Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 15
34
~
1
540
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.1
008
2
1
534
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
How Rel
i
able is
t
h
e Cuprat
es Syst
em t
o
Recent
Technology?
Emetere M.
E
.
1
, A
w
o
j
oy
og
be O. B
.
2
, Un
o U.
E.
2
, Is
ah
K.
U.
2
,
S
a
nni E
.
S.
3
, &
A
k
inye
mi M.
L.
1
1
Department of Ph
y
s
ics,
Covenant
Univer
sity
, C
a
naan
land, P.M.B 1023, Ota-Nig
e
ria
2
Department of Ph
y
s
ics,
Feder
a
l Univ
ersity
of
Technolog
y
,
Minn
a-Nigeria
3
Department of Chemical
Engin
eering
,
C
o
ve
n
a
nt
Un
i
v
e
r
sity
, Ota-Nigeria
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 27, 2015
Rev
i
sed
Feb
21
, 20
16
Accepted
Mar 14, 2016
The emerg
e
nce
of cuprates as a
high
Tc superco
nductor gav
e
high hopes in
the discov
er
y
o
f
a room temperatur
e
superco
nductor. I
t
is almost three
decad
es
and th
e
highes
t
cr
iti
ca
l t
e
m
p
erature
at
tai
n
ed on th
e cupr
a
t
es
is
abou
t
135K. A brief overview was conducted on
the
progress made so far on the
cuprat
es
. A m
a
t
h
em
atic
al
appro
ach was
us
ed t
o
des
i
gn
a for
m
ula whic
h
could d
e
term
in
e
the
exp
e
rim
e
nt
al r
e
s
u
lts
of
cri
tic
al
tem
p
era
t
ur
e of v
e
rs
ed
cuprates superconductors.
The result
of our
findings sho
w
s that
th
e
possibilit
y of
att
a
ining th
e
experim
e
nt
al r
oom
tem
p
eratu
r
e cupra
t
es
superconductor
seems ver
y
narr
ow. Th
e stud
y
recommended an elabor
ate
approach on the
h
y
brid
iz
ation of
cuprat
es
for future res
ear
ch. Hen
ce, th
ere is
possibilit
y of
ha
ving cupr
ates
wi
th wide
eng
i
neer
ing app
lic
ation
.
Keyword:
Critical Te
m
p
erature
Cuprates
Pro
t
on
Mass
Particip
atio
n
Hyb
r
i
d
izatio
n
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Em
e
t
ere Mose
s Eterigho,
Depa
rt
m
e
nt
of
Phy
s
i
c
s,
C
ove
na
nt
U
n
i
v
ersi
t
y
,
Can
aan land
,
P.M.B 102
3,
O
t
a-
N
i
g
e
r
i
a.
Em
a
il: e
m
etere@yaho
o.co
m
1.
INTRODUCTION
Since t
h
e emerge
nce
of the conce
p
t of
superc
o
ndu
ctivity b
y
Kam
e
rlin
g
h
Onn
e
s i
n
1
911
[1
]
,
n
u
m
er
ou
s scien
tif
ic r
e
sear
ch
w
o
r
k
w
e
r
e
con
d
u
c
ted
to exp
l
ain
th
e th
eo
ry o
f
sup
e
r
c
on
du
ctiv
ity. Jo
seph
John
Tho
m
p
s
o
n
[
2
]
m
a
d
e
a pr
oposal th
at sup
e
r
c
o
ndu
ctiv
ity w
a
s du
e to
f
l
u
c
tuatin
g
electr
i
c
d
i
po
le ch
ai
n
s
w
h
ile
Ein
s
tein
[3
] exp
l
ain
e
d th
at the th
eory of supercond
u
c
tiv
ity was
d
u
e
t
o
m
o
lecu
lar co
ndu
ctio
n
ch
ain
wh
ich
was
i
nde
pen
d
e
n
t
o
n
n
o
n
-i
nt
e
r
act
i
ng el
ect
r
o
ns i
n
sol
i
d
s. I
n
1
9
2
8
, a
f
t
e
r t
h
e
fo
rm
ul
at
i
on of
qua
nt
um
m
e
chani
c
s
,
Hei
s
en
ber
g
[
4
]
and F
e
l
i
x
B
l
o
c
h [
5
]
m
a
de t
h
ei
r cont
ri
b
u
t
i
o
ns by
i
n
t
r
o
d
u
ci
ng t
h
e t
h
e
o
ry
of m
a
gnet
i
s
m
and t
h
e
th
eory o
f
electron
s in
crystals resp
ectiv
ely. Bl
o
c
h
’
s seco
nd
th
eorem o
n
sup
e
rcon
du
ctiv
ity - co
up
led
spo
n
t
a
neo
u
s
c
u
r
r
ent
s
an
d
co
here
nt
qua
nt
u
m
m
o
ti
on
of
e
l
ect
rons
,
was
pr
o
v
ed
w
r
on
g
by
Da
vi
d B
o
hm
[6]
.
Lan
d
au
[
7
]
,
[
8
]
p
r
o
p
o
sed
t
h
e
free e
n
e
r
gy
e
x
pan
s
i
o
n
of a
n
t
i
ferr
om
agnet
s
and
t
h
e
t
h
e
o
ry
o
f
phase
t
r
a
n
si
t
i
on.
Léon
Brillou
i
n [9
] sup
p
o
r
ted
Blo
c
h
’
s first theo
rem
wh
ere
he clai
m
e
d
th
at su
perco
ndu
ctivity was a m
e
ta
stab
le
st
at
e. W
a
l
t
e
r
M
e
i
ssner an
d R
obe
rt
Ochse
n
fel
d
dem
onst
r
at
ed t
h
at
t
h
e
m
a
gnet
i
c
fl
ux i
s
expel
l
e
d
fr
om
a
sup
e
rc
on
d
u
ct
o
r
re
gar
d
l
e
ss
of
i
t
s
st
at
e. Thi
s
i
d
ea wa
s co
rr
o
b
o
rat
e
d by
t
h
e
Lo
nd
o
n
t
h
e
o
ry
of
pe
net
r
at
i
o
n
dept
h
[1
0]
. W
e
r
n
er Hei
s
en
ber
g
ga
ve
a
ne
w di
m
e
nsi
o
n
t
o
t
h
e
theo
ry
o
f
sup
e
rco
ndu
ctiv
ity b
y
in
v
e
stig
ating
t
h
e bou
nd
states o
f
th
e Ferm
i en
erg
y
.
Th
is t
h
eory was v
e
h
e
m
e
n
tly
criticized
b
y
Fritz Lo
ndo
n [1
0
]
, h
e
pro
p
o
s
ed
that
su
perco
ndu
ctivity was d
u
e
to
v
i
bratio
n
s
o
f
t
h
e crystal
lattice whic
h affirmed clearly
that a superc
onductor in
a co
here
nt
qua
nt
um
st
at
e
are macroscopic.
Fröh
lich
[1
1
]
d
i
scov
ered
t
h
at th
e v
i
b
r
ations of
th
e crystallin
e lattice en
g
e
nd
ered
a n
e
t attractio
n
bet
w
ee
n el
ect
rons
. He s
u
g
g
es
t
e
d t
h
at
a l
i
k
ely
cause of su
p
e
rco
n
duct
i
v
i
t
y
.
In 1
9
5
4
, F
r
öhl
i
c
h pr
o
pose
d
t
h
e hi
g
h
te
m
p
er
atu
r
e sup
e
r
c
on
du
ctor
. I
n
19
57
,
Bardeen
,
C
o
op
er
,
a
n
d Sc
hrieffer
[12] cam
e out
with the m
i
croscopic
(B
C
S
) t
h
e
o
ry
– base
d
on c
o
ncept
u
al
an
d
m
a
t
h
em
at
i
c
al
fou
n
d
at
i
on
fo
r
con
v
e
n
t
i
onal
s
upe
rc
on
d
u
ct
i
v
i
t
y
. The
BCS th
eo
ry act
u
a
lly ex
p
l
ain
e
d th
e m
ech
an
ism fo
r th
e co
nvectio
n
a
l sup
e
rco
ndu
ctiv
ity. Un
argu
ab
ly, on
e o
f
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ho
w
Relia
b
l
e is th
e C
u
pra
t
es
S
y
stem to
Recen
t Tech
no
log
y
?
(Emetere M.
E.)
1
535
early in
itiato
rs of th
e m
i
cro
s
co
p
i
c t
r
eatm
e
n
t
o
f
conv
ec
tion
a
l su
p
e
rco
ndu
ctor is t
h
e B
C
S th
eo
ry. Tho
ugh
its
p
r
og
r
e
ss w
a
s
sh
or
t-
liv
ed
as
o
t
h
e
r
typ
e
s
of h
i
gh-
tem
p
er
atu
r
e sup
e
r
c
ondu
ctor
s em
er
g
e
d
.
