I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
201
7
,
p
p
.
3
6
3
~
3
7
3
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
1
.
p
p
3
6
3
-
3
7
3
363
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Decisio
n
-
M
a
k
ing
M
o
del f
o
r St
uden
t
Ass
ess
m
en
t
by
Unifying
Nu
m
erical a
nd
Li
ng
uistic Data
Sri A
nd
a
y
a
ni
1
,
Sri H
a
rt
a
t
i
2
,
Ret
a
nty
o
Wa
rdo
y
o
3
,
Dj
em
a
r
i M
a
rda
pi
4
1
Do
c
to
r
a
l
p
r
o
g
ra
m
o
f
Co
m
p
u
ter
S
c
ien
c
e
,
Un
iv
e
r
s
it
a
s Ga
d
j
a
h
M
a
d
a
,
Yo
g
y
a
k
a
r
ta I
n
d
o
n
e
s
ia
2,
3
De
p
a
r
tm
e
n
t
o
f
Co
m
p
u
t
e
r
S
c
ien
c
e
a
n
d
El
e
c
t
r
ica
l
,
Un
iv
e
r
s
i
tas
G
a
d
ja
h
M
a
d
a
,
Yo
g
y
a
k
a
r
ta I
n
d
o
n
e
s
ia
4
S
tu
d
y
P
r
o
g
r
a
m
o
f
Ed
u
c
a
ti
o
n
a
l
R
e
s
e
a
rc
h
a
n
d
Ev
a
lu
a
ti
o
n
,
Gr
a
d
u
a
te
S
c
h
o
o
l,
Yo
g
y
a
k
a
r
t
a
S
ta
te Un
iv
e
r
s
it
y
,
I
n
d
o
n
e
s
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
r
2
4
,
2
0
1
6
R
ev
i
s
ed
A
u
g
2
4
,
2
0
1
6
A
cc
ep
ted
Sep
1
0
,
2
0
1
6
Lea
r
n
in
g
a
s
s
e
ss
m
e
n
t
d
e
a
ls
with
th
e
p
r
o
c
e
ss
o
f
m
a
k
in
g
a
d
e
c
is
i
o
n
o
n
t
h
e
q
u
a
li
ty
o
r
p
e
rf
o
r
m
a
n
c
e
o
f
s
tu
d
e
n
t
a
c
h
iev
e
m
e
n
t
in
a
n
u
m
b
e
r
o
f
c
o
m
p
e
te
n
c
y
s
t
a
n
d
a
r
d
s
.
I
n
t
h
e
p
r
o
c
e
ss
,
tea
c
h
e
r’s
p
r
e
f
e
r
e
n
c
e
s
a
r
e
p
r
o
v
id
e
d
t
h
r
o
u
g
h
b
o
t
h
tes
t
a
n
d
n
o
n
-
tes
t,
g
e
n
e
r
a
ll
y
in
a
n
u
m
e
r
ic
v
a
lu
e
,
fr
o
m
wh
ic
h
th
e
f
in
a
l
r
e
s
u
lt
s
a
r
e
th
e
n
c
o
n
v
e
r
ted
in
t
o
letter
s
o
r
li
n
g
u
is
ti
c
v
a
lu
e
.
I
n
th
e
p
r
o
p
o
se
d
m
o
d
e
l,
li
n
g
u
is
ti
c
v
a
r
i
a
b
les
a
r
e
e
x
p
lo
it
e
d
a
s
a
f
o
r
m
o
f
tea
c
h
e
r’s
p
r
e
f
e
r
e
n
c
e
s
in
n
o
n
-
tes
t
tec
h
n
iq
u
e
s
.
Co
n
s
e
q
u
e
n
tl
y
,
th
e
a
s
s
e
ss
m
e
n
t
d
a
ta
s
e
t
will
c
o
n
s
ist
o
f
n
u
m
e
r
ica
l
a
n
d
li
n
g
u
is
ti
c
in
f
o
r
m
a
t
io
n
,
s
o
it
r
e
q
u
ir
e
s
a
m
e
th
o
d
to
u
n
i
f
y
th
e
m
t
o
o
b
ta
in
th
e
f
in
a
l
v
a
lu
e
.
A
m
o
d
e
l
th
a
t
u
s
e
s
th
e
2
-
tu
p
le
l
in
g
u
is
ti
c
a
p
p
r
o
a
c
h
a
n
d
b
a
s
e
d
o
n
m
a
tr
ix
o
p
e
r
a
t
io
n
s
i
s
p
r
o
p
o
s
e
d
to
s
o
lv
e
th
e
p
r
o
b
lem
.
Th
is
s
tu
d
y
p
r
o
p
o
s
e
d
a
n
e
w
p
r
o
c
e
d
u
r
e
th
a
t
c
o
n
s
i
s
t
s
o
f
f
o
u
r
sta
g
e
s:
p
r
e
p
r
o
c
e
ss
in
g
,
tra
n
sf
o
r
m
a
ti
o
n
,
a
g
g
r
e
g
a
ti
o
n
a
n
d
e
x
p
lo
it
a
ti
o
n
.
Th
e
f
in
a
l
r
e
s
u
lt
is
p
r
e
s
e
n
ted
in
2
-
tu
p
le l
in
g
u
is
ti
c
r
e
p
r
e
s
e
n
ta
ti
o
n
a
n
d
it
s
e
q
u
i
v
a
len
t
n
u
m
b
e
r
,
a
c
c
o
m
p
a
n
ied
b
y
a
d
e
s
c
r
ip
ti
o
n
o
f
th
e
a
c
h
ie
v
e
m
e
n
t
o
f
e
a
c
h
c
o
m
p
e
te
n
c
y
.
Th
e
α
v
a
lu
e
o
f
2
-
tu
p
le
li
n
g
u
is
ti
c
in
th
e
f
in
a
l
r
e
s
u
lt
a
n
d
in
th
e
d
e
s
c
r
i
p
ti
o
n
o
f
e
a
c
h
c
o
m
p
e
ten
c
y
b
e
c
o
m
e
s
m
e
a
n
in
g
f
u
l
in
f
o
r
m
a
ti
o
n
th
a
t
c
a
n
b
e
in
te
r
p
r
e
ted
a
s
a
c
o
m
p
a
ra
ti
v
e
a
b
i
li
ty
o
n
e
s
tu
d
e
n
t
h
a
s
r
e
la
ted
to
o
th
e
r
s
tu
d
e
n
ts
,
a
n
d
s
h
o
ws
h
o
w
m
u
c
h
p
o
ten
ti
a
l
i
s
a
c
h
ie
v
e
d
to
r
e
a
c
h
h
ig
h
e
r
r
a
n
k
s
.
Th
e
p
r
o
p
o
s
e
d
m
o
d
e
l
c
o
n
tr
ib
u
tes
to
e
n
r
ic
h
th
e
lea
r
n
in
g
a
s
s
e
ss
m
e
n
t
tec
h
n
iq
u
e
s
,
s
in
c
e
th
e
e
x
p
lo
it
a
ti
o
n
o
f
li
n
g
u
is
ti
c
v
a
riab
le
a
s
r
e
p
r
e
s
e
n
ta
ti
o
n
p
r
e
f
e
r
e
n
c
e
s
p
r
o
v
i
d
e
s
f
lex
ib
le
sp
a
c
e
f
o
r
tea
c
h
e
r
s
in
th
e
ir
a
ss
e
ss
m
e
n
ts
.
M
o
r
e
o
v
e
r
,
u
s
in
g
th
e
r
e
s
u
lt
with
r
e
s
p
e
c
t
to
s
tu
d
e
n
ts
’
lev
e
ls
o
f
e
a
c
h
c
o
m
p
e
te
n
c
y
,
s
tu
d
e
n
ts
’
m
a
s
te
r
y
o
f
e
a
c
h
a
t
tr
i
b
u
te
c
a
n
b
e
d
ia
g
n
o
s
e
d
a
n
d
th
e
ir
p
r
o
g
r
e
ss
o
f
le
a
r
n
in
g
c
a
n
b
e
e
s
ti
m
a
ted
.
K
ey
w
o
r
d
:
Mu
lti cr
iter
ia
d
ec
is
io
n
m
a
k
i
n
g
Stu
d
e
n
t a
s
s
e
s
s
m
e
n
t
T
h
e
lin
g
u
is
t
ic
2
-
t
u
p
le
Un
i
f
y
in
g
l
in
g
u
is
tic
a
n
d
n
u
m
er
ic
v
alu
e
s
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sri
An
d
a
y
a
n
i,
Dep
ar
t
m
en
t o
f
Ma
th
e
m
at
ics E
d
u
ca
tio
n
,
Facu
lt
y
o
f
Ma
t
h
e
m
atic
s
an
d
N
atu
r
al
Scie
n
ce
s
Yo
g
y
a
k
ar
ta
State
U
n
i
v
er
s
it
y
,
Jl
.
C
o
lo
m
b
o
,
No
.
1
Kar
an
g
m
a
lan
g
,
Yo
g
y
a
k
ar
ta
,
I
n
d
o
n
es
ia.
E
m
ail:
a
n
d
a
y
a
n
i_
u
n
y
@
y
a
h
o
o
.
co
m
,
a
n
d
a
y
a
n
i
@
u
n
y
.
ac
.
id
1.
I
NT
RO
D
UCT
I
O
N
Dec
is
io
n
-
m
ak
in
g
i
n
ed
u
ca
tio
n
h
a
v
e
ev
o
l
v
ed
to
h
elp
p
eo
p
le
in
m
a
n
y
p
u
r
p
o
s
es,
s
u
ch
as
f
o
r
in
s
tr
u
ctio
n
a
l
d
ec
is
io
n
,
c
u
r
r
icu
lar
d
ec
is
io
n
,
s
elec
tio
n
d
ec
i
s
io
n
,
p
lace
m
e
n
t
o
r
clas
s
i
f
ic
atio
n
d
ec
is
io
n
a
n
d
p
er
s
o
n
al
d
ec
is
io
n
[
1
]
.
A
n
e
x
a
m
p
le
o
f
ed
u
ca
tio
n
al
d
ec
is
io
n
i
s
s
elec
tio
n
o
f
co
u
r
s
es
i
n
t
h
e
h
i
g
h
er
ed
u
ca
tio
n
[
2
]
.
T
h
ese
p
u
r
p
o
s
es
ar
e
i
m
p
le
m
e
n
t
ed
in
m
a
n
y
t
y
p
es
o
f
ed
u
ca
tio
n
al
d
ec
is
io
n
-
m
a
k
i
n
g
;
o
n
e
o
f
t
h
e
m
is
C
r
ed
en
tiali
n
g
an
d
C
er
tific
atio
n
Dec
i
s
io
n
s
t
h
at
d
ec
id
e
s
w
h
et
h
er
o
r
n
o
t
s
tu
d
en
ts
h
av
e
m
et
ce
r
tain
s
ta
n
d
ar
d
s
[
3
]
.
T
h
is
o
p
in
io
n
is
s
u
p
p
o
r
ted
b
y
[
4
]
w
h
ic
h
s
tat
es
th
at
th
e
as
s
ess
m
e
n
t
o
f
ed
u
ca
tio
n
r
elate
d
to
th
e
p
r
o
ce
s
s
o
f
g
i
v
i
n
g
a
d
ec
is
io
n
o
n
th
e
q
u
alit
y
o
r
p
er
f
o
r
m
an
ce
o
f
s
t
u
d
en
t
’
s
ac
h
ie
v
e
m
en
t.
T
h
is
d
ec
is
io
n
-
m
a
k
in
g
i
s
d
o
n
e
t
h
r
o
u
g
h
a
p
r
o
ce
s
s
o
f
lear
n
in
g
as
s
es
s
m
e
n
t o
n
a
n
u
m
b
er
o
f
co
m
p
eten
c
y
s
tan
d
ar
d
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Dec
is
io
n
-
Ma
kin
g
Mo
d
el
fo
r
S
t
u
d
en
t
A
s
s
ess
men
t b
y
Un
ifyin
g
N
u
merica
l a
n
d
Lin
g
u
is
tic
Da
ta
(
S
r
i A
n
d
a
ya
n
i
)
364
Gen
er
all
y
,
ass
e
s
s
m
e
n
t
m
et
h
o
d
is
d
esi
g
n
ed
to
e
v
al
u
ate
m
a
n
y
co
m
p
eten
c
ies
b
u
t
t
h
e
f
i
n
a
l
r
esu
lt
is
m
er
el
y
a
g
r
ad
e
w
it
h
o
u
t
an
y
d
escr
ip
tio
n
ab
o
u
t
s
tu
d
e
n
t
’
s
ac
h
iev
e
m
en
t
i
n
ev
e
r
y
co
m
p
eten
c
y
.
T
h
e
m
et
h
o
d
ca
n
b
e
u
n
f
air
if
n
o
t
co
n
s
id
er
i
n
g
m
an
y
s
p
ec
ializatio
n
s
o
f
a
s
p
ec
i
f
ic
co
m
p
eten
c
y
.
Mo
s
s
i
n
et
al
[
5
]
h
av
e
p
r
o
p
o
s
ed
a
m
o
d
el
o
f
ev
al
u
atio
n
m
et
h
o
d
b
ased
o
n
f
u
zz
y
s
et
s
w
h
ich
ca
n
d
eter
m
in
e
t
h
e
ca
p
ab
ilit
ies
a
n
d
th
e
d
ef
icie
n
cies
o
f
a
s
tu
d
en
t
in
d
i
f
f
er
e
n
t a
r
ea
s
o
f
k
n
o
w
led
g
e
in
i
n
d
u
s
tr
ial
au
to
m
atio
n
.
T
h
e
ass
es
s
m
e
n
t
p
r
o
ce
s
s
is
co
n
d
u
cted
th
r
o
u
g
h
v
ar
io
u
s
tech
n
i
q
u
es,
b
o
th
te
s
t
a
n
d
n
o
n
te
s
t,
a
n
d
u
s
u
al
l
y
th
e
r
es
u
lt
is
g
i
v
e
n
i
n
n
u
m
er
ic
al
v
al
u
e
w
h
ic
h
i
s
t
h
e
n
i
n
ter
p
r
eted
in
to
a
letter
o
r
li
n
g
u
i
s
tic
v
ar
iab
le.
L
in
g
u
is
ti
c
v
ar
iab
le
is
a
v
ar
iab
le
w
h
o
s
e
v
alu
e
is
n
o
t
n
u
m
b
er
s
b
u
t
w
o
r
d
s
o
r
s
en
ten
ce
s
d
escr
ib
in
g
th
e
co
m
p
ete
n
c
y
a
n
d
th
e
w
o
r
d
s
ar
e
ch
ar
ac
ter
ized
b
y
f
u
zz
y
s
et
s
d
ef
in
ed
in
t
h
e
u
n
iv
er
s
e
d
ef
in
ed
s
et
[
6
]
.
