Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 5
,
O
c
tob
e
r
201
6, p
p
. 1
994
~200
4
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
5.1
087
9
1
994
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Five-Phase P
e
rmanent M
agn
etic
Synchronous Motor Fed by
Fault Tolerant Five Phas
e Voltage Source Inverter
Hichem Kes
r
aoui
1
, Ha
mdi
E
c
heikh
1
, Ati
f
I
qbal
2
,
Me
d F
a
ouz
i
Mimouni
1
1
Nation
a
l Engin
eering
School of
Monastir
Tunisia
2
Electr
i
cal
Engineering
Depar
t
ment
, Qatar University
,
Doha Qatar
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 15, 2016
Rev
i
sed
Jun
29,
201
6
Accepte
d
J
u
l 15, 2016
Multiphase m
a
c
h
ines have gain
e
d
atten
ti
on in nu
merous fields of pplications
such as Aircraft, ship propulsion, petr
och
e
mical and
automobiles, where
high
reli
abil
it
y is r
e
q
u
ired.
The
addi
t
i
ona
l number of
phases guar
a
ntees th
at th
e
s
y
stem continues to operate in faulty
conditions
compared to the traditional
three-ph
ase machine due to
the h
i
gh degr
ee of freedom. Among faults able
to
affec
t
m
u
ltiph
a
se s
y
st
em
, break
between
a m
a
c
h
ine phase
and
the volt
a
g
e
s
ource inv
e
rt
er (
V
S
I) degrade
th
e perform
an
ce
o
f
the
cont
rol.
In
this pap
e
r,
a
five-phase permanent magn
et s
ynchr
onous mach
ine (PMSM) is fed through
a
fault toleran
t
voltag
e
source inverter
with ne
w structure to ensure driv
e
continuity
when
open
circu
it o
c
curs.
Th
e fiv
e
phase PMSM is controlled
with fuzzy
logic
regulator to minimize di
s
t
urb
a
nc
e im
pac
t
th
at
ca
n aris
e f
a
ul
t
condition
.
P
a
pe
r is accom
p
lished w
ith real
tim
e sim
u
lati
ons using
MATLAB-Simu
link in order to
validate th
e new topolog
y
and
show the
effectiven
ess of
the proposed
solution.
Keyword:
Fi
ve-
P
hase
Pe
r
m
anent
Mag
n
e
tic Mo
t
o
r
Fuzzy L
o
gic
Vector Control
l
er
Vol
t
a
ge
S
o
u
r
c
e
I
nve
rt
er
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Kesra
o
ui Hic
h
em
,
Electrical Engi
neeri
n
g De
part
ment,
Nat
i
onal
En
gi
n
eeri
n
g Sc
h
ool
of
M
o
nast
i
r
T
u
ni
si
a,
Ibn El
jazzar St
reet,
5000
, M
o
nastir,
Tunisia.
Em
a
il: k
e
sraouih
i
ch
em
@g
m
a
il.co
m
1.
INTRODUCTION
Certain applications like electric
vehi
cl
es,
wi
n
d
o
r
m
a
ri
ne cur
r
ent
t
u
rbi
n
es an
d s
h
i
p
s
pr
o
pul
si
o
n
,
requ
ire a
h
i
gh
reliab
ility o
f
on
-bo
a
rd
equ
i
pmen
t. Th
e elec
trical
m
ach
in
e is th
e h
eart of t
h
ese app
lication
s
and
it is so
m
e
t
i
m
e
s
h
i
gh
ly d
e
sirab
l
e ev
en
essential to
k
eep i
t
s
ope
rat
i
on e
v
e
n
u
nde
r se
vere
con
d
i
t
i
ons
wh
ere a
fai
l
u
re em
erge
s an
d t
h
e i
n
t
e
rv
ent
i
o
n
bec
o
m
e
s ri
sky
o
r
t
o
o e
xpe
nsi
v
e.
A certain
num
b
e
r o
f
th
ese ap
p
licatio
n
s
th
en
b
e
tted
on
th
e train
i
ng syste
m
b
y
s
u
ppo
rting
th
e
m
u
ltiphase
m
a
chine where num
b
er of phas
es is higher
than three, it offers a cer
t
a
i
n
n
u
m
b
er o
f
ad
di
t
i
onal
free
dom
degre
e
s com
p
ared t
o
the classical three
-
phase
m
achines
[1]. The
s
e free
d
om
degrees ca
n be
exploited
to
i
m
p
r
ov
e the to
rqu
e
d
e
n
s
ity [2
] o
r
to
co
n
t
ro
l sev
e
ral
mach
in
es serial o
r
p
a
rallel co
nn
ected
[3
] o
r
to
main
tain
a cert
a
in
op
eratio
n du
ri
n
g
th
e
fau
lt
co
nd
itio
ns.
A
d
e
fect
o
n
an in
v
e
rter’s
o
r
i
n
its conn
ection
with
th
e correspo
nd
ing
m
u
ltip
h
a
se m
ach
ine wind
ing
gene
ral
l
y
l
eads t
o
deg
r
a
d
at
i
o
n
by
ru
pt
u
r
e o
f
a st
at
or p
h
ase.
It is the
m
o
st comm
on
fau
lt in
m
ach
in
e-conv
erter
association [4], this ca
uses t
h
e an
n
u
l
ation
o
f
th
e cu
rren
t i
n
th
e corres
ponding
phase a
n
d
thus t
h
e a
ppe
a
r
ance
of a torque
ripple. T
h
e
de
velopm
ent of c
o
ntrol
whic
h m
a
intains a
consta
nt torque is m
o
re
tha
n
neces
sary.