Th
e m
i
cr
o
s
co
p
i
c
t
r
eatm
e
nt
of
s
u
perc
o
n
d
u
ct
o
r
o
n
i
t
s
ow
n i
s
a
val
i
d
t
h
eo
ry.
Howe
ve
r, t
h
e ac
ceptance
of t
h
e
microsc
opic t
h
eory
di
d
n
o
t
e
x
em
pt
t
h
e
val
i
d
at
i
o
n
o
f
t
h
e B
C
S t
h
e
o
ry
.
It
h
a
s bee
n
a
r
gue
d t
h
at
i
t
l
acke
d
sal
i
e
nt
co
nc
ept
of
sup
e
rc
on
d
u
ct
i
v
i
t
y
[13]
. Frö
n
l
i
ch’s p
r
e
d
i
c
t
i
on cam
e t
h
ro
ug
h i
n
earl
y
19
8
6
w
h
en
Geo
r
g
B
e
dno
rz an
d
Al
ex
M
ü
l
l
e
r di
sc
o
v
e
r
ed t
h
e c
o
ppe
r
oxi
des
(cu
p
r
at
es) c
ont
ai
ni
ng
l
a
nt
han
u
m
(La
B
a)
2
Cu
O
4
with critical te
m
p
erature
(T
C
) of
35
K [14]. This spa
r
ked
up
hu
ge research
work because of tec
h
nological innovations
whic
h woul
d
em
anat
e i
f
t
h
e supe
rco
n
duct
o
r i
s
m
a
de t
o
ope
rat
e
at
room te
m
p
erature. At the end of 1986, Ta
kagi
et al
con
f
i
r
m
e
d t
h
e wo
rk
of
Ge
or
g
B
e
dn
orz a
nd
Al
ex M
ü
l
l
e
r
b
y
m
easuri
ng t
h
e resi
st
i
v
i
t
y
and
di
am
agnet
i
s
m
of
l
a
nt
han
u
m
bar
i
um
copper
o
x
i
de (LaB
a)
2
Cu
O
4
. In
1
987
, ch
em
ists
in
th
e Dep
a
rtm
e
n
t
o
f
Magn
etism
o
f
IP
C
S
AS,
l
e
d
by
E. P
o
l
l
e
rt
di
sc
ove
re
d rel
a
t
e
d
com
pou
nd
s
of
cup
r
at
es-c
o
n
t
a
i
n
i
n
g y
t
t
r
i
u
m
YB
a
2
Cu
3
O
7
wit
h
T
C
aro
u
nd
9
3
K
[1
5]
. The c
u
prat
es are t
y
pe I
I
sup
e
rc
on
d
u
ct
o
r
s. T
h
ey
ha
ve
part
i
a
l
m
a
gnet
i
c
penet
r
at
i
o
n
whi
c
h
was e
x
pl
ai
ned
by
A
b
ri
k
o
so
v
as m
i
xed st
at
e.
Recently, the discoveri
ng
of high
-tem
perature supe
rconductivity
in iron-based c
o
mpounds
ha
s
sp
ark
e
d
up
ano
t
h
e
r
ro
und
of r
e
sear
ch
.
Y
a
ng
et al
.,[1
6
]
gav
e
th
e sim
ila
rities an
d
d
i
fferen
ces
b
e
tween
Fe
pnictides
and
cuprates. B
o
th are layere
d sy
ste
m
s- havi
n
g
d el
ect
r
ons
pl
a
y
i
ng a c
r
uci
a
l
rol
e
.
The
di
f
f
e
r
ence
bet
w
ee
n t
h
e Fe
pni
ct
i
d
es an
d cup
r
at
es wi
t
h
r
e
spect
t
o
t
h
ei
r d-el
ect
r
on c
o
u
n
t
was gi
ve
n a
s
si
x (eve
n) a
n
d ni
n
e
(odd) re
spectively [16]. An e
v
en
num
b
er
of
d el
ect
ro
ns i
m
pli
e
s t
h
at
t
h
e pare
nt
st
at
e o
f
t
h
ei
r
ban
d
-
s
t
r
uct
u
re
lik
ely
semico
n
d
u
c
tor wh
ile an
o
dd
nu
m
b
er o
f
t
h
e
d el
ect
r
ons
of
t
h
e
pa
re
nt
state of c
u
prates show that
it can
b
e
m
o
d
e
led
b
y
h
a
lf-fillin
g
b
a
nd
an
d b
a
nd
structu
r
e t
h
eories.
The cuprates syste
m
s have so far dem
onstrat
ed
m
a
xim
u
m critical te
m
p
eratur
e r
a
ng
e
of
12
6K
-20
0
K.
Physicist, che
m
ist and
m
a
ter
i
al scientist ha
ve in the
pa
st three
decade
s
made conc
e
r
ted efforts to improve
on
the critical tem
p
erature of c
u
prates
to in
crease its tem
p
e
r
atu
r
e to
ro
o
m
te
m
p
erature.
At room
te
m
p
erature
,
sup
e
rc
on
d
u
ct
o
r
s w
oul
d em
ploy
ed f
o
r t
h
e co
nser
vat
i
o
n o
f
wo
rl
d'
s po
we
r
usa
g
e. I
n
t
h
i
s
p
a
per
,
we re
vi
e
w
ed t
h
e
p
r
og
r
e
ss m
a
d
e
so
f
a
r
on
th
e cu
pr
ates f
a
m
ily.
W
e
pr
opo
unded
a fo
r
m
u
l
ar
to
th
eo
r
e
tically v
a
lid
ate if
ef
for
t
s on
cu
pr
ates m
i
g
h
t
po
ssib
l
y yield
r
e
su
lts i
n
th
e nearest fu
ture.
The c
u
prates
superc
onductors ar
e t
h
erm
ody
nam
i
cal
ly
unst
a
bl
e m
a
t
e
rials. Its m
echanism
re
m
a
ins
v
o
l
atile as new cup
r
ates sup
e
rco
ndu
ctors emerg
e
. Th
e m
e
c
h
an
ism
o
f
h
i
gh Tc su
p
e
rcondu
ctiv
ity w
a
s
b
a
sed
on
p
a
iring
i.e. no
n-retard
ed
or retard
ed
in
teractio
n
s
[17
]
. Th
is id
ea still re
m
a
in
s co
n
t
rov
e
rsial. Ano
t
h
e
r
prom
inent theories
on the cuprates is
t
h
e
ener
gy
scal
es i
.
e. su
pe
rco
n
d
u
c
t
i
ng ga
p a
nd
t
h
e pse
u
d
o
ga
p. T
h
i
s
en
erg
y
scales i
n
itiate th
e q
u
a
si-p
article sp
ectru
m
wh
ich
h
a
d
b
e
en
p
r
op
osed
to
exp
l
o
r
e t
h
e ex
citatio
n
s
o
f
th
e
su
perco
ndu
cting
cup
r
ates.
Its su
ccess was sh
ort liv
ed
b
e
ca
u
s
e th
e reality o
f
p
s
eu
do
gap
[1
8
]
is co
ntested
.
Ex
peri
m
e
nt
al
i
s
t
and t
h
e
o
ri
st
'
s
i
d
ea of p
h
a
se co
he
re
nce
and
fl
uct
u
at
i
ons
o
p
ene
d
a
new c
o
ncept
of
sup
e
rc
on
d
u
ct
o
r
s i
n
ge
neral
.
The cu
prat
es
was re
po
rt
ed t
o
p
o
ssess m
u
ch of
pha
se co
h
e
rence a
nd fl
u
c
t
u
at
i
ons
.
Later, th
e critical p
o
i
n
t
of a
q
u
a
n
t
u
m
p
h
a
se tran
s
ition
[19
]
w
a
s i
n
troduced
. Th
e
qu
antu
m
p
h
a
se tran
sitio
n
(QP
T
)
ext
e
nd
s t
h
r
o
ug
h
fe
w m
a
t
e
ri
al
s l
i
ke
hea
v
y
fe
r
m
i
ons a
n
d
k
n
o
w
n
m
a
gnet
i
c
m
a
t
e
ri
al
s. H
o
we
ve
r,
sho
r
t
c
om
i
ngs
were
pr
o
n
o
u
n
c
e
d i
n
c
u
p
r
at
es
whi
c
h b
r
o
u
ght
abo
u
t
t
h
e a
d
v
a
nced
q
u
ant
u
m
cri
t
i
cal
poi
nt
(QC
P
)
wh
ich
is b
a
sed o
n
misfit strai
n
b
e
tween
layers in
a su
p
e
r-lattice
[2
0
]
. Th
e ch
arg
e
ord
e
r in
th
e
m
i
sfit
strain
com
p
et
es wi
t
h
t
h
e s
upe
rco
n
duct
i
n
g
or
de
r
param
e
t
e
r. Th
e su
perc
o
n
d
u
c
t
i
ng
or
der
pa
r
a
m
e
t
e
r whe
n
vi
ewe
d
fr
om
t
h
e conc
ept
of m
a
gnet
i
c
pai
r
brea
ki
ng
, h
o
l
e
l
o
cal
i
zat
i
on, chem
ical
i
n
t
e
rnal
pr
essur
e
of i
n
di
vi
d
u
al
cuprates c
o
m
pone
nt a
n
d cuprates disorder, s
h
owe
d
c
o
ns
istent de
pe
nde
nce
on the c
r
itical tem
p
erature (Tc
)
.