Valu
atio
n
i
n
n
o
n
-
tes
t
ass
es
s
m
en
t
tec
h
n
iq
u
es
s
u
ch
a
s
as
s
i
g
n
m
e
n
ts
an
d
o
b
s
er
v
atio
n
s
is
q
u
ite
p
o
s
s
ib
le
o
r
e
v
en
m
o
r
e
ap
p
r
o
p
r
iate
if
p
r
esen
ted
u
s
in
g
li
n
g
u
i
s
tic
v
a
r
iab
les.
So
m
eti
m
es,
s
o
m
e
a
s
s
ig
n
m
en
ts
a
n
d
o
b
s
er
v
atio
n
s
w
o
u
ld
b
e
ea
s
ier
to
ass
es
s
b
y
m
ea
n
s
o
f
li
n
g
u
i
s
tic
v
ar
iab
les
b
ec
a
u
s
e
s
u
ch
v
a
lu
a
tio
n
s
ca
n
n
o
t
b
e
a
s
ce
r
t
ain
ed
b
y
n
u
m
er
ic
s
co
r
es.
C
o
n
s
id
er
in
g
th
a
t p
o
s
s
ib
ilit
y
,
it
is
p
r
o
p
o
s
ed
to
u
s
e
li
n
g
u
i
s
tic
v
ar
iab
les n
o
t to
r
ep
r
esen
t q
u
alit
ativ
e
a
s
p
ec
t,
b
u
t to
r
ep
r
esen
t
teac
h
er
’
s
p
r
ef
er
en
c
es
in
t
h
e
n
o
n
-
te
s
t
as
s
es
s
m
e
n
t
tech
n
iq
u
es.
T
h
er
eb
y
,
teac
h
er
s
ca
n
as
s
ess
u
s
i
n
g
lin
g
u
i
s
t
ic
v
ar
iab
les,
in
t
h
e
ca
s
e
th
at
h
a
s
b
ee
n
d
o
n
e
u
s
in
g
n
u
m
er
ical
v
a
lu
e.
As
a
co
n
s
eq
u
en
ce
o
f
u
s
i
n
g
t
h
e
lin
g
u
is
tic
v
ar
iab
les,
a
s
s
e
s
s
m
e
n
t
d
ata
s
et
w
ill
co
n
s
is
t
o
f
n
u
m
er
ical
an
d
lin
g
u
i
s
tic
in
f
o
r
m
atio
n
,
s
o
it
n
ee
d
s
a
p
r
o
ce
d
u
r
e
to
co
m
b
i
n
e
th
e
t
w
o
t
y
p
es
o
f
d
ata
to
o
b
tain
t
h
e
f
i
n
al
r
es
u
lt.
T
h
er
e
h
av
e
b
ee
n
s
t
u
d
ies,
wh
ich
ar
e
i
n
itiated
b
y
Her
r
er
a
an
d
Ma
r
tin
ez
[
7
]
th
at
co
m
b
in
e
s
n
u
m
er
ic
an
d
lin
g
u
i
s
tic
v
ar
iab
les
an
d
r
ep
r
esen
t
s
u
n
i
f
icatio
n
r
esu
l
ts
i
n
2
-
tu
p
le
lin
g
u
is
tic
ap
p
r
o
ac
h
.
T
h
i
s
2
-
t
u
p
le
lin
g
u
is
ti
c
ap
p
r
o
ac
h
is
b
etter
t
h
a
n
o
th
er
lin
g
u
is
t
ic
ap
p
r
o
ac
h
es
to
o
v
e
r
co
m
e
th
e
p
r
o
b
le
m
o
f
co
m
b
i
n
in
g
li
n
g
u
i
s
tic
a
n
d
n
u
m
er
ical
v
a
lu
e
s
.
Un
i
f
icatio
n
r
esu
lt
o
f
o
th
er
li
n
g
u
is
tic
ap
p
r
o
ac
h
es
u
s
u
all
y
d
o
es
n
o
t
ex
ac
t
l
y
m
atc
h
an
y
o
f
th
e
in
itial
l
in
g
u
is
tic
ter
m
s
,
a
n
d
n
ee
d
s
an
ap
p
r
o
x
i
m
atio
n
p
r
o
ce
s
s
to
ex
p
r
ess
t
h
e
r
es
u
lt
i
n
th
e
in
itial
e
x
p
r
ess
io
n
d
o
m
ai
n
.
T
h
is
co
n
s
eq
u
en
tl
y
p
r
o
d
u
ce
s
th
e
lo
s
s
o
f
in
f
o
r
m
a
tio
n
an
d
h
en
ce
ca
u
s
e
s
th
e
lac
k
o
f
p
r
ec
is
io
n
,
b
u
t
it
ca
n
b
e
w
ell
h
a
n
d
led
b
y
th
e
2
-
t
u
p
le
lin
g
u
i
s
tic
ap
p
r
o
ac
h
.
C
o
n
s
id
er
in
g
s
o
m
e
p
r
o
b
le
m
s
d
escr
ib
ed
ab
o
v
e,
it
is
im
p
o
r
tan
t
to
d
ev
elo
p
a
r
o
b
u
s
t
ass
es
s
m
e
n
t
m
e
th
o
d
w
h
ic
h
ca
n
ac
co
m
m
o
d
ate
th
e
u
s
e
o
f
li
n
g
u
i
s
tic
v
ar
iab
les
i
n
s
o
m
e
a
s
s
e
s
s
m
en
t
tec
h
n
iq
u
es
i
n
s
u
ch
a
w
a
y
th
a
t
t
h
e
f
i
n
al
r
esu
lt
ca
n
d
escr
ib
e
s
t
u
d
en
ts
’
s
tr
o
n
g
a
n
d
w
ea
k
p
o
in
t
s
i
n
ev
er
y
co
m
p
eten
c
y
.
So
m
e
id
ea
s
i
m
p
le
m
e
n
te
d
in
th
e
p
r
ev
io
u
s
s
t
u
d
ies ar
e
co
m
b
i
n
ed
to
d
ef
in
e
s
o
l
u
tio
n
f
o
r
th
e
p
r
o
b
lem
.
T
h
e
aim
o
f
t
h
is
p
ap
er
is
to
ex
ten
d
th
e
co
n
ce
p
t
o
f
s
o
l
v
in
g
M
u
lti
C
r
iter
ia
Dec
is
io
n
Ma
k
in
g
(
MCDM)
p
r
o
b
lem
s
u
n
d
er
li
n
g
u
i
s
tic
en
v
ir
o
n
m
en
t,
to
s
o
lv
e
t
h
e
p
r
o
b
le
m
s
o
f
lear
n
i
n
g
co
m
p
ete
n
c
y
ev
al
u
atio
n
.
T
h
e
ex
ten
s
io
n
in
c
lu
d
es
in
f
o
r
m
a
tio
n
ab
o
u
t
d
eter
m
i
n
in
g
w
e
ig
h
t
s
o
f
lear
n
i
n
g
co
m
p
ete
n
c
y
,
u
s
i
n
g
lin
g
u
is
tic
v
ar
iab
le
s
to
v
alu
e
s
t
u
d
en
ts
’
p
er
f
o
r
m
a
n
c
e
in
s
o
m
e
as
s
es
s
m
en
t
tec
h
n
iq
u
es,
co
m
b
i
n
i
n
g
n
u
m
er
ic
an
d
lin
g
u
i
s
tic
d
ata
an
d
in
f
o
r
m
i
n
g
t
h
e
s
t
u
d
en
t
’
s
e
x
ce
ll
en
ce
in
a
s
p
ec
if
ic
co
m
p
ete
n
c
y
,
b
u
t
d
id
n
o
t
s
u
cc
ee
d
in
an
o
th
er
co
m
p
eten
c
y
.
I
n
o
r
d
er
to
d
o
th
is
,
t
h
e
r
e
m
a
in
i
n
g
p
ar
t
o
f
th
i
s
p
ap
er
is
o
r
g
a
n
ize
d
as
f
o
llo
w
s
:
I
n
Sectio
n
2
,
s
o
m
e
b
asic
d
e
f
i
n
itio
n
s
o
f
th
e
2
-
t
u
p
le
f
u
zz
y
li
n
g
u
i
s
ti
c
ap
p
r
o
ac
h
an
d
s
o
m
e
a
g
g
r
e
g
atio
n
o
p
er
ato
r
s
ar
e
b
r
ief
ly
r
e
v
ie
w
ed
.
Sectio
n
3
d
escr
ib
es
s
o
m
e
b
asic
d
ef
in
it
i
o
n
s
to
in
teg
r
ate
n
u
m
er
ic
an
d
lin
g
u
is
tic.
T
h
e
p
r
o
p
o
s
ed
m
e
th
o
d
to
s
o
lv
e
th
e
p
r
o
b
lem
s
b
ased
o
n
u
n
i
f
y
in
g
n
u
m
er
ic
a
n
d
li
n
g
u
is
tic
is
p
r
es
en
ted
i
n
Sec
tio
n
4
.
Sectio
n
5
p
r
esen
ts
r
es
u
lt
a
n
d
an
al
y
s
is
a
n
d
f
i
n
all
y
t
h
e
p
ap
er
is
co
n
clu
d
ed
in
Sectio
n
6
.
2.
T
H
E
2
-
T
UP
L
E
F
U
Z
Z
Y
L
I
N
G
UI
ST
I
C
R
E
P
RE
SE
N
T
A
T
I
O
N
C
o
m
p
u
tatio
n
al
tec
h
n
iq
u
es
f
o
r
d
ea
lin
g
w
it
h
li
n
g
u
i
s
tic
ter
m
s
ca
n
b
e
clas
s
i
f
ied
in
to
t
h
r
ee
ca
teg
o
r
ies
[
8
]
,
i.e
.
ex
te
n
s
io
n
p
r
in
cip
le,
s
y
m
b
o
lic
m
et
h
o
d
,
an
d
2
-
t
u
p
l
e
f
u
zz
y
li
n
g
u
is
tic
r
ep
r
esen
tatio
n
m
o
d
el.
I
n
th
e
f
ir
s
t
t
w
o
ap
p
r
o
ac
h
es,
t
h
e
r
esu
lt
s
u
s
u
al
l
y
d
o
n
o
t e
x
ac
tl
y
m
a
tch
a
n
y
o
f
i
n
itial
lin
g
u
is
t
i
c
ter
m
s
,
a
n
d
th
e
n
an
ap
p
r
o
x
im
a
tio
n
p
r
o
ce
s
s
m
u
s
t
b
e
d
ev
elo
p
ed
to
ex
p
r
ess
t
h
e
r
esu
lt
in
th
e
in
i
tial
e
x
p
r
es
s
io
n
d
o
m
ai
n
.
T
h
is
co
n
s
eq
u
e
n
tl
y
p
r
o
d
u
ce
s
a
ce
r
tain
lo
s
s
o
f
in
f
o
r
m
a
tio
n
an
d
h
en
ce
r
esu
lt
s
in
t
h
e
lack
o
f
p
r
ec
is
io
n
.
Her
r
er
a
an
d
Ma
r
tín
ez
[7
-
9
]
,
p
r
o
p
o
s
ed
th
e
th
ir
d
ap
p
r
o
ac
h
,
n
a
m
el
y
t
h
e
2
-
tu
p
le
f
u
zz
y
li
n
g
u
i
s
tic
r
ep
r
esen
tat
io
n
m
o
d
el
to
o
v
er
co
m
e
th
ese
li
m
i
tatio
n
s
,
th
r
o
u
g
h
2
-
t
u
p
le
s
(
s
,
α
)
,
wh
ich
i
s
co
m
p
iled
b
y
t
h
eli
n
g
u
i
s
tic
ter
m
s
s
w
h
ile
α
as
s
ess
ed
t
h
e
n
u
m
er
ical
v
alu
e
i
n
th
e
i
n
ter
v
al
[
-
0
.
5
,
0
.
5
]
.
Def
ini
t
io
n
1
.
T
h
e
s
y
m
b
o
lic
tr
an
s
lat
io
n
o
f
a
lin
g
u
is
t
ic
ter
m
co
n
s
is
ts
o
f
a
n
u
m
er
ical
v
a
lu
e
th
at
s
u
p
p
o
r
ts
th
e
“
d
i
f
f
er
e
n
ce
o
f
in
f
o
r
m
at
io
n
”
b
et
w
ee
n
a
co
u
n
t
in
g
o
f
i
n
f
o
r
m
atio
n
ass
ess
e
d
in
o
b
tain
ed
af
ter
a
s
y
m
b
o
lic
ag
g
r
e
g
atio
n
o
p
er
atio
n
(
ac
ti
n
g
o
n
t
h
e
o
r
d
er
in
d
ex
o
f
t
h
e
l
ab
els)
an
d
th
e
clo
s
est v
al
u
e
i
n
th
at
in
d
icate
s
th
e
in
d
e
x
o
f
t
h
e
clo
s
est l
in
g
u
is
tic
ter
m
i
n
.
T
h
e
lin
g
u
is
tic
r
ep
r
esen
tat
io
n
m
o
d
el
d
e
f
i
n
es
a
s
e
t
o
f
f
u
n
cti
o
n
s
to
m
a
k
e
tr
a
n
s
f
o
r
m
atio
n
b
et
w
ee
n
li
n
g
u
i
s
tic
ter
m
s
a
n
d
2
-
tu
p
le
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
6
3
–
373
365
Def
ini
t
io
n
2
.
L
et
b
e
lin
g
u
i
s
ti
c
ter
m
,
t
h
en
it
s
eq
u
iv
ale
n
t
2
-
t
u
p
le
r
ep
r
esen
tatio
n
is
o
b
tain
e
d
b
y
m
ea
n
s
o
f
th
e
f
u
n
ctio
n
as:
(
1
)
A
cr
is
p
v
alu
e
ca
n
b
e
tr
an
s
f
o
r
m
ed
in
to
t
h
e
2
-
t
u
p
le
lin
g
u
is
t
ic
v
ar
iab
le
u
s
i
n
g
th
e
f
o
llo
w
i
n
g
d
ef
i
n
itio
n
:
Def
ini
t
io
n
3.
L
et
b
e
a
lin
g
u
is
t
ic
ter
m
s
e
t,
b
e
a
n
u
m
b
er
v
alu
e
r
ep
r
ese
n
ti
n
g
t
h
e
s
y
m
b
o
lic
ag
g
r
e
g
atio
n
r
e
s
u
l
t
o
f
lin
g
u
is
tic
ter
m
.
T
h
en
th
e
2
-
t
u
p
le
th
at
ex
p
r
ess
e
s
t
h
e
eq
u
iv
ale
n
t
in
f
o
r
m
atio
n
to
is
o
b
tain
ed
u
s
i
n
g
th
e
f
o
llo
w
i
n
g
f
u
n
ctio
n
:
w
h
er
e
{
(
2
)
w
h
er
e
r
o
u
n
d
is
t
h
e
u
s
u
al
r
o
u
n
d
in
g
o
p
er
atio
n
,
h
as
th
e
clo
s
est
i
n
d
ex
lab
el
to
an
d
is
th
e
v
alu
e
o
f
t
h
e
s
y
m
b
o
lic
tr
an
s
latio
n
.
