I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
201
7
,
p
p
.
2
0
5
4
~
2
0
6
0
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
4
.
p
p
2
0
5
4
-
2060
2054
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Energ
y
-
E
ff
icie
nt
H
y
brid
K
-
M
ea
ns
Alg
o
rith
m
for
C
l
ustered
Wireless
Se
nso
r
Netw
o
rk
s
Aziz
M
a
hb
o
ub
1
,
M
o
un
ir
Ario
ua
2
,
E
l M
o
k
hta
r
En
-
Na
i
m
i
3
1,
3
L
IS
T
Lab
o
ra
to
ry
,
De
p
a
rt
m
e
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s an
d
T
e
c
h
n
iq
u
e
s,
T
a
n
g
ier,
M
o
ro
c
c
o
2
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s
-
T
e
to
u
a
n
,
A
b
d
e
lm
a
l
e
k
Essa
â
d
i
Un
iv
e
rsity
,
M
o
ro
c
c
o
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Dec
1
1
,
2
0
1
6
R
ev
i
s
ed
Ma
r
1
0
,
2
0
1
7
A
cc
ep
ted
Ma
r
2
4
,
2
0
1
7
En
e
rg
y
e
ff
icie
n
c
y
is
th
e
m
o
st
c
ri
ti
c
a
l
c
h
a
ll
e
n
g
e
in
w
irele
ss
se
n
so
r
n
e
tw
o
rk
.
T
h
e
tran
s
m
issio
n
e
n
e
rg
y
is
th
e
m
o
st
c
o
n
su
m
in
g
ta
sk
in
se
n
s
o
r
n
o
d
e
s,
sp
e
c
if
ic
a
ll
y
in
larg
e
d
istan
c
e
s.
Clu
ste
re
d
ro
u
ti
n
g
tec
h
n
i
q
u
e
s
a
r
e
e
ff
ici
e
n
t
a
p
p
ro
a
c
h
e
s
u
se
d
to
lo
w
e
r
th
e
tran
s
m
issio
n
e
n
e
rg
y
a
n
d
m
a
x
i
m
ize
th
e
n
e
tw
o
rk
’s
li
f
e
ti
m
e
.
In
th
is
p
a
p
e
r,
a
h
y
b
rid
c
lu
ste
re
d
ro
u
ti
n
g
a
p
p
ro
a
c
h
is
p
ro
p
o
se
d
f
o
r
e
n
e
rg
y
o
p
ti
m
iza
ti
o
n
in
W
S
N.
T
h
is
a
p
p
r
o
a
c
h
is
b
a
se
d
o
n
K
-
M
e
a
n
s
c
lu
ste
rin
g
a
lg
o
rit
h
m
a
n
d
L
E
A
CH
p
ro
to
c
o
l.
T
h
e
sim
u
latio
n
re
su
lt
s
u
sin
g
M
A
TL
A
B
to
o
l
h
a
v
e
sh
o
w
n
th
a
t
th
e
p
ro
p
o
se
d
h
y
b
rid
a
p
p
ro
a
c
h
o
u
t
p
e
rf
o
rm
s
L
E
A
CH
p
ro
to
c
o
l
a
n
d
o
p
ti
m
ize
s
th
e
n
o
d
e
s
e
n
e
rg
y
a
n
d
th
e
n
e
tw
o
rk
li
f
e
ti
m
e
.
K
ey
w
o
r
d
:
C
lu
s
ter
i
n
g
E
n
er
g
y
o
p
ti
m
izatio
n
K
-
m
ea
n
s
alg
o
r
it
h
m
L
E
AC
H
W
ir
eless
s
en
s
o
r
n
et
w
o
r
k
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
A
ziz
M
AHB
OUB
,
L
I
ST
L
ab
o
r
ato
r
y
,
Dep
ar
t
m
e
n
t
o
f
C
o
m
p
u
ter
Scie
n
ce
,
Facu
lt
y
o
f
Sc
ien
ce
s
an
d
T
ec
h
n
iq
u
es
A
b
d
el
m
ale
k
E
s
s
aâ
d
i U
n
iv
er
s
it
y
,
Stre
et
o
f
ch
ar
f
B
.
P
4
1
0
,
T
an
g
i
er
–
Mo
r
o
cc
o
.
E
m
ail:
a
m
ah
b
o
u
b
@
u
ae
.
ac
.
m
a
1.
I
NT
RO
D
UCT
I
O
N
W
ir
eless
s
e
n
s
o
r
s
n
et
w
o
r
k
(
W
SN)
is
co
m
p
o
s
ed
o
f
g
r
o
u
p
o
f
w
ir
ele
s
s
s
e
n
s
o
r
s
d
ep
lo
y
ed
in
f
ield
w
it
h
a
h
ig
h
d
en
s
it
y
;
en
ab
les
d
etec
tio
n
o
f
p
h
y
s
ical
p
h
en
o
m
e
n
a
s
u
c
h
as
th
er
m
al,
o
p
tical,
v
ib
r
atio
n
an
d
te
m
p
er
atu
r
e
o
r
p
r
ess
u
r
e
[
1
]
,
[
2
]
.
W
SN
ar
e
b
ein
g
i
n
cr
ea
s
i
n
g
l
y
u
s
ed
f
o
r
s
ev
er
al
ap
p
licatio
n
ar
ea
s
,
s
u
c
h
as
e
n
v
ir
o
n
m
e
n
tal
m
o
n
ito
r
i
n
g
,
m
il
itar
y
tar
g
et
tr
a
ck
in
g
,
h
ea
lt
h
ca
r
e,
s
eis
m
ic
s
en
s
in
g
,
etc.
E
ac
h
s
en
s
o
r
n
o
d
e
is
ass
e
m
b
led
w
i
th
a
tr
an
s
d
u
ce
r
,
m
i
cr
o
co
m
p
u
ter
,
tr
an
s
ce
i
v
er
an
d
p
o
w
er
s
o
u
r
ce
.
T
h
ese
w
ir
eless
n
o
d
es
ar
e
u
s
u
all
y
p
o
w
er
ed
b
y
li
m
ited
ca
p
ac
it
y
b
atter
ies
w
h
i
ch
r
ep
lace
m
en
t
is
d
elica
te
in
h
o
s
tile
en
v
ir
o
n
m
e
n
t
w
h
er
e
h
u
n
d
r
ed
s
o
f
th
e
m
ar
e
r
an
d
o
m
l
y
d
ep
lo
y
ed
.
T
h
e
m
aj
o
r
li
m
itatio
n
s
e
n
co
u
n
ter
ed
i
n
W
SN
ar
e
en
er
g
y
r
eso
u
r
ce
s
an
d
h
ig
h
co
s
t
o
f
tr
an
s
m
is
s
io
n
[
3
]
,
[
4
]
.
T
h
er
ef
o
r
e,
en
er
g
y
li
m
itat
io
n
is
t
h
e
k
e
y
ch
alle
n
g
e
s
in
w
ir
eles
s
s
e
n
s
o
r
s
n
et
w
o
r
k
,
s
i
n
ce
th
e
b
atter
ies
ar
e
n
o
t
r
ec
h
ar
g
ea
b
le
u
s
u
all
y
w
h
ich
li
m
it
s
t
h
e
n
et
wo
r
k
lif
eti
m
e
[
5
-
7
]
.
T
o
ex
ten
d
th
e
w
ir
eles
s
n
et
w
o
r
k
lif
eti
m
e,
t
h
e
e
n
er
g
y
o
f
s
e
n
s
o
r
n
o
d
es
s
h
o
u
ld
b
e
e
f
f
icie
n
tl
y
u
s
ed
.