In
th
e literatu
re man
y
research
works add
r
essed
to
fau
lt cond
itio
n
s
su
ch
as in
[5
] a p
r
ed
ictiv
e co
n
t
ro
l sch
e
m
e
is
m
odi
fi
ed t
o
al
l
o
w
p
o
st
fa
ul
t
o
p
erat
i
o
n
of a
fi
ve-
p
hase
dri
v
e
wh
en
o
n
e
pha
se i
s
o
p
en
. I
n
[
6
]
,
ne
w c
u
r
r
e
n
t
s
are
im
posed
t
o
m
i
ni
m
i
ze jo
ul
e'
s l
o
sses i
n
r
e
m
a
i
n
i
n
g
p
h
ases
a
n
d
av
oi
d
t
o
rq
ue
ri
p
p
l
e
w
h
e
n
one
phase
g
o
es
i
n
ope
n
-
ci
rcui
t
,
whe
n
t
h
e c
ont
rol
sc
hem
e
i
s
val
i
d
at
ed
by
si
m
u
latin
g
an
actu
atio
n
system with
a fiv
e
-ph
a
se
seg
m
en
t m
o
to
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Fi
ve Ph
ase
Pe
rma
n
e
n
t
M
a
g
n
e
t
i
c
Sync
hr
on
o
u
s M
o
t
o
r
Fe
d
by F
a
ul
t
Tol
e
r
ant
...
. (
H
i
c
he
m K
e
sr
ao
ui
)
1
995
In
[7
], op
ti
m
a
l
cu
rren
ts wh
ich
m
i
n
i
m
i
se
j
o
u
l
e's
lo
sses ar
e ob
tain
ed
b
y
ap
plyin
g
in
stan
taneo
u
s pow
er
b
a
lan
ce th
eo
ry
after in
tro
d
u
c
i
n
g
th
e co
n
c
ep
t o
f
fau
lt to
lerant cu
rren
t
s in
th
e sp
atially s
y
mmetrical p
h
a
ses. Th
e
g
o
a
l
o
f
all th
ese work
s is to
co
m
p
en
sate fau
lt d
e
scri
bed b
y
an
op
en pha
se
and kee
p
o
p
erat
i
n
g dri
v
e sy
st
em
wi
t
h
t
h
e rem
a
i
n
i
ng
heal
t
h
y
pha
ses,
no a
d
di
t
i
onal
ha
r
d
w
a
re was
pr
o
p
o
s
ed,
no
net
h
el
e
ss, i
t
m
a
y
be
m
o
re
bene
fi
ci
al
an
d
l
e
ss ex
pensi
v
e. Se
veral
ope
n ci
rc
ui
t
faul
t
s
can
dam
a
ge t
h
e pe
rf
o
r
m
a
nce sy
st
em
[8]
;
t
h
ey
include t
h
e open phase m
achine. Pha
s
e
can b
e
lo
st in
th
e
m
ach
in
e sid
e
(stato
r
wind
ing
p
a
rt), on
e need
to
co
nsid
er th
e
remain
in
g
p
h
a
ses on
ly fo
r t
h
e
co
n
t
ro
l
pu
rp
ose.
It ca
n als
o
be lost in t
h
e inverter side
, the
r
efore
,
leg
b
e
co
m
e
u
n
ab
le to
en
su
re
su
pp
ly.
Foc
u
si
n
g
o
n
t
h
e ene
r
gy
co
n
v
ersi
on c
h
ai
n,
t
h
e faul
t
y
m
o
d
e
appea
r
s as soo
n
as a com
pone
nt
o
f
t
h
e
su
pp
ly of t
h
e
m
u
l
tip
h
a
se m
a
ch
in
e is
d
e
fected
.
Am
o
n
g
its o
r
i
g
in
s, on
e
note: fau
lts related
to ON/OFF switch
e
s
an
d fau
lts relat
e
d
to conn
ection
m
ach
in
e-inverter.
Wh
en
th
e
fault o
n
an
elemen
t d
i
rectly im
p
l
ies o
p
e
n
i
ng
ph
ase, th
is
lead
s to
annu
latio
n
of th
e
cor
r
es
po
n
d
i
n
g
cur
r
ent
.
O
n
t
h
e ot
he
r
ha
nd
, i
f
a c
ont
rol
l
e
d
swi
t
c
h
do
es
n
o
t
o
p
e
n
or i
f
a
m
achi
n
e wi
n
d
i
ng i
s
short-circ
uited an ove
r
curre
nt a
ppea
r
s, the fuse
prot
ect
io
n in
series
with
t
h
e tran
sisto
r
i
n
terv
en
es and
eliminates the
current i
n
crea
s
e
to
protect the m
achine and avoid c
o
nd
uct
o
rs
ove
r
heating.
He
nce, i
n
the two
pre
v
ious fa
ult-cases curre
n
t is zero.
The immediate conse
que
nce is unba
l
anced in t
h
e magnetic
m
o
rtice force
(M
M
F
),
w
h
i
c
h
i
n
v
o
l
v
es
creat
i
ng t
o
r
que
ha
r
m
oni
cs, t
h
en
a
dve
rse e
ffects
on t
h
e
dri
v
en
mechanism
appears
.
M
o
re
ove
r, t
h
e
ope
ni
n
g
of
o
n
e
p
h
ase
does
n
o
t
m
a
ke i
t
pos
si
bl
e any
m
o
re
t
h
e i
n
vert
e
r
t
o
feed
co
rres
p
o
ndi
ng
wind
ing
.
A st
ato
r
po
ten
tial o
f
th
e m
ach
in
e is n
o
t
co
n
t
rolled
an
y
m
o
re. Th
is asp
ect particu
l
arly tak
e
s in
to
account sy
nchronous
pe
rm
anent m
a
gne
t machines
,
because flux produc
e
d
by rem
a
ining phases
generates
u
n
c
on
tro
lled
vo
ltag
e
in th
e lost ph
ase.
The
prese
n
t
w
o
r
k
f
o
c
u
s
on
faul
t
t
o
l
e
ra
nt
cont
rol
of
fi
ve
-p
hase PM
SM
by
rec
o
n
f
i
g
ur
at
i
on o
f
i
t
s
i
nve
rt
er aft
e
r o
n
e o
p
e
n
l
e
g c
o
nnect
i
o
n,
seeki
ng
p
r
eve
n
t
i
o
n
of
fu
rt
he
r
dam
a
ges.
The
pr
o
p
o
se
d st
rat
e
gy
h
a
s n
o
i
m
p
act o
n
con
t
ro
l tech
n
i
q
u
e
used
i
n
h
ealth
y
co
nd
itio
n.
As far as th
e au
tho
r
s
kn
ow th
at th
ere i
s
n
o
wo
rk
exten
d
e
d
on
th
e
m
u
ltip
h
a
se m
o
to
r an
d
it
s
associ
at
i
o
n
wi
t
h
m
u
l
t
i
phase VSI
.
