Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
49
5
~
50
3
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
395
4
95
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Induced Volt
ages
on a Gas Pipe
line Du
e T
o
Lightni
n
g Strik
e
s
on Nearby Overhead T
r
ansmissi
on Line
Ali I. El G
a
yar*, Z
u
lkurn
a
i
n
Abdul-Male
k*
* Institut
e
of
Hi
gh Voltag
e
& C
u
rrent (IVAT)
,
F
acul
t
y
of
El
ect
r
i
cal
Engin
eer
ing,
Universiti
Tekno
logi Ma
la
ysia
(U
TM),
(Fax) +(6)07-55
78150, Tel +(60)
07-5535860
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 11, 2015
Rev
i
sed
D
ec 22
, 20
15
Accepte
d
Ja
n 10, 2016
The purpose of this paper is to inves
tigate the severity
of ligh
t
ning induced
voltag
e
s on a gas pipeline inst
a
lled in para
ll
el with overhead t
r
ansm
ission
line using two differen
t
simulation p
ack
ages
.
The res
u
lts
fro
m
this
s
t
udy
using CDEGS, which solves a give
n prob
lem based on
el
ec
troma
gne
t
i
c
computations, r
e
veal that the
indu
ced voltages
on the pipelin
e are more
accur
a
t
e
com
p
ar
ed to tha
t
obta
i
n
e
d b
y
P
S
C
AD s
i
m
u
lation, whi
c
h
is
bas
e
d on
the cir
c
uit
appro
ach. Unlik
e P
S
C
AD, CDEGS
cons
iders
m
a
n
y
s
a
l
i
ent fa
ctors
such as soil model,
inductive, capac
itive and
conductive co
uplings,
and
m
u
ltiple soil str
u
ctures. Models
of
a double cir
c
uit 132kV transm
ission line,
gas pipelin
es, soil with diff
ere
n
t resistivi
ties a
nd variabl
e
ligh
t
ning surge
s
were develop
e
d. The effects of pipelin
es located at various heights above
ground and distance of pipelin
e from the power lines were also studied.
Compared to previously
publis
hed work using PSCAD, it is found that
CDEGS
has
given m
o
re accur
a
t
e
res
u
lts
. S
e
v
e
r
a
l findings
whic
h were not
possible using PSCAD
were observed such as th
e effect of soil s
t
ructur
e on
induced vol
tag
e
and m
u
ltiple
la
yers soil. This a
l
so led to be
tter un
derstandin
g
of the condu
ctiv
e coupl
ing from
lightni
ng str
i
kes and fault
cond
itions. Th
e
modeling work using CDEGS n
o
t only
us
eful f
o
r providing more reliable
data for fur
t
her
protec
tion and
m
itigation
te
c
hniques, but is
also ve
r
y
versatile to
stud
y
th
e effects of
various
other
important f
a
ctors affecting th
e
induced
voltage
on the pip
e
lin
es.
Keyword:
CDEGS an
d PSCAD
Gas pi
pel
i
n
e
I
ndu
ced vo
ltages
Li
ght
ni
n
g
st
ri
k
e
Ov
erh
ead transmissio
n
lin
e
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Zul
k
ur
nai
n
A
b
dul
-M
al
ek,
In
stitu
te
o
f
Hi
gh
Vo
ltag
e
& C
u
rren
t
(IVA
T), Facu
lty of Electrical Eng
i
n
e
ering
,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia (UTM),
8
131
0 UTM Joh
o
r
Bah
r
u
,
Joho
r, Malaysia
, (Fax)
+(6)
07
-55
781
50
, Tel +(6
0
)0
7-
553
5860
Em
a
il: zu
lk
u
r
nain
@u
tm
.
m
y
1.
INTRODUCTION
Th
e in
stallatio
n
of g
a
s
p
i
p
e
li
n
e
s in
th
e
v
i
cinity o
f
h
i
gh
vo
ltag
e
ov
erh
e
ad
tran
sm
issio
n
lines (OHTLs)
is a serious c
o
ncern
due
due
to interfere
n
ce
from
th
e po
we
r f
r
eq
ue
ncy
O
H
TLs
. El
ect
ri
c
po
we
r t
r
a
n
sm
it
t
e
d at
hi
g
h
er t
r
a
n
sm
issi
on
vol
t
a
ges
resul
t
s
i
n
t
h
e generat
i
on o
f
surr
o
u
n
d
i
n
g
el
ect
rom
a
gnet
i
c
fi
el
ds. The
fi
el
ds
created
by the
transm
ission of power
g
i
v
e
ri
se to
a stiff com
p
et
itio
n
for l
a
n
d
as well as
righ
t of ways(ROW
s)
[1
].
Gas p
i
p
e
lin
es lo
cated
in
th
e v
i
cin
ity o
f
OHTLS are su
scep
tib
le to
th
e electric field
s
gen
e
rated
by th
e
po
we
r l
i
n
es a
s
by
l
i
g
ht
ni
n
g
st
ri
kes t
o
t
h
e
l
i
n
es. Li
ght
ni
n
g
st
ri
ke
on
o
v
e
rhea
d
p
o
we
r
l
i
n
es i
s
t
h
e
p
r
i
n
ci
pa
l
reason for
accidental outages
[2].