The h
o
l
e
l
o
cal
i
zat
i
on i
.
e. d
o
p
i
ng i
n
t
h
e QC
P
had
been
de
ba
t
e
d-
up
o
n
b
o
t
h
i
n
o
v
er
-d
o
p
ed
and
u
nde
r-
dope
d regi
ons
of t
h
e c
u
prates
. Recently the
uni
versal
do
me-sha
pe
d
beha
vior [21] wa
s i
n
troduce
d
to s
e
parate
t
h
e ove
r-
d
o
p
e
d an
d u
n
d
e
r
-
d
ope
d re
gi
o
n
s.
An
ot
he
r p
o
pul
ar co
ncept
o
f
t
h
e cri
t
i
cal
t
e
m
p
erat
ure (Tc
)
of t
h
e
cuprates s
u
perconductor is t
h
e laye
rin
g
o
f
un
it cells. Th
is
co
n
c
ep
t
was fo
und
t
o
b
e
limited
to
layers
b
e
low
fo
ur
. M
o
r
e
rec
e
nt
l
y
, t
h
e i
d
ea of t
h
e sel
f-asse
m
b
l
e
d
m
onol
ay
er was i
n
t
r
o
d
u
ced t
o
sol
v
e t
h
e l
a
y
e
ri
ng
pr
obl
em
.
Th
is w
a
s ach
i
ev
ed
b
y
o
r
g
a
n
i
zin
g
layer
o
f
mo
lecu
les in
wh
i
c
h
on
e end
o
f
t
h
e m
o
lecu
le an
d
th
e b
i
nd
ing
gr
oup
com
b
i
n
es t
o
f
o
rm
a
m
onol
ay
er. Thi
s
m
e
t
hod
was f
o
un
d
t
o
im
pro
v
e t
h
e
Tc of b
o
t
h
ov
er-
d
o
p
e
d
an
d
un
de
r-
d
o
p
e
d
cup
r
atesa. Th
e pro
t
o
n
irrad
i
atio
n
tech
n
i
q
u
e
was initiall
y
in
ten
d
e
d
to
in
trodu
ce v
a
riou
s d
e
fects in
to
materials in
a fairly p
r
ed
ictab
l
e an
d
con
t
ro
llab
l
e fash
ion
.
Un
dou
b
t
ed
ly, th
is id
ea h
a
s
op
en
ed-u
p
m
o
re ato
m
ic
expl
a
n
at
i
o
ns i
n
t
o
c
o
m
p
rehe
ndi
ng t
h
e c
u
p
r
at
es su
perc
o
n
duct
o
rs
. At
l
o
w p
r
ot
o
n
d
o
s
e
s, t
h
ere i
s
a
l
i
n
ea
r
decrease i
n
Tc
and a linear i
n
crease
of t
h
e extra
polated
re
sidual
resistiv
i
t
y as p
r
o
t
on
do
se is in
creased
. Th
is
id
ea in
itiated
o
t
h
e
r con
cep
ts lik
e p
r
o
t
o
n
m
o
b
ili
ty
in
cu
p
r
ates.
Ag
ai
n
,
th
is id
ea was sh
ort liv
ed
sin
ce th
e
h
i
gh
est
Tc ob
t
a
in
ed
fo
r
m
e
r
c
ury
c
u
prat
es
w
a
s 9
5
K
[
2
2]
.
Though m
o
st cuprates in
rece
nt tim
e
s have s
h
own
a ra
nge
of critical te
m
p
er
ature
s
above
130K, t
h
ere
are still salien
t
q
u
e
stion
s
ask
e
d
e.g. wh
y d
o
e
s a d
ecrea
se in
th
e p
a
iri
n
g
g
a
p
resu
lt in
a redu
ced
critical
te
m
p
erature
?
How reliable is
the
chem
ic
al
internal pr
e
ssure
to t
h
e c
r
itical te
m
p
erature
of t
h
e c
u
prates
syste
m
?
To what extent is
the
effect
of layering cupr
ates related to the
critical te
m
p
erature
?
What m
echanism
i
s
res
p
o
n
si
bl
e
f
o
r
m
onot
o
n
i
c
decrease
i
n
Tc
whe
n
d
opi
ng
c
once
n
t
r
at
i
o
n i
s
i
n
crease
d
?
H
o
w
doe
s a
part
i
c
ul
at
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
15
34
–
1
540
1
536
r
e
pu
lsion
of
the Bo
se-
E
i
n
stein
cond
ensate decrease
or increase
Tc
?
At
what
poi
nt
d
o
e
s su
pp
ressi
on
of t
h
e
superc
onducting c
r
itical te
m
p
erature
occ
u
r i
n
c
u
prates
?
Ho
w related is th
e
p
r
o
t
on
nu
mb
er to
enh
a
n
c
i
n
g th
e
critical te
m
p
erature
of cuprates supe
rconduc
tors
?
Som
e
of the a
n
swe
r
s a
r
e
va
gue
beca
use t
h
e theories be
hi
nd t
h
em
are regarde
d
as faile
d the
o
ries
.
An
swers to
o
t
h
e
r
qu
estion
s
are su
mmarized
in
a
well artic
ulated form
ula
whic
h is
refe
rred t
o
as t
h
e C
r
itical
Tem
p
erat
ure
M
odel
(C
TM
).
Em
et
ere [2
3]
-
[
2
5
]
ha
d
gi
ve
n
an i
n
-
d
ept
h
i
n
si
ght
of
o
n
e t
h
e ne
west
t
h
e
o
r
i
es o
f
su
perco
ndu
ctivity an
d
h
o
w
poten
tially u
s
efu
l
th
ey cou
l
d beco
m
e
if u
tilized
ap
pro
p
riately.
2.
R
E
SEARC
H M
ETHOD
Aft
e
r t
h
e em
ergence
o
f
t
h
e m
i
crosc
opi
c t
r
ea
tm
ent
of t
h
e c
o
nvect
i
o
nal
s
u
p
e
rco
n
duct
o
rs
, s
a
l
i
e
nt
t
r
ut
h
s
abo
u
t
s
u
p
e
rc
o
n
d
u
ct
o
r
s ca
n
b
e
ha
rvest
e
d
fr
om
num
erous
st
udi
es
fo
r
o
n
w
ar
d a
ppl
i
cat
i
o
n
.
We s
h
al
l
e
x
am
i
n
e
th
ree influ
e
n
tial stu
d
i
es
for t
h
is rev
i
ew. Gorkov
[2
6
]
related
th
e critical te
m
p
eratu
r
e and
th
e
g
a
p
in
en
erg
y
spectrum
as
(1)
whe
r
e
.
is the
Debye
fre
quencies,
energy
ga
p,
is th
e i
o
n
i
c
mass,
and
are
constants.
Fu
rt
h
e
rm
o
r
e, t
h
e relativ
istic fram
ewo
r
k
of th
e m
i
cro
s
cop
i
c th
eory of sup
e
rcond
u
c
tiv
ity estab
lish
e
s th
e ato
m
ic
num
ber c
once
p
t
fo
r s
upe
rc
on
d
u
ct
o
r
s'
ban
d
-st
r
uct
u
re cal
cul
a
t
i
ons
. Usi
ng t
h
e m
i
croscopi
c
base
d
Usad
el
th
eory, Martin
i
s
et al.,
[27
]
g
a
v
e
a
relatio
n of th
e
tran
sition
t
e
m
p
eratu
r
e to
so
m
e
k
n
o
w
n
co
n
s
tan
t
s i.e.
(2)
whe
r
e
and
are the de
nsity of electronic states in
t
h
e n
o
rm
al
and s
upe
rc
o
n
d
u
ct
i
n
g fi
l
m
s,
and
are
th
e th
ickn
ess o
f
th
e normal an
d
sup
e
rco
ndu
ctin
g
film
s,
th
e tran
sitio
n
te
m
p
eratu
r
e of th
e bare
su
per
c
o
ndu
ctor
,
is th
e B
o
ltzman
n
co
nstan
t
,
ħ
is th
e
Plan
ck’s co
n
s
tan
t
,
is
th
e qu
an
tu
m
co
ndu
ctiv
ity ratio
.
