Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
5
,
No
. 3,
J
une
2
0
1
5
,
pp
. 61
1~
62
0
I
S
SN
: 208
8-8
7
0
8
6
11
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Desi
gn and Analysis Hi
gh Ga
in PHEMT LNA for Wireless
Applicat
ion at
5.8 GHz
Ka
mil Po
ng
ot
1,2
, Ab
dul
Ran
i
Othm
an
2
,
Z
a
hriladh
a Z
a
k
a
ria
2
,
Moh
a
m
a
d K
a
dim
Suai
d
i
2
,
Abdul Hamid
Hamidon
2
, J.
S.
Ha
mido
n
2
, Az
man
Ahmad
1,2
1
Bahagi
an S
u
m
b
er M
a
nus
ia
, M
a
j
lis
Am
anah R
a
k
y
a
t
(M
ARA)
Tingkat 17
& 18
Ibu Pejabat MARA, Jalan
Ra
ja
Laut, 50609
Kuala
Lumpur, Malay
s
ia
2
Centre of
Telecommunication and I
nnovation (
C
ETRI), Facu
lty of Electr
onics and Computer En
gineer
ing
Universiti
Tekn
i
k
al Ma
la
ysia
Me
laka
(UTeM),
H
a
ng Tu
ah Ja
ya
76100, Durian Tunggal,
Melaka,
Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 20, 2015
Rev
i
sed
Ap
r
25
, 20
15
Accepted
May 10, 2015
This research
pr
esents a design
of
a h
i
gher
gain
(66.38dB) for
PHEMT LNA
using an inductive drain feedb
ack t
echniqu
e f
o
r wireless app
lication
at
5.8GHz. The
am
plifie
r it is im
ple
m
en
ted using PHEMT FHX76L
P transistor
devices. The designed cir
c
uit is simu
lated with Ansoft Designer SV. The
LNA was designed using T-network as a
matchin
g
technique was used at the
input and outpu
t
terminal,
inductive gener
a
tion
to
the source
and an inductiv
e
drain feedback. The low noise amp
lifier (
L
NA) using lumped-component
provides a no
ise figure 0
.
64 dB
and a g
a
in (S
21
) of 68.94 dB
.
The outpu
t
reflection (S
22
),
input reflection (S
11
) and return loss (
S
12
) are -17.37 dB, -
15.
77 dB
a
nd -88.
39 dB
re
spe
c
t
i
ve
ly
. T
h
e
me
a
s
ure
m
e
n
t
shows t
h
e
st
a
b
i
lity
was at 4.54 and
3-dB bandwidth of 1.
72 GHz. W
h
ile
, the low noi
se am
plifier
(LNA) using Murata manuf
actu
r
ed co
mponent
provides a noise figure 0.6
0
dB and
a gain (
S
21
) of 66.38 dB
. Th
e outpu
t reflection (S
22
), inp
u
t
ref
l
ec
tion
(S
11
) and retur
n
loss (S
12
) are -13.88 dB,
-
12.41 dB and
-89.90 dB
res
p
ect
ivel
y.
Th
e m
eas
urem
ent
s
hows
the s
t
abi
lit
y was
at
6.81
and 3-dB
bandwidth of 1
.
70 GHz. Th
e in
put sensitiv
it
y
m
o
re than -80 d
B
m
exceed
ed
the standards r
e
q
u
ired b
y
IEEE 8
02.16.
Keyword:
Cascaded
and Cascode
d LNA
IEEE 802.16
Inductive drai
n
fee
dbac
k
PHEMT LNA
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
K
a
m
i
l Po
ngo
t
B
a
hagi
a
n
S
u
m
b
er
M
a
n
u
si
a,
M
a
jlis Am
anah Ra
kyat (MARA)
Tin
g
k
a
t
1
7
&
18
I
b
u
Pej
a
b
a
t
MA
RA
, Jalan
Raj
a
Lau
t
,
50
60
9 Ku
ala Lu
mp
ur
, Malaysia.
Em
a
il: k
a
m
i
lp
o
ngo
t@yahoo
.co
m
.sg
1.