Def
ini
t
io
n
4
.
L
et
b
e
a
lin
g
u
is
tic
ter
m
s
e
t
an
d
is
2
-
tu
p
le
lin
g
u
i
s
tic
i
n
f
o
r
m
atio
n
,
t
h
e
n
th
er
e
ex
is
ts
a
f
u
n
c
tio
n
w
h
i
ch
is
ab
le
to
tr
an
s
f
o
r
m
2
-
tu
p
le
lin
g
u
is
tic
in
f
o
r
m
atio
n
in
t
o
its
eq
u
iv
ale
n
t
n
u
m
er
ical
v
al
u
e
:
(
3
)
3.
CO
M
B
I
NING
N
UM
E
RICA
ND
L
I
N
G
U
I
S
T
I
C
U
SI
N
G
L
I
NG
UIS
T
I
CAP
P
RO
ACH
L
et
is
a
n
u
m
er
ical
v
a
lu
e
an
d
a
s
et
o
f
ter
m
li
n
g
u
i
s
ti
c.
T
o
co
m
b
in
e
n
u
m
er
ical
a
n
d
lin
g
u
i
s
tic
v
a
lu
e
s
,
it
tak
es
s
e
v
er
al
f
u
n
c
tio
n
s
th
at
tr
an
s
f
o
r
m
th
e
s
e
v
al
u
es
i
n
to
a
2
-
tu
p
le
lin
g
u
is
t
ic
r
ep
r
esen
tatio
n
.
Her
r
er
a
an
d
M
ar
tin
ez
[
7
]
h
av
e
d
e
f
i
n
ed
th
e
f
u
n
ctio
n
,
w
h
ic
h
i
n
cl
u
d
es
t
w
o
s
t
ep
s
,
i.e
.
co
n
v
er
ti
n
g
in
to
f
u
zz
y
s
et
in
S a
n
d
tr
an
s
f
o
r
m
in
g
t
h
e
f
u
zz
y
s
et
i
n
to
2
-
t
u
p
le
lin
g
u
i
s
tic
m
o
d
el
as
s
es
s
ed
in
S.
Def
ini
t
io
n
5.
L
et
is
a
n
u
m
er
i
ca
l
v
alu
e
a
n
d
a
s
et
o
f
ter
m
lin
g
u
i
s
tic.
T
r
an
s
f
o
r
m
in
g
in
to
f
u
zz
y
s
et
i
n
S u
s
i
n
g
f
u
n
cti
o
n
d
ef
in
ed
as
f
o
ll
o
w
s
:
{
(
)
}
s
u
c
h
th
a
t
{
(
4
)
T
h
e
s
em
a
n
tic
o
f
th
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
is
g
iv
e
n
b
tr
ap
e
zo
id
al
p
a
r
am
etr
ic
f
u
n
ctio
n
wh
o
s
e
p
ar
am
e
ter
s
ar
e
.
T
h
e
r
esu
lt
w
ill b
e
tr
an
s
f
o
r
m
ed
in
to
li
n
g
u
is
tic
2
-
t
u
p
le
u
s
in
g
d
e
f
i
n
itio
n
b
elo
w
.
Def
ini
t
io
n
6
.
L
et
{
(
)
}
b
e
a
f
u
zz
y
s
et
th
at
r
ep
r
esen
ts
n
u
m
er
ical
v
alu
e
o
v
er
th
e
lin
g
u
is
tic
s
e
t
.
T
o
o
b
tain
a
n
u
m
er
ical
v
al
u
e
th
at
r
ep
r
esen
ts
in
f
o
r
m
atio
n
f
r
o
m
th
e
f
u
zz
y
s
et
ass
es
s
ed
in
[
0
,
g
]
b
y
m
ea
n
s
o
f
f
u
n
ctio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Dec
is
io
n
-
Ma
kin
g
Mo
d
el
fo
r
S
t
u
d
en
t
A
s
s
ess
men
t b
y
Un
ifyin
g
N
u
merica
l a
n
d
Lin
g
u
is
tic
Da
ta
(
S
r
i A
n
d
a
ya
n
i
)
366
{
)
∑
∑
(
5
)
Valu
e
is
tr
an
s
f
o
r
m
ed
i
n
to
2
-
tu
p
le
lin
g
u
i
s
tic
b
y
u
s
i
n
g
t
h
e
f
u
n
ctio
n
Δ
as i
n
E
q
u
atio
n
2
.
On
ce
o
b
tain
ed
th
e
tr
a
n
s
f
o
r
m
atio
n
r
es
u
lt
s
i
n
2
-
t
u
p
le
lin
g
u
i
s
tic
m
o
d
el,
u
n
if
y
i
n
g
p
r
o
ce
s
s
o
f
t
h
e
in
f
o
r
m
atio
n
is
co
n
d
u
cted
u
s
i
n
g
2
-
t
u
p
le
lin
g
u
is
tic
a
g
g
r
eg
a
tio
n
o
p
er
ato
r
.
So
m
e
ag
g
r
eg
a
tio
n
o
p
er
ato
r
s
f
o
r
2
-
tu
p
le
lin
g
u
is
tic
v
ar
iab
les
d
ef
i
n
ed
,
s
u
ch
as
ar
ith
m
etic
m
ean
,
w
ei
g
h
ted
a
v
er
ag
e
,
a
n
d
l
in
g
u
i
s
tic
w
ei
g
h
ted
av
er
ag
e
o
p
er
ato
r
[
1
0
-
11]
.
T
h
e
o
p
er
ato
r
s
ar
e
d
ef
in
ed
as f
o
llo
w
s
.
Def
ini
t
io
n 7
.
L
et
b
e
a
2
-
tu
p
el
lin
g
u
i
s
tic
s
e
t,
th
e
n
th
e
ar
it
h
m
e
tic
m
ea
n
is
̅
̅
(
∑
(
)
)
̅
̅
(
6
)
D
e
f
i
n
i
t
i
o
n
8
.
L
e
t
b
e
a
2
-
tu
p
le
lin
g
u
i
s
tic
s
e
t,
a
n
d
b
e
t
h
e
i
r
a
s
s
o
c
i
a
t
e
d
w
e
i
g
h
t
s
.
T
h
e
2
-
t
u
p
l
e
w
e
i
g
h
t
e
d
a
v
e
r
a
g
e
̅
i
s
̅
(
∑
∑
)
(
7
)
T
h
e
r
esu
lt
s
i
n
2
-
t
u
p
le
li
n
g
u
i
s
ti
c
s
h
o
u
ld
ca
n
b
e
co
n
v
er
ted
i
n
t
o
an
ap
p
r
o
p
r
iate
n
u
m
er
ical
v
a
lu
e.
T
h
er
e
ar
e
2
s
tep
s
to
co
n
v
er
t a
v
alu
e
o
f
2
-
t
u
p
le
lin
g
u
is
tic
i
n
to
a
v
al
u
e
o
f
[
0
,
1
]
.
Def
ini
t
io
n
9
.
L
et
be
2
-
tu
p
le
lin
g
u
i
s
ticb
ased
o
n
s
y
m
b
o
lic
tr
an
s
lat
io
n
,
w
h
er
e
an
d
w
h
o
s
e
eq
u
iv
a
len
t
n
u
m
er
ical
v
alu
e
i
s
w
it
h
.
Fu
n
ctio
n
co
m
p
u
te
s
t
w
o
2
-
t
u
p
les
b
ased
o
n
th
e
m
e
m
b
er
s
h
ip
d
eg
r
ee
,
f
r
o
m
t
h
e
in
itial
2
-
tu
p
le
li
n
g
u
i
s
tic,
th
a
t
s
u
p
p
o
r
t
th
e
s
a
m
e
co
u
n
ti
n
g
o
f
i
n
f
o
r
m
atio
n
:
(
8
)
w
h
er
e
;
Def
ini
t
io
n
10
.
L
et
be
t
w
o
2
-
tu
p
le
lin
g
u
is
tic
s
et
s
b
ased
o
n
m
e
m
b
er
s
h
ip
d
eg
r
ee
,
th
e
eq
u
iv
ale
n
t
n
u
m
er
ical
v
alu
e
a
s
s
ess
ed
i
n
[
0
,
1
]
is
o
b
tain
ed
u
s
in
g
f
u
n
ctio
n
(
9
)
C
V
(
.
)
is
a
f
u
n
ctio
n
p
r
o
v
id
i
n
g
ch
ar
ac
ter
is
tic
v
al
u
e.
T
h
e
r
es
u
lt
is
a
cr
i
s
p
v
al
u
e
t
h
at
s
u
m
m
ar
ize
th
e
i
n
f
o
r
m
atio
n
g
iv
e
n
b
y
a
f
u
zz
y
s
et
,
o
n
e
o
f
t
h
e
m
i
s
m
ax
i
m
u
m
v
al
u
e
(
MV
)
.
Def
ini
t
io
n
11.
I
f
g
iv
en
lab
el
w
i
t
h
th
e
m
e
m
b
er
s
h
ip
d
eg
r
e
e
,
h
eig
h
t
is
d
ef
in
ed
as
.
T
h
er
ef
o
r
e
C
V
(
.
)
o
f
m
ax
i
m
u
m
v
al
u
e
is
d
ef
in
ed
as
[
1
2
]
.
4.
P
RO
P
O
SE
D
M
O
DE
L
I
n
t
h
e
p
r
o
p
o
s
ed
m
o
d
el,
t
h
e
w
eig
h
t
is
as
s
ig
n
ed
to
th
e
lear
n
in
g
co
m
p
eten
c
ies,
n
o
t
t
o
ea
ch
o
f
ass
es
s
m
en
t
tec
h
n
iq
u
es,
an
d
d
eter
m
i
n
ed
u
s
i
n
g
a
s
p
ec
if
ied
m
et
h
o
d
.
T
h
is
m
o
d
el
p
r
o
p
o
s
es
to
ex
p
lo
it
lin
g
u
i
s
tic
v
ar
iab
le
to
ass
es
s
s
t
u
d
en
t
’
s
p
er
f
o
r
m
an
ce
i
n
m
u
ltip
le
v
al
u
a
tio
n
tech
n
iq
u
e
s
s
u
c
h
as
as
s
ig
n
m
e
n
t,
d
ail
y
test
s
,
d
ail
y
o
b
s
er
v
atio
n
s
(
p
ar
ticip
atio
n
)
,
p
r
esen
tatio
n
s
a
n
d
p
o
r
tf
o
lio
s
.
Fo
r
th
is
p
u
r
p
o
s
e,
th
e
r
ep
r
esen
tatio
n
o
f
th
e
lin
g
u
i
s
tic
v
ar
iab
le
m
u
s
t b
e
d
ef
in
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
6
3
–
373
367
T
h
e
s
et
o
f
li
n
g
u
is
tic
v
ar
i
ab
les
is
d
e
f
in
ed
o
n
t
h
e
b
asis
o
f
ex
p
o
s
u
r
e
to
Her
r
er
a
an
d
Her
r
er
a
-
Vied
m
a
[
1
3
]
.
I
n
v
iew
o
f
t
h
i
s
,
a
lin
g
u
is
tic
ter
m
s
et,
w
it
h
s
e
v
en
lab
el
s
u
s
ed
in
t
h
e
p
r
o
p
o
s
ed
m
o
d
el
ca
n
b
e
d
ef
in
ed
as
f
o
llo
w
s
a
n
d
th
e
s
e
m
a
n
tic
is
d
escr
ib
ed
in
T
ab
le
1
.
T
ab
le
1
.
L
in
g
u
i
s
tic
Te
r
m
s
an
d
th
eir
Se
m
an
t
ics
S
y
mb
o
l
A
b
b
.
L
i
n
g
u
i
st
i
c
t
e
r
m
T
r
i
a
n
g
u
l
a
r
F
u
z
z
y
N
u
mb
e
r
s
0
VP
V
e
r
y
p
o
o
r
(
0
,
0
,
0
.
1
7
)
s
1
P
P
o
o
r
(
0
,
0
.
1
7
,
0
.
3
3
)
s
2
A
A
v
e
r
a
g
e
(
0
.
1
7
,
0
.
3
3
,
0
.
5
)
s
3
AA
A
b
o
v
e
a
v
e
r
a
g
e
(
0
.
3
3
,
0
.
5
,
0
.
6
7
)
s
4
G
G
o
o
d
(
0
.
5
,
0
.
6
7
,
0
.
8
3
)
s
5
VG
V
e
r
y
g
o
o
d
(
0
.
6
7
,
0
.
8
3
,
1
)
s
6
E
Ex
c
e
l
l
e
n
t
(
0
.
8
3
,
1
,
1
)
T
h
e
ca
r
d
in
alit
y
o
f
li
n
g
u
i
s
tic
te
r
m
s
et
S
i
n
a
li
m
ited
n
u
m
b
er
o
f
g
r
ad
es
m
u
s
t
b
e
d
ef
in
ed
ap
p
r
o
p
r
iately
.
I
t
co
u
ld
b
e
s
m
all
e
n
o
u
g
h
b
u
t
d
o
es
n
o
t
r
ed
u
ce
th
e
p
r
ec
is
io
n
o
f
th
e
v
al
u
e
an
d
it
s
h
o
u
ld
b
e
r
ich
en
o
u
g
h
to
allo
w
d
is
cr
i
m
i
n
atio
n
o
f
t
h
e
p
er
f
o
r
m
a
n
ce
s
o
f
ea
ch
cr
iter
io
n
.
B
ased
o
n
s
tu
d
y
,
t
h
e
p
s
y
c
h
o
lo
g
is
ts
r
ec
o
m
m
e
n
d
ed
th
e
u
s
e
o
f
7
±
2
lab
els,
les
s
t
h
a
n
5
b
ein
g
n
o
t
s
u
f
f
ic
ien
t
l
y
in
f
o
r
m
a
tiv
e,
m
o
r
e
t
h
an
9
b
ein
g
to
o
m
u
c
h
f
o
r
a
p
r
o
p
er
u
n
d
er
s
ta
n
d
in
g
o
f
t
h
eir
d
if
f
er
e
n
ce
s
[
1
4
]
.
Mo
r
eo
v
er
,
in
ed
u
ca
tio
n
al
m
ea
s
u
r
e
m
e
n
t
s
e
v
en
c
ateg
o
r
iess
ca
lea
t
th
e
s
a
m
e
d
is
ta
n
ce
i
s
co
n
s
i
s
te
n
t
w
it
h
T
h
u
r
s
to
n
e
’
s
ca
le
an
d
h
a
s
a
g
o
o
d
r
eliab
ilit
y
[
1
]
.