E
n
er
g
y
r
eq
u
ir
ed
in
co
m
m
u
n
icatio
n
s
is
t
h
e
i
m
p
o
r
tan
t
co
n
s
u
m
in
g
p
ar
t
co
m
p
ar
ed
to
p
r
o
ce
s
s
i
n
g
p
r
o
ce
s
s
in
s
e
n
s
o
r
n
o
d
es
[
8
]
.
A
v
ar
iet
y
o
f
tec
h
n
iq
u
es
h
a
v
e
b
ee
n
d
ev
elo
p
ed
in
o
r
d
er
to
r
ed
u
ce
th
e
co
m
m
u
n
ica
tio
n
e
n
er
g
y
co
n
s
u
m
p
t
io
n
.
Op
ti
m
ized
r
o
u
tin
g
tec
h
n
iq
u
e
s
s
u
c
h
as c
l
u
s
ter
i
n
g
al
g
o
r
it
h
m
s
h
av
e
b
ee
n
w
id
el
y
ad
o
p
ted
in
W
SN d
u
e
to
th
eir
en
er
g
y
e
f
f
ec
tiv
e
n
ess
.
T
h
is
p
ap
er
in
v
esti
g
a
tes
t
h
e
en
er
g
y
e
f
f
icie
n
c
y
o
f
clu
s
ter
i
n
g
i
n
r
o
u
ti
n
g
p
r
o
to
co
l.
W
e
p
r
o
p
o
s
e
a
s
u
b
s
ta
n
tial
K
-
Me
a
n
s
cl
u
s
ter
in
g
al
g
o
r
ith
m
b
ased
o
n
L
E
A
C
H
p
r
o
to
co
l
w
h
ic
h
co
n
s
i
s
ts
o
f
u
s
i
n
g
j
o
in
tl
y
K
-
Me
an
s
a
n
d
L
E
AC
H
ap
p
r
o
ac
h
es.
T
h
e
p
r
o
p
o
s
ed
h
y
b
r
id
alg
o
r
i
th
m
is
p
r
o
v
ed
to
b
e
en
er
g
y
e
f
f
icien
t t
h
an
L
E
AC
H
p
r
o
to
co
l a
n
d
s
ig
n
i
f
ican
tl
y
e
x
te
n
d
s
th
e
s
en
s
o
r
n
et
w
o
r
k
li
f
e
ti
m
e.
T
h
e
r
em
ai
n
d
er
o
f
t
h
is
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
.
Secti
o
n
2
d
is
cu
s
s
es
t
h
e
o
u
tli
n
e
o
f
K
-
Me
a
n
s
alg
o
r
ith
m
.
T
h
e
i
m
p
r
o
v
ed
K
-
M
ea
n
s
al
g
o
r
it
h
m
is
d
escr
ib
ed
in
s
ec
tio
n
3
.
Si
m
u
latio
n
s
a
n
d
r
esu
lt
s
ar
e
d
is
c
u
s
s
ed
in
s
ec
tio
n
4
.
T
h
e
f
in
al
s
ec
t
io
n
co
n
clu
d
es t
h
e
p
ap
er
b
y
s
et
tin
g
th
e
d
ir
ec
tio
n
o
f
f
u
t
u
r
e
w
o
r
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
E
n
erg
y
-
E
fficien
t H
yb
r
id
K
-
Mea
n
s
A
lg
o
r
ith
m
fo
r
C
lu
s
tered
Wir
ele
s
s
S
en
s
o
r
N
et
w
o
r
ks
(
A
z
iz
Ma
h
b
o
u
b
)
2055
2.
K
-
M
E
ANS
AL
G
O
RI
T
H
M
K
-
M
ea
n
s
is
o
n
e
o
f
th
e
p
r
o
m
i
s
in
g
an
d
ef
f
ec
ti
v
e
cl
u
s
ter
i
n
g
alg
o
r
ith
m
s
[
9
]
.
I
t
co
n
s
is
ts
o
f
r
eg
r
o
u
p
in
g
n
o
d
es
in
t
h
e
n
et
w
o
r
k
i
n
to
s
e
v
er
al
clu
s
ter
s
,
t
h
e
f
o
u
n
d
atio
n
o
f
clu
s
ter
s
i
s
b
ased
o
n
t
w
o
p
ar
a
m
eter
s
;
t
h
e
f
ir
s
t
p
ar
am
eter
i
s
t
h
e
n
u
m
b
er
o
f
w
i
s
h
cl
u
s
ter
s
,
th
e
s
ec
o
n
d
p
ar
a
m
e
ter
is
th
e
E
u
clid
ea
n
d
is
ta
n
ce
is
u
s
ed
f
o
r
lo
ca
te
th
e
clo
s
est
cl
u
s
ter
f
o
r
ea
ch
n
o
d
e
[
1
0
]
.
T
h
e
s
elec
tio
n
o
f
cl
u
s
te
r
h
ea
d
s
f
o
r
t
h
e
k
-
M
ea
n
s
c
lu
s
ter
in
g
al
g
o
r
ith
m
is
b
ased
o
n
t
w
o
th
in
g
s
; th
e
cl
u
s
t
er
h
ea
d
s
p
o
s
itio
n
m
u
s
t b
e
th
e
clu
s
ter
ce
n
ter
,
an
d
th
e
r
esid
u
al
en
er
g
y
o
f
th
e
n
o
d
e.
I
n
w
ir
eles
s
s
en
s
o
r
n
et
w
o
r
k
,
t
h
e
k
-
M
ea
n
s
c
lu
s
ter
in
g
m
et
h
o
d
is
b
ased
o
n
a
n
iter
ati
v
e
o
p
ti
m
izatio
n
o
f
th
e
d
is
ta
n
ce
b
et
w
ee
n
t
h
e
n
o
d
e
s
to
class
i
f
y
.
T
h
e
alg
o
r
it
h
m
g
e
n
er
ates K
cl
u
s
ter
s
f
r
o
m
a
s
et
o
f
N
n
o
d
es.
T
h
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
o
f
K
-
M
ea
n
s
al
g
o
r
ith
m
is
[
1
1
]
,
[
12
]:
∑
∑
(
1
)
W
h
er
e
C
r
is
t
h
e
s
et
o
f
n
o
d
es
th
at
b
elo
n
g
to
clu
s
ter
r
,
T
h
e
K
-
M
ea
n
s
cl
u
s
ter
i
n
g
u
s
es
t
h
e
E
u
clid
ea
n
d
is
tan
ce
:
√
(
2
)
T
h
er
ef
o
r
e
th
e
K
-
M
ea
n
s
alg
o
r
ith
m
o
n
l
y
s
ee
k
s
to
f
i
n
d
th
e
g
lo
b
al
m
i
n
i
m
u
m
o
f
ch
r
.
.
W
h
er
e
x
i
is
a
n
o
d
e
o
f
a
clu
s
ter
,
ch
r
th
e
cl
u
s
ter
h
ea
d
[
12
-
16
].
2
.
1
.
Alg
o
rit
h
m
ic
Ste
ps
f
o
r
k
-
M
ea
ns
Clu
s
t
er
ing
T
h
e
p
r
o
g
r
ess
o
f
th
e
K
-
M
ea
n
s
clu
s
ter
i
n
g
al
g
o
r
ith
m
i
s
d
o
n
e
in
f
o
u
r
p
h
a
s
es,
th
e
f
ir
s
t
s
tep
is
ch
o
o
s
in
g
th
e
d
esire
d
n
u
m
b
er
o
f
clu
s
ter
s
to
g
en
er
ate
in
w
ir
eless
s
e
n
s
o
r
s
n
et
w
o
r
k
,
t
h
en
f
o
r
ea
ch
clu
s
ter
o
n
ch
o
s
e
n
th
e
clu
s
ter
h
ea
d
r
an
d
o
m
l
y
c
h
,
Af
ter
th
e
at
tr
ib
u
te
t
h
e
clo
s
est
clu
s
ter
to
ea
ch
n
o
d
e
u
s
in
g
t
h
e
E
u
clid
ea
n
d
is
tan
ce
[
17
]
.