The
proba
bility of a
lightning stri
ke
terminating on
a shield wire
or towe
r
t
op i
s
hi
g
h
e
r
t
h
an t
h
at
of a
pha
se co
nd
uct
o
r [
3
,
4]
. Ne
v
e
rt
hel
e
ss, t
r
a
n
s
i
ent
ove
r-
v
o
l
t
a
ges p
r
o
d
u
ce
d du
ri
n
g
sh
ield
ing
f
a
ilur
e
ar
e m
o
r
e
si
g
n
i
f
i
can
t th
an
th
at o
f
b
a
ck
f
l
ash
[
5
, 6
]
. C
u
rr
en
ts and
vo
ltag
e
s ar
e ind
u
c
ed
al
ong
t
h
e gas pi
pel
i
nes d
u
e t
o
t
h
e
com
m
on conduct
i
v
e
pat
h
s
h
are
d
by
b
o
t
h
po
wer l
i
n
e as wel
l
as gas pi
pel
i
n
e
i
n
st
al
l
a
t
i
ons [
7
, 8]
. T
h
e i
n
d
u
ced
vol
t
a
ge
m
a
y
have
u
nde
s
i
rabl
e co
nse
q
u
e
nces
on
pe
rs
on
nel
a
nd l
i
v
e
s
t
o
ck
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
49
5 – 5
0
3
49
6
especi
al
l
y
whe
n
t
o
u
c
hi
ng t
h
e
pi
pel
i
n
e, as
we
l
l
as pi
pel
i
n
e cor
r
osi
o
n or
da
m
a
ges t
o
t
h
e cat
ho
di
c pr
ot
ect
i
on [
5
,
7, 9,
1
0
]
.
PSCAD si
m
u
latio
n
,
wh
ich
is b
a
sed
on
th
e circu
it ap
pro
a
ch, is li
mi
ted
sin
ce th
e co
nd
u
c
ti
v
e
cou
p
ling
i
s
not
c
onsi
d
er
ed w
h
e
n
cal
cul
a
t
i
ng t
h
e i
n
d
u
c
e
d v
o
l
t
a
ge
o
n
t
h
e pi
pel
i
n
e. T
h
e con
d
u
ct
i
v
e c
o
u
p
l
i
n
g i
s
de
pe
nde
nt
o
n
th
e so
il ty
p
e
, so
il resistiv
ity, an
d
m
u
lt
ip
le so
il stru
ctu
r
e, all o
f
which
cann
o
t
b
e
i
m
p
l
e
m
en
ted
u
s
ing
PSC
A
D
. I
n
vi
e
w
o
f
t
h
i
s
sch
o
r
t
com
i
ng, t
h
i
s
p
a
per
pr
o
poses t
h
e st
u
d
y
t
o
be
carri
ed
o
u
t
usi
ng C
D
EG
S w
h
i
c
h i
s
electrom
a
gnetic based t
o
sol
v
e all inade
q
uacies of
PSC
AD
. C
D
E
G
S i
s
capabl
e
of
d
e
si
gni
ng
vari
o
u
s soi
l
structu
r
es
with
a
num
ber
o
f
l
a
y
e
rs. T
h
is
w
o
rk
f
u
rt
he
r inve
stigates the e
f
fects of si
ngle
lightning stoke
s
on
tran
sm
issio
n
lin
e
with
b
a
ck
-flash
o
v
e
r and th
e im
p
act
of
t
h
e c
o
n
s
eq
ue
nt
el
ect
rom
a
gnet
i
c
cou
p
l
i
n
g
o
n
ga
s
pi
pel
i
n
es
. C
D
EGS
com
b
i
n
es
t
w
o
po
wer
f
u
l
so
ft
wa
re t
ool
s,
nam
e
ly
, HI
FR
EQ a
n
d
FF
TSES,
a
n
d
sol
v
es t
h
e
problem
using
m
o
re accurate
Maxwell e
quat
i
ons
ra
the
r
t
h
a
n
less acc
urate
fixe
d circ
uit ele
m
ents.
2.
COMPUTER MODELS
The
t
r
a
n
si
ent
beha
vi
o
r
s of v
a
ri
o
u
s
pa
rt
s of
t
h
e
prob
lem
,
su
ch
as tran
smissio
n
lin
es,
to
wers, and
p
i
p
e
lin
es, are
m
o
d
e
led
in
C
D
EGS.
Th
e resu
lts of th
is
st
udy
were
com
p
are
d
t
o
t
h
ose
usi
n
g
PSC
A
D
,
w
h
i
c
h
were
p
r
evi
o
u
s
l
y
pu
bl
i
s
he
d i
n
[3]
.
The
ef
f
ects of
various
fact
or
s
are
also
studied.
To
obt
ai
n t
h
e
t
e
m
poral
sca
l
ar p
o
t
e
nt
i
a
l
and i
n
d
u
ce
d
v
o
l
t
a
ge, t
h
e l
i
g
ht
ni
n
g
s
u
r
g
e
cur
r
ent
was
decom
pose
d
i
n
t
o
i
t
s
fre
que
n
c
y
dom
ai
n spect
rum
usi
ng t
h
e for
w
a
r
d Fast
Fou
r
i
e
r T
r
ans
f
o
r
m
usi
ng FF
TSE
S
pr
o
g
ram
.
The cur
r
ent
di
st
ri
b
u
t
i
on i
n
t
h
e t
o
we
r an
d
gr
o
u
n
d
i
n
g c
o
n
d
u
c
t
ors, t
h
e scal
ar p
o
t
e
nt
i
a
l
s
, a
nd t
h
e
electrom
a
gnetic fields,
we
re
first c
o
m
put
ed
at
sel
ect
ed f
r
e
que
nci
e
s
us
ing HIFREQ. T
h
e
tim
e
dom
ain scalar
pot
e
n
t
i
a
l
s
and
el
ect
rom
a
gnet
i
c
fi
el
ds we
re t
h
en
o
b
t
a
i
n
e
d
u
s
i
ng t
h
e i
n
vers
e Fast
Fo
uri
e
r
Tran
sf
orm
by
usi
n
g
FFTSE
S a
g
ain.
2.