T
h
e
s
et
o
f
s
e
m
an
tic
lin
g
u
is
t
ic
ter
m
s
ar
e
r
ep
r
esen
ted
b
y
tr
ia
n
g
u
lar
f
u
zz
y
n
u
m
b
er
s
(
T
FN)
.
T
FN
is
a
s
i
m
p
le
m
et
h
o
d
an
d
ea
s
il
y
u
n
d
er
s
to
o
d
to
r
ep
r
esen
t
an
as
s
e
s
s
m
en
t
o
f
d
ec
i
s
io
n
m
a
k
er
,
a
n
d
f
u
zz
y
ar
it
h
m
etic
o
p
er
atio
n
s
in
T
FN
ar
e
v
er
y
ea
s
y
to
d
o
[
1
5
]
.
I
n
ad
d
itio
n
,
t
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
T
FN
is
co
n
s
id
er
ed
q
u
it
e
r
eliab
le
in
s
h
o
w
i
n
g
t
h
e
u
n
ce
r
tain
t
y
o
f
lin
g
u
is
tic
as
s
es
s
m
e
n
t
w
h
ich
u
s
u
all
y
r
ep
r
esen
t
s
e
s
ti
m
ated
s
u
b
j
ec
tiv
e
ass
es
s
m
en
t
o
f
d
ec
is
io
n
m
a
k
er
s
[
1
6
]
.
Un
ce
r
tain
t
y
i
s
o
n
e
s
o
u
r
ce
o
f
m
ea
s
u
r
e
m
e
n
t
er
r
o
r
s
,
w
h
ich
i
n
ed
u
ca
t
io
n
a
l
m
ea
s
u
r
e
m
e
n
t i
s
co
n
s
id
er
ed
an
d
r
ep
r
esen
ted
as sh
o
w
n
i
n
t
h
e
E
q
u
atio
n
T
h
e
E
q
u
atio
n
s
h
o
w
s
th
at
o
b
s
e
r
v
ed
s
co
r
e
(
)
co
n
s
is
t
s
o
f
tr
u
e
s
co
r
e
(
)
an
d
m
ea
s
u
r
e
m
e
n
t e
r
r
o
r
(
)
[
1
]
.
L
ea
r
n
i
n
g
ass
e
s
s
m
e
n
t
is
co
n
d
u
cted
to
ass
ess
a
n
u
m
b
er
o
f
co
m
p
ete
n
c
y
s
ta
n
d
ar
d
s
.
Fo
r
ex
a
m
p
le,
T
ab
le
2
s
h
o
w
s
t
h
e
m
at
h
co
m
p
eten
c
y
s
ta
n
d
ar
d
s
f
o
r
h
ig
h
s
c
h
o
o
l o
f
class
X
i
n
th
e
f
ir
s
t
s
e
m
e
s
ter
.
T
ab
le
2
.
C
o
m
p
eten
c
y
Sta
n
d
ar
d
s
o
f
Ma
th
cla
s
s
X
s
e
m
e
s
ter
1
S
t
a
n
d
a
r
d
o
f
C
o
mp
e
t
e
n
c
y
B
a
si
c
C
o
mp
e
t
e
n
c
y
1
.
S
o
l
v
e
p
r
o
b
l
e
ms r
e
l
a
t
e
d
t
o
t
h
e
p
o
w
e
r
,
r
o
o
t
s,
a
n
d
l
o
g
a
r
i
t
h
ms
1
.
1
.
U
s
i
n
g
t
h
e
r
u
l
e
s o
f
p
o
w
e
r
,
r
o
o
t
s,
a
n
d
l
o
g
a
r
i
t
h
m
1
.
2
.
P
e
r
f
o
r
mi
n
g
a
l
g
e
b
r
a
i
c
m
a
n
i
p
u
l
a
t
i
o
n
s
i
n
c
o
mp
u
t
a
t
i
o
n
i
n
v
o
l
v
i
n
g
p
o
w
e
r
,
r
o
o
t
s,
a
n
d
l
o
g
a
r
i
t
h
ms
2
.
S
o
l
v
e
p
r
o
b
l
e
ms r
e
l
a
t
e
d
t
o
t
h
e
f
u
n
c
t
i
o
n
s,
e
q
u
a
t
i
o
n
s
a
n
d
q
u
a
d
r
a
t
i
c
f
u
n
c
t
i
o
n
s
a
n
d
q
u
a
d
r
a
t
i
c
i
n
e
q
u
a
l
i
t
y
2
.
1
U
n
d
e
r
st
a
n
d
i
n
g
t
h
e
c
o
n
c
e
p
t
o
f
a
f
u
n
c
t
i
o
n
2
.
2
D
r
a
w
i
n
g
a
g
r
a
p
h
o
f
s
i
mp
l
e
a
l
g
e
b
r
a
a
n
d
q
u
a
d
r
a
t
i
c
f
u
n
c
t
i
o
n
s
2
.
3
U
si
n
g
t
h
e
p
r
o
p
e
r
t
i
e
s a
n
d
r
u
l
e
s o
f
q
u
a
d
r
a
t
i
c
e
q
u
a
t
i
o
n
s
a
n
d
i
n
e
q
u
a
l
i
t
i
e
s
2
.
4
P
e
r
f
o
r
mi
n
g
a
l
g
e
b
r
a
i
c
ma
n
i
p
u
l
a
t
i
o
n
i
n
c
o
mp
u
t
a
t
i
o
n
r
e
l
a
t
e
d
t
o
q
u
a
d
r
a
t
i
c
e
q
u
a
t
i
o
n
s
a
n
d
i
n
e
q
u
a
l
i
t
i
e
s
2
.
5
D
e
si
g
n
i
n
g
a
m
a
t
h
e
mat
i
c
a
l
mo
d
e
l
o
f
a
p
r
o
b
l
e
m
r
e
l
a
t
e
d
t
o
e
q
u
a
l
i
t
y
a
n
d
/
o
r
a
q
u
a
d
r
a
t
i
c
f
u
n
c
t
i
o
n
2
.
6
S
o
l
v
i
n
g
ma
t
h
e
mat
i
c
a
l
mo
d
e
l
o
f
a
p
r
o
b
l
e
m re
l
a
t
e
d
t
o
e
q
u
a
l
i
t
y
a
n
d
/
o
r
q
u
a
d
r
a
t
i
c
f
u
n
c
t
i
o
n
s a
n
d
t
h
e
i
r
i
n
t
e
r
p
r
e
t
a
t
i
o
n
3
.
S
o
l
v
e
p
r
o
b
l
e
ms a
sso
c
i
a
t
e
d
w
i
t
h
l
i
n
e
a
r
e
q
u
a
t
i
o
n
s
sy
st
e
m a
n
d
o
n
e
v
a
r
i
a
b
l
e
i
n
e
q
u
a
l
i
t
i
e
s
3
.
1
S
o
l
v
i
n
g
o
f
2
-
v
a
r
i
a
b
l
e
s l
i
n
e
a
r
e
q
u
a
t
i
o
n
s sy
st
e
m a
n
d
2
-
v
a
r
i
a
b
l
e
s mi
x
e
d
l
i
n
e
a
r
a
n
d
q
u
a
d
r
a
t
i
c
e
q
u
a
t
i
o
n
s
sy
st
e
m
3
.
2
D
e
si
g
n
i
n
g
a
m
a
t
h
e
mat
i
c
a
l
mo
d
e
l
o
f
a
p
r
o
b
l
e
m a
sso
c
i
a
t
e
d
w
i
t
h
l
i
n
e
a
r
e
q
u
a
t
i
o
n
s sy
st
e
m
3
.
3
S
o
l
v
i
n
g
ma
t
h
e
mat
i
c
a
l
mo
d
e
l
s o
f
a
p
r
o
b
l
e
m re
l
a
t
e
d
t
o
l
i
n
e
a
r
e
q
u
a
t
i
o
n
s sy
st
e
ms a
n
d
i
t
s
i
n
t
e
r
p
r
e
t
a
t
i
o
n
3
.
4
C
o
mp
l
e
t
i
n
g
o
n
e
-
v
a
r
i
a
b
l
e
i
n
e
q
u
a
l
i
t
y
t
h
a
t
i
n
v
o
l
v
e
s a
l
g
e
b
r
a
i
c
f
r
a
c
t
i
o
n
s
3
.
5
D
e
si
g
n
i
n
g
a
m
a
t
h
e
mat
i
c
a
l
mo
d
e
l
o
f
p
r
o
b
l
e
ms a
sso
c
i
a
t
e
d
w
i
t
h
o
n
e
-
v
a
r
i
a
b
l
e
i
n
e
q
u
a
l
i
t
y
3
.
6
S
o
l
v
i
n
g
ma
t
h
e
mat
i
c
a
l
mo
d
e
l
s o
f
p
r
o
b
l
e
ms a
s
so
c
i
a
t
e
d
w
i
t
h
o
n
e
-
v
a
r
i
a
b
l
e
i
n
e
q
u
a
l
i
t
y
a
n
d
i
t
s
i
n
t
e
r
p
r
e
t
a
t
i
o
n
L
et
A
={a
1
,…a
m
}
b
e
t
h
e
s
et
o
f
s
t
u
d
en
ts
w
h
o
w
il
l
b
e
a
s
s
es
s
ed
b
ased
o
n
s
e
v
er
al
s
t
an
d
ar
d
o
f
co
m
p
ete
n
cie
s
C
={c
1
,…,c
n
}
w
h
ic
h
ar
e
d
escr
ib
ed
in
to
s
o
m
e
b
asic
co
m
p
eten
cie
s
B
={
b
1
,…,b
k
}
.
L
ea
r
n
in
g
ass
es
s
m
en
t
is
co
n
d
u
cted
u
s
in
g
s
e
v
er
al
tec
h
n
iq
u
e
s
T=
{t
1
,
…
,
t
h
}
i
n
w
h
ich
t
h
e
n
u
m
b
er
o
f
t
h
e
t
y
p
e
(
h
)
v
ar
ies
ac
co
r
d
in
g
to
th
e
b
asic
co
m
p
et
en
c
y
.
Fo
r
ex
a
m
p
le
t
1
d
en
o
te
s
f
o
r
test
,
t
2
f
o
r
o
b
s
er
v
atio
n
,
an
d
t
3
f
o
r
ass
i
g
n
m
e
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Dec
is
io
n
-
Ma
kin
g
Mo
d
el
fo
r
S
t
u
d
en
t
A
s
s
ess
men
t b
y
Un
ifyin
g
N
u
merica
l a
n
d
Lin
g
u
is
tic
Da
ta
(
S
r
i A
n
d
a
ya
n
i
)
368
T
h
e
v
alu
e
i
n
ea
c
h
t
i
m
a
y
b
e
eit
h
er
n
u
m
er
ical
x
[
0
,
1
]
o
r
lin
g
u
is
t
ic
S
={s
0
,
…,
s
g
}.
Fo
r
th
is
p
u
r
p
o
s
e,
th
e
n
u
m
er
ical
v
al
u
e
ass
ig
n
ed
b
y
th
e
teac
h
er
ar
e
co
m
m
o
n
l
y
p
r
esen
ted
in
[
0
,
1
0
]
o
r
[
0
,
1
0
0
]
an
d
m
u
s
t
t
h
e
n
b
e
tr
an
s
f
o
r
m
ed
in
to
[
0
,
1
]
.
T
h
is
s
c
h
e
m
e
i
s
ill
u
s
tr
ated
i
n
T
ab
le
3
.
T
ab
le
3
.
Sch
e
m
e
o
f
as
s
es
s
m
e
n
t p
r
o
b
lem
w
it
h
n
u
m
er
ic
an
d
li
n
g
u
i
s
tic
v
a
lu
e
s
A
l
t
e
r
n
a
t
i
v
e
(
)
/
st
u
d
e
n
t
s
C
o
mp
e
t
e
n
c
y
S
t
a
n
d
a
r
d
C
o
mp
e
t
e
n
c
y
S
t
a
n
d
a
r
d
B
a
si
c
C
o
mp
e
-
t
e
n
c
y
B
a
si
c
C
o
mp
e
-
t
e
n
c
y
B
a
si
c
C
o
mp
e
t
e
n
c
y
…
B
a
si
c
C
o
mp
e
t
e
n
c
y
…
B
a
s
i
c
C
o
m
p
e
-
t
e
n
c
y
B
a
si
c
C
o
mp
e
-
t
e
n
c
y
…
…
…
…
…
…
…
Step
s
f
o
r
d
eter
m
i
n
i
n
g
t
h
e
f
in
a
l
v
al
u
e
o
f
t
h
e
a
s
s
es
s
m
en
t
d
ata
s
et
ar
e
p
r
ep
ar
ed
u
s
in
g
2
-
t
u
p
le
lin
g
u
is
ti
c
ap
p
r
o
ac
h
an
d
b
ased
o
n
th
e
m
atr
ix
o
p
er
atio
n
s
.
Set
o
f
v
alu
e
s
w
i
th
i
n
ea
c
h
b
asic
co
m
p
ete
n
c
y
(
m
ar
k
ed
b
y
a
r
ed
b
o
x
)
ca
n
b
e
p
r
esen
ted
i
n
to
a
d
ec
is
io
n
m
atr
ix
(
)
,
w
h
er
e
if
u
s
i
n
g
n
u
m
er
ical
v
a
lu
e
s
an
d
if
u
s
i
n
g
li
n
g
u
i
s
tic
v
al
u
es.
[
]
(
1
0
)
w
h
er
e
v
ar
ies b
et
w
ee
n
ea
ch
b
a
s
ic
co
m
p
eten
c
y
.
T
h
er
e
ar
e
t
w
o
m
ai
n
p
h
a
s
es
o
f
a
co
m
m
o
n
d
ec
is
io
n
r
eso
lu
tio
n
s
c
h
e
m
e,
i.e
.
t
h
e
a
g
g
r
eg
atio
n
p
h
ase
th
a
t
ag
g
r
e
g
ates
t
h
e
v
alu
e
s
p
r
o
v
id
ed
b
y
t
h
e
ex
p
er
ts
to
o
b
tain
a
co
llectiv
e
ass
e
s
s
m
e
n
t
f
o
r
th
e
alter
n
at
iv
e
s
;
an
d
ex
p
lo
itatio
n
p
h
a
s
e
o
f
t
h
e
co
llectiv
e
as
s
ess
m
e
n
t
s
to
r
an
k
,
s
o
r
t
th
e
b
est
o
n
e/sa
m
o
n
g
t
h
e
alt
er
n
ativ
e
s
[
1
7
]
.
Fo
r
th
e
p
r
o
p
o
s
ed
m
o
d
el,
th
e
s
ta
g
e
s
ar
e
ca
r
r
ied
o
u
tin
a2
-
t
u
p
le
li
n
g
u
i
s
tic
f
o
r
th
e
ev
a
lu
atio
n
o
f
le
ar
n
in
g
co
m
p
ete
n
c
y
is
d
ev
elo
p
ed
b
ased
o
n
th
e
co
m
m
o
n
p
h
a
s
e
w
ith
s
ev
er
al
i
m
p
r
o
v
e
m
e
n
ts
.
