I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
201
7
,
p
p
.
3
5
2
1
~
3
5
2
8
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
6
.
pp
352
1
-
3528
3521
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Ada
ptive An
tenn
a
Select
io
n and
P
o
w
er Alloca
tion in Dow
nlink
M
a
ss
iv
e MI
M
O
Sys
te
m
s
Adeeb
Sa
lh,
L
u
k
m
a
n
Auda
h
,
No
r
Sh
a
hid
a
M
Sh
a
h,
a
nd
Sh
ip
un
A
H
a
m
za
h
W
irele
ss
a
n
d
Ra
d
io
S
c
ien
c
e
Ce
n
t
re
(W
A
R
A
S
)
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ic E
n
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
u
n
H
u
ss
e
in
On
n
M
a
lay
sia
8
6
4
0
0
P
a
rit
Ra
ja,
Ba
t
u
P
a
h
a
t
,
Jo
h
o
r,
M
a
lay
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
r
3
,
2
0
1
7
R
ev
i
s
ed
A
u
g
7
,
2
0
1
7
A
cc
ep
ted
A
u
g
2
5
,
2
0
1
7
M
a
ss
iv
e
m
u
lt
i
-
in
p
u
t,
m
u
lt
i
-
o
u
tp
u
t
(M
IM
O)
sy
ste
m
s
a
re
a
n
e
x
c
it
i
n
g
a
re
a
o
f
stu
d
y
a
n
d
a
n
im
p
o
rtan
t
tec
h
n
iq
u
e
f
o
r
f
i
f
th
-
g
e
n
e
ra
ti
o
n
(5
G
)
w
irele
s
s
n
e
tw
o
rk
s
th
a
t
su
p
p
o
rt
h
ig
h
d
a
ta
ra
te
traf
f
ic
.
A
n
in
c
re
a
se
d
n
u
m
b
e
r
o
f
a
n
ten
n
a
a
rra
y
s
a
t
th
e
b
a
se
sta
ti
o
n
(BS
)
c
o
n
su
m
e
s
m
o
re
p
o
w
e
r
d
u
e
to
a
h
ig
h
e
r
n
u
m
b
e
r
o
f
ra
d
io
f
re
q
u
e
n
c
y
(RF
)
c
h
a
in
s,
w
h
ich
c
a
n
n
o
t
b
e
n
e
g
lec
ted
a
n
d
b
e
c
o
m
e
s
a
tec
h
n
ica
l
c
h
a
ll
e
n
g
e
.
In
th
is
p
a
p
e
r,
w
e
in
v
e
s
ti
g
a
ted
h
o
w
to
o
b
tai
n
th
e
m
a
x
i
m
a
l
d
a
ta
ra
te
b
y
d
e
riv
in
g
th
e
o
p
ti
m
a
l
n
u
m
b
e
r
o
f
RF
c
h
a
in
s
f
ro
m
a
lar
g
e
n
u
m
b
e
r
o
f
a
v
a
il
a
b
le
a
n
ten
n
a
a
rra
y
s
a
t
th
e
BS
w
h
e
n
th
e
re
is
e
q
u
a
l
p
o
w
e
r
a
ll
o
c
a
ti
o
n
a
m
o
n
g
u
se
rs.
M
e
a
n
w
h
il
e
,
to
m
it
ig
a
te
in
ter
-
u
se
r
-
in
terf
e
re
n
c
e
a
n
d
to
c
o
m
p
u
te
tran
sm
it
p
o
w
e
r
a
ll
o
c
a
ti
o
n
,
w
e
u
se
d
th
e
p
re
c
o
d
in
g
sc
h
e
m
e
z
e
r
o
f
o
rc
in
g
b
e
a
m
f
o
r
m
in
g
(ZF
BF
).
T
h
e
a
c
h
iev
a
b
le
d
a
ta
ra
te
is
in
c
re
a
se
d
b
e
c
a
u
se
th
e
a
lg
o
rit
h
m
o
f
ZF
BF
e
n
a
b
les
th
e
c
h
o
o
si
n
g
o
f
th
e
m
a
x
i
m
u
m
p
o
w
e
r
in
re
latio
n
to
th
e
o
p
ti
m
a
l
a
n
ten
n
a
se
lec
ti
o
n
.
W
e
c
o
n
c
lu
d
e
th
a
t
th
e
tran
s
m
it
p
o
we
r
a
ll
o
c
a
ti
o
n
a
ll
o
w
s
th
e
u
se
o
f
le
s
s
n
u
m
b
e
r
o
f
RF
c
h
a
in
s
w
h
ich
p
ro
v
id
e
s
th
e
m
a
x
i
m
u
m
a
c
h
ie
v
a
b
le d
a
ta rate
d
e
p
e
n
d
i
n
g
o
n
t
h
e
o
p
ti
m
a
l
RF
c
h
a
in
a
t
th
e
BS
.
K
ey
w
o
r
d
:
R
ad
io
f
r
eq
u
en
c
y
Fif
t
h
-
g
en
er
atio
n
(
5
G)
B
ase
s
tatio
n
Z
er
o
f
o
r
cin
g
b
ea
m
f
o
r
m
i
n
g
Co
p
y
rig
h
t
©
2
0
1
7
I
n
stit
u
te o
f
Ad
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
L
u
k
m
a
n
A
u
d
a
h
,
Facu
lt
y
o
f
E
lectr
ical
a
n
d
E
lect
r
o
n
ic
E
n
g
i
n
ee
r
i
n
g
,
Un
i
v
er
s
iti T
u
n
H
u
s
s
ei
n
On
n
Ma
la
y
s
ia,
P
ar
it R
aj
a,
8
6
4
0
0
B
atu
P
ah
at,
J
o
h
o
r
,
Ma
lay
s
ia.
E
m
ail:
h
an
if
@
u
th
m
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
Am
aj
o
r
ch
allen
g
e
f
o
r
m
o
b
ile
b
r
o
ad
b
an
d
n
et
w
o
r
k
s
is
f
i
g
u
r
in
g
o
u
t
h
o
w
to
s
u
p
p
o
r
t
th
r
o
u
g
h
p
u
t
i
n
5
G
n
et
w
o
r
k
s
.
Ma
s
s
i
v
e
MI
MO
is
v
er
y
i
m
p
o
r
tan
t
i
n
5
G
tec
h
n
o
l
o
g
y
b
ec
a
u
s
e
it
a
llo
w
s
f
o
r
t
h
e
ac
h
iev
e
m
e
n
t
o
f
h
i
g
h
d
ata
r
ates
[
1
]
,
[
2
]
.
Mo
r
eo
v
er
,
an
i
n
cr
ea
s
e
i
n
t
h
e
n
u
m
b
er
o
f
an
te
n
n
a
ar
r
a
y
s
at
a
B
S
r
es
u
lt
s
in
g
r
ea
ter
p
o
w
er
co
n
s
u
m
p
tio
n
d
u
e
to
a
h
i
g
h
er
n
u
m
b
er
o
f
R
F
ch
ai
n
s
.
Me
an
w
h
ile,
h
ig
h
er
n
u
m
b
er
o
f
r
a
d
io
f
r
eq
u
en
c
y
(
R
F)
ch
ain
s
,
in
b
o
th
o
f
B
S
an
d
ac
tiv
e
u
s
er
(
UE
)
co
n
s
u
m
e
m
o
r
e
o
f
p
o
w
er
d
u
e
to
th
e
p
r
o
ce
s
s
in
g
ac
ti
v
itie
s
in
t
h
e
d
ig
ital
-
to
-
a
n
alo
g
co
n
v
er
ter
(
D
AC
)
,
p
o
w
er
a
m
p
li
f
ier
,
m
u
ltip
l
e
x
er
,
an
d
f
il
ter
.