T
h
e
{
x
1
,
x
2
,
x
3
,
…
.
,
x
n
}
r
ep
r
esen
ted
th
e
w
ir
eles
s
s
en
s
o
r
s
d
ep
lo
y
ed
in
f
ield
an
d
{c
h
1
,
ch
2
,
…
….
,
ch
k
}
is
th
e
clu
s
ter
s
h
ea
d
ch
o
s
e
n
in
i
tial
l
y
r
an
d
o
m
l
y
.
1.
I
n
itialize
t
h
e
m
id
d
le
o
f
th
e
cl
u
s
ter
s
r
an
d
o
m
l
y
ch
r
w
h
er
e:
r
=
1
,
.
.
.
.
,
k
an
d
k
< n
2.
A
ttrib
u
te
t
h
e
clo
s
est cl
u
s
ter
to
ea
ch
d
ata
p
o
in
t
u
s
i
n
g
th
e
E
u
c
lid
ea
n
d
is
ta
n
ce
(
)
(
)
(
3
)
3.
Fo
r
all
clu
s
ter
s
k
,
t
h
e
clu
s
ter
m
id
d
les
ch
i
ar
e
u
p
d
ated
u
s
in
g
:
∑
(
4
)
3.
E
NE
RG
Y
M
O
DE
L
A
s
en
s
o
r
u
s
es
it
s
e
n
er
g
y
t
o
ca
r
r
y
o
u
t
t
h
r
ee
m
ai
n
ta
s
k
s
:
ac
q
u
is
i
tio
n
,
d
ata
p
r
o
ce
s
s
in
g
a
n
d
co
m
m
u
n
icatio
n
.
Ho
w
e
v
er
,
th
e
en
er
g
y
u
s
ed
f
o
r
ac
q
u
is
itio
n
is
n
o
t
p
r
o
m
in
e
n
t
as
m
u
c
h
as
in
t
h
e
co
m
m
u
n
icatio
n
o
p
er
atio
n
.
L
ik
e
w
i
s
e,
th
e
en
er
g
y
co
n
s
u
m
e
d
in
th
e
d
ata
p
r
o
ce
s
s
in
g
o
p
er
atio
n
is
less
i
m
p
o
r
t
an
t
t
h
an
co
m
m
u
n
icatio
n
e
n
er
g
y
[
18
]
.
T
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
u
s
es
t
h
e
f
ir
s
t
o
r
d
er
m
o
d
el
ad
o
p
ted
b
y
L
E
A
C
H
an
d
SEP
p
r
o
to
co
l
s
,
th
e
r
ad
io
m
o
d
el
i
s
s
h
o
w
n
i
n
Fi
g
u
r
e
1
.
Fig
u
r
e
1
.
E
n
er
g
y
m
o
d
el
in
w
ir
e
less
s
en
s
o
r
n
et
w
o
r
k
[
1
8
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
0
5
4
–
2
0
6
0
2056
Ho
w
e
v
er
,
th
e
co
n
s
u
m
ed
e
n
er
g
y
in
d
ata
p
r
o
ce
s
s
i
n
g
o
p
er
ati
o
n
is
le
s
s
i
m
p
o
r
tan
t
t
h
a
n
th
e
en
er
g
y
o
f
co
m
m
u
n
icatio
n
(
e
n
er
g
y
r
eq
u
ir
ed
to
s
en
d
o
r
r
ec
eiv
e
d
ata
to
a
n
o
th
er
n
o
d
e.
T
h
e
d
is
tan
ce
b
et
w
ee
n
tr
an
s
m
itter
an
d
r
ec
eiv
er
in
f
l
u
en
ce
s
t
h
e
q
u
an
tit
y
o
f
t
h
e
co
n
s
u
m
ed
en
er
g
y
to
s
en
d
d
ata
in
to
d
esti
n
atio
n
.
T
o
b
r
o
a
d
ca
s
t
a
K
-
b
it
f
o
r
a
d
is
ta
n
ce
d
,
th
e
en
er
g
y
ex
p
e
n
d
b
y
th
e
s
y
s
te
m
ca
n
b
e
ca
lcu
lated
b
y
t
h
e
E
q
u
atio
n
s
(
5
)
an
d
(
6
)
:
T
h
e
ex
p
en
d
ed
en
er
g
y
ca
n
b
e
s
ch
e
m
a
tized
as f
o
llo
w
s
:
(
5
)
T
h
e
en
er
g
y
e
x
p
en
d
ed
in
t
h
e
tr
an
s
m
it e
lectr
o
n
ics
f
o
r
f
r
ee
s
p
ac
e
p
r
o
p
ag
atio
n
E
T
x
-
f
s
is
d
esc
r
ib
ed
b
y
:
(
)
(
6
)
T
h
e
en
er
g
y
e
x
p
en
d
ed
i
n
t
h
e
t
r
an
s
m
it
e
lectr
o
n
ics
f
o
r
f
r
ee
m
u
lti
-
p
ath
p
r
o
p
ag
atio
n
E
T
x
-
m
p
is
g
iv
e
n
b
y
:
(
)
(
7
)
T
o
r
ec
eiv
e
a
m
e
s
s
a
g
e
o
f
k
b
its
,
th
e
en
er
g
y
co
n
s
u
m
ed
b
y
t
h
e
r
ec
eiv
er
is
g
i
v
e
n
b
y
:
(8
)
W
h
er
e
:
E
Tx
is
t
h
e
elec
tr
ical
en
er
g
y
r
eq
u
ir
ed
to
tr
a
n
s
m
it
a
K
-
b
it
m
e
s
s
a
g
e
o
v
er
a
d
is
ta
n
ce
d
,
E
elec
co
r
r
esp
o
n
d
s
to
th
e
e
n
er
g
y
p
er
b
it
r
eq
u
ir
ed
in
tr
a
n
s
m
it
tin
g
a
n
d
r
ec
eiv
i
n
g
elec
tr
o
n
i
cs
to
p
r
o
ce
s
s
t
h
e
in
f
o
r
m
atio
n
.
an
d
ar
e
co
n
s
tan
ts
co
r
r
esp
o
n
d
in
g
to
t
h
e
en
er
g
y
p
er
b
it
r
eq
u
ir
ed
in
t
h
e
t
r
an
s
m
is
s
io
n
a
m
p
li
f
ier
to
tr
an
s
m
it
a
n
L
-
b
it
m
e
s
s
a
g
e
o
v
er
a
d
is
tan
ce
d
2
a
n
d
d
4
f
o
r
f
r
ee
s
p
ac
e
an
d
m
u
lt
i
-
p
ath
p
r
o
p
ag
atio
n
m
o
d
e
s
,
r
esp
ec
ti
v
el
y
.
B
y
eq
u
a
t
in
g
f
o
r
m
u
la
(
6
)
an
d
(
7
)
,
w
e
d
e
ter
m
i
n
e
t
h
e
d
is
ta
n
ce
d
=d
0
w
h
en
t
h
e
p
r
o
p
ag
atio
n
tr
an
s
itio
n
s
f
r
o
m
d
ir
ec
t p
ath
to
m
u
lti
-
p
ath
:
d
0
=
√
(
9
)
I
f
t
h
e
d
is
ta
n
ce
b
et
w
ee
n
th
e
tr
an
s
m
itter
a
n
d
t
h
e
r
ec
ei
v
er
i
s
l
ar
g
er
th
a
n
t
h
e
cr
o
s
s
o
v
er
d
is
ta
n
ce
d
0
,
t
h
e
m
u
lti
-
p
ath
m
o
d
el
is
e
m
p
lo
y
ed
.