T
h
e p
a
pe
r i
s
st
ru
ct
ure
d
as fol
l
ow:
Se
ct
i
on 2
p
r
ese
n
t
s
m
odel
l
i
ng
o
f
fi
ve
-
pha
se pe
rm
anent
m
o
t
o
r an
d i
t
s
i
nve
rt
er, sect
i
on
3 i
n
t
r
o
duce
d
t
h
e
pr
o
pose
d
sol
u
t
i
o
n aft
e
r
an o
p
e
n
co
n
n
e
c
t
i
on,
sect
i
on
4
desc
ri
bes
f
u
zzy
l
o
gi
c c
ont
r
o
l
l
e
r
use
d
t
o
re
g
u
l
a
t
e
spee
d m
o
t
o
r
f
o
l
l
o
we
d
by
s
i
m
u
l
a
t
i
on res
u
l
t
s a
n
d
d
i
scu
ssi
on
. C
o
n
c
lu
si
o
n
will be ob
j
ect
of sect
io
n
5
.
2.
FIVE-PHASE
SYSTEM
MODELING
The fi
ve
-
phase
PM
SM
beha
v
i
ou
r o
b
ey
s a cert
a
i
n
n
u
m
b
er of e
quat
i
o
ns e
x
p
r
esse
d al
l
i
n
a nat
u
ral
base. T
h
ese eq
uat
i
o
n
s
pres
ent
a st
ron
g
cou
p
l
i
ng w
h
i
c
h ca
n obst
r
uct
t
h
e de
vel
o
pm
ent
of i
t
s
cont
r
o
l
.
W
i
t
h
t
h
e
fi
ve-
o
rde
r
t
r
a
n
sfo
r
m
a
t
i
on (1
)
of
C
o
nco
r
di
a,
one
m
a
nages t
o
ove
rc
om
e t
h
is p
r
o
b
l
e
m
by
obt
ai
ni
ng
t
h
e
s
y
st
em
of
dec
o
upl
e
d
e
quat
i
o
ns
(
2
)
.
Fi
nal
l
y
, by
appl
y
i
ng Pa
rk t
r
ansf
o
r
m
a
ti
on (
3
)
,
o
n
e o
b
t
a
i
n
s t
h
e sy
st
em
(
4
) c
onsi
d
ere
d
as a sui
t
a
bl
e
m
odel of c
o
ntrol whe
r
e m
echanical equation is adde
d.
cos
c
os
co
s
c
o
s
sin
s
i
n
sin
s
in
cos
c
os
cos
2
π
4
π
6
π
8
π
1(
)
(
)
(
)
(
)
55
5
5
2
π
4
π
6
π
8
π
0(
)
(
)
(
)
(
)
55
5
5
2
4
π
8
π
12
π
16
π
C
1
(
)(
)(
)
(
)
5
55
5
5
4
π
8
π
12
π
16
π
0
(
)(
)
(
)(
)
55
5
5
11
1
1
1
22
2
co
s
sin
2
si
n
s
i
n
s
i
2
n
(1
)
di
d
λ
di
s
α
1
β
1r
α
1
β
1s
α
1
β
1
v
=
R.i
+
L
.
+
=
R.i
+
L
.
+
E
pp
S
α
1
β
1s
α
1
β
1s
α
1
β
1
α
1
β
1
dt
dt
dt
di
d
λ
di
s
α
2
β
2r
α
2
β
2s
α
2
β
2
v
=
R.i
+
L
.
+
=
R.i
+
L
.
+
E
ss
S
α
2
β
2s
α
2
β
2s
α
2
β
2
α
2
β
2
dt
dt
dt
(2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
199
4
–
20
04
1
996
cos(
θ
)s
i
n
(
θ
)0
0
ee
-s
i
n
(
θ
)c
o
s
(
θ
)0
0
ee
P=
00
c
o
s
(
3
θ
)-
s
i
n
(
3
θ
)
ee
00
s
i
n
(
3
θ
)c
o
s
(
3
θ
)
ee
(3
)
dI
d1
V=
R
.
I
+
L
.
-
L
.
ω
.I
pe
p1
q
1
d1
d
1
dt
dI
q1
V=
R
.
I
+
L
.
+
L
.
ω
.I
+
ω
.
λ
pe
e
q1
q
1
p1
d1
r
d
1
dt
dI
d2
V=
R
.
I
+
L
.
+
3
.
L
.
ω
.I
ss
e
q2
d2
d2
dt
dI
q2
V=
R
.
I
+
L
.
-
3
.
L
.
ω
.I
ss
e
q2
q2
d2
dt
d
Ω
J.
+
f
.
Ω
=T
-
T
em
r
dt
5
T=
p
.
λ
.I
=
p
.
.
λ
.I
em
m
q1
q1
rd1
2
(4
)
Whe
r
e:
ò
θ
=
ω
dt
ee
and
ω
e
de
sign the electri
cal
m
o
tor s
p
ee
d
ω
=p
Ω
e
Po
wer
ci
rc
ui
t
t
o
p
o
l
o
gy
of
a
fi
ve-
p
hase
v
o
l
t
a
ge s
o
urce
i
n
ve
rt
er
(V
SI
) i
s
a
st
anda
rd
st
r
u
ct
ure
(
f
i
g
ure
1
)
cont
ai
ni
ng t
e
n
swi
t
c
hes
S
i
and
(
'
Si
=
1
…
5
)
i
offe
rin
g
=
5
23
2
co
m
b
in
ation
s
, each switch
co
nsists o
f
two
sem
i
cond
uct
o
r
devi
ces, c
o
n
n
ect
ed i
n
ant
i
-
p
a
ral
l
e
l
:
a bi
pol
ar t
r
ansi
st
o
r
o
r
IGB
T
an
d a d
i
ode.