1. T
r
ans
m
i
ssi
on L
i
ne T
o
w
er
The t
r
an
sm
i
ssion l
i
n
e was m
odel
e
d base
d
on st
an
da
rd t
w
i
n
ci
rcui
t
l
i
n
e geom
et
ry
. The t
o
wer t
y
pe
was a
132
kV
steel lattice structure type 23 L series
as
pe
r n
o
m
e
ncl
a
t
u
re
of T
N
B
.
The
t
o
we
r ge
om
et
ry
and
di
m
e
nsi
ons ar
e sho
w
n i
n
F
i
gu
re 1. T
h
e
equi
val
e
nt
su
r
g
e im
peda
nce
of t
h
e t
o
wer
i
s
160
ohm
s. St
eel
co
ndu
ctors were u
s
ed
to
d
e
si
g
n
th
e tower in HIFREQ, wit
h
a relativ
e resistiv
ity o
f
1
2
with
resp
ect to co
pp
er,
an
d a
relativ
e perm
eab
ili
ty o
f
2
5
0
with
resp
ect to
free sp
ace.
The t
o
wer
gr
o
u
n
d
i
n
g sy
st
em
was a 1
6
m
×
16m
l
oop c
o
n
d
u
ct
o
r
b
u
ri
e
d
at
0.
5m
dept
h, w
h
i
c
h i
n
t
u
r
n
was co
n
n
ect
ed
t
o
8 vert
i
cal
g
r
o
u
ndi
ng r
o
ds
wi
t
h
a de
pt
h o
f
1
0
m
.
Fi
gure
2 sh
o
w
s t
h
e si
m
u
l
a
t
e
d 8-
ro
d
t
o
we
r
gr
o
u
n
d
i
n
g sy
st
em
i
n
C
D
E
G
S
i
ndi
cat
i
n
g t
h
e
num
ber
of
se
g
m
ent
s
i
n
eac
h s
ect
i
on.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
In
d
u
ced
Vol
t
ag
es o
n
a
Ga
s Pi
pel
i
n
e
Due
T
o
Li
ght
ni
n
g
St
ri
kes o
n
N
e
ar
by
Over
hea
d
…
(
Z
ul
ku
rn
ai
n
A-
M)
49
7
5.
8
7
m
8.12
m
5.
5
m
4.
1
m
4.
6
m
5.
16
m
7.
7
8
m
5.
53
m
4.
3
6
m
G
R
O
UND L
EVEL
7.
060m
4.
4m
9.
3
m
8.
7
m
12.
36
m
11.7
4
m
46.
5
m
T
o
w
e
r
det
ai
l
s
V
o
l
t
age s
y
s
t
em
400k
V
.
2
ˣ
700 s
q
.mm
AAAC
Ar
a
u
c
a
r
i
a
c
onduc
tor
.
S
p
an l
e
n
g
th
400
m
.
I
n
s
u
l
a
tor
l
eng
th
4.
1m.
I
n
s
u
l
a
tor
pl
us
f
i
tt
i
n
gs
l
e
ngth
4.
6
m
.
4.
3
m
9
.
6
7
m
4
.
6
8
m
8.
8
1
m
C
onv
ent
i
o
n
a
l
L
12
T
o
w
e
r
d
D
G
a
s
pi
pel
i
ne deta
i
l
s
out
e
r
r
a
dius
=
0.
3048 m
t
h
ic
kne
s
s
o
f
0.
0079 m
s
t
e
e
l
r
e
s
i
s
t
ivi
t
y of
2
.
2
×
10
-7
Ω
-m
Fi
gu
re
1.
Ef
fec
t
s of
sel
ect
i
n
g
di
ffe
re
nt
swi
t
c
hi
n
g
un
de
r
dy
n
a
m
i
c condi
t
i
o
n
Fi
gu
re
2.
Si
m
u
l
a
t
e
d 8
-
r
o
d
t
o
w
e
r
gr
ou
n
d
i
n
g s
y
st
em
i
n
C
D
E
G
S i
ndi
cat
i
n
g t
h
e
num
ber
of
s
e
gm
ent
s
i
n
eac
h
sectio
n
2
.
2
.
Pipeline Model
The
pi
pel
i
n
e
i
s
sh
ow
n i
n
Fi
g
u
r
e
3.
It
ha
s a
n
out
e
r
ra
di
u
s
of
0.
3
0
4
8
m
e
t
r
es an
d a t
h
i
c
k
n
es
s o
f
0.
00
7
9
m
e
t
r
es. The
pi
pel
i
n
e i
s
m
a
de of
st
eel
ha
vi
n
g
a
resi
st
i
v
i
t
y
of
2.
2 ×
1
0
-
7
Ω
-m
. The pipe
line is 1m
above the
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
49
5 – 5
0
3
49
8
ground surface
. It take
s into
accoun
t the
inductive
and ca
pac
itive coupling. The
pipelin
e steel ha
s a
relative
resistiv
ity o
f
17
with
resp
ect t
o
co
pp
er, and
a relativ
e
p
e
rm
eab
ility o
f
2
7
0
.
Fi
gu
re 3.
Gas
pi
pel
i
n
e st
r
u
ct
ure
2.
3. L
i
ght
n
i
n
g
Str
o
ke
Cu
rre
nt
Statistics sh
o
w
ed
t
h
at lig
h
t
n
i
ng
ch
aracteristics
are the sa
m
e
all over the worl
d. Regions are
charact
e
r
i
zed
by
t
h
ei
r
gr
o
u
n
d
fl
as
h
densi
t
y
.