Oth
er
w
is
e,
t
h
e
f
r
ee
s
p
ac
e
m
o
d
el
is
ad
o
p
ted
to
m
ea
s
u
r
e
t
h
e
en
er
g
y
d
is
s
ip
atio
n
.
4.
H
YB
RID
K
-
M
E
ANS
AP
P
R
O
ACH
T
h
e
p
r
o
p
o
s
ed
r
o
u
ti
n
g
ap
p
r
o
ac
h
ai
m
s
m
ai
n
l
y
to
o
p
tim
ize
t
h
e
en
er
g
y
co
n
s
u
m
ed
in
d
ata
co
m
m
u
n
icatio
n
s
.
Usi
n
g
K
-
m
e
an
s
cl
u
s
ter
i
n
g
alg
o
r
it
h
m
alo
n
g
w
it
h
L
E
A
C
H
p
r
o
to
co
l
en
ab
le
m
e
m
b
er
n
o
d
es
to
b
e
attac
h
ed
to
t
h
e
clo
s
e
s
t
C
H
in
t
h
e
n
et
w
o
r
k
.
B
y
ad
o
p
tin
g
th
e
p
r
o
p
o
s
ed
s
ch
e
m
e,
t
h
e
tr
an
s
m
i
s
s
io
n
e
n
er
g
y
i
s
m
i
n
i
m
ized
an
d
th
e
n
et
w
o
r
k
li
f
esp
an
is
i
m
p
r
o
v
ed
.
B
y
co
n
s
id
er
in
g
n
n
o
d
es
r
an
d
o
m
l
y
g
e
n
er
ate
in
ar
ea
w
ith
d
i
m
e
n
s
io
n
M*
M
,
O
u
r
ap
p
r
o
a
ch
,
th
e
k
-
Me
an
s
cl
u
s
ter
in
g
al
g
o
r
ith
m
is
u
s
ed
i
n
itiall
y
f
o
r
class
i
f
y
th
e
n
o
d
es
in
w
ir
eles
s
s
e
n
s
o
r
s
n
e
t
wo
r
k
in
g
r
o
u
p
s
,
T
h
e
class
i
f
i
ca
tio
n
tak
e
s
p
lace
as f
o
llo
w
s
:
th
e
i
n
it
ializatio
n
o
f
k
,
tak
e
k
n
u
m
b
er
o
f
g
r
o
u
p
s
,
th
e
ch
o
s
en
k
ce
n
tr
o
id
s
in
itial
l
y
at
r
an
d
o
m
p
lace
s
o
f
g
r
o
u
p
s
w
h
ic
h
w
ill b
e
co
n
s
tr
u
cte
d
o
r
k<
n
.
T
h
e
n
ex
t
s
tep
co
n
s
i
s
ts
o
f
g
r
o
u
p
in
g
t
h
e
n
o
d
es
in
to
clu
s
ter
s
u
s
in
g
t
h
e
E
u
clid
ea
n
d
is
tan
ce
.
E
a
ch
n
o
d
e
is
attac
h
ed
to
th
e
clo
s
est
ce
n
tr
o
id
in
th
e
n
e
t
w
o
r
k
.
T
h
en
t
h
e
r
ec
alcu
late
th
e
p
o
s
itio
n
o
f
ce
n
tr
o
id
in
ea
c
h
g
r
o
u
p
,
i
f
th
e
p
o
s
itio
n
o
f
t
h
e
ce
n
tr
o
id
is
ch
an
g
ed
t
h
en
r
etu
r
n
s
to
s
tep
t
h
e
j
o
in
o
f
ea
ch
n
o
d
e
i
n
t
h
e
n
e
w
n
ea
r
es
t
ce
n
tr
o
id
;
I
f
th
e
p
o
s
itio
n
o
f
th
e
ce
n
tr
o
id
s
d
o
es n
o
t c
h
an
g
e.
Seco
n
d
l
y
,
t
h
e
L
ea
c
h
p
r
o
to
co
l
is
u
s
ed
i
n
ea
ch
g
r
o
u
p
f
o
r
th
e
s
elec
tio
n
o
f
cl
u
s
ter
s
h
ea
d
an
d
th
e
ir
m
e
m
b
er
s
.
T
h
e
o
p
tim
a
l
n
u
m
b
er
o
f
C
Hs
is
esti
m
ated
to
b
e
5
%
o
f
th
e
to
tal
n
u
m
b
er
o
f
n
o
d
es
[
18
]
.
T
h
e
n
o
d
e
elec
ts
its
el
f
to
b
ec
o
m
e
a
clu
s
te
r
h
ea
d
b
y
s
o
m
e
p
r
o
b
ab
ilit
y
a
n
d
b
r
o
a
d
ca
s
ts
its
s
tat
u
s
to
th
e
g
r
o
u
p
m
e
m
b
er
s
.
A
lar
g
er
n
u
m
b
er
o
f
n
o
d
es
m
a
y
elec
t
th
e
m
s
elv
e
s
a
s
cl
u
s
ter
h
ea
d
s
t
h
a
n
t
h
e
d
esire
d
n
u
m
b
e
r
o
f
cl
u
s
ter
h
ea
d
s
.
T
h
is
d
ec
is
io
n
is
m
ad
e
b
y
th
e
n
o
d
e
b
y
ch
o
o
s
i
n
g
a
r
an
d
o
m
n
u
m
b
er
b
et
w
ee
n
0
an
d
1
.
T
h
e
n
o
d
e
b
ec
o
m
e
s
a
C
H
f
o
r
th
e
cu
r
r
en
t
r
o
u
n
d
if
th
e
n
u
m
b
er
is
les
s
th
a
n
th
e
th
r
esh
o
ld
T
(
s
)
,
th
e
n
o
d
e
d
ec
lar
e
s
C
H
ac
co
r
d
in
g
to
th
e
E
q
u
atio
n
f
o
llo
w
i
n
g
t
h
r
es
h
o
ld
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
E
n
erg
y
-
E
fficien
t H
yb
r
id
K
-
Mea
n
s
A
lg
o
r
ith
m
fo
r
C
lu
s
tered
Wir
ele
s
s
S
en
s
o
r
N
et
w
o
r
ks
(
A
z
iz
Ma
h
b
o
u
b
)
2057
{
(
(
)
)
}
(
1
0
)
W
h
er
e
p
is
th
e
d
esire
d
p
er
ce
n
tag
e
o
f
CH
n
o
d
es
i
n
th
e
s
en
s
o
r
p
o
p
u
latio
n
an
d
r
i
s
th
e
c
u
r
r
en
t
r
o
u
n
d
n
u
m
b
er
,
w
h
er
e
G
k
is
t
h
e
g
r
o
u
p
o
f
n
o
d
es th
at
h
av
e
n
o
t b
ee
n
C
Hs in
t
h
e
last
1
/p
r
o
u
n
d
s
[
18
].
Fig
u
r
e
2
.
Flo
w
c
h
ar
t o
f
t
h
e
clu
s
ter
f
o
r
m
a
tio
n
p
r
o
ce
s
s
o
f
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
5.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
A
ll
s
i
m
u
latio
n
s
w
er
e
p
er
f
o
m
e
d
u
s
i
n
g
M
A
T
L
A
B
.