In
vert
e
r
’
s
i
nput
i
s
a DC
v
o
l
t
a
g
e
re
gar
d
ed
f
u
rt
her
o
n
bei
n
g c
onst
a
nt
V
dc
. T
h
e
load is
a
why
coupled fi
ve-phase
perm
anent
m
a
gnet
sy
nc
h
r
on
o
u
s
m
achi
n
e
(PM
S
M
)
of
whi
c
h pha
se v
o
l
t
a
ges
a
r
e de
not
e
d
(
vi
=
1
…
5
)
in
. Th
e
relatio
n
bet
w
ee
n t
h
e
s
e
out
put
v
o
l
t
a
ges
an
d i
n
ve
rt
er’s
swi
t
c
hes a
r
e
gi
ven
i
n
(
5
).
Fi
gu
re
1.
Fi
ve
-
pha
se
vol
t
a
ge
s
o
u
r
ce i
nve
rt
er
v
S
1n
1
4
-
1-
1-
1-
1
v
S
-
1
4
-
1-
1-
1
2n
2
V
dc
v=
-
1
-
1
4
-
1
-
1
.
S
3n
3
5
-1
-
1
-
1
4
-
1
vS
4n
4
-
1
-
1
-1
-1
4
vS
5n
5
(5
)
F
I
FIVE-PHASE INVERTER
FIVE-PHAS
E
PMS
M
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Fi
ve Ph
ase
Pe
rma
n
e
n
t
M
a
g
n
e
t
i
c
Sync
hr
on
o
u
s M
o
t
o
r
Fe
d
by F
a
ul
t
Tol
e
r
ant
...
. (
H
i
c
he
m K
e
sr
ao
ui
)
1
997
Since it is about five
-dim
ension a
n
d according t
o
fi
ve phase PMSM m
odelling,
vect
ors in two leve
l
VSI
ca
n
be
pr
oject
e
d
i
n
t
o
t
w
o
t
w
o-
di
m
e
nsi
onal
s
u
bs
pac
e
s
11
(
αβ
)
and
(
α
2
β
2)
[
9
]
as
de
pi
ct
ed i
n
fi
gu
re
2.
Space
vectors
form
3 deca
gons in each
pla
n
.
In t
h
e literature, for t
h
ree
-
phase
inve
rter, control of switc
hes can
be e
n
su
re
d
wi
t
h
di
f
f
e
r
ent
t
e
chni
que
s o
f
p
u
l
s
e wi
dt
h m
odul
at
i
o
n
(P
W
M
) suc
h
as
si
nus
oi
dal
p
u
l
s
e
wi
dt
h
m
odulation (S
P
W
M) a
nd s
p
ace vector
pulse width m
odula
tion (S
VP
WM). The
r
e is an increa
sing trend
of
usi
n
g
SVP
W
M
t
echni
qu
e
due
t
o
t
h
e
easi
n
e
s
s o
f
di
gi
t
a
l
rea
l
i
zat
i
on, re
d
u
ci
ng
ha
rm
oni
cs
and
s
w
i
t
c
hi
n
g
l
o
sses
with
b
e
tter d
c
b
u
s
u
tilizatio
n
[10
]
.
W
ith
fiv
e
-p
h
a
se
inv
e
rter, SVPW
M
is en
su
red
after satisfyin
g
certain
criteria [11]. Sector in
which evol
ves the
vect
or re
fere
nce
voltage is
det
e
rm
ined first in
11
(
αβ
)
p
l
a
n
,
t
h
e
n
,
according t
o
its pa
rity, a temporal a
v
era
g
e of four vectors
lim
i
ting
the
st
udie
d
sect
or
(2 large a
n
d
2 medium
v
ectors) ad
equately selected
is calcu
lated
all
o
wi
n
g
to
filter, in
22
(
αβ
)
pl
an,
t
h
i
r
d
h
a
rm
oni
c.
Fi
gu
re 2.
S
w
i
t
c
hi
n
g
vect
ors in refe
re
nce frames
11
(
αβ
)
and
22
(
αβ
)
110
100
010
110
111
110
100
110
101
100
000
100
000
101
010
001
000
001
001
011
101
000
111
011
001
010
011
111
111
011
101
010
1010
0010
0010
1000
1110
0011
0110
1010
1011
1110
0000
0110
0000
1111
0011
1000
1011
1000
1111
1001
1100
0001
1101
0101
1101
0111
0001
0100
0101
0100
0111
1100
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
199
4
–
20
04
1
998
The sect
o
r
i
n
whi
c
h t
h
e refe
rence v
ect
or e
vol
ves at
a gi
ven m
o
m
e
nt
can be i
d
e
n
t
i
f
i
e
d
by
respect
i
n
g
an al
g
o
ri
t
h
m
where c
o
m
pone
nt
s o
f
t
h
i
s
vect
or a
r
e det
e
rm
ined a
n
d com
p
ared
[1
2]
, i
t
can
al
so be i
d
e
n
t
i
f
i
e
d by
calculating s
w
itching functions re
pres
en
ting each
one a
half pla
n
of me
m
b
er
shi
p
of the re
fere
nce [13] or
sim
p
ly by dete
rm
ination of the phase
refe
rence vector
α
s
u
c
h
as
:
5
π
)
α
N
=
int(
se
ct
(6
)
Whe
r
e t
h
e function
in
t (.)
p
r
ov
id
es th
e i
n
teger
p
a
rt
of element bet
w
een brackets.
Top
o
l
o
g
y
g
i
v
e
n
in Figu
re 1 do
es
n
o
t
all
o
w a fau
lt t
o
leran
t
co
n
t
ro
l i
n
op
en
circu
it fau
lt con
d
ition
:
t
h
e
bipolar t
r
ansist
or or t
h
e
IGB
T
can fall i
n
t
h
e
OFF stat
e an
d rem
a
in
s in
th
is situ
ation
reg
a
rd
less
of the g
a
te
vol
t
a
ge
val
u
e.
An
o
p
en
ci
rcui
t
faul
t
occ
u
rs
d
u
e t
o
l
i
f
t
i
n
g
of
bo
n
d
i
n
g
wi
res
cause
d by
t
h
er
m
i
c cy
cli
ng.
It
m
a
y
be
ca
use
d
by
a dri
v
er fa
ul
t
or
a
sh
ort
ci
rcui
t
f
a
ul
t
i
n
d
u
ce
d I
G
B
T
ru
pt
u
r
e.
