c
o
g
n
ize
d
a
s
th
e
f
irst
o
f
it
s
k
in
d
in
M
a
lay
si
a
th
a
t
p
r
o
-
v
id
e
s
EM
C
tes
ti
n
g
se
rv
ice
s,
c
o
n
su
l
tan
c
y
,
a
n
d
tec
h
n
ica
l
su
p
p
o
rts
t
o
g
o
v
e
rn
m
e
n
t
a
g
e
n
c
ies
a
n
d
in
d
u
stri
a
l
p
a
rtn
e
rs.
Ahm
e
d
M
o
h
a
m
m
e
d
S
a
y
e
g
h
re
c
e
iv
e
d
th
e
Ba
c
h
e
lo
r’s(H
o
n
s.)
d
e
g
re
e
in
En
g
in
e
e
rin
g
f
ro
m
th
e
S
u
d
a
n
U
n
iv
e
rsity
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
Kh
a
rto
u
m
,
S
u
d
a
n
,
i
n
2
0
0
8
.
He
h
a
s
o
b
tain
e
d
th
e
M
a
ste
r’s
d
e
g
re
e
in
En
g
i
n
e
e
rin
g
a
n
d
th
e
P
h
.
D.
d
e
g
re
e
f
ro
m
Un
iv
e
r
siti
T
u
n
H
u
ss
e
in
O
n
n
M
a
lay
sia
,
Ba
tu
P
a
h
a
t,
M
a
lay
sia
,
in
2
0
1
2
a
n
d
2
0
1
7
re
sp
e
c
ti
v
e
l
y
.
He
h
a
s
p
u
b
li
sh
e
d
m
a
n
y
jo
u
rn
a
l
p
a
p
e
rs
a
n
d
c
o
n
f
e
re
n
c
e
p
ro
c
e
e
d
in
g
s.
His
c
u
rre
n
t
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
c
h
a
ra
c
teriz
a
ti
o
n
o
f
EM
C
ra
d
iate
d
e
m
issio
n
s
f
ro
m
h
ig
h
-
sp
e
e
d
P
CB,
e
lec
tro
m
a
g
n
e
ti
c
m
o
d
e
li
n
g
,
EM
C
o
f
ra
il
w
a
y
s
a
n
d
c
o
m
p
u
ter
-
b
a
se
d
m
o
d
e
li
n
g
to
o
ls.
M
r.
S
a
y
e
g
h
h
a
s
re
c
e
iv
e
d
n
u
m
e
ro
u
s
m
e
d
a
ls
a
t
in
tern
a
ti
o
n
a
l
e
x
h
ib
it
i
o
n
s
f
o
r
h
is
re
se
a
rc
h
p
ro
d
u
c
ts
S
y
a
r
fa
Za
h
ira
h
S
a
p
u
a
n
re
c
e
i
v
e
d
th
e
B.
En
g
.
(Ho
n
s.)
d
e
g
re
e
in
e
l
e
c
tri
c
a
l
e
n
g
in
e
e
rin
g
f
ro
m
Ko
lej
Un
iv
e
rsiti
T
u
n
Hu
ss
e
in
On
n
M
a
l
a
y
sia
(U
T
HM),
Ba
tu
P
a
h
a
t,
M
a
la
y
sia
,
in
2
0
0
3
,
th
e
M
.
S
c
.
d
e
g
re
e
in
c
o
m
m
u
n
ica
ti
o
n
e
n
g
in
e
e
rin
g
f
r
o
m
N
a
n
y
a
n
g
T
e
c
h
n
o
lo
g
ica
l
Un
i
v
e
r
sit
y
,
S
in
g
a
p
o
re
,
in
2
0
0
9
,
a
n
d
th
e
P
h
.
D.
d
e
g
re
e
in
e
lec
tri
c
a
l
e
n
g
in
e
e
rin
g
f
ro
m
UTHM
in
2
0
1
4
.
S
h
e
is
c
u
rre
n
tl
y
a
S
e
n
io
r
L
e
c
tu
re
r
a
t
th
e
C
o
m
m
u
n
ica
ti
o
n
e
n
g
in
e
e
ri
n
g
De
p
a
rt
m
e
n
t,
UT
HM,
w
h
e
re
sh
e
is
a
lso
a
P
rin
c
i
p
le
Re
se
a
rc
h
e
r
o
f
th
e
El
e
c
tro
m
a
g
n
e
ti
c
Co
m
p
a
t
ib
il
it
y
Re
se
a
rc
h
Clu
ste
r
a
t
th
e
Re
se
a
rc
h
Ce
n
ter
f
o
r
A
p
p
li
e
d
El
e
c
tro
m
a
g
n
e
ti
c
s.
He
r
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
e
lec
tro
m
a
g
n
e
ti
c
c
o
m
p
a
ti
b
il
it
y
,
a
n
ten
n
a
c
a
li
b
ra
ti
o
n
,
a
n
d
ra
d
i
o
f
re
q
u
e
n
c
y
m
e
a
su
re
m
e
n
ts
Evaluation Warning : The document was created with Spire.PDF for Python.