C
o
n
s
eq
u
e
n
tl
y
,
all
a
n
te
n
n
a
s
at
th
e
B
S
n
ee
d
to
co
n
n
ec
t
w
it
h
t
h
e
R
F
ch
a
in
s
as
s
h
o
w
n
in
Fi
g
u
r
e
1
.
I
t
h
a
s
b
ee
n
r
ep
o
r
ted
th
at
B
Ss
ar
e
r
esp
o
n
s
ib
le
f
o
r
8
0
p
er
ce
n
t
o
f
t
h
e
e
n
er
g
y
co
n
s
u
m
ed
i
n
ce
ll
u
lar
n
et
w
o
r
k
s
[
3
]
.
Me
an
w
h
ile,
th
e
o
p
ti
m
al
n
u
m
b
er
o
f
R
F
c
h
ai
n
s
w
a
s
s
t
u
d
ied
in
[
4
]
.
T
h
e
au
th
o
r
s
co
n
s
id
er
ed
h
o
w
m
an
y
R
F
ch
a
in
s
w
er
e
o
p
ti
m
al
f
o
r
p
o
in
t
-
to
-
p
o
i
n
t
i
n
a
lar
g
e
s
ca
le
MI
MO
ch
an
n
el
s
tu
d
ied
i
n
[
5
]
.
T
h
e
au
th
o
r
s
d
eter
m
in
ed
t
h
e
o
p
ti
m
al
a
n
ten
n
a
s
e
lectio
n
f
o
r
w
h
en
t
h
e
n
u
m
b
er
o
f
an
ten
n
a
s
w
a
s
m
o
r
e
t
h
an
th
e
n
u
m
b
er
o
f
u
s
er
s
[
1
1
]
.
I
n
t
h
is
wo
r
k
,
w
e
d
er
iv
ed
t
h
e
o
p
ti
m
al
n
u
m
b
er
o
f
R
F
ch
ai
n
s
th
at
m
a
x
i
m
ized
d
ata
r
ate
in
a
lar
g
e
-
s
ca
le
a
n
te
n
n
a
ar
r
a
y
s
b
ased
o
n
th
e
d
o
w
n
li
n
k
ch
a
n
n
e
l
co
n
d
itio
n
.
T
h
is
is
p
r
o
p
o
r
tio
n
al
to
t
h
e
n
u
m
b
er
o
f
ac
t
iv
e
u
s
e
r
s
(
UE
s
)
K
,
w
h
er
e
th
e
n
u
m
b
er
o
f
R
F
c
h
ai
n
s
eq
u
als
t
h
e
a
m
o
u
n
t
o
f
p
o
w
er
allo
ca
tio
n
ac
co
r
d
in
g
t
o
th
e
n
u
m
b
er
o
f
ac
ti
v
e
u
s
er
s
K
.
C
o
n
s
eq
u
en
tl
y
,
o
b
tain
i
n
g
a
h
ig
h
p
er
f
o
r
m
a
n
ce
s
y
s
te
m
r
eq
u
ir
ed
th
at
t
h
e
n
u
m
b
er
o
f
R
F
c
h
ain
s
b
e
les
s
t
h
an
th
e
n
u
m
b
er
o
f
tr
a
n
s
m
it
a
n
te
n
n
a
s
th
at
w
as
g
o
o
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
3
5
2
1
–
3
5
2
8
3522
u
n
d
er
ch
a
n
n
el
s
tate
i
n
f
o
r
m
atio
n
(
C
SI)
.
T
h
e
au
th
o
r
s
i
n
[
6
]
p
r
o
p
o
s
ed
an
o
p
tim
al
p
o
w
er
allo
ca
tio
n
alg
o
r
it
h
m
f
o
r
d
o
w
n
l
in
k
m
a
s
s
iv
e
MI
MO
s
y
s
t
e
m
s
w
i
th
m
a
x
i
m
u
m
r
atio
tr
an
s
m
is
s
io
n
(
M
R
T
)
.
A
d
d
itio
n
al
l
y
,
t
h
e
n
u
m
b
er
o
f
an
ten
n
a
at
a
B
S
ca
n
n
o
t
b
e
s
u
b
j
ec
tiv
el
y
i
n
cr
ea
s
ed
d
u
e
to
t
h
e
p
h
y
s
ical
ar
ea
in
a
p
r
ac
tical
s
y
s
te
m
[
9
]
.
Fu
r
th
er
m
o
r
e,
w
it
h
r
eg
ar
d
s
to
th
e
en
er
g
y
r
eso
u
r
ce
in
t
h
e
ce
llu
lar
n
et
w
o
r
k
s
,
th
e
p
o
w
er
allo
ca
tio
n
alg
o
r
it
h
m
s
r
e
q
u
ir
ed
m
in
i
m
izin
g
t
h
e
p
o
w
er
co
n
s
u
m
p
tio
n
an
d
m
ax
i
m
izi
n
g
th
e
ac
h
iev
ab
le
d
ata
r
ate
[
7
]
,
[
8
]
.
T
h
e
s
u
b
s
p
ac
e
p
r
o
j
ec
tio
n
f
o
r
R
F
is
ad
ap
tiv
e
to
s
p
atial
co
r
r
elatio
n
s
an
d
ab
le
to
m
iti
g
ate
th
e
in
ter
f
er
e
n
ce
f
o
r
d
if
f
er
e
n
t
u
s
er
clu
s
ter
s
[
1
0
]
.
Mo
r
e
o
v
er
,
th
e
o
p
ti
m
al
a
n
ten
n
a
s
e
lectio
n
r
eq
u
i
r
ed
d
eter
m
i
n
ed
th
e
s
tatu
s
o
f
C
SI
i
n
t
h
e
f
o
r
w
ar
d
li
n
k
ch
a
n
n
el
d
u
e
t
o
t
h
e
lar
g
e
n
u
m
b
er
o
f
a
n
te
n
n
a
ele
m
en
t
s
M
in
m
a
s
s
i
v
e
MI
MO
s
y
s
te
m
s
.
T
h
e
h
u
g
e
d
e
g
r
ee
o
f
f
r
ee
d
o
m
o
f
f
er
ed
b
y
a
m
as
s
iv
e
MI
MO
s
y
s
te
m
s
ca
n
b
e
u
s
ed
to
r
ed
u
ce
th
e
a
m
o
u
n
t
o
f
tr
an
s
m
itted
p
o
w
er
,
allo
w
f
o
r
lar
g
er
h
ar
d
w
ar
e
i
m
p
air
m
en
ts
,
a
n
d
p
r
o
v
id
e
th
e
s
y
s
te
m
w
ith
th
e
ab
i
lit
y
to
in
cr
ea
s
e
m
u
ltip
lex
in
g
an
d
d
i
v
er
s
it
y
g
ai
n
[
1
2
]
,
[
1
3
]
.
T
h
e
o
p
ti
m
al
p
o
w
er
allo
ca
tio
n
i
n
a
m
a
s
s
iv
e
MI
MO
s
y
s
te
m
r
eq
u
ir
es
u
s
i
n
g
p
o
w
er
allo
ca
ti
o
n
f
o
r
co
n
tr
o
l,
w
h
ic
h
r
ed
u
ce
s
th
e
i
n
ter
f
er
e
n
ce
an
d
b
ea
m
f
o
r
m
i
n
g
al
g
o
r
ith
m
th
r
o
u
g
h
u
s
e
o
f
t
h
e
r
eq
u
ir
ed
lin
ea
r
p
r
ec
o
d
in
g
s
c
h
e
m
es.
Fig
u
r
e
1
.