INTRODUCTION
At
t
h
i
s
p
o
i
n
t
,
m
o
st
of t
h
e de
vel
o
pi
n
g
a
nd a
dva
nce
d
c
o
u
n
t
r
y
use
d
3G t
e
c
h
n
o
l
o
gi
es
due
t
o
t
h
e s
p
ee
dy
d
e
liv
ery
o
f
info
rm
atio
n
to
u
s
ers at a h
i
gh
er b
it rate. Ho
wev
e
r, th
e b
it rate o
f
3G techno
log
y
reserv
e
at th
is
p
o
i
n
t
is still n
o
t
eno
ugh
d
u
e
to
th
e
h
i
gh
de
m
a
n
d
fro
m
co
n
s
u
m
ers, especially in
wireless b
r
o
a
d
b
a
nd
.
To
ove
rc
om
e
t
h
i
s
pr
obl
em
, t
h
e use o
f
W
i
M
A
X t
ech
nol
ogy
was i
n
t
r
o
duce
d
t
o
co
ns
um
ers t
o
enabl
e
e
f
f
ect
i
v
e
co
nn
ectiv
ity at h
i
gh
b
it rate t
o
a
n
e
w
g
e
n
e
ratio
n
o
f
con
s
umer d
e
v
i
ces for ad
ap
tation
latest ap
p
lication
s
t
h
at
are a
v
ailable in the m
a
rket [1].
Gr
ou
ps
o
f
t
e
l
ecom
m
uni
cat
i
on p
r
ot
oc
ol
usi
n
g
W
i
M
AX t
e
c
h
n
o
l
o
gy
are
ne
w t
r
a
d
em
ark and
st
an
dar
d
s
in the
provision of
m
obile and fixe
d i
n
ternet access
.
R
e
siden
tial cons
truction and
openi
n
g of a
planne
d
townshi
p
e
n
terprise i
n
free z
one
s re
quire
high
data tr
a
n
sfer rate
(70 M
b
ps) and
reach
(50
km
) to m
e
et the
need
s of
hi
g
h
ban
d
w
i
d
t
h
v
o
i
ce and
dat
a
t
o
sup
p
o
rt
t
h
e
gr
owt
h
o
f
t
h
e i
n
dust
r
y
[2]
.
W
i
M
AX i
s
a re
pl
acem
e
nt
technology for cellular
phone
technol
ogies
s
u
ch as
UM
TS and
GSM
a
n
d can be use
d
t
o
increase
capaci
ty of
the custom
er [3]. The
r
efore, the
RF front
-end recei
ver shoul
d be
de
signed ac
cording
to the latest
sp
ecification
s
to
su
ppo
rt new
trad
em
ark
as set b
y
th
e teleco
mm
u
n
i
catio
n
s
p
r
o
t
o
c
o
l
s and
allo
ws it to
o
p
e
rate
in
a m
u
ltip
le o
f
app
licatio
n
s
on
a
sing
le d
e
v
i
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
61
1 – 6
2
0
61
2
Design of LNA am
plifiers for RF recei
ver front-e
nd
is to obey and com
p
ly with the new standards
IEEE 802.16. It to ensu
re that
the received s
i
gnal can be
processe
d
to obtain inform
ation
that is trans
m
itted
with
ou
t in
terferen
c
e no
ise. Th
is can
o
n
l
y
be do
n
e
wh
en
t
h
e
designers a
r
e a
b
le to
desi
gn an RF
front-end
receiver with the
best
cha
r
a
c
teristic
in the entire syste
m
such as t
h
e
higher gain,
l
o
w noise figure
and
sufficient ba
ndwidth t
o
accommodate th
e needs of t
h
e latest applications
a
v
ailable in the m
a
rket for
users
usi
n
g Wi
M
A
X
t
echn
o
l
o
gy
.
To e
n
s
u
re
high perform
ance signal rece
ption to m
eet
the sta
nda
rds set
by IEEE 802.16, a
new
desi
gn
in arc
h
itecture
receiver R
F
front-e
nd s
h
oul
d
be introduc
e
d
t
o
im
prove t
h
e
perform
a
nce of existing system
s. A
pre
v
i
o
us
resea
r
che
r
re
p
o
rt
e
d
cove
ri
n
g
t
h
e e
x
t
e
nsi
on
of
co
m
m
uni
cat
i
on d
i
st
ance fo
r t
h
e
sy
st
em
up t
o
50
km
req
u
i
r
es a
n
ov
eral
l
gai
n
fr
o
m
t
h
e range u
p
t
o
5
0
dB
[4]
,
but
t
o
get
a bet
t
e
r per
f
o
rm
ance f
o
r R
F
fr
ont
-e
n
d
receiver, we propose
d
for ove
r
all
gain
that introduce
enha
nc
ed
up to
65
dB.