Li
ght
ni
n
g
s
t
ro
ke i
s
us
ual
l
y
rep
r
esent
e
d
by
cu
rre
n
t
s
o
u
r
ce o
f
n
e
g
a
tiv
e po
lari
ty. Th
e p
a
rameters of a ligh
t
n
i
ng
su
ch
a
s
c
r
est, front time, m
a
xim
u
m
c
u
rrent stee
pne
s
s
and
du
rat
i
o
n are de
t
e
rm
i
n
ed by
st
at
i
s
t
i
cal appr
oa
ch co
nsi
d
e
r
i
n
g
t
h
e gr
ou
n
d
fl
ash de
nsi
t
y
at
t
h
e l
o
cat
i
on [
11]
. The
p
eak
cu
rren
t is statistica
lly
related
to
steep
n
ees or
tim
e
to crest of the curren
t wa
ve
form
. The steepne
ss
increase as the peak c
u
rr
e
n
t increases a
n
d the front time increas
e as
well. The lightning s
u
rge c
u
rre
nt
co
nsid
ered
i
n
t
h
is stud
y is
d
e
fin
e
d
b
y
th
e fo
llo
wi
n
g
dou
b
l
e
ex
pon
en
tial typ
e
fun
c
tion
:
()
(
)
tt
m
It
I
e
e
(1
)
whe
r
e Im
=30 kA
,
α
= 1
.
4x
10-
4
, and
β
= 6x1
06
.
Th
e
wav
e
form
is ch
aracterized
b
y
a rise time o
f
0
.
1
µs, time to
h
a
lf
o
f
50
µs, and
to
tal time d
u
r
ation
of
3
0
0
µs.
T
h
e
m
odel
l
i
ng
of t
h
i
s
l
i
g
ht
ni
n
g
c
u
r
r
ent
by
C
D
E
G
S i
s
sh
o
w
n
i
n
Fi
gu
re
4.
T
h
e l
i
ght
ni
n
g
st
r
o
ke
was
assu
m
e
d
to
h
it th
e top
o
f
a tower,
o
r
i
n
tercep
ted
b
y
th
e sh
ield
wi
re at th
e
h
i
gh
est
p
o
i
n
t
of th
e tower.
Fig
u
re
4
.
Ligh
tn
ing
im
p
u
l
se
wav
e
(0
.1
/50
µ
s) ap
p
lied at the to
p of a transmissio
n
tower
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
In
d
u
ced
Vol
t
ag
es o
n
a
Ga
s Pi
pel
i
n
e
Due
T
o
Li
ght
ni
n
g
St
ri
kes o
n
N
e
ar
by
Over
hea
d
…
(
Z
ul
ku
rn
ai
n
A-
M)
49
9
2.
4. C
o
mpu
t
at
i
o
n Met
h
o
d
ol
og
y
The m
e
t
hod us
ed t
o
o
b
t
a
i
n
t
h
e el
ect
ri
cal
fi
eld i
n
t
i
m
e
dom
ai
n i
s
descri
be
d as f
o
l
l
o
w
s
.
B
y
m
eans of
Fourier T
r
a
n
sform
,
the scalar poten
t
i
a
l
an
d el
ect
rom
a
gnet
i
c
fi
el
d i
n
t
i
m
e
dom
ai
n are gi
v
e
n by
t
h
e f
o
l
l
o
wi
n
g
equat
i
o
ns:
0
11
22
it
i
t
Vt
V
e
d
V
I
e
d
(2
)
0
11
()
()
()
22
it
it
Et
E
e
d
E
I
e
d
(3
)
0
11
()
()
()
22
it
it
Ht
H
e
d
H
I
e
d
(4
)
Whe
r
e:
()
()
it
It
e
d
t
I
(5
)
is the
fre
quency spectrum
of th
e ligh
t
n
i
ng s
u
r
g
e cu
rr
e
n
t, a
n
d
,
,
are t
h
e
u
n
m
odul
at
e
d
scalar pote
n
tial, electrical fie
l
d,
an
d
m
a
gne
t
i
c
fi
el
d i
n
freque
ncy
d
o
m
a
in, res
p
ect
i
v
el
y
.
The u
n
m
odu
l
a
t
e
d
el
ect
rom
a
gnet
i
c
fi
el
ds a
r
e
ge
n
e
rat
e
d
by
a
u
n
i
t
cur
r
ent
e
n
e
r
gi
zat
i
on
of
t
h
e c
o
n
d
u
ct
o
r
net
w
or
k.
2.
5. Soi
l
Ch
ar
acteri
s
t
i
c
s
The s
o
i
l
st
r
u
ct
ure a
n
d
gr
ou
n
d
i
n
g
desi
g
n
of
t
h
e o
v
er
hea
d
t
r
ansm
i
ssi
on l
i
n
e are i
m
port
a
n
t
param
e
t
e
r
s
d
e
term
in
g
wh
at so
il po
ten
tials will arise near a
p
i
p
e
lin
e,
the lo
wer th
e stru
cture gro
und
i
m
p
e
d
a
n
c
e, th
e lo
wer
th
e lo
wer th
e l
o
cal so
il p
o
t
entials. So
il resistiv
ity p
l
ayes
a
sig
n
i
fican
t ro
le h
e
re. Low so
il resistiv
ity
mean
s
l
o
we
r st
r
u
ct
u
r
e
gr
o
u
n
d
i
m
ped
a
nce a
nd l
o
we
r p
o
t
e
nt
i
a
l
di
ff
erences
bet
w
e
e
n t
h
e
g
r
o
u
ndi
ng
st
r
u
ct
ure
an
d t
h
e
pipeline. T
h
e s
o
il
m
odel was selected as a uniform
soil.
The prope
r
ties of the air and eart
h
use
d
are shown in
Tabl
e 1.
Tab
l
e
1
.
So
il an
d air ch
aracteristics.
Laye
r
Resistivity
(oh
m
-
m
eters
)
Relative (p.u)
perm
eabilit
y
Relative
(p
.u
)
perm
ittivit
y
Air 1E
+18
1
1
E
a
r
t
h
100
1
1
E
a
r
t
h
300
1
1
E
a
r
t
h
1000
1
1
E
a
r
t
h
3000
1
1
3.