T
r
an
s
m
i
tted
s
i
g
n
al
w
it
h
R
F c
h
a
in
s
in
m
as
s
i
v
e
-
MI
MO
ch
an
n
el
2.
SYST
E
M
M
O
DE
L
T
h
e
d
o
w
n
li
n
k
s
i
g
n
al
m
u
lti
-
u
s
er
-
MI
MO
s
y
s
te
m
i
n
clu
d
e
s
t
h
e
B
S,
w
h
ich
co
n
tai
n
s
m
a
n
y
an
ten
n
a
ar
r
ay
s
M
an
d
r
ec
eiv
es
d
ata
f
r
o
m
m
a
n
y
r
a
n
d
o
m
ac
tiv
e
u
s
er
s
K
,
w
h
er
e
ev
er
y
u
s
er
s
till
r
ec
ei
v
es
a
h
i
g
h
d
ata
r
ate;
th
e
r
ec
eiv
ed
s
i
g
n
al
f
r
o
m
B
S to
UE
s
(
K
)
is
g
i
v
e
n
b
y
=
∑
√
=
1
(
1
)
w
h
er
e
is
th
e
d
o
w
n
li
n
k
tr
an
s
m
it
p
o
w
er
f
o
r
ev
er
y
u
s
er
,
r
ep
r
e
s
en
t
s
th
e
d
ata
s
y
m
b
o
l
s
i
g
n
al
o
f
th
e
k
th
u
s
er
an
d
r
ep
r
esen
ts
t
h
e
b
ea
m
f
o
r
m
i
n
g
m
atr
i
x
.
T
h
e
s
ig
n
al
r
ec
ei
v
ed
in
ter
m
s
o
f
UE
s
i
s
g
i
v
e
n
b
y
:
=
∑
√
ℎ
=
1
⏟
+
∑
√
ℎ
=
1
,
≠
⏟
+
⏟
(
2
)
w
h
er
e,
ℎ
is
a
m
atr
i
x
ch
an
n
el
o
f
×
an
d
is
th
e
r
ec
eiv
e
n
o
is
e
w
it
h
ze
r
o
m
ea
n
an
d
v
ar
ian
c
e.
T
h
e
r
ec
eiv
ed
s
ig
n
al
-
to
-
in
t
er
f
er
en
ce
n
o
is
e
r
atio
(
SIN
R
)
u
s
ed
to
d
escr
ib
e
th
e
ac
h
ie
v
ab
le
d
ata
r
ate
at
ev
er
y
UE
K
i
s
:
=
∑
|
ℎ
|
=
1
2
∑
∑
|
ℎ
|
2
+
2
=
1
=
1
(
3
)
T
h
e
tr
an
s
m
it
b
ea
m
f
o
r
m
i
n
g
is
u
s
ed
to
m
ax
i
m
ize
t
h
e
p
er
f
o
r
m
an
ce
tr
a
n
s
m
itted
p
o
w
er
an
d
r
ed
u
ce
th
e
in
ter
-
u
s
er
-
i
n
ter
f
er
en
ce
;
t
h
e
p
u
r
p
o
s
e
o
f
u
s
i
n
g
SIN
R
f
o
r
ea
ch
u
s
er
is
to
p
r
o
v
id
e
th
e
o
p
ti
m
al
o
f
b
ea
m
f
o
r
m
i
n
g
∑
‖
‖
2
=
1
,
th
e
o
p
ti
m
al
b
ea
m
f
o
r
m
i
n
g
m
a
tr
ix
Z
FB
F is
e
x
p
r
ess
ed
as:
=
(
+
1
2
)
−
1
√
̃
(
4
)
R
F
c
h
ain
1
R
F
c
h
ain
2
R
x
R
F
c
h
ain
R
F
c
h
ain
N
ứ
T
x
R
F
c
h
ain
Tx
b
as
e
b
an
d
1
N
1
2
M
B
as
e
S
t
at
io
n
RF
c
h
ain
N
RF
c
h
ain
2
RF
c
h
ain
1
H
R
x
b
as
e
b
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
d
a
p
tive
A
n
te
n
n
a
S
elec
tio
n
a
n
d
P
o
w
er A
llo
ca
tio
n
i
n
Do
w
n
lin
k
Ma
s
s
ive
MIMO
S
yste
ms
(
L
u
kma
n
A
u
d
a
h
)
3523
w
h
er
e
̃
=
(
‖
(
2
+
)
−
1
ℎ
‖
⁄
)
ac
co
r
d
in
g
t
h
e
p
o
w
er
allo
ca
tio
n
,
2
is
t
h
e
n
o
is
e
p
o
wer
at
tr
an
s
m
itted
s
ig
n
al,
b
eth
e
M
×
M
id
en
tit
y
m
a
tr
ix
,
a
n
d
=
[
1
,
.
.
.
.
,
]
is
th
e
d
ia
g
o
n
al
m
atr
i
x
i
n
L
a
g
r
an
g
e
m
u
ltip
lier
as
s
o
ciate
d
w
it
h
m
a
n
y
o
f
UE
s
K
.
T
h
e
co
r
r
esp
o
n
d
in
g
p
o
w
er
al
l
o
ca
tio
n
m
a
tr
ix
w
h
e
n
2
→
0
an
d
̃
2
→
0
,
th
e
as
y
m
p
to
tic
p
o
w
e
r
allo
ca
tio
n
w
it
h
Z
FB
F c
h
a
n
n
e
l
s
,
is
g
i
v
e
n
as:
=
(
0
+
)
−
1
̃
2
→
0
=
(
)
−
1
−
1
̃
2
→
0
(
5
)
T
h
e
o
p
tim
al
ze
r
o
f
o
r
cin
g
b
ea
m
f
o
r
m
i
n
g
is
:
min
1
,
.
.
.
.
,
∑
‖
‖
2
=
1
(
6
)
≥
ɤ
w
h
er
e,
ɤ
r
ep
r
esen
t SI
NR
s
th
e
p
ar
a
m
eter
ɤ
1
,
.
.
.
.
.
.
.
,
ɤ
,
in
ev
er
y
ac
ti
v
e
u
s
er
.
Usi
n
g
tr
an
s
m
it
p
o
w
er
b
ea
m
f
o
r
m
in
g
to
m
ax
i
m
ize
SIN
R
in
e
v
er
y
ac
ti
v
e
u
s
er
r
eq
u
ir
ed
in
th
is
ca
s
e
th
e
m
ax
i
m
u
m
d
ata
r
ate
to
en
s
u
r
e
t
h
e
f
i
x
i
n
g
o
f
th
e
SIN
R
,
w
h
er
e
t
h
e
o
p
ti
m
al
b
ea
m
f
o
r
m
i
n
g
is
s
m
aller
th
an
t
h
e
to
tal
tr
an
s
m
it p
o
w
er
.
ma
x
1
,
.
.
.
.
∑
(
ɤ
1
,
.
.
.
.
,
ɤ
)
=
1
(
7
)
∑
‖
‖
2
=
1
<
(
8
)
T
h
e
ac
h
iev
ab
le
d
ata
r
ate
in
ter
m
s
o
f
SIN
R
i
s
g
i
v
e
n
b
y
=
2
(
1
+
ɤ
)
(
9
)
T
h
e
o
u
tp
u
t
o
f
th
e
tr
a
n
s
m
it
p
o
w
er
i
s
d
ep
en
d
en
t
o
n
t
h
e
a
m
o
u
n
t
o
f
cir
c
u
it
p
o
w
er
co
n
s
u
m
e
d
b
y
t
h
e
R
F
ch
ain
,
s
u
ch
as
m
u
lt
ip
lex
er
,
f
ilt
er
am
p
li
f
ier
,
an
d
DA
C
.