For
W
i
M
A
X standa
rd, the syste
m
is
designed to accommodate up to
200 cha
nnel subs
cribers while
th
e b
a
n
d
wid
t
h o
f
t
h
e system d
e
sign
ed
is between
1
600
t
o
170
0
M
H
z,
wh
ich
is trip
le th
an
t
h
e standard
20
MHz for 200 sub-carriers. In
addition, the
noise figure
proposed
by the IEEE 802.16 (W
iM
AX) for t
h
e RF
receiver front-end arc
h
itecture m
u
st
be less than
3
dB.
The input se
nsitivity of t
h
e sys
t
em
shoul
d c
o
ver t
h
e
min
i
m
u
m
sen
s
itiv
ity o
f
-80
dB
m
[4
].
In t
h
i
s
pa
per,
a new t
o
p
o
l
o
gy
fr
o
n
t
en
d a
r
chi
t
ect
u
r
e us
i
ng i
n
d
u
ct
i
v
e
drai
n fee
dbac
k
i
s
used t
o
achi
e
ve a
gai
n
m
o
re t
h
an 6
5
dB
, n
o
i
s
e
fi
g
u
r
e
l
e
ss t
h
an
3d
B
and s
h
oul
d
pr
o
v
i
d
e
ban
d
w
i
d
t
h
m
o
re t
h
an
1 G
H
z
is p
r
op
osed in
W
i
MAX app
licatio
n
.
Figu
re 1
shows th
e a
r
chitecture c
o
nfigura
b
le for
direct conve
rsion R
F
front
-end receiver WiMAX
at
5.8
GHz
is int
r
oduced. T
h
e
developm
ent
of
com
b
ination L
N
A at the
front-end
of
the receive
r will
be foc
u
se
d.
Figure 1.
The
new
arc
h
itecture
for
direct c
o
nve
rsion R
F
front
-e
nd receiver W
i
M
A
X
at 5.8 GHz
Thi
s
co
nfi
g
u
r
at
i
on co
nsi
s
t
i
n
g of
do
u
b
l
e
st
ages casco
de
d LN
A usi
n
g
i
nduct
i
v
e
dra
i
n feed
bac
k
co
m
b
in
ed
with so
urce indu
ctiv
e d
e
g
e
n
e
ration
,
indu
c
tive R
F
choke
place
d bet
w
een t
h
e
two L
NA am
plifier
and t
h
e T m
a
t
c
hi
ng
net
w
or
k at
t
h
e i
n
p
u
t
and o
u
t
p
ut
p
o
rt
s.
Were
us
ed i
n
d
u
ct
i
v
e
d
r
ai
n fee
dba
ck
at
t
h
e
cascod
e
d
t
o
po
l
o
g
y
h
a
s im
p
r
ov
ed
t
h
e g
a
i
n
of th
e LNA and will su
it at
match
i
n
g
ou
tpu
t
th
at it also
h
e
lp
s in
i
n
creasi
n
g t
h
e
ban
d
w
i
d
t
h
.
Whi
l
e
t
h
e ad
di
t
i
on
o
f
an i
n
d
u
c
t
i
v
e so
urce
ge
nerat
i
o
n at
cas
code
d L
N
A t
o
pol
ogy
en
h
a
n
c
ed
b
a
n
d
wid
t
h, stab
ility
an
d
im
p
r
o
v
e
i
n
pu
t-ou
tpu
t
match
i
n
g
cap
a
b
ilities. Th
e u
s
e o
f
T-m
a
tch
i
n
g
o
n
a
do
u
b
l
e
st
age
c
a
sco
d
ed
LN
A
al
so
has
hel
p
e
d
re
duce
t
h
e
re
v
e
rse i
s
ol
at
i
on a
n
d
n
o
i
s
e
fi
g
u
re
.
2.