Ope
n
ci
rc
ui
t
f
a
ul
t
s
d
o
not
c
a
use sy
st
em
shut
-d
o
w
n
b
u
t
deg
r
a
d
e i
t
s
pe
rf
orm
a
nce. T
h
e pr
o
p
o
s
e
d
so
lu
tion
con
s
ists o
f
an
ticip
ati
o
n b
y
env
i
sag
i
n
g
a
ru
pture between one phase
m
achine and the c
o
rres
p
onding
in
v
e
rter arm
:
a
n
add
itio
n
a
l switch
,
in
itially o
p
e
n
e
d
,
i
n
terv
en
es b
y
its clo
s
i
n
g
t
o
conn
ect lo
st ph
ase m
ach
in
e to
t
h
e
m
i
d-poi
nt
O of DC
b
u
s (
F
i
g
u
r
e 3)
.
Fi
ve ne
w s
w
i
t
c
hes
(
i
ki
=
1
…
5
)
, norm
ally ope
ned, are
pre
p
are
d
t
o
commutate, any inve
rter arm
can
be
di
sco
n
n
ect
ed, t
h
e c
o
r
r
e
s
po
n
d
i
n
g s
w
i
t
c
h
have
t
o
bal
a
n
ce an
d sa
ve t
h
e
di
sc
on
nect
ed
pha
se.
Fi
gu
re
3.
Tol
e
r
a
nt
arm
-
pha
se
ru
pt
u
r
e c
o
n
f
i
g
urat
i
o
n
3.
ASS
O
CI
ATI
O
N
BEH
A
V
I
O
R AFTE
R
L
E
G-PH
ASE BREAK
Sin
ce th
is stud
y con
c
ern the lo
ss
o
f
on
ly on
e
phas
e
, s
u
ppose t
h
at at a gi
ven tim
e
, connecti
on
bet
w
ee
n
pha
se
5 a
n
d V
S
I i
s
l
o
st
, s
w
i
t
c
h
5
k
i
s
ON
, fi
ve-
p
has
e
PM
SM
i
s
t
h
en s
u
p
p
l
i
e
d t
h
ro
u
gh a
n
i
nve
r
t
er
wi
t
h
new
st
r
u
ct
ure usi
n
g f
o
ur arm
s
,
onl
y
4
2=
1
6
co
m
b
in
atio
n
s
are
po
ssib
l
e, relatio
n (1
) is no
long
er
available, it’s replace
d in this case by equation (7) and
16
di
ffe
re
nt
vect
o
r
s i
rre
gul
a
r
l
y
space
d wi
t
h
si
x
di
ffe
re
nt
am
pl
it
ude f
o
rm
an unbal
a
nced
p
o
l
y
go
n i
n
eac
h
11
(
αβ
)
and
22
(
αβ
)
pl
ans
,
so
, u
s
i
ng S
V
P
W
M
l
eads
t
o
t
r
eat
di
ffe
re
nt
cases a
n
d m
a
y
not
be
si
m
p
le.
Aimin
g
to
adju
st th
e o
u
t
p
u
t
cu
rren
t and
to
track
th
e cu
rre
nt refere
nce
,
h
y
s
teresis curre
nt contr
o
l is
use
d
. C
o
m
p
aring the i
n
stanta
neous
curre
nt i
n
the
fi
ve-
p
h
a
se PMSM
with
th
e referen
ce
sig
n
a
l, t
h
e con
t
ro
ller
shoul
d
a
d
just t
h
e
duty cycle
of the
PW
M
signal in t
h
e i
nve
rter [14].
FIVE-PHASE INVERTER
FIVE-PHAS
E
PMS
M
RUPTURE DE
TECTION
k
1
, k
2
, k
3
, k
4
, k
5
(1 OF 5)
O
V
d
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
4.
P
to
ler
a
lo
o
p
a
techn
i
wo
rk
s
req
u
i
r
rules
result
reg
u
l
a
mach
i
p
ha
s
e
cont
r
o
defi
n
e
mech
a
l
i
ngu
i
in
to
a
one
d
e
E
F
ive Ph
a
v
1n
v
2n
V
v=
3n
v
4n
v
5n
P
OST F
A
U
L
To verify
a
nt structure.
S
a
nd
p
r
ovi
des
I
The m
a
in
i
q
u
es
bas
e
d
o
s
co
nfirm
it si
n
Contra
ry
t
r
e a
preci
se
m
callin
g
on
lin
s.
A
lth
oug
h
a
tors are alw
a
i
ne m
odel
,
t
h
i
e
s s
u
pply.
For t
h
is r
e
o
l. In
fu
zzy c
o
e
for eac
h sy
a
ni
sm
of i
n
f
e
i
stic ru
les in
i
t
a
no
n-v
a
gu
e
v
ef
in
e to
th
e
f
u
Ω
∗
a
se Pe
rmane
n
4-
1
-1
4
V
dc
-1
-
1
5
-1
-
1
-1
-
1
L
T OPERAT
I
t
h
e st
udi
e
d
n
S
ince the fi
v
e
I
q
cu
rre
nt
r
e
f
e
id
ea co
nsists
o
n fuzzy logi
c
n
ce work
of
M
t
o the classic
a
m
a
t
h
e
m
a
tic
al
k
gu
istic v
a
ria
b
th
e m
a
th
e
m
a
a
ys p
r
esen
t i
n
i
s
c
h
ang
e
ca
n
e
ason
, on
e p
r
o
nt
rol syste
m
stem
input a
e
re
nce cal
cul
a
t
iall
y d
e
fined
v
al
ue allowin
g
u
zzy regul
a
to
r
+
Ω
Er
ro
r
I
S
n
t Ma
gnetic S
y
-1
-1
-
1
-1
-1
-
1
4-
1
-
1
-1
4
-
1
-
1
-1
-1
I
ON USI
N
G
F
n
ew
co
nf
igu
r
a
e
-
p
hase PM
S
M
er
e
n
ce.