T
o
o
b
tain
th
e
o
p
ti
m
al
p
o
w
er
allo
ca
tio
n
f
o
r
u
s
er
s
,
is
g
i
v
e
n
b
y
w
ater
f
i
lli
n
g
al
g
o
r
ith
m
[
1
4
]
.
(
)
=
∑
=
1
(
1
0
)
w
h
er
e
is
t
h
e
an
te
n
n
a
co
e
f
f
ici
en
t,
m=
[1
,
.
.
.
.
,
M
]
,
an
d
is
o
p
ti
m
izatio
n
p
o
w
er
o
f
t
h
e
ℎ
ac
ti
v
e
u
s
er
.
T
h
e
co
n
s
tr
ain
t
f
o
r
cir
cu
it p
o
w
er
co
n
s
u
m
p
tio
n
i
s
g
i
v
e
n
b
y
+
∑
=
1
≤
(
1
1
)
w
h
er
e
is
th
e
e
f
f
icie
n
c
y
o
f
p
o
w
er
allo
ca
tio
n
a
n
d
t
h
e
co
n
s
u
m
p
tio
n
p
o
w
er
=
+
+
ca
n
b
e
d
iv
id
ed
b
y
t
h
e
co
n
s
u
m
p
tio
n
p
o
w
er
at
u
s
er
,
th
e
p
o
w
er
co
n
s
u
m
ed
b
y
t
h
e
lo
ca
l
o
s
cillato
r
s
,
an
d
th
e
f
i
x
ed
p
o
w
er
.
B
as
ed
o
n
th
e
co
n
v
e
n
tio
n
al
a
n
ten
n
a
s
elec
tio
n
,
i
n
o
r
d
er
to
g
et
th
e
o
p
ti
m
al
s
u
b
s
et
o
f
a
n
te
n
n
as
f
o
r
t
h
e
R
F c
h
a
in
s
th
at
m
a
x
i
m
izes t
h
e
d
ata
r
ate,
th
e
ch
o
s
en
a
n
te
n
n
a
c
o
ef
f
icie
n
t
is
ex
p
r
ess
ed
as.
=
a
r
g
ma
x
∈
ℱ
,
(
1
2
)
w
h
er
e
is
t
h
e
s
et
o
f
n
o
t c
h
o
s
e
n
tr
an
s
m
it a
n
ten
n
as,
w
h
er
e
is
t
h
e
in
d
e
x
o
f
ℎ
s
elec
ted
an
ten
n
a
c
o
ef
f
icie
n
t.
T
h
e
co
ef
f
icie
n
t
a
n
te
n
n
a
s
elec
tio
n
as
s
is
t
s
i
n
g
i
v
in
g
t
h
e
h
i
g
h
p
er
f
o
r
m
a
n
ce
tr
a
n
s
m
i
s
s
io
n
,
w
h
e
n
t
h
e
ch
an
n
el
m
atr
ix
is
t
h
e
u
n
co
r
r
elate
d
co
ef
f
icie
n
t.
W
h
er
e
th
e
s
p
atial
co
r
r
elatio
n
ef
f
ec
t
o
f
th
e
p
er
f
o
r
m
a
n
ce
o
f
a
m
u
lti
-
an
ten
n
a
tr
an
s
m
its
p
o
w
e
r
,
th
e
ch
a
n
n
e
l
ca
p
ac
it
y
al
lo
w
s
an
i
n
cr
ea
s
e
i
n
t
h
e
a
m
o
u
n
t
o
f
d
ata
th
at
ca
n
b
e
tr
an
s
m
itted
; t
h
e
ef
f
ec
t o
f
n
o
r
m
s
o
f
co
lu
m
n
s
an
d
u
n
co
r
r
elate
d
ch
an
n
el
m
atr
ix
is
g
i
v
e
n
b
y
=
∑
√
1
−
|
ℎ
ℎ
|
‖
ℎ
‖
2
=
(
13)
T
h
e
co
s
t f
u
n
ctio
n
ℱ
,
is
g
i
v
e
n
b
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
3
5
2
1
–
3
5
2
8
3524
ℱ
,
=
ℎ
√
ƴ
+
∑
,
−
1
=
1
(
1
4
)
w
h
er
e
ƴ
r
ep
r
esen
ts
t
h
e
r
ec
eiv
e
an
ten
n
a
s
.
T
o
g
et
a
h
ig
h
er
s
u
m
ca
p
ac
it
y
r
eq
u
ir
es
d
ec
r
ea
s
in
g
t
h
e
to
tal
p
o
w
er
co
n
s
u
m
p
tio
n
at
t
h
e
tr
an
s
m
itter
.
W
h
er
e
th
e
p
o
w
er
co
n
s
tr
ain
t t
h
at
li
m
it
s
t
h
e
to
tal
co
n
s
u
m
p
t
io
n
cir
cu
it p
o
w
er
is
≤
(
)
=
(
−
)
(
1
5
)
T
h
e
ef
f
ic
ien
c
y
o
f
p
o
w
er
a
llo
ca
tio
n
ac
ts
to
co
n
s
tr
ain
th
e
co
n
s
u
m
p
t
io
n
p
o
w
er
w
h
en
tr
an
s
m
itti
n
g
t
h
e
n
u
m
b
er
o
f
a
v
ailab
le
an
te
n
n
as
u
s
i
n
g
.
Dep
en
d
in
g
o
n
t
h
e
s
tat
e
ch
an
n
el
m
atr
i
x
,
w
e
s
u
p
p
o
s
ed
th
at
th
e
R
F
ch
ain
is
ac
ti
v
e
to
all
a
n
te
n
n
as;
o
th
er
w
i
s
e
t
h
e
p
o
w
er
m
u
s
t
b
e
co
n
s
u
m
ed
b
y
t
h
e
s
tat
e
ch
an
n
el
a
n
d
th
e
tr
an
s
m
itter
p
o
w
er
,
w
h
ic
h
m
in
i
m
ize
s
th
e
B
S
co
n
s
u
m
p
tio
n
cir
cu
it
p
o
w
er
d
ep
en
d
en
t
o
n
th
e
k
n
o
w
led
g
e
o
f
t
h
e
s
tate
o
f
ch
a
n
n
el
d
en
o
ted
as
.
T
h
e
m
ai
n
co
n
tr
ib
u
tio
n
ca
n
b
e
o
b
tain
ed
b
y
d
er
iv
i
n
g
t
h
e
o
p
ti
m
al
n
u
m
b
er
o
f
R
F
c
h
ai
n
s
f
r
o
m
t
h
e
lar
g
e
n
u
m
b
er
o
f
av
ai
lab
le
an
te
n
n
a
a
r
r
ay
s
at
th
e
B
S to
m
a
x
i
m
ize
d
ata
r
ate.
=
ma
x
[
(
)
]
(
1
6
)
∶
ma
x
,
(
)
.
,
(
)
≅
[
2
(
1
+
ɤ
)
]
≥
,
,
∀
;
(
17)
∈
∪
×
,
≥
,
∀
;
∑
=
1
≤
(
1
8
)
∑
=
1
≥
(
1
9
)
w
h
er
e
th
e
av
er
ag
e
d
ata
r
ate
co
n
s
tr
ain
ts
in
eq
u
atio
n
(
1
7
)
.
T
h
e
k
n
o
w
led
g
e
o
f
th
e
s
tate
o
f
ch
an
n
el
d
en
o
ted
,
an
d
u
s
ed
to
p
r
o
v
id
e
th
e
q
u
ality
o
f
s
er
v
ice
f
o
r
d
if
f
er
en
t
u
s
er
s
,
th
e
is
th
e
R
F
ch
ain
s
allo
ca
tio
n
an
d
is
th
e
a
n
ten
n
a
co
ef
f
icie
n
t
=
[
1
,
.