Fi
g
u
r
e
2
s
h
o
w
s
a
b
asic
s
ch
e
m
e
o
f
t
h
is
ap
p
r
o
ac
h
,
w
h
o
s
e
s
tep
s
ar
e
f
u
r
t
h
er
d
escr
ib
ed
b
elo
w
.
Fig
u
r
e
2
.
Step
s
o
f
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
4
.
1
.
P
re
pro
ce
s
s
ing
T
h
er
e
ar
e
t
w
o
p
r
o
ce
s
s
es
ca
r
r
ied
o
u
t
at
th
is
s
ta
g
e,
i.e
.
tr
an
s
f
o
r
m
i
n
g
n
u
m
er
ical
v
al
u
e
in
to
[
0
,
1
]
an
d
d
eter
m
in
i
n
g
t
h
e
w
ei
g
h
t
o
f
le
ar
n
in
g
co
m
p
ete
n
cie
s
.
I
n
g
en
e
r
al,
th
e
n
u
m
er
ical
v
al
u
e
as
s
ig
n
ed
b
y
t
h
e
teac
h
er
p
r
esen
ted
in
[
0
,
1
0
]
o
r
[
0
,
1
0
0
]
.
Fo
r
th
e
p
r
o
p
o
s
ed
m
o
d
el,
t
h
e
v
alu
e
m
u
s
t b
e
tr
an
s
f
o
r
m
ed
i
n
to
[
0
,
1
]
.
On
th
e
o
th
e
r
h
an
d
,
th
e
w
ei
g
h
t
s
o
f
th
e
lear
n
in
g
co
m
p
ete
n
cie
s
ar
e
d
eter
m
i
n
ed
u
s
i
n
g
a
co
m
b
in
a
tio
n
o
f
r
atin
g
s
ca
le
[
1
8
]
w
it
h
Fu
zz
y
An
al
y
tic
Ne
t
w
o
r
k
P
r
o
c
ess
(
F
A
NP
)
.
T
h
is
co
m
b
i
n
ed
m
et
h
o
d
is
d
ev
elo
p
ed
b
ased
o
n
s
o
m
e
r
esear
c
h
,
i.e
.
D
e
t
e
r
mi
n
i
n
g
t
h
e
f
i
n
a
l
r
e
su
l
t
(
s,α)
f
o
r
e
a
c
h
st
u
d
e
n
t
b
y
a
p
p
l
y
i
n
g
W
e
i
g
h
t
e
d
A
v
e
r
a
g
e
o
p
e
r
a
t
o
r
Ag
g
r
e
g
a
t
i
on
D
e
t
e
r
mi
n
i
n
g
t
h
e
f
i
n
a
l
v
a
l
u
e
o
f
e
a
c
h
c
o
mp
e
t
e
n
c
y
D
e
t
e
r
mi
n
i
n
g
t
h
e
f
i
n
a
l
d
e
c
i
s
i
o
n
ma
t
r
i
x
C
a
l
c
u
l
a
t
i
n
g
t
h
e
w
e
i
g
h
t
o
f
c
o
mp
e
t
e
n
c
y
u
si
n
g
r
a
t
i
n
g
sca
l
e
a
n
d
F
A
N
P
N
u
me
r
i
c
:
[
0
,
1
0
0
]
[
0
,
1
]
Pr
e
p
r
o
c
e
ssi
n
g
T
r
a
n
sf
o
r
m
a
t
i
o
n
D
e
t
e
r
mi
n
i
n
g
m
a
t
r
i
x
i
n
2
-
t
u
p
l
e
f
u
z
z
y
l
i
n
g
u
i
st
i
c
C
r
e
a
t
i
n
g
ma
t
r
i
x
o
f
b
a
s
i
c
c
o
mp
e
t
e
n
c
y
i
n
n
u
me
r
i
c
a
l
a
n
d
l
i
n
g
u
i
s
t
i
c
d
a
t
a
G
r
a
d
i
n
g
f
o
r
e
a
c
h
c
o
mp
e
t
e
n
c
y
i
n
2
-
t
u
p
l
e
l
i
n
g
u
i
st
i
c
E
x
p
l
o
i
t
a
t
i
o
n
T
r
a
n
sf
o
r
mi
n
g
f
i
n
a
l
r
e
su
l
t
(
s
,
α)
i
n
t
o
n
u
me
r
i
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
6
3
–
373
369
ap
p
licatio
n
o
f
F
ANP
in
r
eq
u
ir
e
m
en
ts
i
n
t
h
e
h
o
u
s
e
o
f
q
u
alit
y
[
1
9
]
,
A
n
I
T
p
r
o
j
ec
t
s
elec
tio
n
[
2
0
]
,
T
o
tal
Qu
alit
y
Ma
n
ag
e
m
e
n
t
[
2
1
]
,
an
d
s
elec
tio
n
o
f
f
ac
ilit
y
lo
ca
tio
n
[
2
2
]
.
T
h
is
co
m
b
i
n
ed
m
et
h
o
d
als
o
co
n
s
id
er
s
s
o
m
e
d
r
a
w
b
ac
k
s
o
f
A
NP
[
2
3
-
2
5
]
an
d
en
h
a
n
ce
l
in
g
u
is
tic
s
ca
le
wh
ich
i
s
u
s
ed
i
n
a
p
air
w
i
s
e
co
m
p
ar
i
s
o
n
m
a
tr
ix
f
o
r
F
A
NP
b
a
s
ed
o
n
th
e
p
r
ev
io
u
s
o
n
e
[
2
5
]
,
[
2
7
]
.
4
.
2
.
T
ra
ns
f
o
rm
a
t
io
n:
T
ra
n
s
f
o
r
m
i
ng
Nu
m
er
ica
l
a
nd
L
ing
ui
s
t
ic
I
nfo
r
m
a
t
io
n
I
nt
o
2
-
t
up
le
F
uzzy
L
ing
ui
s
t
ic
P
r
ef
er
en
ce
s
g
i
v
e
n
b
y
t
h
e
teac
h
er
f
o
r
th
e
s
tu
d
e
n
t
co
n
s
is
ti
n
g
o
f
n
u
m
er
ical
a
n
d
li
n
g
u
is
tic
i
n
f
o
r
m
atio
n
ar
e
p
r
esen
ted
in
t
h
e
f
o
r
m
o
f
a
d
ec
is
io
n
m
atr
ix
.
E
ac
h
ele
m
e
n
t
in
t
h
e
m
a
tr
ix
i
s
t
h
en
tr
a
n
s
f
o
r
m
ed
in
to
2
-
tu
p
le
l
in
g
u
is
tic
to
o
b
tain
m
atr
ix
.
T
h
e
tr
an
s
f
o
r
m
atio
n
is
p
er
f
o
r
m
ed
u
s
i
n
g
E
q
u
atio
n
1
f
o
r
lin
g
u
is
tic
i
n
f
o
r
m
atio
n
; a
n
d
E
q
u
atio
n
4
,
5
an
d
2
f
o
r
n
u
m
er
ical
in
f
o
r
m
at
io
n
.
4
.
3
.
Ag
g
re
g
a
t
io
n
4
.
3
.
1
.
Det
er
m
ini
ng
t
he
f
ina
l v
a
lue o
f
ea
ch
ba
s
ic
co
m
pet
ency
f
o
r
ev
er
y
s
t
ud
ent
T
h
e
f
in
al
v
al
u
e
o
f
ea
c
h
b
asic
co
m
p
ete
n
c
y
f
o
r
ev
er
y
s
t
u
d
en
t
is
d
eter
m
i
n
ed
b
y
ca
lc
u
lati
n
g
t
h
e
av
er
a
g
e
o
f
ea
ch
r
o
w
i
n
t
h
e
2
-
t
u
p
le
li
n
g
u
i
s
tic
d
ec
is
io
n
m
atr
ix
u
s
i
n
g
E
q
u
atio
n
6
i
n
o
r
d
er
to
o
b
tain
a
m
atr
i
x
co
lu
m
n
̅
̅
̅
̅
[
̅
̅
̅
̅
]
̅
̅
(
∑
(
)
)
̅
̅
4
.
3
.
2
.
Det
er
m
ini
ng
t
he
f
ina
l dec
is
io
n
m
a
t
ri
x
T
h
e
f
i
n
al
d
ec
is
io
n
m
atr
i
x
is
a
s
et
o
f
f
i
n
al
v
al
u
e
o
f
ea
c
h
b
asi
c
co
m
p
eten
c
y
.
T
h
er
ef
o
r
e
it
i
s
co
m
p
o
s
e
d
b
y
m
er
g
in
g
k
co
l
u
m
n
m
atr
i
x
o
b
tain
ed
in
s
tep
(
c)
.
̿
̅
̅
̅
̿
*
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
+
4
.
3
.
3
.
Ag
g
re
g
a
t
ing
t
he
info
r
m
a
t
io
n
a
nd
t
he
deg
re
e
o
f
i
m
po
rt
a
nce
o
f
ev
a
lua
t
io
n
co
m
pet
e
ncy
us
ing
w
eig
hte
d a
v
er
a
g
e
o
pera
t
o
rs
t
o
o
bta
in t
he
f
ina
l r
esu
lt
s
A
t
t
h
is
s
tag
e
t
h
e
2
-
t
u
p
le
lin
g
u
is
t
ic
in
f
o
r
m
atio
n
f
o
r
all
o
f
t
h
e
attr
ib
u
te
s
o
b
tain
ed
b
y
a
n
y
alter
n
ativ
e
w
o
u
ld
b
e
ag
g
r
eg
ated
i
n
to
a
s
in
g
le
v
a
lu
e,
w
h
ic
h
m
ea
n
s
a
g
g
r
eg
ati
n
g
ea
c
h
r
o
w
in
th
e
f
i
n
al
d
ec
is
io
n
m
atr
i
x
.
Sin
ce
ea
c
h
at
tr
ib
u
te
(
b
asic
co
m
p
e
ten
c
y
)
i
n
t
h
e
as
s
es
s
m
en
t
d
ata
h
as
a
n
i
m
p
o
r
tan
t
w
eig
h
t,
an
d
th
e
n
t
h
e
w
e
ig
h
t
is
tak
e
n
i
n
to
ac
co
u
n
t i
n
t
h
e
p
r
o
ce
s
s
o
f
ag
g
r
eg
at
io
n
b
y
u
s
i
n
g
a
w
ei
g
h
te
d
av
er
ag
e
o
p
er
ato
r
(
E
q
u
atio
n
7
)
.
4
.
4
.
E
x
plo
it
a
t
io
n
4
.
4
.
1
.
Describing
t
he
a
chiev
em
e
nt
lev
el
o
f
ea
ch
co
m
pet
en
cy
E
ac
h
co
lu
m
n
i
n
t
h
e
f
i
n
al
d
ec
is
i
o
n
m
atr
i
x
̿
s
h
o
w
s
th
e
v
al
u
e
o
f
m
s
tu
d
e
n
ts
f
o
r
ea
ch
b
asic
co
m
p
eten
c
y
.
Ma
an
d
Z
h
o
u
[
2
8
]
h
av
e
p
r
o
p
o
s
ed
a
m
et
h
o
d
ca
lled
f
u
zz
y
g
r
ad
in
g
s
y
s
te
m
b
y
tr
an
s
f
o
r
m
i
n
g
n
u
m
er
ical
v
alu
e
s
in
to
co
r
r
esp
o
n
d
in
g
let
ter
g
r
ad
es,
b
ased
o
n
m
e
m
b
er
s
h
ip
d
eg
r
ee
o
f
a
f
u
zz
y
f
u
n
ctio
n
.
Mo
s
s
in
et
a
l
[
5
]
u
s
es
a
class
i
f
icatio
n
s
y
s
te
m
b
ased
o
n
f
u
zz
y
r
u
le
to
a
s
s
e
s
s
ea
c
h
c
o
m
p
ete
n
c
y
.
T
h
er
eb
y
,
th
e
f
in
a
l
d
ec
is
i
o
n
m
atr
i
x
̿
r
ep
r
esen
ts
a
co
m
b
i
n
atio
n
o
f
th
e
t
w
o
id
ea
s
.
T
h
u
s
,
ea
ch
ce
ll
in
̅
̅
in
th
e
f
in
a
l
d
ec
is
io
n
m
atr
ix
s
h
o
w
s
ac
h
ie
v
e
m
e
n
t
o
f
s
t
u
d
en
t
i
th
i
n
b
asi
c
co
m
p
ete
n
c
y
b
th
an
d
w
ill
b
e
elab
o
r
ated
as
th
e
ac
h
iev
e
m
e
n
t le
v
el
o
f
ea
c
h
s
t
u
d
en
t o
f
ea
ch
b
asic c
o
m
p
ete
n
c
y
.
4
.
4
.
2
.
T
ra
ns
f
o
r
m
i
ng
t
he
f
ina
l r
esu
lt
s
into
t
he
f
ina
l per
t
ine
nt
nu
m
er
ica
l v
a
lues
Nu
m
er
ical
f
in
al
s
co
r
e
w
h
ic
h
i
s
eq
u
i
v
alen
t
w
it
h
f
in
al
r
esu
lt
in
2
-
t
u
p
le
li
n
g
u
i
s
tic
i
s
s
ti
ll
n
e
ed
ed
in
a
f
i
n
al
r
ep
o
r
t.
T
h
er
ef
o
r
e,
to
co
m
p
lete
t
h
e
p
r
o
ce
s
s
,
t
h
e
last
s
t
ag
e
is
co
n
v
er
t
in
g
t
h
e
f
i
n
al
2
-
t
u
p
le
li
n
g
u
i
s
tic
i
n
to
n
u
m
er
ic
i
n
f
o
r
m
atio
n
u
s
i
n
g
E
q
u
atio
n
3,
8
an
d
9.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Dec
is
io
n
-
Ma
kin
g
Mo
d
el
fo
r
S
t
u
d
en
t
A
s
s
ess
men
t b
y
Un
ifyin
g
N
u
merica
l a
n
d
Lin
g
u
is
tic
Da
ta
(
S
r
i A
n
d
a
ya
n
i
)
370
5.
RE
SU
L
T
S
AND
AN
AL
Y
SI
S
Su
p
p
o
s
ea
teac
h
er
w
il
l
ass
e
s
s
s
tu
d
en
t
s
’
co
m
p
eten
c
ies
i
n
a
co
u
r
s
e
w
h
ich
h
as
1
4
b
asic
co
m
p
eten
cies
a
s
d
ep
icted
in
T
a
b
le
2
w
h
ic
h
w
il
l
b
e
ass
es
s
ed
by
m
ea
n
s
o
f
th
r
ee
k
i
n
d
s
o
f
e
v
alu
a
tio
n
t
ec
h
n
iq
u
es
,
i.e
.
test
,
ass
i
g
n
m
e
n
ts
a
n
d
o
b
s
er
v
atio
n
.