RESULTS
A
N
D
DI
SC
US
S
I
ONS
The vari
at
i
o
n of
t
h
e pi
pel
i
n
e
i
n
d
u
ce
d vol
t
a
ges du
e
t
o
b
ackfl
as
ho
ve
rs had
bee
n
i
nve
st
i
g
at
ed
i
n
con
j
unct
i
o
n wi
t
h
a vari
at
i
on
of key
m
odel
param
e
t
e
rs. In
th
e si
m
u
latio
n
s
p
e
rfo
r
m
e
d
to
estab
lish
th
e ind
u
c
ed
vol
t
a
ge
s ass
o
c
i
at
ed wi
t
h
si
n
g
l
e
l
i
ght
ni
n
g
s
t
ri
ke (
S
LS
), the overhead line and pi
p
e
lin
e are term
in
ated
with
sur
g
e i
m
pedan
ce of t
h
e t
o
wer
abd
pi
pel
i
n
e
r
e
spect
i
v
el
y
.
Si
ngl
e st
r
o
ke cu
r
r
ent
m
a
gni
t
ude
of
10
.7
k
A
,
20
.7
kA
,
3
0
.7
kA
,
4
0
.7kA
,
5
0
.7kA
,
6
0
.7
kA
, and
110.7k
A
are inj
ect
ed
on
th
e t
o
w
e
r to
p. Th
e resultin
g
vo
ltag
e
w
a
v
e
fo
rm
s can be
u
s
ed t
o
det
e
rm
ine t
h
e
i
n
duc
ed
vol
t
a
ge
o
n
t
h
e
gas
pi
pel
i
n
e
.
3.1.
E
ffec
t
s of Lightn
ing Current Magnitudes
An
i
n
crease in th
e p
e
ak
ligh
t
n
i
ng
cu
rren
t
resu
lts
in
a co
rresp
ond
ing
in
crease in
th
e i
n
duced
v
o
ltag
e
on t
h
e pi
pel
i
n
e, as sho
w
n i
n
Fi
gure
5. The
pi
pel
i
n
e was
20 m
away
from
t
h
e t
r
ansm
i
ssi
on t
o
wer t
h
at
was
st
ruc
k
ed
by
l
i
ght
ni
n
g
. T
h
e i
n
duce
d
v
o
l
t
a
ge
obt
ai
ne
d u
s
i
n
g
PSC
AD s
h
ow
s a hi
ghe
r val
u
e whe
n
com
p
ared t
o
that obtaine
d using CDE
G
S. This the different in
value
s
between the
two ap
proaches, because PSC
AD
assu
m
e
s th
at th
e con
d
u
c
tors are in
fi
n
ite in
len
g
t
h
an
d
p
a
rallel along
th
e ri
g
h
t
of
way. Th
ese two m
a
in
assu
m
p
tio
n
s
lead
to
in
sign
ifican
t erro
r
wh
en th
e su
rg
e curren
t is s
m
all,
le
ss th
an
4
0
k
A
. Th
is erro
r
b
e
co
m
e
s
si
gni
fi
ca
nt
16
% w
h
e
n
t
h
e
su
rge
cu
rre
nt
e
x
c
eeds
9
0
kA
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
49
5 – 5
0
3
50
0
Fi
gu
re
5.
C
o
m
p
ari
s
on
o
f
c
o
m
put
e
d
i
n
d
u
ce
d
vol
t
a
ge
s
on
t
h
e
pi
pel
i
n
e
w
h
e
n
t
h
e pea
k
c
u
rre
nt
i
s
vari
ed
at
di
ffe
re
nt
m
a
gni
t
udes
d
u
ri
n
g
b
ackfl
as
ho
ve
r
u
s
i
n
g
PSC
AD
a
n
d
C
D
E
G
S
3.
2.
E
ffec
t
s of
Hei
g
h
t
of Pi
pe
ab
o
v
e
Gr
ou
n
d
A l
i
ght
ni
ng st
r
oke c
u
r
r
ent
o
f
30
.7
kA wa
s i
n
ject
e
d
o
n
t
h
e shi
e
l
d
wi
re as
t
h
e pi
pel
i
n
e he
i
ght
ab
ov
e
the ground s
u
rface was a
d
jus
t
ed at diffe
rent
heights
above the
ground. The
pipe
line
was
20 m
away from the
t
r
ansm
i
ssi
on t
o
wer t
h
at
was st
ruc
k
e
d
by
l
i
g
ht
ni
n
g
. T
h
e
pi
pel
i
ne hei
ght
was
vari
e
d
as
1,
2,
3,
4, a
n
d 5 m
abo
v
e
the ground s
u
rface. In a
dditi
on, the s
o
il res
i
stivity was also va
ried as
100, 300, 1000
a
nd 3000 ohm
.m
.
Th
e
ef
f
ects
o
f
p
i
p
e
h
e
igh
t
abov
e th
e gro
und
on
t
h
e indu
ced
vo
ltag
e
on
th
e
p
i
pelin
e f
o
r
v
a
r
i
ou
s r
e
sistiv
ity v
a
lu
es
are illu
strated in
Fi
g
u
re
6
.
Fi
gu
re
6.
The
e
ffect
of
pi
pe
he
i
ght
a
b
o
v
e t
h
e
gr
o
u
n
d
o
n
t
h
e
i
n
d
u
ce
d
vol
t
a
ge
o
n
t
h
e
pi
pel
i
n
e f
o
r
va
ri
o
u
s
resistiv
ity v
a
lues (ap
p
lied curren
t = 30
.7
kA)
A s
h
ar
p i
n
crea
se o
f
t
h
e i
n
d
u
c
e
d
vol
t
a
ge
was
o
b
ser
v
e
d
whe
n
t
h
e
hei
g
ht
w
a
s cha
n
ged
f
r
o
m
1
m
t
o
2
m
.