.
.
.
]
.
Dep
en
d
o
n
th
e
o
p
ti
m
al
o
f
b
e
a
m
f
o
r
m
i
n
g
an
d
a
C
SI
ℎ
,
in
ad
d
itio
n
to
p
er
m
it
to
d
ec
r
ea
s
e
th
e
n
u
m
b
er
o
f
tr
an
s
m
itted
R
F c
h
ai
n
s
u
n
d
er
eq
u
al
r
ec
eiv
ed
p
o
w
er
,
th
e
ac
h
ie
v
ab
le
d
ata
r
ate
is
ex
p
r
ess
ed
as
(
ℎ
,
)
=
|
ℎ
,
|
2
(
2
0
)
A
t
tr
a
n
s
m
itted
p
o
w
er
to
ce
lls
,
in
itiall
y
m
u
s
t
b
e
ch
ec
k
in
g
t
h
e
s
tatu
s
o
f
ch
a
n
n
el
is
g
o
o
d
.
I
n
th
is
ca
s
e,
w
e
ca
n
ap
p
r
o
x
i
m
ate
t
h
e
m
u
lti
-
u
s
er
in
ter
f
er
en
ce
at
,
|
ℎ
,
|
→
∞
.
T
h
e
n
u
m
b
er
o
f
s
c
h
ed
u
le
u
s
er
s
m
u
s
t
b
e
n
o
t
in
cr
ea
s
i
n
g
m
o
r
e
t
h
an
t
h
e
n
u
m
b
er
o
f
an
ten
n
a
s
elec
t
io
n
a
cc
o
r
d
in
g
to
eq
u
atio
n
(
1
9
)
.
C
o
n
s
eq
u
en
tl
y
,
t
h
e
to
tal
tr
an
s
m
it p
o
w
er
,
w
h
ic
h
ca
n
n
o
t b
e
in
cr
ea
s
in
g
,
is
e
x
p
r
ess
ed
as
∑
=
1
≤
(
2
1
)
w
h
er
e
th
e
to
tal
p
o
w
er
is
tr
an
s
m
itted
ac
co
r
d
in
g
to
C
o
n
v
e
x
o
p
ti
m
izatio
n
in
[
1
4
]
;
th
e
tr
an
s
m
it
R
F
ch
ai
n
ch
o
o
s
es t
h
e
p
er
f
o
r
m
i
n
g
a
n
te
n
n
a
s
elec
tio
n
w
h
e
n
a
n
eq
u
al
p
o
w
er
allo
ca
tio
n
i
n
cl
u
d
in
g
u
s
er
s
as
=
(
−
1
|
ℎ
,
|
2
)
=
(
−
2
2
)
(
2
2
)
T
h
e
p
o
w
er
co
n
s
tr
ai
n
t c
a
n
b
e
s
atis
f
ied
as
∑
(
−
2
2
)
=
1
=
(
)
(
2
3
)
w
h
er
e
is
th
e
p
ath
lo
s
s
e
x
p
o
n
e
n
t
s
at
is
f
y
in
g
t
h
e
co
n
s
tr
ain
t
p
o
w
er
,
is
th
e
n
o
is
e
p
o
w
er
at
r
e
ce
iv
er
,
is
t
h
e
p
r
o
p
ag
atio
n
lo
s
s
an
d
r
ep
r
esen
ts
th
e
d
ia
g
o
n
al
m
atr
ix
i
n
d
ata
r
ate,
w
h
ich
co
n
tai
n
s
s
i
n
g
u
lar
v
alu
es
.
T
o
g
et
th
e
o
p
ti
m
al
n
u
m
b
er
o
f
R
F
ch
ai
n
s
to
m
ax
i
m
ize
t
h
e
ac
h
iev
ab
le
d
ata
r
ate
i
n
t
h
e
ch
an
n
el,
r
eq
u
ir
es
eq
u
alin
g
t
h
e
p
o
w
er
allo
ca
tio
n
w
h
ic
h
is
u
s
ed
o
n
l
y
i
n
ter
m
s
o
f
ac
tiv
e
u
s
er
s
,
w
h
er
e
=
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
d
a
p
tive
A
n
te
n
n
a
S
elec
tio
n
a
n
d
P
o
w
er A
llo
ca
tio
n
i
n
Do
w
n
lin
k
Ma
s
s
ive
MIMO
S
yste
ms
(
L
u
kma
n
A
u
d
a
h
)
3525
(
)
⁄
.
Mo
r
eo
v
er
,
r
e
d
u
cin
g
t
h
e
tr
a
n
s
m
itted
p
o
w
er
f
r
o
m
th
e
B
S
d
ep
en
d
o
n
s
elec
t
th
e
o
p
ti
m
al
n
u
m
b
er
o
f
R
F c
h
ai
n
s
f
o
r
ch
o
o
s
in
g
t
h
e
b
est p
er
f
o
r
m
i
n
g
a
n
te
n
n
a
s
elec
tio
n
as
ma
x
,
(
)
=
2
(
1
+
∑
‖
ℎ
ℎ
‖
2
2
=
1
(
)
)
(
2
4
)
‖
ℎ
ℎ
‖
2
=
[
|
ℎ
,
1
ℎ
,
1
+
ℎ
,
2
ℎ
,
2
+
⋯
+
ℎ
,
ℎ
,
|
2
]
(
2
5
)
=
|
ℎ
,
ℎ
,
|
2
+
(
ℎ
,
ℎ
,
ℎ
,
ℎ
)
(
2
6
)
‖
ℎ
ℎ
‖
2
=
(
2
7
)
=
∑
=
1
(
2
8
)
w
h
er
e
is
th
e
s
elec
t
an
te
n
n
a
a
n
d
is
th
e
co
ef
f
icien
t
an
ten
n
a
s
elec
tio
n
,
f
r
o
m
th
e
SIN
R
r
eq
u
i
r
es
th
e
o
p
tim
a
l
an
ten
n
a
s
e
lectio
n
s
a
tis
f
ied
as
=
ma
x
(
)
<
(
2
9
)
w
h
er
e
r
ep
r
esen
ts
t
h
e
to
tal
n
u
m
b
er
u
s
i
n
g
th
e
R
F c
h
ain
at
tr
a
n
s
m
it p
o
w
er
at
B
S.
T
h
e
o
p
tim
al
a
n
te
n
n
a
s
elec
tio
n
u
s
i
n
g
to
d
eter
m
i
n
e
t
h
e
p
o
w
er
co
n
s
u
m
ed
b
y
t
h
e
R
F
ch
ain
s
.
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
s
elec
ted
an
ten
n
a
i
n
ter
m
s
o
f
eq
u
al
p
o
w
er
allo
ca
tio
n
is
g
iv
e
n
b
y
=
(
)
−
(
3
0
)
3.
NUM
E
RICAL
R
E
SU
L
T
I
n
t
h
is
s
ec
tio
n
,
w
e
p
r
esen
t
n
u
m
er
ical
r
es
u
lt
s
t
h
at
s
h
o
w
t
h
e
p
er
f
o
r
m
a
n
ce
a
n
te
n
n
a
f
o
r
R
F
c
h
ain
s
u
s
in
g
Mo
n
te
-
C
ar
lo
s
i
m
u
latio
n
s
;
t
h
e
s
i
m
u
lat
io
n
p
ar
a
m
eter
s
ar
e
s
h
o
w
n
i
n
T
ab
le
1
w
h
er
e
t
h
e
n
u
m
b
er
o
f
an
ten
n
as
i
n
th
e
B
S =
2
2
0
(
M)
an
d
th
e
n
u
m
b
er
o
f
u
s
er
s
=1
5
(
K)
.