W
e
s
tar
te
d
b
y
a
s
er
ies
o
f
s
i
m
u
latio
n
s
t
o
ascer
tain
th
e
ex
p
er
i
m
e
n
tal
o
p
ti
m
al
v
al
u
e
o
f
th
e
n
u
m
b
er
o
f
claa
s
i
f
ied
g
r
o
u
p
s
t
h
at
ca
n
p
r
o
v
id
e
e
n
er
g
y
e
f
f
icei
n
y
in
t
h
e
s
en
s
o
r
n
et
w
o
k
.
W
e
test
ed
th
e
p
er
f
o
m
ed
n
et
w
o
r
k
w
it
h
d
i
f
f
e
r
en
t
clu
s
ter
s
n
u
m
b
er
(
k=2
,
k=3
,
k=4
an
d
k=5
)
.
W
e
p
er
f
o
m
ed
s
i
m
u
lat
io
n
f
o
r
tw
o
al
g
o
r
ith
m
s
(
L
E
AC
H
a
n
d
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
)
,
w
e
co
m
p
ar
e
an
d
d
is
cu
s
s
t
h
e
o
b
tain
ed
r
esu
lt
s
.
T
h
e
s
i
m
u
lat
ed
n
et
w
o
r
k
co
n
s
i
s
ts
o
f
1
0
0
n
o
d
es
d
is
tr
ib
u
ted
r
an
d
o
m
l
y
in
an
ar
ea
o
f
1
0
0
m
×
100
m
.
T
h
e
b
ase
s
tatio
n
i
s
lo
ca
ted
at
p
o
s
itio
n
(
5
0
m
,
-
5
0
m
)
.
E
v
er
y
n
o
d
e
tr
a
n
s
m
it
s
a
4
0
0
0
-
b
it
m
e
s
s
a
g
e
p
er
r
o
u
n
d
to
its
clu
s
ter
h
ea
d
.
T
h
e
p
r
o
b
ab
ilit
y
o
f
b
ein
g
cl
u
s
ter
h
ea
d
is
s
et
to
0
.
0
5
,
a
b
o
u
t
5
%
o
f
n
o
d
es
p
er
r
o
u
n
d
b
ec
o
m
e
cl
u
s
ter
h
ea
d
Fi
g
u
r
e
3
p
r
esen
ts
t
h
e
n
u
m
b
er
o
f
li
v
e
n
o
d
es
v
er
s
u
s
tr
a
n
s
m
i
s
s
io
n
r
o
u
n
d
s
f
o
r
H
y
b
r
id
K
-
m
ea
n
ap
p
r
o
ac
h
f
o
r
d
if
f
er
e
n
t
class
i
f
icat
io
n
n
u
m
b
er
(
K
)
.
T
h
e
b
est
en
er
g
y
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
w
a
s
o
b
tain
ed
w
h
en
K
=3
.
T
h
e
s
tab
ilit
y
p
er
io
d
w
as
s
u
f
f
ic
ien
t
l
y
ex
ten
d
ed
an
d
th
e
n
et
w
o
r
k
lifm
et
i
m
e
w
a
s
en
o
r
m
o
u
s
l
y
le
n
g
h
te
n
en
d
.
I
n
co
n
s
eq
u
e
n
ce
,
w
e
ch
o
o
s
e
t
o
p
er
o
f
m
t
h
e
H
y
b
r
id
K
-
Me
an
ap
p
r
o
ac
h
w
i
th
t
h
e
o
p
tim
a
l v
al
u
e
o
f
cla
s
s
i
f
icatio
n
(
K
=3
)
.
I
n
o
r
d
er
to
ev
alu
a
te
t
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
p
er
f
o
r
m
a
n
c
e,
s
e
v
er
al
p
lo
ts
w
er
e
g
en
er
ated
to
ch
ar
ac
ter
ize
en
er
g
y
co
n
s
u
m
p
tio
n
a
n
d
th
e
d
is
tr
ib
u
tio
n
o
f
l
iv
e
a
n
d
d
ea
d
n
o
d
es
in
th
e
h
y
b
r
id
K
-
Me
an
s
n
et
w
o
r
k
.
W
e
ca
lcu
late
th
e
to
tal
W
S
N
e
n
er
g
y
,
an
d
d
i
s
tr
ib
u
tio
n
o
f
ali
v
e
n
o
d
es
f
o
r
ea
ch
m
e
th
o
d
(
L
E
AC
H
a
n
d
H
y
b
r
id
K
-
Me
an
s
)
o
n
co
m
m
o
n
p
lo
ts
to
co
m
p
ar
e
n
e
t
w
o
r
k
p
er
f
o
r
m
a
n
c
e.
T
h
e
to
tal
s
y
s
te
m
en
er
g
y
a
n
d
n
u
m
b
er
o
f
n
o
d
es
v
er
s
u
s
tr
an
s
m
is
s
io
n
r
o
u
n
d
ar
e
s
h
o
w
n
in
F
ig
u
r
e
4
an
d
Fig
u
r
e
5
r
esp
ec
tiv
el
y
.
s.
Si
m
u
latio
n
to
tal
e
n
er
g
y
o
f
t
h
e
n
et
w
o
r
k
u
s
in
g
L
E
AC
H
p
r
o
to
co
l
an
d
t
h
e
p
r
o
p
o
s
ed
H
y
b
r
id
K
-
Me
a
n
s
alg
o
r
ith
m
is
ca
r
r
ied
o
u
t
i
n
o
r
d
er
to
ev
al
u
ate
t
h
e
a
lg
o
r
it
h
m
s
e
n
er
g
y
p
er
f
o
r
m
a
n
ce
.
T
ab
le
1
s
h
o
w
t
h
e
s
i
m
u
lat
io
n
p
ar
am
eter
s
u
s
ed
i
n
th
is
w
o
r
k
.
T
h
e
co
m
p
ar
is
o
n
w
e
ca
r
r
y
o
u
t
in
t
h
is
w
o
r
k
b
et
w
ee
n
t
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
an
d
L
E
A
C
H
p
r
o
to
co
l
is
b
ased
o
n
s
o
m
e
k
e
y
p
er
f
o
r
m
a
n
ce
p
ar
a
m
eter
s
o
f
w
ir
eles
s
s
e
n
s
o
r
s
n
et
w
o
r
k
:
f
ir
s
tl
y
,
t
h
e
n
et
w
o
r
k
li
f
eti
m
e
t
h
at
d
escr
ib
e
th
e
ti
m
e
i
n
ter
v
a
l
b
et
w
ee
n
t
h
e
s
tar
t
o
f
th
e
n
e
t
w
o
r
k
o
p
er
atio
n
an
d
th
e
d
ea
th
o
f
th
e
last
s
e
n
s
o
r
n
o
d
e.
T
h
e
s
ec
o
n
d
p
ar
am
eter
is
t
h
e
n
u
m
b
er
o
f
aliv
e
n
o
d
es
w
h
ich
is
th
e
to
tal
n
u
m
b
er
o
f
th
e
s
e
n
s
o
r
n
o
d
es
th
at
h
av
e
n
o
t
y
et
d
ep
leted
all
o
f
th
e
ir
en
er
g
ie
s
.
T
h
e
th
ir
d
p
ar
am
eter
is
th
e
n
u
m
b
er
o
f
d
ea
d
n
o
d
es
w
h
ic
h
is
t
h
e
to
tal
n
u
m
b
er
o
f
s
e
n
s
o
r
n
o
d
es
t
h
a
t
h
a
v
e
co
n
s
u
m
ed
all
o
f
t
h
ei
r
en
er
g
y
a
n
d
ar
e
n
o
t
ab
le
t
o
d
o
an
y
k
i
n
d
o
f
f
u
n
ctio
n
alit
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
0
5
4
–
2
0
6
0
2058
T
h
e
o
b
tain
ed
r
esu
lts
h
a
v
e
d
em
o
n
s
tr
ated
th
at
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
r
e
d
u
ce
s
th
e
en
er
g
y
c
o
n
s
u
m
p
tio
n
b
y
r
o
u
n
d
,
a
n
d
e
x
te
n
d
th
e
n
e
t
w
o
r
k
li
f
eti
m
e.