E
ac
h
o
f
t
h
e
tec
h
n
iq
u
es
ca
n
b
e
co
n
d
u
cted
o
n
ce
o
r
m
o
r
e.
I
f
,
f
o
r
ex
a
m
p
le,
t
h
er
e
ar
e
s
ix
s
t
u
d
en
t
s
,
,
f
r
o
m
t
h
e
a
s
s
ess
m
e
n
t
d
ata
s
et
o
f
f
o
u
r
teen
b
asic
co
m
p
ete
n
cie
s
as
in
T
ab
le
2
.
T
h
e
lin
g
u
is
t
ic
ter
m
s
e
t S
u
s
ed
in
th
e
a
s
s
e
s
s
m
e
n
t is d
ef
i
n
ed
as
in
T
ab
le
1
.
T
h
e
d
ec
is
io
n
m
atr
i
x
w
h
ic
h
i
s
u
s
ed
to
r
ep
r
esen
t
th
e
a
s
s
e
s
s
m
en
t
v
al
u
e
o
f
s
i
x
s
t
u
d
en
t
s
f
o
r
ea
ch
b
asic
co
m
p
ete
n
c
y
is
(
)
,
w
h
er
e
.
T
h
e
f
o
u
r
tee
n
d
ec
is
io
n
m
atr
ices
ca
n
b
e
o
b
tain
ed
f
o
r
t
h
e
f
o
u
r
tee
n
r
elev
a
n
t
b
asic
co
m
p
ete
n
cies
o
f
t
h
e
s
ix
s
t
u
d
en
t
s
.
Fo
r
ex
a
m
p
le,
th
e
f
ir
s
t t
h
r
ee
d
ec
is
io
n
m
atr
ices a
r
e
s
h
o
w
n
b
el
o
w
.
0
.
8
E
G
0
.
7
G
VG
VG
0
.
8
G
E
0
.
6
A
A
0
.
5
P
AA
A
0
.
7
A
A
R
1
=
1
E
VG
R
2
=
0
.
9
G
G
VG
R
3
=
0
.
9
G
G
0
.
7
G
A
0
.
7
G
AA
G
0
.
7
G
AA
0
.
6
G
A
0
.
6
G
A
A
0
.
7
A
P
0
.
8
VG
G
0
.
7
AA
A
G
0
.
9
G
E
E
ac
h
o
f
t
h
e
d
ec
is
io
n
m
atr
ices
is
t
h
en
tr
an
s
f
o
r
m
ed
i
n
to
2
-
t
u
p
l
e
lin
g
u
is
t
ic
m
atr
ix
.
T
h
e
tr
an
s
f
o
r
m
at
io
n
r
es
u
lt
s
f
o
r
th
e
th
r
ee
e
x
a
m
p
le
m
atr
ices a
b
o
v
e
ar
e
s
h
o
w
n
b
elo
w
.
(
V
G
,
-
0
.
1
9
)
(
E,
0
)
(
G
,
0
)
(
G
,
-
0
.
1
2
)
(
G
,
0
)
(
V
G
,
0
)
(
V
G
,
0
)
(
V
G
,
0
.
0
6
)
(
G
,
0
)
(
E,
0
)
(
G
,
-
0
.
4
1
)
(
A
,
0
)
(
A
,
0
)
(
A
A
,
-
0
.
2
9
)
(
P
,
0
)
(
A
A
,
0
)
(
A
,
0
)
(
G
,
0
.
1
9
)
(
A
,
0
)
(
A
,
0
)
(
E,
0
)
(
E,
0
)
(
V
G
,
0
)
(
V
G
,
0
.
4
1
)
(
G
,
0
)
(
G
,
0
)
(
V
G
,
0
)
(
V
G
,
0
.
4
1
)
(
G
,
0
)
(
G
,
0
)
(
G
,
0
.
1
9
)
(
G
,
0
)
(
A
,
0
)
(
G
,
0
.
1
9
)
(
G
,
0
)
(
A
A
,
0
)
(
G
,
0
)
(
G
,
0
.
1
9
)
(
G
,
0
)
(
A
A
,
0
)
(
G,
-
0
.
4
1
)
(
G
,
0
)
(
A
,
0
)
(
G
,
-
0
.
4
1
)
(
G
,
0
)
(
A
,
0
)
(
A
,
0
)
(
G
,
0
.
1
9
)
(
A
,
0
)
(
P
,
0
)
(
V
G
,
-
0
.
1
9
)
(
V
G
,
0
)
(
G
,
0
)
(
G
,
0
.
1
9
)
(
A
A
,
0
)
(
A
,
0
)
(
G
,
0
)
(
V
G
,
0
.
4
1
)
(
G
,
0
)
(
E,
0
)
Fo
r
ev
er
y
2
-
tu
p
le
li
n
g
u
i
s
tic
d
ec
is
io
n
m
atr
i
x
,
th
e
a
v
er
ag
e
o
f
ea
ch
r
o
w
w
ill
b
e
d
eter
m
in
ed
u
s
i
n
g
E
q
u
atio
n
6
,
an
d
r
esu
lts
a
co
lu
m
n
m
atr
i
x
.
T
h
er
e
ar
e
f
o
u
r
teen
co
lu
m
n
m
atr
ice
s
w
h
ic
h
ar
e
later
m
er
g
ed
in
to
th
e
f
i
n
al
d
ec
is
io
n
m
atr
i
x
,
w
h
o
s
e
r
esu
lt
s
ar
e
p
r
esen
ted
in
T
ab
le
4
.
T
ab
le
4
.
T
h
e
Fin
al
Dec
is
io
n
Ma
tr
ix
b
1
b
2
b
3
b
4
b
5
b
6
b
7
b
8
b
9
b
10
b
11
b
12
b
13
b
14
(
VG
,
-
0.
06
)
(
G,
0.
47
)
(
VG
,
0.
02)
(
G,
0)
(
G,
0.
14
)
(
G,
-
0
.
17)
(
AA
,
0.
21)
(
VG
,
0.
43)
(
VG
,
-
0.
33
)
(
E
,
-
0.
27)
(
G,
0.
06
)
(
G,
0.
37
)
(
VG
,
0.
43)
(
VG
,
-
0.
2
)
(
AA
,
-
0.
47)
(
A
,
0.
18)
(
AA
,
-
0.
27)
(
AA
,
0.
33)
(
A
,
0.
06)
(
A
,
-
0.
04)
(
A
,
-
0.
43)
(
AA
,
0.
49)
(
AA
,
-
0.
37)
(
G,
-
0
.
22)
(
A
,
0.
02)
(
A
,
0.
47)
(
AA
,
0.
41)
(
G,
-
0
.
14)
(
E
,
-
0.
33)
(
VG
,
-
0.
4
)
(
G,
0.
47
)
(
VG
,
0.
43)
(
E
,
-
0.
29)
(
VG
,
-
0.
24
)
(
E
,
-
0.
2)
(
G,
0.
45
)
(
VG
,
-
0.
06
)
(
VG
,
-
0.
44
)
(
VG
,
-
0.
17
)
(
G,
0.
27
)
(
G,
0.
27
)
(
VG
,
0.
04)
(
AA
,
0.
4)
(
G,
-
0
.
2)
(
G,
-
0
.
27)
(
AA
,
-
0.
17)
(
AA
,
0.
06)
(
G,
0.
33
)
(
VG
,
0)
(
G,
-
0
.
2)
(
VG
,
-
0.
33
)
(
G,
-
0
.
33)
(
AA
,
-
0.
14)
(
A
,
0.
2)
(
AA
,
-
0.
02)
(
G,
0)
(
AA
,
0.
2)
(
AA
,
-
0.
1)
(
A
,
0.
4)
(
A
,
0.
29)
(
A
,
0)
(
G,
0.
33
)
(
VG
,
-
0.
33
)
(
G,
0.
25
)
(
VG
,
-
0.
33
)
(
AA
,
-
0.
14)
(
AA
,
0.
2)
(
G,
-
0
.
06)
(
AA
,
-
0.
37)
(
G,
0.
29
)
(
VG
,
-
0.
4
)
(
AA
,
0.
3)
(
VG
,
0.
14)
(
VG
,
-
0.
4
)
(
VG
,
-
0.
33
)
(
VG
,
0)
(
VG
,
0)
(
VG
,
0.
25)
(
G,
0.
27
)
(
VG
,
-
0.
33
)
(
VG
,
-
0.
27
)
(
G,
0.
27
)
(
G,
0.
06
)
(
VG
,
0.
43)
T
ab
le
5
.
T
h
e
f
in
al
r
es
u
lts
o
f
s
t
u
d
en
t
’
s
a
s
s
es
s
m
en
t
S
t
u
#
N
u
me
r
i
c
sco
r
e
2
-
TL
sco
r
e
D
e
scri
p
t
i
o
n
1
7
7
.
8
6
(
V
G
,
-
0
.
3
2
)
V
e
r
y
g
o
o
d
,
a
l
t
h
o
u
g
h
s
t
i
l
l
n
e
e
d
s
3
2
%
mo
r
e
t
o
a
c
h
i
e
v
e
t
h
i
s
r
a
n
k
2
4
4
.
2
8
(
A
A
,
-
0
.
3
4
)
A
b
o
v
e
a
v
e
r
a
g
e
,
a
l
t
h
o
u
g
h
s
t
i
l
l
n
e
e
d
s
3
4
%
mo
r
e
t
o
a
c
h
i
e
v
e
t
h
i
s ra
n
k
3
8
3
.
5
3
(
V
G
,
0
.
0
3
)
V
e
r
y
g
o
o
d
,
h
a
s
a
p
o
t
e
n
t
i
a
l
o
f
3
%
t
o
a
c
h
i
e
v
e
h
i
g
h
e
r
r
a
n
k
s
4
5
9
.
9
5
(
G
,
-
0
.
4
1
)
G
o
o
d
,
a
l
t
h
o
u
g
h
st
i
l
l
n
e
e
d
s 4
1
%
mo
r
e
t
o
a
c
h
i
e
v
e
t
h
i
s ra
n
k
5
5
5
.
8
2
(
A
A
,
0
.
3
4
)
A
b
o
v
e
a
v
e
r
a
g
e
,
h
a
s
a
p
o
t
e
n
t
i
a
l
o
f
3
4
%
t
o
a
c
h
i
e
v
e
h
i
g
h
e
r
r
a
n
k
s
6
7
5
.
4
4
(
V
G
,
-
0
.
4
7
)
V
e
r
y
g
o
o
d
,
a
l
t
h
o
u
g
h
s
t
i
l
l
n
e
e
d
s
4
7
%
mo
r
e
t
o
a
c
h
i
e
v
e
t
h
i
s
r
a
n
k
Su
p
p
o
s
e
th
e
w
e
ig
h
t
o
f
f
o
u
r
teen
co
m
p
ete
n
cies
o
b
tain
ed
f
r
o
m
t
h
e
ca
lcu
latio
n
u
s
i
n
g
co
m
b
in
atio
n
o
f
r
atin
g
s
ca
le
an
d
F
A
NP
m
e
th
o
d
s
is
w
=
{
0
.
2
5
7
0
.
1
3
6
0
.
0
4
8
0
.
0
4
3
0
.
0
4
3
0
.
0
4
3
0
.
0
4
3
0
.
0
5
6
0
.
0
6
1
0
.
0
6
1
0
.
0
6
1
0
.
0
4
5
0
.
0
4
5
0
.
0
6
1
}
.
Fin
all
y
,
t
h
e
f
i
n
al
r
es
u
lts
o
f
s
t
u
d
en
t
’
s
a
s
s
ess
m
e
n
t
i
n
th
e
f
o
r
m
o
f
t
h
e
2
-
tu
p
le
lin
g
u
is
t
ic
ar
e
d
eter
m
in
ed
u
s
in
g
E
q
u
atio
n
7
.
T
o
ac
co
m
p
lis
h
th
e
r
es
u
lts
,
t
h
e
f
i
n
al
2
-
t
u
p
le
li
n
g
u
i
s
tic
s
co
r
eis
co
n
v
er
ted
i
n
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
6
3
–
373
371
n
u
m
er
ic
u
s
in
g
E
q
u
atio
n
3
,
8
a
n
d
9
.
T
h
e
m
ea
n
i
n
g
o
f
t
h
e
s
co
r
e
ca
n
b
e
d
e
s
cr
ib
ed
r
ef
er
r
in
g
to
th
e
d
ef
i
n
itio
n
o
f
α
a
s
s
tated
in
De
f
i
n
itio
n
1
.
T
h
e
r
esu
lt
s
ar
e
s
h
o
w
n
i
n
T
ab
le
5
.
B
ased
o
n
T
ab
le
5
,
th
e
s
tu
d
en
t
r
an
k
i
n
g
s
ar
e:
s
t
u
d
en
t
#
3
>
s
tu
d
en
t
#
1
>
s
tu
d
en
t
#
6
>
s
tu
d
e
n
t
#
4
>
s
tu
d
en
t
#
5
>
s
tu
d
en
t
#
2
.
T
ab
le
6
s
h
o
w
s
t
h
e
d
etail
r
esu
lt
o
f
ea
ch
co
m
p
eten
c
y
f
o
r
s
t
u
d
en
t#
1
.
T
h
e
s
co
r
e
o
f
ea
ch
co
m
p
ete
n
c
y
ca
n
b
e
s
ee
n
in
t
h
e
f
ir
s
t r
o
w
o
f
T
ab
le
4
.
Fro
m
T
ab
le
6
,
th
e
f
in
al
v
al
u
e
o
f
s
t
u
d
en
t #
1
is
7
7
.
8
6
an
d
(
VG,
-
0
3
2
)
.
T
h
e
r
esu
lt
s
h
o
w
s
th
a
t stu
d
e
n
t
#
1
is
in
ca
te
g
o
r
y
o
f
Ver
y
Go
o
d
(
VG)
,
alth
o
u
g
h
s
h
e/
h
e
s
til
l
n
ee
d
s
3
2
%
to
r
ea
ch
th
e
g
r
ad
e
VG,
in
d
icate
d
b
y
a
v
alu
e
o
f
α
=
-
0
.
3
2
.
T
ab
le
6
.
Deta
iled
r
esu
lt f
o
r
s
tu
d
en
t#
1
S
t
u
#
N
u
me
r
i
c
s
c
o
r
e
2
-
TL
sco
r
e
2
-
TL
b
a
se
d
me
mb
e
r
sh
i
p
d
e
g
r
e
e
D
e
scri
p
t
i
o
n
1
7
7
.
8
6
(
V
G
,
-
0
.
3
2
)
(
G
,
0
.
3
2
)
,
(
V
G
,
0
.