T
ab
le
1
.
Sy
s
te
m
P
ar
a
m
eter
s
S
y
mb
o
l
D
e
scri
p
t
i
o
n
V
a
l
u
e
K
n
u
m
b
e
r
o
f
a
c
t
i
v
e
u
se
r
s
15
M
n
u
m
b
e
r
o
f
a
n
t
e
n
n
a
s
2
2
0
c
o
n
su
mp
t
i
o
n
p
o
w
e
r
R
F
c
h
a
i
n
s
p
a
t
h
l
o
sse
s e
x
p
o
n
e
n
t
c
e
l
l
r
a
d
i
u
s fo
r
a
c
i
r
c
u
l
a
r
c
e
l
l
mi
n
i
m
u
m
d
i
s
t
a
n
c
e
b
e
t
w
e
e
n
U
E
a
n
d
B
S
b
a
n
d
w
i
d
t
h
c
a
r
r
i
e
r
F
r
e
q
u
e
n
c
y
0
.
0
5
3
.
7
2
5
0
35
1
0
K
H
z
2
.
5
G
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
3
5
2
1
–
3
5
2
8
3526
Fig
u
r
e
2
.
Av
er
ag
ed
ata
r
ate
w
it
h
in
cr
ea
s
ed
n
u
m
b
er
o
f
an
te
n
n
a
ar
r
ay
M
I
n
Fi
g
u
r
e
2
,
t
h
e
av
er
a
g
e
d
ata
r
ate
in
cr
ea
s
e
s
w
it
h
t
h
e
n
u
m
b
er
o
f
an
te
n
n
ae
M
,
s
h
o
w
i
n
g
th
a
t t
h
e
n
u
m
b
er
o
f
ac
tiv
e
u
s
er
s
s
h
o
u
ld
b
e
s
c
h
e
d
u
led
in
ea
c
h
ce
ll
d
u
e
to
th
e
t
r
an
s
m
itted
p
o
w
er
u
n
d
er
t
h
e
p
er
f
o
r
m
an
ce
a
n
te
n
n
a
s
elec
tio
n
at
d
i
f
f
er
e
n
t
SIN
R
.
W
e
ass
u
m
e
t
h
at
t
h
e
o
p
ti
m
al
a
n
te
n
n
a
s
elec
tio
n
m
a
x
i
m
izes
t
h
e
a
ch
iev
ab
le
d
ata
r
ate
an
d
r
ed
u
ce
s
th
e
in
ter
-
u
s
er
-
i
n
ter
f
er
en
ce
s
u
b
j
ec
t
to
th
e
lin
ea
r
p
r
ec
o
d
in
g
Z
FB
F.
T
h
e
ac
h
iev
ab
le
d
ata
r
ate
is
in
cr
ea
s
ed
b
ec
au
s
e
Z
F
B
F
e
n
a
b
les
th
e
c
h
o
o
s
i
n
g
o
f
m
ax
i
m
u
m
p
o
w
er
in
r
elat
io
n
to
o
p
ti
m
al
an
te
n
n
a
s
elec
tio
n
an
d
is
ca
p
ab
le
o
f
w
o
r
k
i
n
g
at
h
ig
h
SIN
R
s
.
C
o
n
s
eq
u
en
t
l
y
,
wh
en
t
h
e
SIN
R
=2
0
d
B
,
th
e
ac
h
iev
ab
le
d
ata
r
ate
is
h
ig
h
er
t
h
an
w
h
e
n
th
e
SIN
R
=1
0
d
B
.
Fig
u
r
e
3
s
h
o
w
s
t
h
at
w
h
e
n
th
e
n
u
m
b
er
o
f
R
F
ch
ai
n
s
i
n
cr
ea
s
e
d
,
th
e
tr
an
s
m
itted
p
o
w
er
al
s
o
in
cr
ea
s
ed
.
C
o
n
s
eq
u
en
tl
y
,
i
n
cr
ea
s
i
n
g
t
h
e
n
u
m
b
er
o
f
R
F
c
h
ai
n
s
i
n
cr
ea
s
ed
th
e
ac
h
iev
ab
le
d
ata
r
a
te,
allo
w
i
n
g
f
o
r
a
d
ec
r
ea
s
ein
t
h
e
n
u
m
b
er
o
f
tr
a
n
s
m
itted
R
F
c
h
ai
n
s
u
n
d
er
eq
u
al
r
ec
ei
v
ed
p
o
w
er
an
d
d
is
tr
i
b
u
ted
p
o
w
er
a
m
o
n
g
u
s
er
s
.
I
n
Fig
u
r
e
3
,
t
h
e
co
n
j
u
g
ate
Z
FB
F
g
av
e
t
h
e
n
ea
r
est
v
a
lu
e
o
f
t
h
e
o
p
ti
m
al
b
ea
m
f
o
r
m
i
n
g
u
s
i
n
g
th
e
eq
u
al
p
o
w
er
allo
ca
tio
n
,
w
h
ic
h
en
h
a
n
ce
d
t
h
e
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
an
d
i
n
cr
ea
s
ed
t
h
e
d
ata
r
ate
wh
en
t
h
e
p
o
w
er
w
as
allo
ca
ted
to
eq
u
al
u
s
er
s
i
n
th
e
s
a
m
e
cl
u
s
ter
.
Fig
u
r
e
3
.
E
f
f
ec
t o
f
tr
an
s
m
i
t n
u
m
b
er
o
f
t
h
e
R
F c
h
a
in
i
n
t
h
e
B
S
w
ith
m
a
x
i
m
u
m
p
o
w
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
d
a
p
tive
A
n
te
n
n
a
S
elec
tio
n
a
n
d
P
o
w
er A
llo
ca
tio
n
i
n
Do
w
n
lin
k
Ma
s
s
ive
MIMO
S
yste
ms
(
L
u
kma
n
A
u
d
a
h
)
3527
I
n
Fig
u
r
e
4
,
th
e
ac
h
iev
ab
le
d
ata
r
ate
is
d
ep
en
d
en
t
o
n
h
o
w
m
an
y
a
n
ten
n
as
ca
n
b
e
s
elec
ted
,
w
h
er
e
th
e
n
u
m
b
er
o
f
R
F
c
h
ai
n
s
d
ep
en
d
ed
o
n
t
h
e
n
u
m
b
er
o
f
b
est
p
er
f
o
r
m
i
n
g
a
n
te
n
n
a
s
,
s
e
lecte
d
f
o
r
d
if
f
er
en
t
v
al
u
e
s
o
f
to
tal
ac
ce
s
s
ib
le
p
o
w
er
tr
an
s
m
itted
f
r
o
m
th
e
B
S
to
ce
lls
an
d
d
is
tr
ib
u
ted
p
o
w
er
a
m
o
n
g
u
s
e
r
s
.
I
n
Fig
u
r
e
4
,
th
e
m
ax
i
m
a
l
d
ata
r
ate
th
at
ca
n
b
e
o
b
tain
ed
d
ep
en
d
ed
o
n
allo
w
in
g
f
o
r
a
d
ec
r
ea
s
e
in
th
e
n
u
m
b
er
o
f
tr
an
s
m
itted
R
F
ch
ain
s
u
n
d
er
eq
u
al
r
ec
ei
v
ed
p
o
w
er
.