on usi
ng
c
o
n
t
c
di
dn
’t
st
o
p
s
M
am
dani
i
n
1
9
a
l regu
lato
rs,
k
no
w
l
edg
e
co
les. An
expe
r
a
tical m
odel
s
n
mo
s
t
o
f
t
h
e
be related
t
o
r
esen
ts th
e c
o
m
s, one ca
n
di
s
speec
h univ
e
a
tes th
e fu
zz
y
by
an e
xpe
r
t
g
the e
ffecti
v
e
r
t
w
o
i
n
put
va
r
Fig
u
Fuzz
y
R
u
B
1
SSN
:
208
8-8
7
y
nc
hr
on
o
u
s
M
S
1
S
2
V
dc
S-
3
5
S
4
S
5
FUZZ
Y LO
G
r
at
i
o
n, a
fi
ve
M
is a n
o
n
lin
e
t
ro
l insen
s
itiv
s
ho
w
i
n
g
th
ei
r
9
74
[
1
5
]
.
t
h
e a
d
opt
i
o
n
o
n
c
en
tr
a
t
ed
ar
o
r
t feed
s t
h
is b
a
s
of the ele
c
l
oops
, t
h
ei
r
u
th
e p
a
ram
e
tr
i
o
nt
ri
but
i
on o
f
s
t
i
ngui
s
h
t
h
re
e
rse
an
d a
p
a
y
subset
rel
a
t
t
. Fin
a
lly th
e
e
co
nt
r
o
l
of t
h
r
iab
l
es: th
e s
p
u
re 4.
C
o
nt
r
o
l
u
les
Base
7
08
M
ot
or
Fe
d
by
F
0.5
0.5
0.5
0.5
-2
G
I
C
CO
NT
R
phase P
M
S
M
e
ar syste
m
, a
e t
o
di
st
u
r
ba
n
r
pe
rf
orm
a
nce
of
a
fu
zzy lo
o
u
nd t
h
e p
r
o
c
a
se by
pr
el
im
i
c
tric mach
in
e
u
se bec
o
m
e
s
l
i
c vari
at
i
o
ns
o
f
fuzzy logic
e
p
rincipal
p
a
a
rtitio
n
i
ng
o
f
i
ng t
o
t
h
e c
o
defuzzificati
o
h
e system
. F
o
p
eed error «
e
di
a
g
ra
m
∗
∗
0
∗
0
∗
1
F
au
lt To
lera
n
t
R
OL
M
is fed
t
h
ro
u
f
uzzy control
n
ce an
d
no
nl
i
n
s
and their e
f
g
ic regu
lato
r
c
ess, bu
t it re
q
i
nary
dat
a
, b
y
e
ar
e
kno
wn
l
i
m
ited
in
fro
n
o
r accidental
o
regu
lato
r to
a
rts [16
]
: th
e
f
th
i
s
u
n
iv
e
r
s
e
ntr
o
l of
th
e
s
o
n wh
ich
tra
n
o
r the case of
»
an
d its v
a
ri
a
+
In
ve
r
T
o
5-P
h
PMS
t ...
.
(
H
ic
he
m
u
gh
th
e
VSI
is
ap
p
lied
in
n
earities .The
f
fectiv
en
ess a
n
in
sp
e
e
d
l
o
o
p
q
uires a base
y
e
nvi
sa
ge
d o
r
and
th
e
c
o
n
n
t o
f
su
dd
en
o
pe
ni
n
g
of o
n
check the
pe
f
uz
zi
fi
cat
i
on
w
i
n
v
a
gu
e un
i
s
y
s
t
e
m
bei
ng
n
sf
or
m
th
e
f
u
z
f
the fiv
e
-
p
ha
s
a
t
i
on «
de »
(
F
+
r
te
r
O
o
h
ase
SM
-
K
e
sr
ao
ui
)
1
999
(7
)
with
fau
lt
the spee
d
in
tellig
en
t
n
d s
e
vera
l
p
do
es no
t
of
sev
e
r
a
l
r
de
si
r
able
n
ve
nt
i
onal
cha
nge o
f
n
e or
mo
r
e
r
fo
rm
ance
w
he
r
e
o
n
e
i
ts, th
en a
bas
e
d o
n
z
zy s
ubs
et
s
e PMSM,
F
ig
u
r
e 4
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
199
4
–
20
04
2
000
A
dat
a
base
o
f
49
r
u
l
e
s ca
n
b
e
sum
m
ari
zed i
n
t
a
bl
e
1
whe
r
e se
ven
m
e
mbers
h
i
p
f
u
nct
i
o
ns i
s
defi
ne
d
for each
inpu
t, th
ey
are
note
d respectively
NG
,
NM
,
NP
,
EZ
,
PP
,
PM
an
d
PG
to
b
e
ab
le to
d
e
scrib
e
, in
a
l
i
ngui
st
i
c
way
,
t
h
e st
at
e of
t
h
e err
o
r a
n
d i
t
s
vari
at
i
o
n
.
M
e
m
b
ershi
p
fu
nct
i
o
n
s
are
t
r
i
a
ng
ul
ar f
o
r
m
,
t
h
e
fu
zzification
m
e
th
od
ad
op
ted
is th
e m
a
x
-
m
i
n
m
e
th
o
d
and
t
h
e d
e
fu
zzifiation
is cen
t
ro
id
m
e
th
od
.
Tabl
e
1.
Defi
ni
t
i
on
of
base
r
u
l
e
s f
o
r
er
ro
r a
n
d
i
t
s
vari
at
i
o
n
NG
NM
NP
E
Z
PP
PM
PG
NG
NG
NG
NG
NM
NM
NP
EZ
NM
NG
NG
NG
NM
NP EZ
PP
NP
NG
NG
NM
NP
EZ
PP
PM
EZ
NG
NM
NP
EZ
PP
PM1
PG
PP
NM
NP
EZ
PP
PM
PG PG
PM
NP EZ
PP
PM
PG
PG
PG
PG
EZ
PP
PM
PG
PG
PG
PG
5.
R
E
SU
LTS AN
D ANA
LY
SIS
Si
m
u
latio
n
resu
lts are illu
strated
in
Fi
g
u
re 5
u
s
in
g
fu
zzy lo
g
i
c con
t
roller in
h
ealth
y
an
d fau
lty
m
odes. The
p
a
ram
e
t
e
rs of t
h
e
st
u
d
i
e
d
fi
ve
-p
hase
PM
SM
a
n
d
i
t
s
i
n
vert
er
are s
p
eci
fi
ed
i
n
Ta
bl
e
2.