An
ot
he
r m
i
crosco
pi
c t
r
eatm
e
nt
w
h
i
c
h rel
a
t
e
s t
h
e m
a
gnet
i
c
screeni
n
g l
e
ngt
h o
f
a t
w
o-
di
m
e
nsi
onal
hi
g
h
-
te
m
p
erature
superc
onductor t
o
its effective
mass is give
n a
s
(
3
)
is th
e m
a
g
n
e
tic screen
ing
leng
th
,
is th
e eff
e
ctiv
e m
a
ss o
f
t
h
e sup
e
r
c
o
nductin
g
car
r
i
ers,
is the s
h
eet
carrier de
nsity,
is the
elem
entary electronic
char
ge a
n
d c i
s
t
h
e s
p
ee
d
of l
i
ght
.
Ass
u
m
e
t
h
e fol
l
owi
n
g c
o
ndi
t
i
ons
u
n
d
er
t
h
e
s
e
t
s
of
eq
uat
i
o
n
s
hi
ghl
i
g
ht
ed
a
b
o
v
e
1.
The sam
p
l
e
i
s
onl
y
a
su
perc
o
n
d
u
ct
i
n
g
fi
lm
and
n
o
t
a
ba
re s
upe
rc
on
d
u
ct
or
2.
Ot
he
r
un
k
n
o
w
n c
o
n
s
t
a
nt
s a
r
e
capt
u
re
d
onl
y
i
n
m
a
gni
t
ude
.
3.
Th
e
effectiv
e
mass is related
to
ato
m
ic
m
a
ss
4.
Th
e m
a
g
n
e
tic screen
i
n
g leng
th
is
un
ity for a
su
perco
ndu
cting
fil
m
.
B
a
sed
on
t
h
e
afo
r
em
ent
i
one
d ass
u
m
p
t
i
ons,
t
h
e c
r
i
t
i
cal tem
p
erature m
odel (CTM
)
for the c
u
prates
was
de
vel
o
ped
by
Un
o a
n
d E
m
et
ere [2
8]
an
d i
t
s
val
i
d
i
t
y
i
s
di
sc
usse
d i
n
t
h
e sect
i
o
n
bel
o
w.
3.
ALGO
RITH
M:
VE
RIF
Y
I
N
G
C
R
ITIC
A
L
TEMPER
A
T
URE
MO
DE
L
Uno a
n
d Em
etere [28] ga
ve t
h
e c
r
itical te
mperat
ure m
odel
as:
(
4
)
whe
r
e Z
CuO2
i
s
t
h
e
pr
ot
o
n
n
u
m
ber of
t
h
e c
o
p
p
e
r
-
oxi
de si
t
e
, Z
m
is th
e t
o
tal pro
t
o
n
num
b
e
r o
f
th
e cu
prates
ele
m
en
tal co
n
s
titu
en
ts.
= B
o
l
t
z
m
a
nn c
onst
a
n
t
gi
ve
n as
1.
38
X 1
0
-23
JK
-I
,
ħ
=
Pl
anc
k
’s c
o
nst
a
nt
gi
ven a
s
6
.
26
x 10
-34
Js
,
α
= A
c
t
i
v
e t
h
erm
a
l
prot
on
m
a
ss par
t
i
c
i
p
at
i
on
whi
c
h i
s
gi
ve
n as
1
K
2
s.
Th
e i
o
n
i
c m
o
bilit
y co
n
c
ep
t was app
lied
t
o
t
h
e CTM in equ
a
tio
n (4
) abov
e.
Thou
gh
i
n
co
nv
ection
a
l
p
h
y
sics, tem
p
eratu
r
e is inv
e
rsely p
r
op
ortio
nal to
th
e
m
a
ss
of a b
ody
.
On
t
h
e cont
rary
, i
n
su
perc
o
n
d
u
c
t
i
v
i
t
y
,
the re
verse is t
h
e case e
x
peri
mentally [22] i.e. the
te
m
p
eratu
r
e is alm
o
st lin
early propo
rt
io
n
a
l to th
e m
a
ss of
the cuprates s
u
perc
onductor.
Howe
ve
r, at suppresse
d supe
rconductivity,
the cuprates
obeys the convec
tional
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ho
w
Relia
b
l
e is th
e C
u
pra
t
es
S
y
stem to
Recen
t Tech
no
log
y
?
(Emetere M.
E.)
1
537
phy
si
cs.
Agai
n, t
h
e i
d
ea
of
Love
et al.,
[
29]
was em
pl
oy
ed w
h
e
r
e we vi
ewed ea
ch layer of c
u
prate
s
co
nstitu
en
ts as a layer o
f
m
o
lecu
le (Zm
)
an
d
th
e C
u
-O p
l
an
e as
b
i
nd
ing g
r
o
u
p
(ZCuO
2
). T
h
e m
a
the
m
atical
arra
ngem
e
nt
i
.
e. ZC
u
O
2
(Zm
-
ZCuO
2
) s
u
gges
t
s t
h
e s
qua
re e
n
er
gy
scal
e e
f
f
ect
i
n
s
upe
rco
n
duct
i
v
i
t
y
.
Hence
,
t
h
e
rea
s
on
f
o
r
i
n
t
r
od
u
c
i
ng t
h
e B
o
l
t
z
m
a
nn c
onst
a
nt
i
n
E
quat
i
o
n
(1
). T
h
e B
o
l
t
z
m
a
nn
co
nst
a
n
t
relates en
erg
y
scales at th
e
in
d
i
v
i
d
u
a
l
p
a
rt
icle lev
e
l with te
m
p
erature
obs
erved at the collective or bul
k
cuprates layer. The Planc
k
’s consta
nt is incorporate
d
to
qu
an
tu
m
tran
sformatio
n
s
with
in th
e layered
cup
r
ates.
From
the prot
on irradia
n
ce concept,
th
e active th
erm
a
l p
r
o
t
o
n
m
a
ss p
a
rtici
p
atio
n is in
co
rp
orated
t
o
d
e
fi
n
e
th
e
abs
o
r
p
t
i
o
n
o
f
i
ndi
vi
dual
c
u
p
r
at
es p
r
ot
on
s
at
cert
a
i
n
t
e
m
p
erat
ure i
n
the course
of fa
brication.
Aga
i
n, this
conce
p
t
(act
i
v
e t
h
erm
a
l prot
on m
a
ss part
i
c
i
p
at
i
o
n
)
i
s
sy
nony
m
ous t
o
t
h
e B
a
uschi
n
ge
r effect
w
h
i
c
h r
e
fers t
o
the effects
of
microscopic stress dist
ribution as a res
u
lt of
characteristic
changes i
n
th
e m
a
terial'
s
stress/strain
rel
a
t
i
ons
hi
p [
3
0]
. In
ou
r n
u
m
e
ri
cal
anal
y
s
i
s
, we assum
e
d that
t
h
e cup
r
at
e
s
sam
p
l
e
s wer
e
hom
ogen
o
u
s
i
.
e.
α
sho
u
l
d
be i
n
t
h
e ra
nge
o
f
1-
2
K
2
s.
Ap
pl
i
cat
i
on
of
t
h
e C
T
M
was
veri
fi
e
d
usi
n
g
expe
ri
m
e
nt
al
val
u
es
of c
r
i
t
i
cal
t
e
m
p
erat
ure
of c
u
p
r
at
es
repo
rted
b
y
research
ers ev
en
th
oug
h
so
m
e
in
co
nsisten
c
ie
s in
th
e d
a
ta were n
o
t
ed. For exa
m
p
l
e, Nark
ilar [31
]
rep
o
rt
e
d
t
h
e c
r
i
t
i
cal
t
e
m
p
erat
ures
fo
r B
i
sm
ut
h;
B
i
2201
,
B
i
22
12 a
n
d
B
i
22
23 as
3
4
K
,
90
K a
n
d
11
0
K
r
e
sp
ectiv
ely.
Vlad
[32
]
g
a
v
e
h
i
s v
a
l
u
e as 20K
,
85
K and
110
K fo
r Bi2
201, Bi22
12
and
Bi2
2
2
3
r
e
sp
ect
iv
ely.
The val
u
es f
o
r
Tl
22
01 we
re
gi
ve
n by
Nar
k
i
l
a
r [31]
, R
a
y
m
ond [3
3]
an
d Vl
ad [
3
2]
as 90
K, 9
5
K
an
d 8
5
K
respectively.
T
h
ere
f
ore t
h
e error
bounda
ry a
d
opted us
i
n
g
Nar
k
i
l
a
r’s
val
u
e was
gi
ve
n as
±5
K.
T
h
e s
u
m
m
a
r
y
of
t
h
e
veri
fi
cat
i
on
o
f
t
h
e
C
T
M
can
be see
n
i
n
Ta
bl
e 1
bel
o
w.
Tabl
e
1.
Veri
fi
cat
i
on
of
t
h
e C
T
M
vi
a E
x
peri
m
e
nt
al
R
e
sul
t
s
S/N CUPRATE
S
EXPER
I
M
E
NT
AL
READI
NG
THEOR
E
T
I
CAL
READI
NG
(K
2
s)
1.
T
l
2201
90±5K
[31-
3
3
]
87.