For hei
ght
i
n
crem
ent
fro
m
2 t
o
5
m
,
the v
o
l
t
a
ge al
so increase
d
,
but at a slower rate. As expec
t
ed, the
induced voltage also i
n
crease
s
as
th
e so
il resistiv
ity is in
creased
.
0
20
40
60
80
100
120
0
50
100
150
200
250
300
350
S
u
r
ge c
u
r
r
ent
(
K
A
)
I
n
du
c
e
d v
o
l
t
a
g
e
(
V
)
CD
E
G
S
PS
C
A
D
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
10
1
10
2
10
3
10
4
p
i
pe
h
i
gh
t
f
r
o
m
gr
ou
nd
(
m
)
i
n
d
u
c
e
d v
o
lt
ag
e on p
i
p
e
li
ne
s
o
i
l
r
e
si
st
i
v
i
t
y 1
0
0
o
h
m
.
m
s
o
i
l
r
e
si
st
i
v
i
t
y 3
0
0
o
h
m
.
m
s
o
i
l
r
e
si
st
i
v
i
t
y 1
0
0
0
o
h
m
.
m
s
o
i
l
r
e
si
st
i
v
e
t
y
3
0
0
0
o
h
m
.
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
In
d
u
ced
Vol
t
ag
es o
n
a
Ga
s Pi
pel
i
n
e
Due
T
o
Li
ght
ni
n
g
St
ri
kes o
n
N
e
ar
by
Over
hea
d
…
(
Z
ul
ku
rn
ai
n
A-
M)
50
1
3.
3. E
ffec
t
s
of
Pi
pel
i
n
e Di
st
a
n
ce fr
om T
o
w
er
The sam
e
l
i
ght
ni
n
g
st
r
o
ke cu
rre
nt
o
f
30
.7
k
A
wa
s
inj
ected on
th
e sh
ield
wire. The dist
ance of
t
h
e
pi
pel
i
n
e f
r
o
m
the t
o
w
e
r wa
s al
t
e
red at
d di
s
t
ance of
20 m
,
30 m
,
50 m
,
and
50 m
.
Ag
ai
n, t
h
e pi
pel
i
n
e wa
s
p
o
s
ition
e
d
1
m abo
v
e
th
e
grou
nd
.
Fi
gu
re
7.
The
e
ffect
of
sepa
rat
i
on
di
st
ance
be
t
w
een t
h
e t
o
we
r a
n
d
t
h
e
pi
pel
i
ne
on
t
h
e c
o
m
put
ed i
n
d
u
ce
d
vol
t
a
ge
U
s
i
n
g PSC
A
D
a
n
d
C
D
EG
S. A si
n
g
l
e
l
i
ght
ni
ng
st
r
o
ke wi
t
h
a pea
k
cur
r
ent
o
f
30
.7
kA
was
u
s
ed
The effect of
separation dist
ance betwe
e
n
the
t
o
we
r an
d
t
h
e pi
pel
i
n
e
on t
h
e c
o
m
put
ed i
n
d
u
ce
d
vol
t
a
ge
usi
n
g
PSC
A
D
an
d
C
D
EG
S i
s
de
pi
ct
ed i
n
Fi
gu
re 7.
As e
xpe
ct
ed, t
h
e i
n
d
u
ced v
o
l
t
a
ge m
a
gni
t
u
de
red
u
ces w
h
e
n
t
h
e pi
pel
i
n
e was t
a
ken f
u
rt
her away
f
r
o
m
t
h
e t
o
wer.T
h
e i
n
d
u
ce
d v
o
l
t
a
ge obt
ai
ne
d
usi
n
g
PSCAD s
h
ows
a higher
val
u
e whe
n
c
o
m
p
ared t
o
that
obt
ai
ned
usi
n
g C
D
EG
S. T
h
i
s
t
h
e di
ff
ere
n
t
i
n
val
u
es
betwee
n the
two approac
h
es
, beca
use
PSC
AD assum
e
s that
th
e con
d
u
c
to
rs are infin
i
t
e
in
leng
th
and p
a
rallel
al
on
g t
h
e ri
ght
of w
a
y
.
Thes
e t
w
o m
a
i
n
assum
p
t
i
ons l
ead
t
o
i
n
si
gni
fi
c
a
nt
err
o
r
.
This
error inc
r
ease
as the
separat
i
o
n
bet
w
een
t
h
e
pi
pel
i
ne a
n
d
t
h
e t
o
w
e
r i
n
c
r
ease.
3
.
4
.
E
ffects o
f
So
il
Resistiv
ity
Th
e effect of so
il resistiv
ityd
u
e
to
th
e i
n
teractio
n
of steady
-
state electromagnetic fields a
nd
pipeline
s
is u
n
i
v
e
rsally k
n
o
wn
. In
g
e
n
e
ral, an
in
crease
in
so
il resi
stiv
ity will resu
lt in
an
in
crease in
th
e in
du
ced
voltag
e
on
t
h
e
pi
pel
i
n
e
.
T
h
e
rel
a
t
i
ons
hi
p
i
s
no
n-l
i
n
e
a
r i
n
nat
u
re
. T
o
asce
rt
ai
n t
h
i
s
ass
u
m
p
t
i
on
wi
t
h
l
i
g
ht
ni
ng
st
ui
es,
v
a
ri
o
u
s
sim
u
lat
i
o
n
s
were ex
ecu
t
ed
with
d
i
fferen
t so
il resisti
v
ity b
e
ing
u
tilized
in each
m
o
d
e
l.
Fi
gu
re
8.
The
e
ffect
of
soi
l
res
i
st
i
v
i
t
y
on t
h
e
i
n
d
u
ce
d
vol
t
a
ge
o
n
t
h
e
pi
pel
i
n
e. T
h
e
pi
pe
hei
ght
i
s
1
m
abo
v
e
gr
o
u
n
d
a
n
d t
h
e
cu
rre
nt
pea
k
i
s
3
0
.