The
m
o
t
o
r
i
s
dri
v
ed
at
1
5
0
0
r
pm
wi
t
hout
l
o
ad
.
Fi
gu
re
5.a
p
r
es
ent
s
t
h
e
re
fere
nce a
n
d
act
ual
spee
d,
Fi
g
u
re
5.
b s
h
o
w
s
el
ect
rom
a
gnet
i
c
t
o
rq
ue,
st
at
or
cu
rren
ts in
th
e
ro
tating
fram
e
(d
q
)
11
are gi
ve
n i
n
F
i
gu
re 5.c a
nd
g
i
ven i
n
Fi
gu
re
5.
d w
h
en e
x
pr
essed i
n
t
h
e
refe
rence f
r
am
e
11
(
αβ
)
. Fi
gu
re 5
.
e and Fi
gu
re 5
.
f
hi
ghl
i
g
ht
t
h
e
rev
o
l
u
t
i
o
ns o
f
curre
nt
an
d v
o
l
t
a
ge i
n
t
h
e
refe
rence
f
r
am
e res
p
ectively
.
Finally
, di
sc
on
nect
ed
p
h
as
e cur
r
e
n
t
an
d i
t
s zoom
are gi
ven
i
n
Fi
gu
re
5.
g a
n
d
Fi
gu
re 5.
h.
Tabl
e 2. Param
e
t
e
rs
o
f
fi
ve p
h
a
se
PM
SM
a
n
d
i
nve
rt
er
Variable
Value
Unit
R 0.
67
Ω
L
p
3.
2
m
H
L
s
m
J
V
dc
F
e
0.
93
0.
2
0.
001
400
5000
mH
Wb
Kg.
m
2
V
Hz
Fi
ve p
h
ase P
M
SM
i
s
run
n
i
ng
whi
l
e
a c
o
n
n
ect
i
o
n r
u
pt
ure
bet
w
ee
n
pha
se n
u
m
b
er 5 an
d t
h
e
cor
r
es
po
n
d
i
n
g l
e
g i
nve
rt
er h
a
ppe
ns at
t
i
m
e
faul
t
t
f
=0.
5
s
, at
t=0
.
55
s
, add
itio
n
a
l switch co
mm
u
t
ate to
b
r
ing
ope
rat
i
n
g sy
st
e
m
back, p
h
ase
num
ber
5 i
s
c
o
nnect
e
d
a
g
ai
n
,
but
t
o
m
i
ddl
e p
o
i
n
t
O as
i
t
m
e
nt
i
one
d
be
fo
re.
On
e can no
tice th
e im
p
act of th
is
d
i
sturb
a
n
ce in all waveform
s d
u
r
i
n
g
lo
st ph
ase time
(t
f
=0.
05s)
.
In
dee
d
, m
o
t
o
r
spee
d reac
hes
rapi
dl
y
i
t
s
fi
na
l
val
u
e
wi
t
h
a
sm
al
l
overs
h
o
o
t
,
ri
se an
d
re
spo
n
se
t
i
m
e
s alm
o
st
equal re
specti
v
ely to
7.
7m
s
and
8.
5
m
s
. This co
nf
ir
m
s
th
e h
i
gh
d
ynam
i
c
and e
fficienc
y
of fuzzy controller
even at fa
ult instant: im
pact of
dist
urba
nce is
alm
o
st insigni
f
icant.
The electrom
a
gnetic torque
has s
o
m
e
peaks at
t
f
and
an acceptable ripple
ens
u
red
by
the adopte
d
so
lu
tion
an
d
I
q1
cu
rren
t
h
a
s the sam
e
to
rqu
e
’s form
wh
ich
perm
i
t
to
v
e
rify
last relatio
n
in
(4) wh
ere to
rqu
e
is
co
n
t
ro
lled with
I
q1
cu
rren
t
on
ly,
I
d1
i
s
kept
ze
ro
.
e
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Fi
ve Ph
ase
Pe
rma
n
e
n
t
M
a
g
n
e
t
i
c
Sync
hr
on
o
u
s M
o
t
o
r
Fe
d
by F
a
ul
t
Tol
e
r
ant
...
. (
H
i
c
he
m K
e
sr
ao
ui
)
2
001
(a)
(b
)
(c)
(d
)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
0
200
400
600
800
1
000
1
200
1
400
1
600
Ti
m
e
(
s
)
M
o
t
o
r S
p
e
e
d
(rp
m
)
*
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
0
5
10
15
20
25
Ti
m
e
(
s
)
E
l
e
c
t
r
om
ag
net
i
c
T
o
rque
(N.
m
)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
0
10
20
30
40
50
60
70
Ti
m
e
(
s
)
I
d
1
, Iq
1
(
A
)
Id
1
Iq
1
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-8
0
-6
0
-4
0
-2
0
0
20
40
60
80
Ti
m
e
(
s
)
Ia
1
,
Ib
1
(
A
)
i
1
i
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
199
4
–
20
04
2
002
(e)
(
f)
(g
)
-1
5
-1
0
-5
0
5
10
15
-8
-6
-4
-2
0
2
4
6
8
10
ia1
(
A
)
Ib
1
(
A
)
-600
-
400
-200
0
200
400
600
-
500
-
400
-
300
-
200
-
100
0
100
200
300
400
500
V
a1(V
)
V
b1(V
)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-5
0
-4
0
-3
0
-2
0
-1
0
0
10
Ti
m
e
(
s
)
cu
r
r
e
n
t
sa
ve
d
p
h
a
s
e
Pre-fau
lt
After-fau
lt
Co
rrectio
n
Di
st
ur
ba
nce
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Fi
ve Ph
ase
Pe
rma
n
e
n
t
M
a
g
n
e
t
i
c
Sync
hr
on
o
u
s M
o
t
o
r
Fe
d
by F
a
ul
t
Tol
e
r
ant
...
. (
H
i
c
he
m K
e
sr
ao
ui
)
2
003
(h
)
Fig
u
re
5
.
Sim
u
latio
n
resu
lts
usin
g fu
zzy log
i
c con
t
ro
ller in
h
ealth
y and
fau
lty
m
o
d
e
s
6.