5K
1.
00
2.
T
l
2212
111.
0±5K
[3
1-
33]
111.
7K
1.
00
3.
T
l
2223
128.
0±5K
[3
1-
33]
135.
7K
1.
00
4.
Cu223
4
113.
0±5K
[3
1-
33]
114.
7K
1.
00
5.
Pb121
2
70±5K
[31-
3
3
]
71.
1K
1.
00
6.
T
l
1212
82±5K
[31-
3
3
]
81.
5K
1.
00
7.
Ru121
2
72±5K
[31-
3
3
]
68.
5K
1.
00
8.
Au1212
82±5K
[31-
3
3
]
80.
9K
1.
00
9.
Bi2212
90±5K
[31-
3
3
]
93.
3K
1.
00
10.
Bi2223
110±5K
[3
1-
33]
112.
1K
1.
00
11.
YSr
2
Cu
3
O
7
62±5K
[31-
3
3
]
61.
5K
1.
00
12.
Hg1201
97±5K
[31-
3
3
]
95.
6K
1.
53
13.
Hg1212
128±5K
[3
1-
33]
123.
6K
1.
52
4.
R
E
SU
LTS AN
D ANA
LY
SIS
The c
o
sts of
ra
w m
a
terials for cuprates
production
affect the low yield
of
t
h
e m
a
nufact
u
r
i
ng
pr
ocess
whic
h
has ca
used a si
gni
ficant drop i
n
the
recent a
pplicat
ions
of the c
u
pr
ates. However,
Yunhua
et al, [34]
descri
bes a si
m
p
l
e
but
rel
i
a
bl
e recy
cl
i
ng p
r
ocess f
o
r fai
l
e
d b
u
l
k
sam
p
l
e
s of t
h
e si
ngl
e
g
r
ai
n hi
gh t
e
m
p
erat
ur
e
su
per
c
o
ndu
ctor
s w
h
er
e 64
sa
m
p
les
w
e
r
e
recycled
w
ith ab
ou
t 90
% r
e
co
v
e
r
y
. Th
e
key
in
nov
atio
n o
f
th
is
technology is the proces
s of
re-gro
wing
fail
ed
sam
p
les from th
eir so
lid
states with
ou
t necessarily reg
r
i
n
d
i
n
g
th
e sam
p
les to
p
o
wd
er form
.
Sup
e
rcon
du
ctiv
ity o
f
th
e
rec
y
cled blend we
re m
easured and exam
ined in orde
r
to
ascertain
their v
i
ab
ility an
d
it was d
i
scov
ered
th
at
th
e
su
perco
ndu
cting
tran
sitio
n
tem
p
eratu
r
e Tc
an
d
t
h
e
critical cu
rren
t
d
e
nsity o
f
sm
all p
o
r
tion
s
cut fro
m
th
e
rec
y
cled grai
ns s
h
owe
d
sim
i
lar characte
r
istics with
t
hose
o
f
pri
m
ary
gr
ow
n g
r
ai
ns
.
According to reports of the B
a
sic Energy Sc
ien
ces
Wo
rk
sho
p
on
sup
e
rcon
du
ctiv
ity [35
]
, fo
llowi
ng
t
h
e di
sc
ove
ry
of
hi
g
h
t
e
m
p
erat
ure (
H
TS) s
upe
rc
on
duct
o
rs
, fa
bri
cat
i
on o
f
H
T
S m
a
t
e
ri
al
s a br
oa
d
unde
rstanding of
t
h
eir properties
and
applications becam
e
the bane
of re
search. T
h
ese
materials have
be
e
n
sou
g
h
t
f
o
r
ap
p
l
i
cat
i
on by
var
i
ous t
e
c
h
nol
og
i
e
s but
t
h
e st
r
o
n
g
est
dri
v
er i
s
t
h
e el
ect
ri
c
po
we
r sect
o
r
.
Po
w
e
r
t
r
ansm
i
ssi
on t
h
r
o
ug
h
HTS c
a
bl
es o
ffe
rs c
h
ances
of
p
o
we
r rec
o
very
o
f
s
o
m
e
powe
r
t
h
at
m
a
y
be l
o
st
i
n
t
h
e
gri
d
d
u
ri
ng t
r
a
n
sm
i
ssi
on;
al
so, t
h
e ca
paci
t
y
of t
h
e g
r
i
d
i
s
e
nha
nce
d
.
HTS
con
d
u
ct
o
r
s al
s
o
ha
ve t
h
e
p
o
t
e
nt
i
a
l
of
i
m
p
r
ov
ing
th
e
efficien
cies,
cap
acities an
d reliab
ilities o
f
h
i
g
h
-cu
r
ren
t
carriers (d
ev
ices). Th
e first
g
e
n
e
ratio
n
(1
G) H
T
S co
n
duct
o
rs t
a
ke t
h
e form
B
i
2Sr2
C
a
2C
u
3
O
1
4 (
B
SC
C
O
) w
h
i
c
h m
a
kes avai
l
a
bl
e con
d
u
ct
o
r
s sui
t
a
bl
e
fo
r en
gi
nee
r
i
n
g t
a
sks an
d fi
r
s
t
l
e
vel
appl
i
cat
i
ons i
n
real
po
we
r sy
st
em
s. The seco
n
d
gene
rat
i
o
n (2
G)
H
T
S
co
ndu
ctors
h
a
v
e
th
ei
r
o
r
i
g
in
in th
e
fo
llowing
co
m
b
in
atio
n
Y
B
a2
C
u
3O
7
(Y
BCO)
.
Th
e 2G
H
T
S
is
an
im
pro
v
em
ent
on t
h
e
1
st
ge
nera
t
i
on HTS
by
vi
rt
ue of
i
t
s
pe
rf
orm
a
nce
an
d r
e
duce
d
c
o
st
.
HTS can
in
fluen
ce a n
a
tion
o
r
so
ciety’s eco
no
m
y
b
y
p
r
ov
id
ing
th
e power u
tilities with
su
fficien
t
cap
acity in
th
e electric p
o
wer g
r
i
d
system; t
h
is can
b
e
do
ne b
y
in
itiatio
n
o
f
d
e
regu
lation
of
u
tilities th
roug
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
15
34
–
1
540
1
538
its en
erg
y
po
licies. Also
in
the area o
f
in
formatio
n
and co
m
m
uni
cat
i
on engi
neeri
n
g
,
hi
g
h
capaci
t
y
fi
be
r opt
i
c
n
e
two
r
k
s
h
a
v
e
tran
sform
e
d
t
h
e econo
m
y
b
y
th
e av
ailab
ility o
f
HTS
wh
ich
p
r
o
v
i
d
e
s
an
alm
o
st u
n
limited
capacity to transfe
r
inform
ation ac
ross t
h
e
gl
o
b
e. T
h
e p
o
we
r ge
ne
rat
i
on i
n
a nat
i
o
n
has t
h
e ca
pa
ci
t
y
t
o
increase its
overall GDP; for
exam
ple,
th
e growth
rate deman
d
fo
r electricity in
th
e US
was ab
ou
t
2
.
3
% p
e
r
year
wh
ich
tr
ack
e
d
cl
o
s
ely with
th
e coun
tr
y’
s GD
P i
n
2006
.
A
l
so, electr
i
city is f
a
st g
r
ow
ing
to
b
eco
m
e
th
e
m
o
st essen
tial
co
mm
o
d
ity fo
rm
o
f
en
erg
y
wh
ich
requ
ires ad
equ
a
te m
a
rk
et for it to
be sustain
e
d
.
Go
ing
b
y
th
e
revolution that
took place two
decades a
g
o a fam
i
ly of supe
rconductors
tha
t
have their
root in ceramic oxides
were
di
sco
v
e
r
e
d
. T
h
ey
can
wi
t
h
st
an
d hi
gh t
e
m
p
erat
ures an
d ha
ve t
h
e f
o
l
l
o
wi
ng
f
o
rm
at
ion
-
HgB
a
2C
a2
C
u
3
O
8
te
m
p
eratures
a
s
hi
gh as
164
K
(
−
109
°C) can
b
e
end
u
r
e
d
b
y
su
ch cond
ucto
r
s
. Th
is m
a
k
e
s cup
r
ates a go
od
candi
dat
e
f
o
r c
o
m
m
uni
cat
i
on [3
6]
,[
3
7
]
.
The
cry
s
t
a
l
st
ruct
u
r
e
o
f
th
is
o
x
i
d
e
allo
ws fo
r electrical sig
n
a
l to
trav
el
easily
th
roug
h certain
crystal p
l
an
es
. Altho
ugh
, grand
ch
allen
g
e
s still
in
clu
d
e
th
e disco
v
e
ry o
f
a roo
m
-
te
m
p
er
atu
r
e sup
e
r
c
on
du
ctor
an
d b
e
i
n
g ab
le to
unra
vel the
mystery behind its m
echanis
m
.