A
cc
o
r
d
in
g
to
F
i
g
u
r
e
4
,
t
h
e
e
n
er
g
y
co
n
s
u
m
p
tio
n
r
ate
o
f
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
is
les
s
t
h
a
n
t
h
e
L
E
AC
H
p
r
o
to
co
l.
A
t
ap
p
r
o
x
i
m
atel
y
r
o
u
n
d
2
3
0
0
an
d
2
40
0
f
o
r
th
e
L
E
AC
H
p
r
o
to
co
l,
th
er
e
is
n
o
en
er
g
y
i
n
t
h
e
W
SN;
O
n
t
h
e
o
th
er
h
a
n
d
th
e
e
x
h
au
s
tio
n
o
f
s
y
s
te
m
en
er
g
y
i
n
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
b
eg
in
s
a
t
4
0
00
r
o
u
n
d
s
,
th
er
ef
o
r
e
t
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
p
r
o
v
id
ed
th
e
lo
n
g
est
li
f
eti
m
e
o
f
W
SN
d
u
e
to
th
e
L
ea
c
h
p
r
o
to
co
l
.
T
ab
le
1
.
Sim
u
lat
io
n
p
ar
a
m
eter
s
S
i
mu
l
a
t
i
o
n
A
r
e
a
1
0
0
m
*
1
0
0
m
B
S
L
o
c
a
t
i
o
n
(
5
0
m ,
-
1
0
0
m)
N
u
mb
e
r
o
f
N
o
d
e
s
1
0
0
T
r
a
n
smiss
i
o
n
a
m
p
l
i
f
i
e
r
f
r
e
e
sp
a
c
e
εf
s
1
0
p
J
/
b
i
t
/
m
2
T
r
a
n
smissi
o
n
a
mp
l
i
f
i
e
r
,
mu
l
t
i
p
a
t
h
ε
m
p
0
.
0
0
1
3
p
J/
b
i
t
/
m
4
D
a
t
a
A
g
g
r
e
g
a
t
i
o
n
En
e
r
g
y
5
n
J
/
b
i
t
/
msg
T
r
a
n
smissi
o
n
E
n
e
r
g
y
E
T
x
5
0
n
J
R
e
c
e
i
v
i
n
g
E
n
e
r
g
y
ER
X
5
0
n
J
N
e
t
w
o
r
k
D
i
me
n
si
o
n
1
0
0
m*
1
0
0
m
S
i
g
n
a
l
w
a
v
e
l
e
n
g
h
t
λ
0
.
3
2
5
m
A
n
t
e
n
n
a
g
a
i
n
f
a
c
t
o
r
G
t
,
G
r
1
M
e
ssag
e
si
z
e
(
b
i
t
s)
4
0
0
0
b
i
t
s
I
n
i
t
i
a
l
n
o
d
e
e
n
e
r
g
y
0
.
5
J
Fig
u
r
e
3
.
Nn
u
m
b
er
o
f
n
o
d
es a
l
iv
e
v
er
s
u
s
tr
an
s
m
is
s
io
n
r
o
u
n
d
f
o
r
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
I
n
d
if
f
er
e
n
t k
Fig
u
r
e
4
.
T
o
tal
s
y
s
te
m
en
er
g
y
v
er
s
u
s
tr
an
s
m
is
s
io
n
r
o
u
n
d
f
o
r
L
E
AC
H
a
n
d
p
r
o
p
o
s
ed
ap
p
r
o
ch
Fig
u
r
e
5
.
Nn
u
m
b
er
o
f
n
o
d
es a
l
iv
e
v
er
s
u
s
tr
an
s
m
i
s
s
io
n
r
o
u
n
d
f
o
r
L
E
A
C
H
an
d
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
E
n
erg
y
-
E
fficien
t H
yb
r
id
K
-
Mea
n
s
A
lg
o
r
ith
m
fo
r
C
lu
s
tered
Wir
ele
s
s
S
en
s
o
r
N
et
w
o
r
ks
(
A
z
iz
Ma
h
b
o
u
b
)
2059
6.
CO
NCLU
SI
O
N
T
h
e
m
ai
n
o
b
j
ec
tiv
e
o
f
th
is
w
o
r
k
is
to
p
r
o
p
o
s
e
a
n
o
v
el
cl
u
s
te
r
in
g
r
o
u
ti
n
g
ap
p
r
o
ac
h
b
ased
o
n
k
-
Me
an
s
alg
o
r
ith
m
a
n
d
L
E
AC
H
p
r
o
to
co
l
ap
p
lied
f
o
r
w
ir
eles
s
s
en
s
o
r
n
et
w
o
r
k
s
.
T
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
m
in
i
m
izes
th
e
en
er
g
y
co
n
s
u
m
p
tio
n
,
e
x
ten
d
s
t
h
e
n
et
w
o
r
k
li
f
eti
m
e
o
f
t
h
e
s
e
n
s
o
r
n
o
d
es
.
T
h
e
ev
o
l
u
tio
n
a
n
d
en
h
a
n
ce
m
en
t o
f
t
h
e
p
r
esen
ted
r
o
u
tin
g
al
g
o
r
ith
m
s
h
o
u
ld
b
e
d
o
n
e
in
th
e
f
u
t
u
r
e
to
s
u
p
p
o
r
t m
u
ltip
at
h
an
d
h
eter
o
g
e
n
eo
u
s
m
o
d
es.
RE
F
E
R
E
NC
E
S
[1
]
V
e
h
b
iÇağ
rıG
ü
n
g
ö
r
a
n
d
G
e
rh
a
rd
P
.
Ha
n
c
k
e
,
“
In
d
u
strial
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
s:
A
p
p
li
c
a
ti
o
n
s,
P
r
o
to
c
o
ls,
a
n
d
S
tan
d
a
rd
s”
,
CRC
P
re
ss
8
3
,
p
p
:
1
0
2
7
-
4
0
,
2
0
1
3
.
[2
]
I.
A
k
y
il
d
iz,
“
A
S
u
rv
e
y
o
n
S
e
n
so
r
Ne
tw
o
rk
s”
,
IEE
E
Co
m
m
u
n
.
M
a
g
.
,
v
o
l.
4
0
,
n
o
.
8
,
p
p
.
1
0
2
-
1
1
4
,
2
0
0
2
.
[3
]
He
in
z
e
l
m
a
n
W
,
Ch
a
n
d
ra
k
a
sa
n
A
,
Ba
la
k
rish
a
m
H,
“
En
e
rg
y
-
Ef
fi
c
ien
t
Co
mm
u
n
ica
t
io
n
Pro
t
o
c
o
l
fo
r
W
ire
les
s
M
icr
o
se
n
so
r
Ne
two
rk
s”
,
In
P
r
o
c
e
e
d
in
g
o
f
th
e
3
3
rd
A
n
n
u
a
l
H
u
a
w
a
ii
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
S
y
ste
m
S
c
ien
c
e
s,
p
p
.
3
0
0
5
-
1
4
,
2
0
0
0
.