CO
NCL
USI
O
N
A wy
e c
o
u
p
l
e
d fi
ve
-
phas
e
P
M
SM
has bee
n
st
u
d
i
e
d i
n
a
part
i
c
ul
a
r
case
whe
n
c
o
n
n
ect
i
on
bet
w
ee
n
one
p
h
ase a
n
d
l
e
g i
n
vert
er
i
s
s
e
vere
d. C
a
use
d
di
st
u
r
ba
nce
ha
s bee
n
e
x
t
e
n
u
a
t
ed by
c
o
nnect
i
n
g
t
h
e l
o
st
p
h
a
s
e t
o
m
i
d-p
o
i
n
t
DC
bus i
n
vert
er
, fo
rm
s of di
ffe
rent
res
p
o
n
ses
have bee
n
i
m
prove
d by
t
h
e use o
f
f
u
z
z
y
l
ogi
c
cont
roller.
One can notice that success
f
ul ope
ration
without cha
n
ging or m
odify
ing the used c
ontroller
n
e
ith
er th
e m
ach
in
e m
o
d
e
llin
g
is g
u
a
ran
t
eed
, th
is m
i
n
i
mi
ze th
e to
leran
t
so
lu
tion
co
st
an
d
d
o
wn
tim
e
wh
ich
have
a
real im
p
act on the
whol
e syste
m
reve
nue.
REFERE
NC
ES
[1]
L. Parsa, “
O
n
advant
ages of
m
u
lti-phase m
a
chines,
”
Industrial Electronics Soc
iety, 2005
. I
E
CON 2005. 31st
Annual Con
f
erence o
f
I
EEE,
pp
. 6, 2005.
[2]
P. Zhao and G. Yang, “Torque Dens
ity
I
m
provement of Five-Phase PM
S
M
Drive for Elec
tric Vehi
cles
Applications.”
[3]
E.
Lev
i
, “Supply
i
ng Two Fiv
e
-Phase Seri
es-Connected Machines
,” pp. 222–227, 2
006.
[4]
J
.
F
u
and T
.
A.
Lipo, “
D
is
turban
ce-F
r
ee
Opera
tio
n of a
M
u
l
tiphas
e
Current
-Regul
ated M
o
tor
Driv
e with
an Opene
d
Phase,” vo
l/issu
e: 30(5)
, pp
. 5–1
2, 1994
.
[5]
H.
Guzmán,
et al.
, “Fault –
Tolerant Curr
ent Pr
edictive Control of
Five – Phase Induction Moto
r Drives with an
Open Phase,” pp
. 3680–3685
, 20
11.
[6]
F. Baudar
t
,
et
a
l
.
,
“
C
ontrol str
a
t
e
g
y
with
m
i
nim
a
l
controller
reconfiguration of
fault tolerant po
ly
ph
ase PMSM
drives under open circuit fault of one phase,”
Electrical Mach
ines (
I
CEM)
, 2010 X
I
X Internationa
l Conference on.
,
pp. 1–6
, 2010
.
[7]
S.
Dwari,
et al.
,
“Optimal Curren
t
Waveforms fo
r Five-phase Per
m
anent Magnet
Mo
tor Drives un
der Open- circu
i
t
Fault,” pp
. 1–5
,
2008.
[8]
B. J. Rabi
, “
F
ault Tol
e
ran
t
Cont
rol in
ZSource I
nverter Fed Indu
ction Motor
,
”
Int
.
J.
P
o
we
r El
ec
tron. Drive Syst.
,
vol/issue:
1(1), p
p
. 29–35
, 2011
.
[9]
W.
N.
W.
A.
M
uni
m,
et al.
, “
S
witching te
chniq
u
e com
p
arison for m
u
lti-phase inverters,
”
Power Engineering and
Optimization Co
nference (
PEOC
O
)
,
2013 IEEE 7
t
h International
.
pp. 155–160
, 20
13.
[10]
A. Porwal, “Modeling and Simu
lati
on of SVPWM Based Application
,
”
Int
.
J
.
A
ppl. Power Eng
.
, vol/issue: 3(2),
2014.
[11]
A. Iqbal,
et a
l
.
, “
S
pace Ve
ctor M
odulation
Schem
e
s for a
Five-Ph
a
se Volt
age Sou
r
ce Inv
e
rt
er Ke
ywords Modellin
g
of a Fiv
e
-Phase
VSI,” pp. 1–12,
2005.
[12]
T. T
.
Liu
,
et al.
,
“Simulation of PMSM
Vector Co
nt
rol S
y
stem Based on Matlab/Simulink,”
Measu
r
ing Technology
and Mecha
t
ronics Automation, 2
009. ICMT
MA ’
09. Internati
onal Conferen
ce on
,
vol. 2
,
pp
. 343–3
46, 2009
.
[13]
A.
Lega,
et al.
, “General Th
eor
y
of Space Vector
Modulatio
n
for
Five-Phase Inver
t
ers,” pp. 237–2
44, 2008
.
[14]
P. Qian and Y.
Zhang, “Ele
ctro
nics and Signal
Processing: Selected
Pap
e
rs from the 2011 Intern
ation
a
l Confer
en
ce
on Electr
i
c and
Electronics (EEI
C 2011) in Nanc
hang, Chin
a on June 20--22, 2011, Volume 1,” W. Hu, Ed. Berlin,
Heidelb
e
rg, Springer Ber
lin
Heid
elberg
, pp
. 889–
895, 2011
.
[15]
E. H. Mamdani, “Application of
Fuzzy
Logic
to
Appr
oximate Reasoning Using Linguist
ic S
y
n
t
h
e
sis,” vol/issue:
C(12), pp
. 1182
–1191, 1977
.
[16]
Z. Salem, “DSP
Based Vector
C
ontrol of FivePhase Induction
Using Fuzzy
Logic Control,”
Int
.
J
.
Power Elec
tron.
Dr
ive Sys
t
.
, vol/issue: 2(2), pp. 1
92–202, 2012
.
0.
45
0.
5
0.
55
0.
6
0.
65
0.
7
-8
-6
-4
-2
0
2
4
6
8
Ti
m
e
(
s
)
z
o
om
c
u
rrent
s
a
v
ed phas
e
Evaluation Warning : The document was created with Spire.PDF for Python.