7
kA
.
20
25
30
35
40
45
50
20
30
40
50
60
70
80
90
100
P
I
P
E
DI
S
T
A
N
C
E
F
R
O
M
G
R
O
U
ND
V
S
I
N
DU
CE
D
V
O
LT
A
G
E
pi
pe
di
s
t
an
c
e
f
r
om
t
o
w
e
r
in
d
u
c
e
d
v
o
lt
a
g
e
CD
E
G
S
PS
C
A
D
10
0
30
0
1
000
3
000
10
40
70
100
180
210
310
400
so
i
l
r
e
s
i
st
i
v
i
t
y (
o
h
m
.
m
)
i
n
d
u
c
ed v
o
l
t
age on
pi
pel
i
ne
(
v
ol
t
)
p
i
pe
1m
ab
ov
e g
r
ou
nd
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
49
5 – 5
0
3
50
2
Fi
gu
re 8 dem
o
nst
r
at
es t
h
e l
a
r
g
e di
sp
ari
t
y
of
t
h
e
peak induced voltages on
the pipeline
associated
with
so
il resistiv
ity v
a
lu
es
b
e
t
w
een 100
Ω
-m
an
d 3
0
00
Ω
-m. A m
o
re
or les
s
a linear i
n
cre
m
ent of t
h
e induced
v
o
ltag
e
wit
h
the lo
g of so
il resistiv
ity is o
b
s
erv
e
d
.
4.
CO
NCL
USI
O
N
Pro
v
i
d
e Pi
pel
i
ne i
n
duce
d
vol
t
a
ges d
u
e t
o
l
i
g
ht
ni
n
g
st
ri
kes
had
bee
n
com
put
ed
usi
n
g C
D
EGS a
nd t
h
e
results
were
c
o
m
p
ared
with
those
usi
n
g
PS
CAD.
Di
ffe
re
n
t
m
odel
param
e
ters we
re
va
ried to
dete
rm
in
e t
h
e
ex
ten
t
of v
a
riatio
n
in
th
e indu
ced
vo
ltag
e
on
th
e p
i
p
e
lin
e. Resu
lts sh
ow
th
at PSCAD resu
lts are h
i
g
h
e
r th
an
t
hose
f
r
om
C
D
EGS
d
u
e t
o
t
h
e t
w
o
m
a
i
n
assum
p
t
i
ons
of
PSCAD,
wh
ich
are th
e p
i
p
e
line is in
fi
n
ite in
len
g
t
h
and uniform
l
y parallel to th
e transm
ission
line. It
ca
n be
c
oncl
ude
d
that CDEGS gives
m
o
re
accurate result
s
due
to its m
o
re accurate simulation m
odels use
d
. It
is
noted that C
D
E
G
S
uses
a s
o
il m
odel that model
a
rem
o
te earth reference
poi
nt,
while
PSCAD considers
the whole ground
as a fi
nite c
onducting surface.
The ef
fect
s of
vari
o
u
s m
odel
param
e
t
e
rs on t
h
e pi
pel
i
n
e
i
n
d
u
ced
vol
t
a
g
e
s were al
so s
t
udi
ed
. Key
find
ing
s
are a
m
o
re o
r
less lin
ear
in
cremen
t o
f
indu
ced v
o
ltag
e
with
th
e lo
g
of so
il
resistiv
ity, a
lin
ear
d
ecrease with
to
wer-p
i
p
e
lin
e
sep
a
ration
,
a lin
ear
in
cr
ease
wi
t
h
pi
pel
i
n
e
hei
ght
a
b
o
v
e
gr
o
u
n
d
, a
nd a
l
i
n
ear
in
crease
of indu
ced vo
ltag
e
with
p
e
ak
ligh
t
n
i
n
g
im
p
u
l
se cu
rren
t.
ACKNOWLE
DGE
M
ENTS
In
pre
p
a
r
ing this pape
r, t
h
e fi
rst aut
h
or was
in
contact with
m
a
ny people,
academ
icians, researc
h
ers
an
d
practitio
n
e
rs who
con
t
ri
bu
ted
imm
e
n
s
el
y to
ward
s
h
i
s
u
n
d
e
rstand
ing
an
d
t
h
oug
h
t
s.
Th
e au
tho
r
s are also
in
d
e
b
t
ed to
t
h
e In
stitu
te of
Hi
g
h
Vo
ltag
e
and
High
C
u
rren
t (IVAT) for
p
r
o
v
i
d
i
ng
t
h
e
fu
l
l
v
e
rsion
o
f
C
D
EGS
so
ft
ware
with
tech
n
i
cal sup
p
o
r
t. Th
e au
t
h
ors wou
l
d
also
li
k
e
to
th
an
k
Min
i
stry o
f
Edu
c
atio
n
and
Un
iversiti
Tek
nol
ogi
M
a
l
a
y
s
i
a
fo
r
pr
ovi
di
n
g
t
h
e
fi
nanc
i
a
l
sup
p
o
rt
(g
ra
nt
n
u
m
b
er
10
H
6
1
)
.
REFERE
NC
ES
[1]
Ism
a
il, H.M.
,
Effect of oil pip
e
lines existing in a
n
HV
TL corridor on the e
l
ec
tric-
field
distribution
.
Power Delivery
,
IEEE Tr
ansactio
ns on,
2007
. 22(
4): p. 2466-2472
.
[2]
Metwall
y
,
I. and
F. Heidler,
M
itigation of the pr
oduced voltages
in AC
overhead
power-lines/p
ip
elin
es parallelis
m
during power fr
equency and
lig
htning
condition
s.
Europe
an
tran
s
actions
on
el
ec
trical power
, 200
5. 15(4): p. 351
-
369.