Su
per co
n
d
u
c
t
i
ng t
r
a
n
sf
o
r
m
e
rs wo
rk o
n
t
h
e
pri
n
ci
pl
e of s
u
perc
o
n
d
u
ct
i
v
i
t
y
. They
con
v
e
r
t
gene
rat
o
r
lev
e
l vo
ltag
e
t
o
h
i
gh
tran
sm
i
ssio
n
lev
e
l
v
o
l
tag
e
s wh
ich
cuts d
o
wn
o
n
th
e lo
st en
erg
y
tran
sm
it
ted
ov
er lo
ng
di
st
ances.
Sm
al
l
,
l
i
ght
-wei
ght
and e
ffi
ci
ent
HTS t
r
a
n
s
f
o
r
m
e
rs m
ount
ed at
el
ect
ri
cal
subs
t
a
t
i
ons can
be
use
d
at
u
tility g
r
id
s to
recov
e
r
and
red
i
stribu
te th
is
recov
e
red
en
er
g
y
. Th
e b
e
au
ty o
f
t
h
is is th
at
th
ey can
b
e
sited
i
n
hi
g
h
de
nsi
t
y
ur
ban ce
nt
ers
o
r
bui
l
d
i
n
g
s
w
h
er
e con
v
e
n
t
i
o
n
a
l
t
r
ans
f
o
r
m
e
rs coul
d n
o
t
be m
o
u
n
t
e
d
.
Al
s
o
,
unl
i
k
e
su
per
c
o
ndu
cting
tr
an
sfor
m
e
r
s
sig
n
i
f
i
ca
nt
ene
r
gy
l
o
sses a
r
e i
nhe
re
nt
i
n
c
onv
en
tion
a
l tran
sform
e
rs th
at po
ssess
an iron c
o
re
whe
r
e the
r
e are no-loa
d los
s
e
s and the c
o
pp
er i
n
th
e
wind
ing
s
wh
ere si
g
n
i
fican
t lo
ad
lo
sses
occur.
High Tem
p
erature Superc
onductors
(HTSs
)
are use
d
as Fa
ult Curre
nt
Limiters (FCLs) in
th
e p
o
wer
i
n
d
u
st
ry
an
d
are desi
gne
d
fo
r use
by
electrical engineers in res
p
onse
to
an
d
t
o
ab
so
rb
un
an
ticip
ated
d
i
stu
r
b
a
n
ces i
n
a u
tility g
r
id
th
ereb
y m
i
t
i
g
atin
g
po
wer
lo
ss or
d
a
m
a
g
e
to
u
tility g
r
id
equ
i
p
m
en
t. Th
ei
r
installation for electric util
itie
s / high
ene
r
gy
consum
ers in t
r
ansm
ission an
d distribution syste
m
s
is necessary
because of the
increase
d
sa
fety,
the enhanced reliability, higher
po
we
r quality, com
p
atibility with othe
r
p
r
o
t
ectio
n
d
e
v
i
ces and
th
e imp
r
ov
ed
system
flex
ib
ility
d
u
e
to
th
e adju
stable
m
a
x
i
m
u
m
al
lo
wab
l
e current an
d
redu
ced
cap
ital in
v
e
stm
e
n
t
fo
r d
e
ferred
u
p
g
r
ad
es. FCL su
p
e
r con
d
u
c
tors in
stan
tan
e
o
u
sly h
a
v
e
th
e
ab
ility o
f
li
mitin
g
ex
cess curren
t
fl
o
w
b
y
allo
wi
n
g
itself to
ex
cee
d
i
t
s sup
e
rcon
du
ctin
g
tran
s
ition
te
m
p
eratu
r
e i.e. (its
critical te
m
p
erature) a
n
d swit
ch to a
p
u
rel
y
resi
st
i
v
e
or
a s
e
em
i
ngl
y
passi
ve st
at
e, t
h
u
s
m
i
nim
i
zi
ng t
h
e fa
ul
t
cur
r
ent
passi
ng
t
h
r
o
ug
h i
t
.
HTS al
s
o
fi
n
d
appl
i
cat
i
o
n i
n
t
h
e o
p
e
r
at
i
on
of R
eact
i
v
e
P
o
wer
Ge
nerat
o
r
s
(R
G
P
s)
. T
h
e
pri
n
ci
pl
e
o
f
ope
ration of these de
vices is like that of an e
l
ectric
m
o
to
r or g
e
n
e
rat
o
r
with
ou
t an
y co
nn
ectio
n
to
a
real p
o
wer
sou
r
ce.
It
s d
u
t
y
i
s
t
o
suppl
y
or t
r
a
p
t
h
e rea
c
t
i
v
e po
wer
ne
eded t
o
kee
p
t
h
e fl
o
w
i
n
g c
u
r
r
ent
an
d
vol
t
a
ge i
n
pha
se. T
h
e
8-
M
VAR
m
achi
n
e m
a
nufact
ur
ed
by
Am
eri
can S
u
perc
on
d
u
c
t
or C
o
r
p
o
r
at
i
o
n i
s
a
n
e
x
am
ple of
R
G
P
th
at h
a
s
b
e
en
t
e
sted
on
Tennessee V
a
lley
A
u
t
h
or
ity g
r
i
d
.
Fu
rthe
rm
ore,
the RGP
is
the
the fi
rst com
m
ercia
l
powe
r e
qui
pment connected
on HTS
wire.
There
are
antic
ip
atio
n
s
th
at in th
e
n
ear fu
ture, th
ese d
e
v
i
ces m
a
y
b
e
u
s
ed
i
n
en
su
ri
n
g
power stab
ility. To
bu
ttress t
h
is
p
o
i
n
t
, in
carrying out a clo
s
e ex
am
in
atio
n of t
h
e
North
Am
eri
ca bl
ackout
sce
n
ari
o
o
f
20
0
3
,
U.S
-
C
a
nada
Task
Fo
r
ce i
d
ent
i
f
i
e
d l
a
ck o
f
R
G
Ps as
t
h
e pri
n
ci
pal
c
a
use o
f
the cascadi
ng
powe
r outage
.
As a s
o
lution
measure, it wa
s
n
o
t
ed
th
at as
th
e grid
g
o
t
mo
re co
m
p
lex
,
in
order
to accomm
odate the increase
d
ene
r
gy demand
for m
o
re
gene
rators, t
h
e
r
e was
nee
d
to m
a
ke provis
i
on
for
sm
art
reactiv
e p
o
wer d
e
v
i
ces in
stead
wh
ich will lead
to
a
su
bstan
tial p
u
rch
a
se of ren
e
wab
l
e en
erg
y
o
p
tion
s
su
ch
as so
lar en
erg
y
,
wind
energ
y
, and wave po
wer t
h
at
wo
u
l
d
i
n
corporate add
itio
n
a
l i
n
stab
ilities in
the grid
syste
m
.
An
ot
he
r ap
pl
i
cat
i
on o
f
HTS i
s
i
n
refri
gerat
i
on - t
h
e
r
m
ody
nam
i
cs (
m
echani
cal
engi
nee
r
i
n
g
)
. Li
q
u
i
d
h
e
liu
m
b
e
in
g
a lo
w
tem
p
er
atu
r
e sup
e
r
c
ondu
ctor
w
a
s a maj
o
r
dr
awb
a
ck I
ear
ly tech
n
o
lo
g
y
of
r
e
fr
ig
er
atio
n
sy
st
em
s. Anot
her c
h
al
l
e
nge
was t
h
e p
r
o
b
l
e
m
of t
h
erm
a
l
l
y
iso
l
atin
g
its
cryog
en
ic wi
nd
ing
s
. However, th
e
advent
of
HTS, is a m
a
j
o
r breakthrough in this
area
because of thi
s
pron
ounced
advantage over low
te
m
p
er
atu
r
e sup
e
r
c
on
du
ctor
s. A
l
so, th
ey elimin
ate th
e n
e
ed
fo
r r
e
g
u
l
ar
su
pp
ly of
liqu
i
d cr
yog
ens; alth
o
ugh,
the cooling ca
pacity is not as
efficient as
it s
h
ould be
.
HTS ca
n
be s
een as
vi
abl
e
m
a
t
e
ri
al
s t
h
at
have
p
o
t
e
nt
i
a
l
s
f
o
r m
a
ki
ng
of e
x
pl
osi
v
e
d
e
vi
ces e.
g.
pl
ut
o
n
i
u
m
,
a r
a
di
oact
i
v
e m
e
tal
t
h
at
form
s t
h
e ex
pl
osi
v
e
core
of m
o
st
nucl
e
a
r
wea
p
o
n
s p
r
ovi
des a
l
i
nk
b
e
tween
h
e
avy electro
n
s
and
HTSs b
ecause o
f
its ab
ility to
with
stand h
i
gh
tem
p
eratu
r
es.