6
8
)
V
e
r
y
g
o
o
d
,
a
l
t
h
o
u
g
h
i
t
st
i
l
l
n
e
e
d
s 3
2
%
mo
r
e
t
o
a
c
h
i
e
v
e
t
h
i
s ra
n
k
D
e
t
a
i
l
s:
C
o
mp
e
t
e
n
c
y
#
2
-
TL
sco
r
e
D
e
scri
p
t
i
o
n
1.
C
1
.
1
(
V
G
,
-
0
.
0
6
)
V
e
r
y
g
o
o
d
,
a
l
t
h
o
u
g
h
st
i
l
l
n
e
e
d
s 6
%
mo
r
e
t
o
a
c
h
i
e
v
e
t
h
i
s
r
a
n
k
2.
C
1
.
2
(
G
,
0
.
4
7
)
G
o
o
d
,
h
a
s
p
o
t
e
n
t
i
a
l
o
f
4
7
%
t
o
a
c
h
i
e
v
e
h
i
g
h
e
r
r
a
n
k
s
3.
C
1
.
3
(
V
G
,
0
.
0
2
)
V
e
r
y
G
o
o
d
,
h
a
s
p
o
t
e
n
t
i
a
l
o
f
2
%
t
o
a
c
h
i
e
v
e
h
i
g
h
e
r
r
a
n
k
s
4.
Et
c
.
T
h
e
f
in
al
r
esu
l
ts
u
s
in
g
a
2
-
tu
p
le
li
n
g
u
i
s
tic
p
r
o
v
id
e
m
ea
n
in
g
f
u
l
in
f
o
r
m
atio
n
ab
o
u
t
s
t
u
d
en
t
’
s
ac
h
iev
e
m
e
n
t.
Val
u
e
α
o
n
th
e
lin
g
u
is
tic
2
-
t
u
p
les
i
n
t
h
e
f
in
al
v
al
u
e
o
f
a
s
t
u
d
en
t
ca
n
b
e
in
ter
p
r
eted
as
a
co
m
p
ar
is
o
n
o
f
ab
ilit
y
w
i
th
o
th
er
s
tu
d
e
n
ts
if
t
h
e
y
ar
e
i
n
t
h
e
s
a
m
e
ca
te
g
o
r
y
,
a
n
d
s
h
o
w
h
o
w
m
u
c
h
p
o
te
n
tial
th
e
s
tu
d
e
n
t h
a
s
to
r
ea
ch
h
i
g
h
er
r
an
k
s
.
Gen
er
all
y
,
t
h
e
f
i
n
al
r
es
u
lt
o
f
l
ea
r
n
in
g
p
r
o
ce
s
s
is
d
eter
m
in
ed
b
y
th
e
ar
it
h
m
e
tic
av
er
ag
e
m
e
th
o
d
.
T
h
e
m
et
h
o
d
is
a
s
tatis
tical
i
n
d
icat
o
r
th
at
r
ep
r
esen
ts
th
e
ce
n
tr
al
t
en
d
en
c
y
o
f
d
ata.
T
h
e
co
m
p
u
t
atio
n
is
s
i
m
p
le
an
d
co
m
m
o
n
l
y
u
s
ed
in
s
t
u
d
en
t
le
ar
n
in
g
a
s
s
es
s
m
en
t
p
r
o
b
lem
.
Ho
w
e
v
er
,
th
i
s
m
et
h
o
d
is
s
tr
o
n
g
l
y
in
f
l
u
en
ce
d
b
y
o
u
tlier
s
a
n
d
ca
n
n
o
t
d
ea
l
w
i
t
h
q
u
a
n
tita
tiv
e
an
d
q
u
alitati
v
e
d
ata
s
i
m
u
ltan
eo
u
s
l
y
[
2
9
]
.
T
h
er
ef
o
r
e
t
h
is
s
t
u
d
y
pr
o
p
o
s
es a
m
o
d
el
th
at
u
s
es 2
-
t
u
p
le
lin
g
u
is
t
ic
ap
p
r
o
ac
h
to
co
v
er
th
e
w
ea
k
n
e
s
s
e
s
o
f
t
h
e
m
et
h
o
d
.
A
cc
o
r
d
in
g
to
[
9
]
,
th
e
2
-
tu
p
les
lin
g
u
i
s
tics
m
o
d
el
h
as
b
ee
n
ap
p
lied
in
m
a
n
y
f
ield
s
.
Ho
w
e
v
er
it
h
as
n
o
t
b
ee
n
u
s
ed
i
n
t
h
e
a
s
s
es
s
m
en
t
o
f
lear
n
in
g
.
I
n
[
2
9
]
,
a
p
r
o
b
lem
o
f
h
ig
h
er
ed
u
ca
tio
n
s
t
u
d
en
t
s
’
s
elec
tio
n
is
s
o
lv
ed
u
s
i
n
g
t
h
e
2
-
t
u
p
les
l
in
g
u
is
t
ics
ap
p
r
o
ac
h
an
d
it
s
h
o
w
s
t
h
at
t
h
is
ap
p
r
o
ac
h
p
r
o
v
id
es
in
f
o
r
m
at
io
n
ab
o
u
t
s
t
u
d
en
t
s
’
r
an
k
m
o
r
e
ac
c
u
r
atel
y
a
n
d
r
ea
s
o
n
ab
l
y
,
f
u
r
th
er
m
o
r
e,
it
d
o
es
n
o
t
lo
s
e
a
n
y
v
al
u
ab
le
i
n
f
o
r
m
at
io
n
f
r
o
m
t
h
e
co
m
m
e
n
tato
r
.
T
h
e
r
esu
lts
o
f
th
i
s
s
tu
d
y
i
n
-
li
n
e
w
it
h
th
e
r
e
s
u
l
ts
o
f
t
h
e
p
r
ev
io
u
s
o
n
e.
I
n
ad
d
itio
n
,
t
h
i
s
s
tu
d
y
also
o
f
f
er
s
s
e
v
er
al
s
i
g
n
if
ica
n
t
f
in
d
in
g
s
,
n
a
m
e
l
y
:
1
)
a
n
e
w
p
r
o
ce
d
u
r
e
f
o
r
d
eter
m
in
i
n
g
th
e
f
in
al
r
es
u
lt
w
h
ic
h
co
m
b
i
n
es
n
u
m
er
ical
a
n
d
lin
g
u
is
tic
d
ata
,
2
)
th
e
o
p
p
o
r
tu
n
it
y
o
f
u
s
in
g
li
n
g
u
i
s
tic
v
ar
iab
le
in
s
t
ea
d
o
f
n
u
m
er
ic
f
o
r
s
o
m
e
tec
h
n
ical
e
v
al
u
atio
n
s
w
h
ich
co
n
s
id
er
p
s
y
ch
o
lo
g
ica
l
f
ac
to
r
s
,
s
o
th
at
it
is
p
o
s
s
ib
le
to
in
teg
r
ate
th
e
att
itu
d
e
ass
es
s
m
en
t
i
n
to
co
g
n
iti
v
e
o
n
e
w
h
ic
h
is
u
s
u
all
y
co
n
d
u
c
ted
s
ep
ar
atel
y
,
3)
th
e
m
ea
n
i
n
g
f
u
ln
es
s
o
f
t
h
e
r
es
u
lt
s
s
in
ce
v
alu
e
α
o
f
th
e
f
in
a
l
r
esu
l
ts
in
f
o
r
m
t
h
e
d
eg
r
ee
o
f
ab
ilit
y
an
d
to
r
ea
ch
h
ig
h
er
r
an
k
s
,
4
)
th
e
r
ich
n
es
s
o
f
th
e
r
esu
lt
s
s
in
ce
it
e
v
al
u
ates
s
t
u
d
en
ts
w
it
h
r
esp
ec
t
to
th
e
ir
l
ev
els
o
f
co
m
p
eten
ce
i
n
ea
c
h
attr
ib
u
te
s
u
ch
as
k
n
o
w
led
g
e
o
r
s
k
i
lls
.
U
s
in
g
t
h
i
s
r
esu
l
t,
s
t
u
d
en
t
s
’
m
a
s
ter
y
o
f
e
ac
h
attr
ib
u
te
ca
n
b
e
d
iag
n
o
s
ed
an
d
th
eir
p
r
o
g
r
ess
o
f
lear
n
i
n
g
ca
n
b
e
esti
m
ated
.
A
cc
o
r
d
in
g
to
[
3
0
]
,
th
e
r
es
u
l
t
s
u
p
p
o
r
ts
t
h
e
p
u
r
p
o
s
e
o
f
C
o
g
n
i
tiv
e
Dia
g
n
o
s
is
T
h
eo
r
y
,
w
h
ic
h
is
to
p
r
o
v
id
e
s
tu
d
en
t
s
,
te
ac
h
er
s
,
o
r
p
ar
en
ts
-
i
n
d
iv
id
u
al
f
ee
d
b
ac
k
r
eg
ar
d
in
g
t
o
s
tu
d
en
t
’
s
m
aster
y
o
f
ea
ch
co
m
p
ete
n
c
y
m
ea
s
u
r
ed
b
y
t
h
e
as
s
es
s
m
e
n
t.
6.
CO
NCLU
SI
O
N
T
h
e
m
o
d
elin
g
a
n
d
h
a
n
d
lin
g
o
f
li
n
g
u
i
s
tic
in
f
o
r
m
at
io
n
ar
e
cr
u
cial
i
n
t
h
e
a
s
s
e
s
s
m
e
n
t
o
f
lear
n
in
g
s
i
n
ce
th
er
e
ar
e
q
u
ali
tati
v
e
asp
ec
ts
in
cl
u
d
ed
in
th
e
ass
e
s
s
m
e
n
t
.
T
h
er
ef
o
r
e
a
m
et
h
o
d
u
s
in
g
2
-
tu
p
le
li
n
g
u
is
tic
r
ep
r
esen
tatio
n
s
to
co
m
p
u
te
t
h
e
f
in
al
s
co
r
e
o
f
ass
es
s
m
en
t
t
h
at
in
v
o
l
v
es
n
u
m
er
ical
an
d
lin
g
u
i
s
tic
i
n
f
o
r
m
atio
n
h
as b
ee
n
p
r
o
p
o
s
ed
.
Valu
e
α
o
f
th
e
2
-
t
u
p
le
l
in
g
u
is
tic
i
n
th
e
f
in
a
l
r
es
u
lt
an
d
i
n
t
h
e
d
escr
ip
tio
n
o
f
ea
c
h
co
m
p
e
ten
c
y
b
ec
o
m
e
s
m
ea
n
i
n
g
f
u
l
in
f
o
r
m
at
io
n
th
a
t
ca
n
b
e
in
ter
p
r
eted
as
a
co
m
p
ar
ativ
e
ab
ili
t
y
o
n
e
s
t
u
d
en
t
h
a
s
r
elate
d
to
o
th
er
s
t
u
d
en
t
s
,
a
n
d
s
h
o
w
s
h
o
w
m
u
ch
p
o
ten
tial
is
ac
h
ie
v
ed
to
r
ea
ch
h
ig
h
er
r
an
k
s
.
T
h
e
p
r
o
p
o
s
ed
m
o
d
el
co
n
tr
ib
u
tes
to
en
r
ic
h
t
h
e
lear
n
in
g
a
s
s
e
s
s
m
e
n
t
tec
h
n
iq
u
es,
d
u
e
to
t
h
e
ex
p
lo
itat
io
n
o
f
li
n
g
u
i
s
tic
v
ar
iab
le
a
s
r
ep
r
esen
tatio
n
p
r
ef
er
e
n
ce
s
,
p
r
o
v
id
in
g
f
lex
ib
le
s
p
ac
e
f
o
r
teac
h
er
s
i
n
t
h
eir
as
s
es
s
m
en
t
s
.
M
o
r
eo
v
er
,
th
e
m
o
d
el
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Dec
is
io
n
-
Ma
kin
g
Mo
d
el
fo
r
S
t
u
d
en
t
A
s
s
ess
men
t b
y
Un
ifyin
g
N
u
merica
l a
n
d
Lin
g
u
is
tic
Da
ta
(
S
r
i A
n
d
a
ya
n
i
)
372
g
iv
e
s
e
v
al
u
atio
n
r
es
u
lt
w
i
th
r
e
s
p
ec
t
to
s
t
u
d
en
ts
’
le
v
els
o
f
co
m
p
e
ten
ce
in
ea
ch
attr
ib
u
te
s
u
c
h
as
k
n
o
w
led
g
e
o
r
s
k
il
ls
.
Usi
n
g
th
is
r
es
u
lt,
s
t
u
d
e
n
ts
’
m
aster
y
o
f
ea
ch
attr
ib
u
te
ca
n
b
e
d
iag
n
o
s
ed
an
d
th
e
ir
p
r
o
g
r
ess
o
f
lear
n
i
n
g
ca
n
b
e
esti
m
ated
.
RE
F
E
R
E
NC
E
S
[
1
]
R.
M
.
Th
o
r
n
d
ik
e
a
n
d
T.
Th
o
r
n
d
i
k
e
-
Ch
r
i
s
t,
M
e
a
su
re
me
n
t
a
n
d
Eva
lu
a
ti
o
n
in
Psy
c
h
o
l
o
g
y
a
n
d
E
d
u
c
a
ti
o
n
,
Ei
g
h
t
h
Ed
it
i
o
n
,
P
e
a
rs
o
n
Ed
u
c
a
ti
o
n
I
n
c
.
,
B
o
s
to
n
,
2
0
1
0
.
[
2
]
M
.
S
u
d
a
r
m
a
,
A.A.K.
Ok
a
S
u
d
a
n
a
,
a
n
d
I
.
Ca
h
y
a
,
“
De
c
isio
n
S
u
p
p
o
r
t
S
y
s
tem
f
o
r
th
e
S
e
l
e
c
ti
o
n
o
f
Co
u
r
s
e
s
in
th
e
Hig
h
e
r
Ed
u
c
a
ti
o
n
u
s
in
g
th
e
M
e
th
o
d
o
f
El
im
in
a
ti
o
n
Et
Ch
o
ix
Tra
n
d
u
it
La
Re
a
li
te”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
(
IJ
ECE
)
,
Vo
l.
5
,
No
.
1
,
F
e
b
ru
a
r
y
2
0
1
5
,
p
p
.
1
2
9
~
1
3
5
,
I
S
S
N:
2
0
8
8
-
8
7
0
8
.
[
3
]
S
.
M
.
Br
o
o
k
h
a
rt
a
n
d
A.J
.
Nitk
o
,
As
s
e
s
s
m
e
n
t
a
n
d
Gr
a
d
in
g
in
Clas
sr
o
o
m
s
.
P
e
a
rs
o
n
Ed
u
c
a
ti
o
n
,
In
c
.
,
Ne
w
J
e
rs
e
y
,
2
0
0
8
.
[
4
]
M
.
K.
Ta
y
,
P
.
C.
Li
m
a
n
d
T.
L.