[3]
Caulker
,
D
., et
al.
Lightning overvoltag
e
s on a
n
overhead transmi
ssion line du
ring backflasho
ver and shieldin
g
failure
. in
Universities Pow
e
r En
gineering
Conference (
U
PEC)
,
2
010 45th In
terna
tional
. 2010
. IEEE.
[4]
Zeng, T
.,
et al
.
,
Study on Lightning Intrudin
g
Overvolt
age
in Y
a
n
t
an Exten
s
ion Substation.
TELKOMNIK
A
Indonesian Jour
nal of
Electrical
E
ngineering, 20
14. 12(4): p. 245
8-2464.
[5]
Alqahtan
i, B. an
d M. Shwehdi.
Cost Effective M
itigation Study o
f
Electr
omagnetic Interferen
ce b
y
Power Lines on
Neighboring Ga
s Pipeline
. in
CI
GRE C4 Co
lloq
u
ium on Lightn
i
ng and Pow
e
r System
. 2010
.
[6]
Ab Rahm
an, P
.
N.S
., et
al.
,
Misidentification of
Type of
Lightnin
g
Flashes in Malaysia.
TELKO
M
NIKA Indone
sian
Journal of
Electr
i
cal Eng
i
ne
ering
,
2014
. 12(8): p.
5938-5945.
[7]
Dawalibi,
F.
and R.
D.
Southey
,
Analysis of electrical interf
er
en
c
e
fr
om power
lines
to
gas pipelin
es. II. Parametric
analysis.
Power
Deliver
y
,
I
EEE
Transactions on
, 1990. 5(1): p
.
4
15-421.
[8]
Kopsidas, K. an
d I. Cotton
,
Indu
ced vo
ltages on long aerial and b
u
ried pi
pelines d
u
e to transmission line transien
t
s.
Power Deliver
y
,
IEEE Tr
ansact
io
ns on, 2008
. 23(
3): p. 1535-1543
.
[9]
Southey
,
R., F.
Dawalibi, and W. Vukonich,
Recent advan
ces in the mitigation of
AC voltag
e
s occurring in pipelin
es
locat
e
d c
l
ose
to
ele
c
tric
transmission lin
es.
Power Deliv
er
y
,
IEEE Transac
tions
on
, 1994
. 9(2): p. 1
090-1097.
[10]
Cotton, I., K. Kopsidas, and Y. Zhang,
Comparison of transient
and power frequency-indu
ced voltages on a pipeline
parallel to an
overhead transmission lin
e.
Power
Deliver
y
,
I
EEE
Transactions on
, 2007. 22(3): p
.
1706-1714.
[11]
Liu,
P
., et al
.
M
odeling lightn
i
n
g
performance of
transmission systems using pscad
. in
H
i
gh Voltage
Engin
eering
and Application, 2008. ICHVE 2
008.
Internation
a
l Conference o
n
. 2008
. IEEE.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
In
d
u
ced
Vol
t
ag
es o
n
a
Ga
s Pi
pel
i
n
e
Due
T
o
Li
ght
ni
n
g
St
ri
kes o
n
N
e
ar
by
Over
hea
d
…
(
Z
ul
ku
rn
ai
n
A-
M)
50
3
BIOGRAP
HI
ES OF
AUTH
ORS
Ali is lectur
er
and the head o
f
control dep
a
r
tment at Co
lleg
e
of Electr
i
cal
and Electron
ics
Techno
log
y
-Ben
ghazi-
L
ib
y
a
. He
is Ph.D. student
at UTM univ
e
rsity
. He ob
tain
ed
his Bachelor
'
s
degree of electrical eng
i
neering
from Benghazi
Un
iversity
at
Lib
y
a
in 2005. He was work a
s
field
engineer at
Schlum
berger com
p
an
y
from
2005 to 2006, and
then he m
oved t
o
Halliburton
oil compan
y
to
work as logging engineer fro
m 2006 to 2009. He joined UTHM university
as
master student
and obtained h
i
s
M
.
S
c
. degre
e
in el
ectr
i
c
a
l eng
i
neer
ing in 201
1 His
res
earch
inter
e
sts ar
e hig
h
voltage, tr
ansmission line,
po
wer towers, indu
ced vo
ltag
e
s and
lightn
i
ng.
Zulkurnain Abdul-Malek
is an
associate pro
f
esso
r and Director
at UTM In
stitute of high voltag
e
& high curr
ent
(IVAT) Universiti T
e
knolog
i Malay
s
i
a
obtained
his M.Sc. in
Electri
cal
and
Electomagnetic Engineeri
ng with Industrial Ap
plications (Uni
v
e
rsity
of
Wales
Cardiff
,
Unitd
Kingdom 1995). He receiv
ed his
Ph.D. in High
Volta
ge
Engin
e
ering (Cardif
f
University
, United
Kingdom
1999). He is Director i
n
UTM Institute
of High Voltage
& High Current (IVAT)/UTM
High voltag
e
. H
e
is He is Member of Institute
of Ele
c
tri
c
a
l
and
Ele
c
troni
cs Eng
i
neer (MI
EEE
)
and col
l
e
c
tiv
e M
e
m
b
er of Th
e Int
e
rnat
ional
Confe
r
ence
on L
a
rge
High Voltage
El
ectr
i
c S
y
s
t
em
s
(CIGRE). He is
Chairman in Wo
rking Group
on High
Voltage Test
Techn
i
ques, Malay
s
ia,
2009-
present. He
is Mem
b
er in Techni
cal Com
m
ittee on High Voltage
Transm
ission, Malay
s
i
a
, 2009-
present, Member in Working Gr
oup on High Vo
lta
g
e
Switchgear
, Controlgear an
d Asse
mblies,
Malay
s
ia, 2002-
present.
Evaluation Warning : The document was created with Spire.PDF for Python.