[4
]
A
z
i
z
M
a
h
b
o
u
b
,
M
o
u
n
ir
A
rio
u
a
,
EL
M
o
k
h
tar
En
-
Na
im
ian
d
Im
a
d
Ezz
a
z
i,
“
M
u
lt
i
-
zo
n
a
l
A
p
p
r
o
a
c
h
fo
r
Cl
u
ste
re
d
W
ire
les
s
S
e
n
so
r
Ne
two
rk
s”
,
2
nd
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
El
e
c
tr
ica
l
a
n
d
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
l
o
g
ies
,
ICEIT
2
0
1
6
,
M
a
y
4
-
7
,
2
0
1
6
.
[5
]
A
z
i
z
M
a
h
b
o
u
b
,
M
o
u
n
ir
A
rio
u
a
,
E
L
M
o
k
h
tar
En
-
N
a
i
m
i,
I
m
a
d
Ez
z
a
z
i,
“
P
e
rf
o
r
m
a
n
c
e
E
v
o
lu
ti
o
n
o
f
En
e
rg
y
-
E
ff
icie
n
t
Clu
ste
rin
g
A
lg
o
rit
h
m
s
in
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
”
,
J
o
u
rn
a
l
o
f
T
h
e
o
re
ti
c
a
l
a
n
d
A
p
p
li
e
d
I
n
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
,
2
0
1
6
.
[6
]
P
e
n
g
Z
h
u
,
“
A
Ne
w
A
p
p
ro
a
c
h
to
S
e
n
so
r
E
n
e
rg
y
S
a
v
in
g
A
l
g
o
rit
h
m
”
,
T
EL
KOM
NIKA
,
Vo
l.
1
1
,
N
o
.
5
,
p
p
.
2
4
8
5
~
2
4
8
9
,
2
0
1
3
.
[7
]
Nish
i
S
h
a
rm
a
,
V
a
n
d
n
a
V
e
rm
a
,
“
En
e
rg
y
Eff
i
c
ien
t
L
E
A
CH
P
ro
to
c
o
l
f
o
r
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
In
fo
rm
a
ti
o
n
&
Ne
two
rk
S
e
c
u
rity (
IJ
INS
)
,
Vo
l.
2
,
N
o
.
4
,
p
p
.
3
3
3
~
3
3
8
,
2
0
1
3
.
[8
]
M
e
c
h
ta
D,
Ha
ro
u
s
S
A
l
e
m
I
Kh
e
b
b
a
b
D,
“
L
EA
CH
-
CKM
:
L
o
w
En
e
rg
y
Ad
a
p
ti
v
e
Clu
ste
rin
g
Hie
ra
rc
h
y
p
ro
to
c
o
l
wit
h
K
-
M
e
a
n
s
a
n
d
M
T
E”
,
1
0
th
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
I
n
n
o
v
a
ti
o
n
s
in
I
n
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
,
2
0
1
4
.
[9
]
Ka
n
u
n
g
o
T
,
M
o
u
n
t
DM
,
Ne
tan
y
a
h
u
NS,
P
iatk
o
CD,
S
il
v
e
rm
a
n
R,
W
u
A
Y,
“
A
n
E
ff
icie
n
t
k
-
M
e
a
n
s
Clu
ste
rin
g
A
l
g
o
rit
h
m
A
n
a
l
y
sis a
n
d
I
m
p
le
m
e
n
t
a
ti
o
n
”
,
IEE
E
T
P
a
tt
e
rn
An
a
l
,
2
4
:8
8
1
–
92
,
2
0
0
2
.
[1
0
]
Ce
leb
i
M
E,
Kin
g
ra
v
i
HA
,
V
e
la
P
A
,
“
A
Co
m
p
a
ra
ti
v
e
S
tu
d
y
o
f
Eff
icie
n
t
In
it
ializa
ti
o
n
M
e
t
h
o
d
s
f
o
r
th
e
k
-
M
e
a
n
s
C
lu
ste
rin
g
A
lg
o
rit
h
m
”
,
Exp
e
rt
S
y
st A
p
p
l
,
4
0
:
2
0
0
–
10
,
2
0
1
3
.
[1
1
]
V
e
lm
u
ru
g
a
n
T
.
“
P
e
rf
o
r
m
a
n
c
e
b
a
se
d
a
n
a
l
y
sis
b
e
t
w
e
e
n
k
-
M
e
a
n
s
a
n
d
F
u
z
z
y
C
-
M
e
a
n
s
c
lu
ste
rin
g
a
lg
o
rit
h
m
s
f
o
r
c
o
n
n
e
c
ti
o
n
o
rien
ted
tele
c
o
m
m
u
n
ica
ti
o
n
d
a
ta”
.
A
p
p
l
S
o
f
t
Co
m
p
u
t
,
1
9
:1
3
4
–
46
,
2
0
1
4
.
[1
2
]
Ha
rb
H.a.,
M
a
k
h
o
u
l
A
,
L
a
i
y
m
a
n
i
D.a,
Ja
b
e
r
A
.
b
.
,
T
a
w
il
R.
b
.
,
“K
-
M
e
a
n
s
b
a
se
d
Clu
ste
rin
g
A
p
p
r
o
a
c
h
fo
r
Da
t
a
Ag
g
re
g
a
ti
o
n
i
n
Per
io
d
ic
S
e
n
so
r
N
e
two
rk
s”
,
10
th
IEE
E
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
W
irele
s
s
a
n
d
M
o
b
il
e
Co
m
p
u
ti
n
g
,
Ne
t
w
o
rk
in
g
a
n
d
Co
m
m
u
n
ica
ti
o
n
s,
p
p
.
434
-
4
1
,
2
0
1
4
.
[1
3
]
Nith
y
a
k
a
l
y
a
n
i
S
.
a
,
G
o
p
i
n
a
th
B.
b
.
,
“
A
n
a
ly
sis
o
f
No
d
e
Clu
ste
ri
n
g
A
l
g
o
rit
h
m
s
o
n
Da
ta
A
g
g
r
e
g
a
t
io
n
in
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
”
,
J
o
u
rn
a
l
o
f
S
c
ie
n
ti
fi
c
a
n
d
In
d
u
stri
a
l
Res
e
a
rc
h
,
7
4
Iss
u
e
1
,
p
p
.
38
-
4
2
,
2
0
1
5
.
[1
4
]
Ku
m
a
r
P
.
a
.
,
Ch
a
t
u
rv
e
d
i
A
.
b
.
,
“
L
if
e
T
ime
En
h
a
n
c
e
me
n
t
o
f
W
ire
les
s
S
e
n
so
r
Ne
two
rk
u
sin
g
F
u
zz
y
c
-
M
e
a
n
s
Clu
ste
rin
g
A
lg
o
rith
m
”
,
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
S
y
ste
m
s,
2
0
1
4
.
[1
5
]
T
a
n
L
.
a
b
,
G
o
n
g
Y.a.,
Ch
e
n
G
.
a
.
,
“
A
Ba
l
a
n
c
e
d
Pa
ra
ll
e
l
Clu
ste
rin
g
Pro
to
c
o
l
fo
r
W
ire
les
s
S
e
n
so
r
N
e
t
wo
rk
s
u
sin
g
K
-
M
e
a
n
s
T
e
c
h
n
i
q
u
e
s”
,
2
nd
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
S
e
n
s
o
r
T
e
c
h
n
o
lo
g
ies
a
n
d
A
p
p
li
c
a
ti
o
n
s,
2
0
0
8
.
[1
6
]
T
h
a
i
T
.
V
u
,
V
iet
D.
Ng
u
y
e
n
2
,
Hie
n
M
.