J
e
e
,
“
En
h
a
n
c
in
g
F
u
z
z
y
I
n
f
e
r
e
n
c
e
S
y
s
te
m
B
a
s
e
d
Cr
it
e
r
io
n
-
Re
f
e
r
e
n
c
e
d
As
s
e
ss
m
e
n
t
with
An
Ap
p
li
c
a
ti
o
n
”
,
Pr
o
c
e
e
d
in
g
s 2
4
t
h
Eu
r
o
p
e
a
n
Co
n
fer
e
n
c
e
o
n
M
o
d
e
ll
in
g
a
n
d
S
im
u
la
t
io
n
,
ECM
S
,
I
S
B
N:
9
7
8
-
0
-
9
5
6
4
9
4
4
-
0
-
5
/
I
S
B
N:
9
7
8
-
0
-
9
5
6
4
9
4
4
-
1
-
2
(
CD
)
Ku
a
l
a
Lu
m
p
u
r
,
M
a
la
y
s
ia
,
1
-
4
J
u
n
e
2
0
1
0
.
[
5
]
E.
A.
M
o
ss
in
,
R.
P
.
P
a
n
to
n
i,
a
n
d
D.Bra
n
d
ã
o
,
“
S
tu
d
e
n
ts
’
Ev
a
lu
a
ti
o
n
B
a
s
e
d
o
n
F
u
z
z
y
S
e
ts
Th
e
o
r
y
”
,
in
Aza
r,
A.
T
.
,
(
Ed
.
),
Fu
zz
y
S
y
ste
ms
,
I
NTECH,
Cr
o
a
t
ia.
h
tt
p
:/
/www
.
in
tec
h
o
p
e
n
.
c
o
m
.
2
0
1
0
.
[
6
]
L
-
X.
Wa
n
g
,
A
C
o
u
rs
e
i
n
F
u
zz
y
S
y
ste
ms
a
n
d
C
o
n
tr
o
l,
P
r
e
n
ti
c
e
-
Ha
l
l
I
n
t
e
r
n
a
ti
o
n
a
l
I
n
c
.
,
En
g
lew
o
o
d
Cli
ffs
,
1
9
9
7
.
[
7
]
F
.
He
r
r
e
ra
,
a
n
d
L.
M
a
rti
n
e
z
,
“
A
n
Ap
p
r
o
a
c
h
f
o
r
Co
m
b
in
in
g
Li
n
g
u
is
ti
c
a
n
d
Nu
m
e
r
ica
l
I
n
f
o
r
m
a
ti
o
n
Ba
s
e
d
o
n
th
e
2
-
Tu
p
le
F
u
z
z
y
Li
n
g
u
is
ti
c
Re
p
r
e
se
n
ta
ti
o
n
m
o
d
e
l
in
De
c
is
io
n
M
a
k
in
g
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Un
c
e
rta
in
ty,
Fu
zz
in
e
ss
a
n
d
K
n
o
wle
d
g
e
-
Ba
se
d
sy
ste
ms
,
Vo
l
8
,
No
.
5
,
p
p
.
5
3
9
-
5
6
2
,
2
0
0
0
.
[
8
]
F
.
He
r
r
e
ra
,
a
n
d
L.
M
a
r
ti
n
e
z
,
“
A 2
-
tu
p
le
F
u
z
z
y
Li
n
g
u
is
ti
c
Re
p
r
e
s
e
n
t
a
ti
o
n
M
o
d
e
l
f
o
r
Co
m
p
u
ti
n
g
with
Wo
r
d
s
”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Fu
zz
y
S
y
ste
ms
.
,
v
o
l.
8
,
n
o
.
6
,
p
p
.
7
4
6
–
7
5
2
,
2
0
0
0
.
[
9
]
L.
M
a
r
ti
n
e
z
a
n
d
F
.
H
e
r
r
e
ra
,
“
An
O
v
e
r
v
i
e
w
o
n
th
e
2
-
tu
p
le L
in
g
u
is
ti
c
M
o
d
e
l
f
o
r
Co
m
p
u
ti
n
g
with
Wo
r
d
s
in
De
c
is
io
n
M
a
k
in
g
:
Ex
ten
s
io
n
s
,
Ap
p
l
ica
ti
o
n
s a
n
d
Ch
a
ll
e
n
g
e
s
”
,
I
n
fo
rm
a
ti
o
n
S
c
ien
c
e
s 2
0
7
,
p
p
.
1
–
1
8
,
2
0
1
2
.
[
1
0
]
J
.
M
.
M
o
r
e
n
o
,
J
.
M
.
M
o
ra
le
s
d
e
l
Ca
stil
lo
,
C.
P
o
rc
e
l
a
n
d
E.
He
rr
e
ra
-
Vie
d
m
a
,
“
A
Qu
a
li
ty
E
v
a
lu
a
ti
o
n
M
e
th
o
d
o
l
o
g
y
f
o
r
He
a
lt
h
-
r
e
la
ted
Web
s
it
e
s
Ba
se
d
o
n
a
2
-
tu
p
le
F
u
z
z
y
Li
n
g
u
is
ti
c
Ap
p
r
o
a
c
h
”
,
S
o
ft
Co
m
p
u
t
in
g
1
4
,
p
p
.
8
8
7
–
8
9
7
,
S
p
r
in
g
e
r
-
Ve
r
l
a
g
,
2
0
1
0
.
[
1
1
]
M
.
Li
a
n
d
Y.
Z
h
a
n
g
,
“
Th
e
OWA
-
VI
KO
R
M
e
th
o
d
f
o
r
M
u
lt
i
p
le
Attr
i
b
u
ti
v
e
Gr
o
u
p
De
c
is
io
n
M
a
k
in
g
in
2
-
tu
p
le
Li
n
g
u
is
ti
c
S
e
tt
in
g
”
,
J
o
u
r
n
a
l
o
f
C
o
n
v
e
rg
e
n
c
e
In
fo
rm
a
ti
o
n
T
e
c
h
n
o
l
o
g
y
(
J
CIT
),
Vo
lu
m
e
7
,
Nu
m
b
e
r
2
,
F
e
b
r
u
a
r
y
2
0
1
2
,
d
o
i:
1
0
.
4
1
5
6
/j
c
it
.
Vo
l
7.
I
ss
u
e
2
.
2
2
.
p
p
.
1
8
4
-
1
9
1
,
2
0
1
2
.
[
1
2
]
O.
Co
r
d
o
n
,
F
.
He
r
r
e
ra
a
n
d
A.
P
e
r
e
g
r
in
,
“
Ap
p
li
c
a
b
il
it
y
o
f
th
e
F
u
z
z
y
Op
e
r
a
to
rs
in
th
e
De
s
ig
n
o
f
F
u
z
z
y
Lo
g
ic
Co
n
tr
o
ll
e
rs
”
,
Fu
zz
y
S
e
ts
a
n
d
S
y
ste
ms
,
8
6
,
p
p
.
1
5
4
1
,
1
9
9
7
.
[
1
3
]
F
.
He
r
r
e
ra
a
n
d
E.
He
rr
e
ra
-
Vie
d
m
a
,
“
Li
n
g
u
is
ti
c
d
e
c
isio
n
a
n
a
ly
s
is
:
s
te
p
s
f
o
r
s
o
lv
in
g
d
e
c
is
io
n
p
r
o
b
lem
s
u
n
d
e
r
li
n
g
u
is
ti
c
in
f
o
r
m
a
ti
o
n
”
,
F
u
zz
y
S
e
t
s a
n
d
S
y
ste
ms
,
1
1
5
p
p
.
6
7
-
8
2
,
2
0
0
0
.
[
1
4
]
B
.
Du
tt
a
,
D.
Gu
h
a
,
a
n
d
R.
M
e
s
i
a
r
,
“
A
M
o
d
e
l
B
a
s
e
d
o
n
Li
n
g
u
is
ti
c
2
-
tu
p
le
s
f
o
r
De
a
li
n
g
with
He
ter
o
g
e
n
e
o
u
s
Re
la
ti
o
n
s
h
ip
a
m
o
n
g
Attr
ib
u
tes
i
n
M
u
lt
i
-
e
x
p
e
r
t
De
c
i
s
io
n
M
a
k
in
g
”
.
IEE
E
T
ra
n
sa
c
ti
o
n
o
n
Fu
zz
y
S
y
ste
ms
,
V
o
l.
P
P
,
I
s
s
u
e
9
9
,
DO
I
:
1
0
.
1
1
0
9
/T
F
UZ
Z
.
2
0
1
4
.
2
3
7
9
2
9
1
,
2
0
1
4
.
[
1
5
]
C.
S
a
n
Li
n
,
C.
Tu
n
g
Ch
e
n
a
n
d
F
.
S
h
in
g
Ch
e
n
,
F
,
“
Ap
p
ly
in
g
2
-
tu
p
le
Li
n
g
u
is
ti
c
V
a
r
i
a
b
le
s
to
A
ss
e
ss
th
e
Te
a
c
h
in
g
P
e
rf
o
r
m
a
n
c
e
Ba
s
e
d
o
n
th
e
Vie
wp
o
in
ts
o
f
S
tu
d
e
n
ts
”
,
Pro
c
e
e
d
in
g
o
f
2
0
1
3
I
n
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
F
u
zz
y
T
h
e
o
ry
a
n
d
Its
Ap
p
li
c
a
t
io
n
,
Na
ti
o
n
a
l
T
a
i
wa
n
Un
i
v
e
r
s
it
y
o
f
S
c
ien
c
e
a
n
d
Tec
h
n
o
lo
g
y
,
Ta
ip
e
i,
Taiwa
n
,
p
p
.
4
7
0
-
4
7
4
,
De
c
.
6
-
8
,
2
0
1
3
.
[
1
6
]
E.
He
rr
e
ra
-
Vie
d
m
a
,
F
.
H
e
r
r
e
ra
,
L
.
M
a
r
ti
n
e
z
,
J
.
C.
He
rr
e
ra
a
n
d
A.G.
Lo
p
e
z
,
“
I
n
c
o
r
p
o
r
a
ti
n
g
F
il
ter
in
g
Tec
h
n
iq
u
e
s
in
a
F
u
z
z
y
Li
n
g
u
is
ti
c
M
u
lt
i
-
a
g
e
n
t
M
o
d
e
l
f
o
r
I
n
f
o
r
m
a
ti
o
n
Ga
th
e
r
in
g
o
n
th
e
Web
”
,
Fu
zz
y
S
e
ts
a
n
d
S
y
ste
ms
,
1
4
8
,
p
p
.
6
1
–
8
3
,
2
0
0
4
.
[
1
7
]
L.
M
a
rti
n
e
z
,
D.
Ru
a
n
a
n
d
F
.
H
e
rr
e
ra
,
“
Co
m
p
u
ti
n
g
with
Wo
r
d
s
in
De
c
is
io
n
s
u
p
p
o
r
t
S
y
s
te
m
s
:
An
O
v
e
r
v
iew
o
n
M
o
d
e
ls
a
n
d
Ap
p
li
c
a
ti
o
n
s
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Co
mp
u
ta
t
io
n
a
l
In
telli
g
e
n
c
e
S
y
ste
ms
,
Vo
l.
3
,
No
.
4
,
p
p
.
3
8
2
-
3
9
5
,
2
0
1
0
.
[
1
8
]
R.
Yu
s
o
ff
a
n
d
R.
M
.
Ja
n
o
r
,
“
G
e
n
e
r
a
ti
o
n
o
f
a
n
In
ter
v
a
l
m
e
tr
ic
sc
a
le
to
m
e
a
s
u
r
e
a
tt
i
tu
d
e
”
.
S
AG
E
Op
e
n
,
4
(
1
)
,
2
1
5
8
2
4
4
0
1
3
5
1
6
7
6
8
,
2
0
1
4
.
[
1
9
]
G.
B
u
y
u
k
ö
z
k
a
n
,
T.
E
r
t
a
y
,
C.
Ka
h
ra
m
a
n
,
a
n
d
D.
Ru
a
n
,
“
De
term
i
n
in
g
th
e
Im
p
o
r
ta
n
c
e
Weig
h
ts
f
o
r
th
e
De
s
ig
n
Re
q
u
ir
e
m
e
n
ts
in
th
e
Ho
u
s
e
o
f
Qu
a
li
ty
Us
in
g
th
e
F
u
z
z
y
An
a
l
y
t
ic
Ne
t
wo
rk
Ap
p
r
o
a
c
h
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
In
telli
g
e
n
t
S
y
ste
ms
,
1
9
,
p
p
.
4
4
3
–
4
6
1
,
2
0
0
4
.
[
2
0
]
H.
Ba
i
a
n
d
Z
.
Zh
a
n
,
“
An
I
T
P
ro
jec
t
S
e
lec
ti
o
n
M
e
th
o
d
B
a
s
e
d
On
F
u
z
z
y
An
a
l
y
ti
c
Ne
two
r
k
P
ro
c
e
ss
”
,
Pro
c
.
o
f
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
o
n
S
y
st
e
m
S
c
ien
c
e
,
En
g
i
n
e
e
rin
g
De
sig
n
a
n
d
M
a
n
u
fa
c
t
u
rin
g
In
f
o
rm
a
ti
z
a
ti
o
n
,
p
p
.
2
7
5
-
2
7
9
,
2
0
1
1
.
[
2
1
]
B
.
Öz
ta
y
şi,
a
n
d
A.C.
K
u
tl
u
,
“
De
ter
m
in
in
g
th
e
Im
p
o
r
ta
n
c
e
o
f
P
e
rfo
r
m
a
n
c
e
M
e
a
s
u
r
e
m
e
n
t
Cr
it
e
r
i
a
Ba
s
e
d
o
n
To
ta
l
Qu
a
li
ty
M
a
n
a
g
e
m
e
n
t
Us
in
g
F
u
z
z
y
An
a
l
y
ti
c
a
l
Ne
two
r
k
P
r
o
c
e
ss
”
,
in
Y
.
W
a
n
g
a
n
d
T
.
L
i
(
Ed
s.):
Pra
c
ti
c
a
l
Ap
p
li
c
a
ti
o
n
s
o
f
I
n
telli
g
e
n
t
S
y
ste
m
s,
AIS
C
1
2
4
,
p
p
.
3
9
1
–
4
0
0
S
p
rin
g
e
r
-
Ve
r
l
a
g
B
e
r
li
n
He
id
e
lb
e
r
g
,
2
0
1
1
.
[
2
2
]
A.
Öz
d
a
ğ
o
ğ
lu
,
“
A
m
u
lt
i
-
c
r
i
teria
d
e
c
is
io
n
-
m
a
k
in
g
m
e
t
h
o
d
o
lo
g
y
o
n
th
e
s
e
lec
ti
o
n
o
f
fa
c
il
it
y
lo
c
a
ti
o
n
:
f
u
z
z
y
AN
P
”
,
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
A
d
v
a
n
c
e
M
a
n
u
f
a
c
tu
re
T
e
c
h
n
o
l
o
g
y
,
5
9
,
7
8
7
–
8
0
3
,
2
0
1
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.