Ho
wev
e
r, th
e
co
m
p
lex
m
e
ta
l
l
u
r
g
y
o
f
p
l
u
t
on
iu
m
o
r
ig
in
ates fro
m
th
e sa
me elec
tro
n
i
c p
u
s
h-pu
ll effect th
at ex
ists
b
e
tween
m
a
gnet
i
s
m
and el
ect
ri
cal
con
duct
i
v
i
t
y
w
h
i
c
h s
u
b
s
eq
ue
nt
l
y
gi
ves
ri
se t
o
h
i
gh t
e
m
p
erature and
heavy-electron
su
perco
ndu
ctivity. Th
ese
m
a
t
e
rials ex
p
e
rience fo
rce co
m
p
etitio
n
wh
ere on
e o
f
th
e two
fo
rces seem
to
p
r
ev
ail
ove
r the othe
r i.e. at
low tem
p
eratures, localization of
electro
n
s
ex
ist with
a p
u
ll of electrons around a
m
a
gnet
i
c
fi
el
d whi
c
h d
o
m
i
nates t
h
e exi
s
ting
electrical force
.
Howe
ver, at higher tem
p
eratures, electric forces
dom
inate
and delocalization of
electrons ta
ke place as a result of the
sca
ttering electrons. The explosive core
o
f
p
l
u
t
on
iu
m
h
a
s th
e ab
ility to
scatter off light as rad
i
ativ
e so
urce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ho
w
Relia
b
l
e is th
e C
u
pra
t
es
S
y
stem to
Recen
t Tech
no
log
y
?
(Emetere M.
E.)
1
539
Anothe
r area
of application of HTS i
n
clude
s
Mate
rials and chem
ical engi
nee
r
ing where refract
ory
materials are used for
high te
m
p
erature appl
ications. T
h
es
e
HTS ca
n be
se
en as com
posit
es that help t
o
abate
an
y unw
an
ted
str
e
ss
d
i
str
i
bu
tio
n th
at m
a
y ar
ise f
r
o
m
h
i
g
h
t
e
m
p
erat
ur
e di
st
ur
bances
i
n
he
aters used in t
h
e
oil
and
gas i
n
d
u
st
ri
es fo
r oi
l
re
f
i
ni
ng
p
u
r
p
o
s
es
. Ho
we
ver
,
su
ch t
e
m
p
erat
ure
di
st
ri
b
u
t
i
ons
al
on
g t
h
e c
o
m
posi
t
e
materials can be ha
ndled
due to the c
o
m
p
act nature
or
s
t
ruct
u
r
es f
o
rm
ed by
t
h
e
bl
e
n
ds i
n
here
nt
i
n
HTSs
.
Agai
n, i
n
sel
e
c
t
i
ng som
e
supe
rco
n
duct
i
v
e m
a
t
e
ri
al
s for a
p
p
l
i
cat
i
ons, a g
o
od
kn
o
w
l
e
d
g
e
of m
a
t
e
ri
al
select
i
on
is n
ecessary for th
e in
tend
ed
d
e
sign
app
licatio
n
s
. Pr
oblem
s such as stress
distri
bution a
n
d fibe
r breaka
g
e can
be a
voi
ded
i
f
t
h
ei
r c
r
i
t
i
cal
tem
p
eratures are
known [38]
5.
CO
NCL
USI
O
N
How reliable
is the cuprates syste
m
?
The cu
prate
s
could ac
hieve the room te
m
p
erature
sup
e
rc
on
d
u
ct
i
v
i
t
y
but
f
o
r i
t
s
com
p
l
e
x st
oi
chi
o
m
e
t
r
y
.
C
o
ul
d
d
opi
n
g
c
u
prat
es
act
ual
l
y
achi
e
ve t
h
e
r
oom
te
m
p
eratu
r
e
sup
e
rcon
du
ctiv
ity
?
Little su
ccess h
a
s actu
a
lly b
een
ach
i
eved
. Th
e
d
e
p
e
nd
en
ce of th
e critical
t
e
m
p
erat
ure
o
n
t
h
e
pr
ot
o
n
m
a
ss part
i
c
i
p
a
t
i
on s
h
ows
w
ith
in
m
a
th
e
m
at
ical li
mits th
e sho
r
tco
m
in
g
o
f
the
cuprates syste
m
. Howe
ver, the rele
va
nce
of the c
u
prates
lies
in the
hybridize c
u
prates
especially the
Cu-O
pl
ane,
fo
r exa
m
pl
e, hy
bri
d
i
z
ed co
p
p
er
3d
and
o
x
y
g
e
n
2
p
o
r
bi
t
a
l
'
s. Consi
d
era
b
l
e
e
m
phasi
s sho
u
l
d
al
so
be
dra
w
n t
o
t
h
e m
i
crosc
opi
c
st
re
ss di
st
ri
but
i
o
n
of t
h
e
hy
b
r
i
zed
cu
prat
es m
o
n
o
l
a
y
e
r as
fab
r
i
cat
i
on i
s
esse
nt
i
a
l
for
cuprates pe
rformance. Als
o
, research
nee
d
s
to be ca
r
r
i
ed
ou
t fo
r
a thor
oug
h
gr
asp
and
pr
op
er
un
d
e
r
s
tan
d
i
ng
of the m
echanism
s
behind the e
x
istenc
e of a c
u
prat
es (
h
i
g
h t
e
m
p
erat
ure
su
per
co
nd
uct
o
r)
a
t
ro
om
t
e
m
p
erat
ure as
t
h
e ri
ght
co
urs
e
t
o
t
h
e desi
re
d o
u
t
c
om
e can onl
y
be chart
e
d by
a bet
t
e
r i
n
si
ght
o
f
t
h
e vi
o
l
at
i
o
n
of
t
h
e
el
ect
ro
n
pai
r
i
n
g
p
r
i
n
ci
pl
e t
h
at
e
x
p
l
ai
ns t
h
e
m
ode o
f
o
p
erat
i
o
n
o
f
c
o
nve
nt
i
o
nal
s
upe
rc
on
d
u
ct
o
r
s.
Furt
herm
ore,
a
n
opt
i
m
u
m
poi
nt
o
r
poi
nt
o
f
com
p
rom
i
se bet
w
een t
h
e i
n
t
e
ract
i
ons
o
f
t
h
e m
a
gnet
i
c
fi
el
d a
n
d
electrical co
ndu
ctiv
ity is required
in ord
e
r t
o
attain
th
e de
si
r
e
d
hi
g
h
t
e
m
p
erat
ure s
u
perc
on
duct
o
r
.
He
nce,
t
h
ere
are
num
erous e
ngi
neeri
n
g applications of c
u
prates i
f
its crit
ical te
m
p
erature could
be
optimized.
ACKNOWLE
DGE
M
ENTS
The a
u
t
h
or
s a
p
preci
at
e t
h
e
pa
rt
i
a
l
spo
n
s
o
r
s
hi
p
of
t
h
e C
ove
n
a
nt
U
n
i
v
e
r
si
t
y
.
REFERE
NC
ES
[1]
K. Onnes, “Communications fro
m the Ph
y
s
ical
Laborator
y
of
the
University
of
Leiden,” vo
l. 29, p
p
. 1
,
1911
.
[2]
Thompson J. J.,
“Conduction of
El
ectricity
throu
gh
Metals,”
Philosophical Maga
zine
, vo
l. 30, pp. 192, 1915.
[3]
E. Alber
t
, “Theoretisch
e Bemer
kungen
zur Sup
r
aleitung der M
e
talle,”
in
Het
Natuurkundig Laboratorium der
Rijksuni
versit
e
it
te Le
iden
in d
e
J
a
ren
, pp
. 429
, 1
922.
[4]
Heisenberg W.,
“Zur Theor
i
e d
e
s Ferromagnetis
mus,”
Ze
i
t
s
c
h
if
t f
ü
r
P
h
y
s
ik
, vol.
49, pp
. 619
, 192
8.
[5]
Bloch F.
, “
Q
uan
t
enm
echan
ik d
e
r
El
ektronen
in
Kristallg
itt
ern,
”
Z
e
itschi
f
t
für Ph
ys
ik
, vol. 52
, pp
. 5
55, 1928
.
[6]
Bohm D., “Note on a Theor
e
m o
f
Bloch
Concern
i
ng Possible
Cau
s
es of Supercon
ductivity
Ph
y
s
ical R
e
view,” vo
l.
75, pp
. 502
, 194
9.
[7]
Landau
L. D., “Zur Theor
i
e der
Phasenumwandlungen I,”
Phys
ik
alis
che Z
e
i
t
s
c
hrift der Sowjetunion
, vol. 4
,
pp. 67
5
1933.
[8]
Landau
L
.
D.
, “
S
tatisti
cal
th
eor
y
of nuc
le
i,”
Sov
i
e
t Physics
JETP
, vol. 7, pp. 19, 1
937.
[9]
Brillouin
L.