T
h
is
d
ep
en
d
ed
o
n
s
elec
t
in
g
t
h
e
h
i
g
h
e
s
t
p
er
f
o
r
m
in
g
a
n
t
en
n
a
s
at
m
a
x
i
m
u
m
p
o
w
er
=
8
d
B
,
w
h
ile
t
h
e
av
e
r
ag
e
d
ata
r
ate
d
ec
r
ea
s
ed
w
it
h
th
e
in
cr
ea
s
ed
n
u
m
b
er
o
f
R
F
ch
ain
s
at
th
e
lo
w
er
m
ax
i
m
u
m
p
o
w
er
=
4
d
B
.
C
o
n
s
eq
u
e
n
tl
y
,
th
e
a
v
er
ag
e
d
ata
r
ate
in
cr
ea
s
e
w
h
e
n
u
s
i
n
g
f
e
wer
R
F
ch
ain
s
w
a
s
d
ep
en
d
en
t o
n
th
e
b
est p
er
f
o
r
m
in
g
a
n
te
n
n
a
s
elec
tio
n
an
d
d
is
tr
ib
u
ted
p
o
w
er
a
m
o
n
g
u
s
er
s
.
I
n
Fi
g
u
r
e5
,
th
e
l
i
m
ited
R
F
c
h
ain
g
a
v
e
t
h
e
b
etter
r
esu
lt
at
u
s
in
g
o
p
ti
m
al
Z
FB
F
.
T
h
e
r
ec
eiv
er
o
f
th
e
R
F
ch
ai
n
d
ep
en
d
ed
o
n
t
h
e
eq
u
al
r
ec
ei
v
ed
p
o
w
er
allo
ca
tio
n
,
w
h
ic
h
r
ed
u
ce
s
t
h
e
e
f
f
ec
t
ch
a
n
n
e
l
w
h
er
e
t
h
e
Z
F
b
aseb
an
d
p
r
ec
o
d
in
g
is
cl
o
s
ed
to
th
e
o
p
ti
m
al
m
ass
iv
e
MI
MO
s
y
s
te
m
.
C
o
n
s
eq
u
e
n
tl
y
,
w
ith
a
n
i
n
cr
ea
s
ed
n
u
m
b
er
o
f
R
F
c
h
ai
n
s
u
s
i
n
g
Z
FB
F
at
M
=1
2
8
,
tr
an
s
m
it
an
te
n
n
a
s
g
i
v
e
t
h
e
h
i
g
h
d
ata
r
ate.
W
h
ile
r
ed
u
cin
g
th
e
n
u
m
b
er
o
f
R
F
ch
a
in
s
u
s
in
g
o
p
ti
m
al
Z
FB
F
g
i
v
es
M
=6
4
,
w
e
n
o
ted
th
at
th
e
ac
h
iev
ab
le
d
ata
r
ate
is
s
m
aller
th
a
n
co
m
p
ar
ed
w
it
h
M
=1
2
8
.
Me
an
w
h
ile,
th
e
o
p
ti
m
al
n
u
m
b
er
o
f
R
F
c
h
ai
n
s
w
a
s
eq
u
ip
p
ed
w
it
h
1
2
8
an
te
n
n
a
s
s
er
v
i
n
g
ac
tiv
e
u
s
er
s
K
=8
,
w
h
i
ch
w
as
ab
le
to
s
u
p
p
r
ess
h
ig
h
SIN
R
i
n
o
r
d
er
to
g
et
h
i
g
h
a
v
er
ag
e
d
ata
r
atesb
y
u
s
i
n
g
eq
u
al
p
o
w
er
allo
ca
tio
n
b
ea
m
f
o
r
m
i
n
g
.
Fig
u
r
e
4
.
E
f
f
ec
t o
f
in
cr
ea
s
ed
R
F c
h
a
in
s
o
n
t
h
e
d
ata
r
ate
at
in
cr
ea
s
ed
p
o
w
er
Fig
u
r
e
5
.
E
f
f
ec
t o
f
SN
R
o
n
th
e
in
cr
ea
s
e
o
f
a
v
er
ag
e
d
ata
r
ate
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
3
5
2
1
–
3
5
2
8
3528
4.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
p
r
esen
ted
th
e
n
u
m
b
er
o
f
R
F c
h
ai
n
s
r
eq
u
ir
ed
to
r
ed
u
ce
th
e
co
n
s
u
m
p
t
io
n
o
f
cir
cu
it p
o
w
er
to
p
r
o
v
id
e
th
e
m
a
x
i
m
u
m
d
ata
r
a
te
w
it
h
a
li
m
ited
n
u
m
b
er
o
f
R
F
ch
ai
n
s
b
y
p
er
f
o
r
m
i
n
g
an
ten
n
a
s
elec
tio
n
an
d
g
o
o
d
C
SI
f
o
r
eq
u
al
r
ec
eiv
ed
p
o
w
er
a
m
o
n
g
t
h
e
ac
ti
v
e
u
s
er
s
.
C
o
n
s
eq
u
en
tl
y
,
p
er
f
o
r
m
in
g
an
t
en
n
a
s
elec
tio
n
w
i
th
a
li
m
i
ted
n
u
m
b
er
o
f
a
n
ten
n
a
ar
r
ay
s
an
d
u
s
in
g
eq
u
a
l
r
ec
eiv
ed
p
o
w
er
al
lo
ca
tio
n
f
o
r
lo
w
er
an
d
u
p
p
er
Z
FB
F
a
t
d
if
f
er
e
n
t
SIN
R
s
p
r
o
v
id
ed
th
e
m
ax
i
m
u
m
d
ata
r
ate.
T
h
e
m
a
x
i
m
al
d
ata
r
ate
t
h
at
ca
n
b
e
o
b
tain
ed
d
ep
en
d
ed
o
n
allo
w
i
n
g
f
o
r
a
d
ec
r
ea
s
e
t
h
e
n
u
m
b
er
o
f
tr
an
s
m
i
tted
R
F
c
h
ain
s
u
n
d
er
eq
u
al
r
ec
eiv
ed
p
o
w
er
a
m
o
n
g
u
s
er
s
,
w
h
ic
h
d
ep
en
d
s
o
n
s
elec
ti
n
g
t
h
e
h
ig
h
e
s
t p
er
f
o
r
m
an
ce
a
n
te
n
n
a
s
s
elec
t
io
n
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
s
w
o
u
ld
li
k
e
to
th
a
n
k
th
e
U
n
i
v
er
s
iti T
u
n
Hu
s
s
ei
n
On
n
Ma
la
y
s
ia
f
o
r
t
h
e
g
e
n
er
o
u
s
f
i
n
a
n
cial
s
u
p
p
o
r
t u
n
d
er
th
e
C
o
n
tr
ac
t G
r
an
t Sc
h
e
m
e
(
U5
5
0
)
.
RE
F
E
R
E
NC
E
S
[1
]
C.
X.
W
a
n
g
,
e
t
a
l
,
“
Ce
ll
u
lar
A
rc
h
it
e
c
tu
re
a
n
d
Ke
y
T
e
c
h
n
o
lo
g
ies
f
o
r
5
G
W
irel
e
ss
Co
m
m
u
n
ica
ti
o
n
Ne
tw
o
rk
s
”
,
IEE
ECo
mm
u
n
.
M
a
g
.
,
v
o
l.
5
2
,
n
o
.
6
,
p
p
.
1
2
2
-
1
3
0
,
F
e
b
.
2
0
1
4
.
[2
]
J.
G
.
A
n
d
re
ws
,
e
t
a
l
,
“
W
h
a
t
W
il
l
5
G
Be
?
”
,
IEE
E
J
.
o
f
S
e
l.
Are
a
s
in
Co
mm
u
n
.
,
v
o
l.
3
2
,
n
o
.
6
,
p
p
.