Ng
u
y
e
n
,
“
A
n
En
e
rg
y
-
Aw
a
re
Ro
u
ti
n
g
P
r
o
t
o
c
o
l
f
o
r
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
s
Ba
s
e
d
o
n
K
-
M
e
a
n
s
Clu
ste
rin
g
”
,
A
E
TA
2
0
1
3
:
Re
c
e
n
t
A
d
v
a
n
c
e
s
in
El
e
c
tri
c
a
l
En
g
in
e
e
ri
n
g
a
n
d
Re
late
d
S
c
ien
c
e
s
,
pp
.
2
9
7
-
3
0
6
,
2
0
1
4
.
[1
7
]
Dia
n
h
u
C
h
e
n
g
,
X
ia
n
g
q
ian
Di
n
g
,
Jia
n
x
in
Zen
g
,
Nin
g
Ya
n
g
,
“
Hy
b
rid
K
-
m
e
a
n
s
A
l
g
o
rit
h
m
a
n
d
G
e
n
e
ti
c
A
lg
o
rit
h
m
f
o
r
Clu
ste
r
A
n
a
l
y
sis”
,
T
E
L
KO
M
NIK
A
In
d
o
n
e
si
a
n
Jo
u
r
n
a
l
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
V
o
l.
1
2
,
No
.
4
,
p
p
.
2
9
2
4
~
2
9
3
5
,
2
0
1
4
.
[1
8
]
A
z
i
z
M
a
h
b
o
u
b
,
M
o
u
n
ir
A
rio
u
a
,
EL
m
o
k
h
tar
En
-
n
a
i
m
i,
I
m
a
d
Ezz
a
z
i
a
n
d
A
h
m
e
d
El
Ou
a
lk
a
d
.
“
M
u
lt
i
-
z
o
n
a
l
a
p
p
ro
a
c
h
Cl
u
ste
rin
g
b
a
se
d
o
n
S
t
a
b
le
El
e
c
ti
o
n
P
ro
t
o
c
o
l
i
n
He
tero
g
e
n
e
o
u
s
W
irele
ss
S
e
n
so
r
Ne
t
w
o
rk
s”
.
IEE
E
4
th
Ed
it
i
o
n
o
f
th
e
I
n
tern
a
ti
o
n
a
l
C
o
ll
i
q
u
i
u
m
o
n
In
f
o
rm
a
ti
o
n
S
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
CiS
t'
1
6
,
2
0
1
6
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
Aziz
M
a
hb
o
ub
is
a
P
h
D
s
tu
d
en
t
i
n
L
IS
T
(
L
a
b
o
ra
to
ire
d
'
In
f
o
r
m
a
ti
q
u
e
,
S
y
stè
m
e
s
e
t
T
é
lé
c
o
m
m
u
n
ica
ti
o
n
s)
L
a
b
o
ra
to
ry
,
De
p
a
rt
m
e
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
.
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
T
e
c
h
n
iq
u
e
s,
T
a
n
g
ier,
M
o
r
o
c
c
o
,
a
t
th
e
Un
iv
e
rsit
y
o
f
A
b
d
e
l
m
a
le
k
Essa
â
d
i
.
His
re
se
a
rc
h
in
tere
st
s
in
c
lu
d
e
w
irele
ss
s
e
n
so
r
n
e
t
w
o
rk
s,
w
irele
s
s
n
e
tw
o
rk
in
g
a
n
d
c
o
m
m
u
n
ica
ti
o
n
.
He
is
a
n
a
u
to
r
o
f
se
v
e
r
a
l
a
rti
c
l
es
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
0
5
4
–
2
0
6
0
2060
M
o
u
n
ir
Ar
io
u
a
r
ece
iv
e
d
h
is
P
h
.
D
d
e
g
re
e
in
T
e
lec
o
m
m
u
n
ica
ti
o
n
s
a
n
d
C
o
m
p
u
ter
S
c
ien
c
e
f
ro
m
Ca
d
i
Ay
y
a
d
Un
i
v
e
rsit
y
o
f
M
a
rra
k
e
c
h
i
n
2
0
1
2
.
I
n
2
0
1
2
,
h
e
j
o
i
n
e
d
t
h
e
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s
o
f
M
a
rra
k
e
c
h
a
s
re
s
e
a
rc
h
a
ss
ista
n
t
a
n
d
a
ss
istan
t
p
ro
f
e
ss
o
r.
Cu
rre
n
tl
y
,
h
e
is
p
ro
fe
ss
o
r
a
t
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
li
e
d
S
c
ien
c
e
s
in
th
e
d
e
p
a
rtm
e
n
t
o
f
En
g
in
e
e
rin
g
T
e
c
h
n
o
lo
g
i
e
s,
Un
iv
e
rsity
o
f
A
b
d
e
l
m
a
le
k
Es
sa
a
d
i.
His
re
se
a
r
c
h
in
tere
sts
in
c
l
u
d
e
w
irele
ss
se
n
so
r
n
e
t
w
o
rk
s,
In
tern
e
t
o
f
th
i
n
g
s
,
w
irele
ss
n
e
t
w
o
rk
in
g
a
n
d
c
o
m
m
u
ni
c
a
ti
o
n
,
w
irele
ss
c
o
m
m
u
n
ica
ti
o
n
s
a
n
d
m
o
b
il
e
c
o
m
p
u
ti
n
g
,
re
a
l
-
ti
m
e
p
ro
c
e
ss
in
g
a
n
d
e
m
b
e
d
d
e
d
sy
ste
m
s.
El
M
o
k
h
t
a
r
En
-
Na
i
m
i
is
a
P
ro
f
e
ss
o
r
in
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
T
e
c
h
n
o
l
o
g
ies
o
f
T
a
n
g
ier
,
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
.
He
is
re
sp
o
n
sib
le
f
o
r
a
Ba
c
h
e
lo
r
o
f
S
c
ien
c
e
s
a
n
d
T
e
c
h
n
o
l
o
g
ies
,
BS
T
Co
m
p
u
ter.
A
c
tu
a
ll
y
,
h
e
is
a
He
a
d
o
f
Co
m
p
u
ter
S
c
ien
c
e
De
p
a
rtm
e
n
t,
sin
c
e
Oc
to
b
e
r
2
0
1
6
.
He
i
s
a
lso
a
m
e
m
b
e
r
o
f
th
e
LIS
T
Lab
o
ra
to
ry
(
L
a
b
o
ra
to
ire
d
'
In
f
o
rm
a
ti
q
u
e
,
S
y
stè
m
e
s
e
t
T
é
lé
c
o
m
m
u
n
ica
ti
o
n
s),
th
e
Un
iv
e
rsity
o
f
A
b
d
e
lma
lek
Essa
â
d
i,
F
S
T
o
f
T
a
n
g
ier,
M
o
ro
c
c
o
.
He
is
a
n
A
u
to
r
a
n
d
/
o
r
C
o
-
A
u
to
r
o
f
se
v
e
ra
l
A
rti
c
les
in
Co
m
p
u
ter
S
c
ien
c
e
,
in
p
a
rti
c
u
lar,
in
S
M
A
,
Ca
se
s
Ba
se
d
Re
a
so
n
in
g
(CBR),
e
L
e
a
rn
in
g
,
Big
D
ATA
,
Da
t
a
m
in
in
g
,
W
irele
s
s
se
n
so
r
n
e
tw
o
rk
,
V
A
Ne
t,
M
A
N
e
t,
e
tc.
In
a
d
d
it
io
n
,
h
e
is
a
n
A
s
so
c
iate
M
e
m
b
e
r
o
f
th
e
IS
CN
-
In
stit
u
te
o
f
Co
m
p
lex
S
y
ste
m
s
i
n
No
rm
a
n
d
y
,
th
e
Un
iv
e
rsity
o
f
th
e
Ha
v
re
,
F
ra
n
c
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.