, “
L
e m
odele d
'
ato
m
e de F
o
ck-Dirac e
t
I
'
ex
is
tenc
e des
poten
ti
els
d'ion
i
s
a
tion
,
”
J. phys.
et rad.
,
vol/issue:
7(5), p
p
. 185-192
, 193
4.
[10]
London F., “On the problem
of
the
mol
e
c
u
la
r t
h
eory
of
sup
e
rcond
uctivity
,”
Ph
ys
ic
al Re
view
, vol. 7
4
, pp. 562-573
,
1948.
[11]
Fröhlich H., “Theor
y
of
the Su
perconducting State I. Th
e
Ground State at the Absolute Zero
of Temperatur
e,”
Phys
ica
l
R
e
v
i
ew
, vol. 79
, pp
. 845
, 1950
.
[12]
J. Bardeen,
et
al
.
, “Microscopic
Theor
y
of
Superconductivity
,”
Ph
ys. R
e
v
.
, vol. 10
6, pp
. 162-164
,
1957.
[13]
M
.
R.
S
c
hafroth
,
“
R
em
arks
on th
e M
e
is
s
n
er
Effe
c
t
,”
Ph
ys. Rev
.
,
v
o
l. 111
, pp
. 72-7
4
, 1958
.
[14]
Bernorz J. G. an
d K. A
Müller,
“Low-field microwave absorptio
n in the superco
nducting copp
er
oxides,”
z.
phy
s.
B
., vol. 64
, pp
. 1
89, 1986
.
[15]
W
u
M
.
K
.,
et
al
., “Supercondu
ctivity
at 93 K
in a n
e
w mixed
-
phase Y-Ba-Cu
-
O compound sy
stem at ambient
pre
ssure
,
”
phys.Rev.Lett
, vo
l. 58
,pp. 908, 1987.
[16]
Y
a
ng W
.
L.,
et a
l
.
, “
E
vid
e
nce for
weak elec
troni
c correl
a
tions
in ir
on pnictides
,”
P
h
ys
. Rev
.
B
., vol. 80, pp. 014508,
2009.
[17]
Ma
ie
r T.
A.,
et al.
, “D
y
n
amics
of the Pairing
Interaction in
th
e Hubbard and
t
-
J
Models of High-Temperatu
r
e
Superconductors
,”
Phys.
R
e
v
.
L
e
tt
.
, vol. 100, pp. 2
37001, 2008
.
[18]
H
u
fner S
.,
et a
l
.
, “Two gaps make a h
i
gh-te
mperature super
c
ondu
ctor
?
”
Reports o
n
Progress in Physics
, vo
l/issue:
71(6), pp
. 06250
1, 2008
.
[19]
Sachdev S., “Colloquium: Order a
nd quantum phase transitions in
the cuprates superconductors,”
R
ev. Mod
.
Phy
s
.
,
vol. 75
, pp
. 913
,
2003.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
15
34
–
1
540
1
540
[20]
Bianconi
A.
,
et al.
, “A quantum phase trans
ition dr
iven
b
y
th
e electron lattice interactio
n gives h
i
gh TC
superconductivity
,”
J.
A
lloys
Co
mpd.
, vo
l. 317, p
p
. 537
, 2001
.
[21]
G. Buzon,
et al.
, “Self-Energ
y
Ef
fects In Cuprates and the Do
me
-Shaped Behavio
r
of th
e Superconducting Critical
Tem
p
eratur
e,
”
Phy
s
.
Re
v.
B
., vo
l. 89, pp. 024516,
2014.
[22]
Y. M. Baikov,
et al.
, “Superco
nductivi
t
y
and
high proton m
obilit
y
in h
y
drog
en-cont
aining
cuprates of the 1
23
fam
i
l
y
with
an
el
evat
ed ox
yg
en c
oncentr
ation
,
”
T
ech.
Ph
ys
. L
e
tt.
,
vol. 209
, pp
. 696
, 1994
.
[23]
M. E.
Emeter
e,
“Presence of Pseudo-Path in
the In
ter-Plan
e
Pen
e
tration Depth
o
f
Lay
e
r
e
d YBa2
Cu3O
y
,
”
Journa
l
of Supercondu
ctivity and
Novel
Magnetism
, vo
l/issue: 28(4), 201
5. DOI 10.1007
/s10948-014-2939-8.
[24]
M
.
E. Em
eter
e,
“
E
ffects
of Tunable Bloch Ins
p
i
r
ed S
p
in
Orbit Intera
ction in th
e
El
ect
ronic S
t
at
e Of S
r
2RuO4,”
Journal of Super
c
onductivity and
Novel Magnetis
m
, vol/issue: 28(
1), pp. 231-239,
2015. DOI 10.1007/s10948-014-
2848-x.
[25]
M.
E. Emeter
e, “Characteristic Significan
ce
o
f
Magneti
c Relax
a
tions on Copper Oxide Th
in Film Using the Blo
c
h
NMR,
”
Surface
Review and
Letters
, vol/issue: 21
(5), pp
. 1450075
, 2014
. DOI: 10
.1142/S0218625X14500759.
[26]
Gorkov L. P., “Microsopic Der
i
vation
of Ginzb
u
rg-La
ndau
Equ
a
tion
in
the Theor
y
of Super
c
on
ductivity
,”
So
viet
Physics JEPT
, v
o
l. 36
, pp
. 1365
,
1959.
[27]
J.
M.
Ma
rtinis,
et a
l
.
, “Calculation of T
c
in a
no
rmal-supercondu
ctor
b
ilay
e
r
usin
g the microscop
i
c-based
Usadel
theor
y
,
”
Nu
clear
Instruments and
Met
hods in Physics
Research
A
., vol. 444
, pp
. 23
-27, 2000
.
[28]
U. E. Uno and
M. E. Emetere, “Iso
tope Effect on Cuprates C
o
mponent in
Determining
Exp
e
rimental Critical
Tem
p
eratur
e,
”
I
n
t. Journal for
scien
tifi
c
res
e
arc
h
, vol/issue: 1(1)
, pp
. 15-24
, 201
1.
[29]
Love J. C.,
et al.
, “Self-Assembl
e
d Monolay
ers o
f
Thiolates on
Metals as a Form
of Nanotechno
lo
g
y
,”
Chem. Rev.,
vol. 105
, pp
. 110
3-1169, 2005
.
[30]
S
.
Chénais
,
et a
l
.
, “On thermal effects in solid state lase
rs: the
case of
y
tterb
iu
m-doped materials,”
Progress in
quantum electro
nics
, vo
l. 30, pp. 89-126, 2006.
[31]
V.
Grigore,
et al.
, “Correlatio
nal Analy
s
is Of La
y
e
r
e
d Superconducting Cuprates,”
WSEAS
Transaction on
Information Science
&
Applications
, vol/issue: 5(
7), pp
. 1180-118
8, 2008
.
[32]
Narlikar A. V.,
“High Temperature S
uperconductivity
2:
Engineering Applicatio
n
s
1 Materials,”
Springer, Berlin,
2004.
[33]
R.
A.
Se
rway
a
nd J.
W.
Je
w
e
t
t
,
“Phy
sic
s
for Sc
i
e
n
tis
ts
and
Engineers
:
Ch
apte
rs 12 (7th edition)
,” ISBN-
9780495013129, pp. 123, 2005.
[34]
S. Yunhua,
et al.
, “A Reliab
l
e
Method of Recy
cling (RE)-B
a-
Cu
-O (RE: Sm,
Gd, Y) Bulk
Superconductors,”
Journal of Amer
ican C
e
ramic So
ciety
, vol/issue:
98(9), pp
. 2760-
2766, 2015
.
[35]
“Report of the Basic Energ
y
Scien
ces Worksh
op on Supe
rconductivity
Office of Scie
nce,” US Department of
Energ
y
, Argonn
e National Labor
ator
y
,
pp. 1-43,
2011.
http://www.sc.doe.gov/bes/
reports/files/SC_rpt.pdf.
[36]
M. E. Emeter
e, “Theoretical Mode
ling of a Magnetic Loop Antenna for
Ultra wideband (UWB) Applicatio
n
,
”
TELKOMNIKA Indonesian Journ
a
l
of Electrical
Engineering
, vol/issue: 12(10)
, p
p
. 7076
– 7081
,
2014.
[37]
M. E. Em
et
ere
,
“
M
agnetica
l
l
y
C
ontrolled Quan
t
u
m
Tele
port
a
tio
n of Multiple A
r
bitrar
y Sta
t
es
Using the Bloc
h
Cataly
st,”
TELKOMNIKA Indon
esian Journal
of Electrica
l
Eng
i
n
eering
, vol/issue: 13(1), pp. 1-9
,
2015.
[38]
S. M. Brian, “An Introduction to Mate
rials Engineer
ing and Science for Chem
ical and Material Engineers,” Joh
n
Wiley
and
Sons, Pp. 681-795
, 20
04.
Evaluation Warning : The document was created with Spire.PDF for Python.