1
0
6
5
-
1
0
8
2
,
J
u
n
e
2
0
1
4
.
[3
]
T
.
L
.
M
a
rz
e
tt
a
,
“
No
n
c
o
o
p
e
ra
ti
v
e
c
e
ll
u
lar
w
irele
ss
w
it
h
u
n
li
m
it
e
d
n
u
m
b
e
rs
o
f
b
a
se
sta
ti
o
n
a
n
ten
n
a
s”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
W
ire
les
s Co
mm
u
n
ica
ti
o
n
s
.
v
o
l.
9
,
n
o
.
1
1
,
p
p
.
3
5
9
0
-
3
6
0
0
,
No
v
.
2
0
1
0
.
[4
]
X
.
Z
h
a
n
g
,
e
t
a
l
,
“
A
n
En
e
rg
y
-
Eff
icie
n
t
Us
e
r
S
c
h
e
d
u
li
n
g
S
c
h
e
m
e
f
o
r
M
u
lt
i
u
se
r
M
IM
O
S
y
ste
m
s
w
it
h
RF
Ch
a
in
S
lee
p
in
g
”
,
IEE
E
W
ire
les
s Co
mm
u
n
ica
ti
o
n
s a
n
d
Ne
tw
o
rk
in
g
Co
n
fe
re
n
c
e
(W
CNC)
,
2
0
1
3
,
p
p
.
1
6
9
-
1
7
4
.
[5
]
L
.
e
.
NP
,
e
t
a
l
,
“
En
e
rg
y
-
e
ff
icie
n
c
y
a
n
a
l
y
sis
o
f
p
e
r
-
su
b
c
a
rrier
a
n
ten
n
a
se
lec
ti
o
n
w
it
h
p
e
a
k
-
p
o
w
e
r
re
d
u
c
ti
o
n
i
n
M
IM
O
-
OFDM
w
ir
e
les
s s
y
ste
m
s
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
An
ten
n
a
s a
n
d
Pro
p
a
g
a
ti
o
n
.
v
o
l.
2
,
n
o
.
1
1
,
p
p
.
1
-
1
3
,
Ju
n
.
2
0
1
4
.
[6
]
L
.
Zh
a
o
,
e
t
a
l
,
“
En
e
rg
y
E
ff
ici
e
n
t
P
o
w
e
r
A
ll
o
c
a
ti
o
n
A
lg
o
rit
h
m
f
o
r
Do
w
n
li
n
k
M
a
ss
iv
e
M
IM
O
w
it
h
M
RT
P
re
c
o
d
in
g
”
,
IEE
E
Veh
ic
u
la
r
T
e
c
h
n
o
l
o
g
y
C
o
n
f.
(
VT
C)
,
S
e
p
t
.
2
0
1
3
,
p
p
.
1
-
5.
[7
]
B.
M
.
L
e
e
,
e
t
a
l
,
“
A
n
e
n
e
rg
y
e
ff
ici
e
n
t
a
n
ten
n
a
se
lec
ti
o
n
f
o
r
larg
e
sc
a
le
g
r
e
e
n
M
IM
O
sy
ste
m
s
”
,
IEE
E
i
n
In
ter
n
a
t
io
n
a
l
S
y
mp
o
si
u
m o
n
Circ
u
it
s a
n
d
S
y
ste
ms
Co
n
fer
e
n
c
e
(
IS
CAS
),
M
a
y
2
0
1
3
,
p
p
.
9
5
0
-
9
5
3
.
[8
]
K.
Qia
n
,
e
t
a
l
,
“
L
o
w
-
c
o
m
p
lex
it
y
tran
s
m
it
a
n
ten
n
a
se
le
c
ti
o
n
a
n
d
b
e
a
m
f
o
r
m
in
g
f
o
r
larg
e
-
sc
a
le
M
IM
O
c
o
m
m
u
n
ica
ti
o
n
s,”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
A
n
ten
n
a
s
a
n
d
Pro
p
a
g
a
t
io
n
.
A
u
g
.
2
0
1
4
,
p
p
.
1
-
12.
[9
]
C.
M
a
so
u
ro
s
,
e
t
a
l
,
“
L
a
rg
e
-
s
c
a
le
M
IM
O
tran
sm
it
ters
in
f
i
x
e
d
p
h
y
s
ica
l
sp
a
c
e
s:
th
e
e
ff
e
c
t
o
f
tran
s
m
it
c
o
rre
latio
n
a
n
d
m
u
tu
a
l
c
o
u
p
li
n
g
”
,
IEE
E
T
ra
n
sa
c
t
io
n
s
o
n
C
o
mm
u
n
ica
ti
o
n
s
,
v
o
l.
6
1
,
n
o
.
7
,
p
p
.
2
7
9
4
–
2
8
0
4
,
J
u
l.
2
0
1
3
.
[1
0
]
P
.
S
u
d
a
rsh
a
n
,
e
t
a
l
,
“
Ch
a
n
n
e
l
st
a
ti
stics
b
a
se
d
RF
p
re
-
p
ro
c
e
ss
in
g
w
it
h
a
n
ten
n
a
se
lec
ti
o
n
”
,
IEE
E
T
ra
n
s.
W
ire
les
s
Co
mm
u
n
.
,
v
o
l.
5
,
n
o
.
1
2
,
p
p
.
3
5
0
1
–
3
5
1
1
,
De
c
.
2
0
0
6
.
[1
1
]
T
.
W
.
Ba
n
,
e
t
a
l
,
“
A
p
ra
c
ti
c
a
l
a
n
ten
n
a
se
lec
ti
o
n
tec
h
n
iq
u
e
in
m
u
lt
iu
se
r
m
a
ss
i
v
e
M
IM
O
n
e
t
w
o
rk
s
”
,
IEI
CE
T
ra
n
sa
c
ti
o
n
s
o
n
Co
mm
u
n
ica
t
io
n
s
,
v
o
l.
9
6
,
n
o
.
1
1
,
p
p
.
2
9
0
1
-
2
9
0
5
,
No
v
.
2
0
1
3
.
[1
2
]
Y.
P
e
i,
e
t
a
l
,
“
Ho
w
m
a
n
y
RF
c
h
a
in
s
a
re
o
p
ti
m
a
l
f
o
r
larg
e
-
sc
a
le
M
IM
O
sy
ste
m
s
w
h
e
n
c
ircu
it
p
o
w
e
r
i
s
c
o
n
sid
e
re
d
?
”
,
IEE
E
In
Glo
b
a
l
C
o
mm
u
n
ica
ti
o
n
s
Co
n
fer
e
n
c
e
(
GLOBE
COM
),
De
c
.
2
0
1
2
p
p
.
3
8
6
8
-
3
8
7
3
.
[1
3
]
M
.
Be
n
m
i
m
o
u
n
e
,
e
t
a
l
,
“
Jo
i
n
t
tra
n
sm
it
a
n
ten
n
a
se
lec
ti
o
n
a
n
d
u
se
r
sc
h
e
d
u
li
n
g
f
o
r
m
a
s
siv
e
M
IM
O s
y
ste
m
s”
,
IEE
E
In
W
ire
les
s Co
mm
u
n
ica
ti
o
n
s a
n
d
Ne
two
r
k
in
g
Co
n
fer
e
n
c
e
(
W
CNC),
M
a
r.
2
0
1
5
,
p
p
.
3
8
1
-
3
8
6
.
[1
4
]
S
.
Bo
y
d
&
L
.
V
a
n
d
e
n
b
e
rg
h
e
,
“
Co
n
v
e
x
o
p
ti
m
iza
ti
o
n
”
,
Ca
m
b
rid
g
e
Un
iv
e
rsit
y
P
re
ss
,
2
0
0
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.