LNA T
H
EO
R
Y
Low no
ise amp
lifier (LNA)
is a k
e
y factor in
t
h
e i
m
prove
d
per
f
o
r
m
a
nce o
f
t
h
e R
F
fr
ont
-
e
n
d
receiver. LNA in the
W
i
MAX
receiver a
pplication requ
ires sufficient sensitivity
to
enable the re
ceive
r
di
st
i
n
g
u
i
s
h
si
g
n
al
f
r
om
t
h
e s
u
rr
ou
n
d
i
n
g
noi
s
e
an
d i
n
t
e
rfe
re
nce to e
n
sure t
h
at it can take
an inform
ation signal
sen
t
b
y
th
e tran
sm
it
ter. Th
e g
a
in
,
b
a
ndwid
t
h
, no
ise fi
gure
and linearity are the cha
r
ac
teristic that ca
n be
cont
rolled
by t
h
e RF front-e
nd designe
r
that affect directly
to the receive
r
sensitivity. Even so to control such
feat
ure
s
req
u
i
r
es a deep u
n
d
erst
a
ndi
ng
of
t
h
e devi
ce am
pli
f
i
e
rs, act
i
v
e an
d passi
v
e
com
ponent
s
,
and
fabricatio
n d
e
t
a
ils to
en
sure
th
e LNA am
p
lifiers bu
ilt to ach
iev
e
o
p
t
i
m
al p
e
rfo
r
m
a
n
ce and
on
ly a slig
h
t
trad
eo
ff b
e
tween
th
e
cha
r
acte
r
istic [5].
Howev
e
r, in
th
is research, we on
ly fo
cu
sed
on
v
a
riab
l
e
s su
ch
as g
a
in
, no
ise figure, stab
ility,
b
a
ndwid
th, topo
log
y
, an
d inpu
t and
ou
tpu
t
match
i
n
g
for
best perform
a
nce of L
NA am
plifiers. T
h
e ta
rgeted S-
p
a
ram
e
ter sp
ecificatio
n
for t
h
e sing
le LNA cascad
ed
with
do
ub
le stag
es cascod
ed LNA am
p
l
if
ier
is sh
ow
n in
Tabl
e 1.
Ant
e
na
Ca
s
c
o
d
e
d
LNA
Ca
s
c
o
d
e
d
LNA
Sin
g
l
e
LN
A
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Design
an
d Ana
l
ysis Hi
g
h
Gain
PHEMT LN
A fo
r
Wireless
App
lica
tio
n a
t
5
.
8
GHz
(
K
a
m
i
l
Po
ng
ot
)
61
3
Table
1.
Tar
g
e
t
ed S
-
Param
e
ters f
o
r a a
sin
g
l
e
LN
A casca
de
d
with
double s
t
ages casc
ode
d LNA am
plifier
S-
par
a
m
e
ter
Single L
NA
cascaded with double
stages cascoded L
N
A
I
nput r
e
flection S11 (
d
B)
< -
10 dB
Retur
n
L
o
ss S12 (dB)
< -
10 dB
For
w
ar
d
T
r
ansfer
S21 (
d
B)
>+ 65 dB
Output Reflection
loss S22 (
d
B)
<-
10 dB
Noise Figur
e (
d
B)
< 3 dB
Stability
(K)
K > 1
Bandwidth (
M
Hz)
>1000
2.
1
Stability
,
No
ise Fig
u
re and
Po
wer Ga
in
Stab
ility is o
n
e
o
f
the im
p
o
r
tan
t
ch
aracteristics in
d
e
sign
ing
LNA am
p
lifiers.
Determin
atio
n
of
stab
ility
is essen
tial to
av
o
i
d
oscillatio
n
o
ccurs at th
e o
p
e
rati
n
g
freq
u
e
n
c
y.
Th
e o
s
cillatio
n is p
o
ssib
l
e if eith
er
i
n
p
u
t
o
r
o
u
t
put
po
rt
i
m
pedanc
e has
pr
o
duce
d
a ne
gat
i
v
e real
part
.
Thi
s
w
o
u
l
d i
m
pl
y
t
h
at
Γ
in
>1 or
Γ
out
>1. Thi
s
because
Γ
in
and
Γ
ou
t d
e
p
e
n
d
o
n
t
h
e so
urce an
d
t
h
e lo
ad
match
i
n
g
n
e
two
r
k
.
Ho
wev
e
r, th
e stab
ility o
f
th
e
am
pl
i
f
i
e
r de
pe
nds
o
n
Γ
s
and
Γ
L
as presen
ted
as m
a
tch
i
n
g
n
e
two
r
k
.
If l
o
w no
ise am
p
l
i
f
iers is no
t stab
le, it
wo
ul
d
bec
o
m
e
usel
ess si
nc
e
m
a
jor
pr
o
p
e
rt
i
e
s i
n
cl
udi
n
g
ba
n
d
wi
dt
h,
gai
n
,
n
o
i
s
e,
l
i
n
eari
t
y
, DC
po
we
r
co
nsu
m
p
tio
n
an
d im
p
e
d
a
n
c
e m
a
tch
i
n
g
can b
e
sign
ifican
t
l
y d
e
grad
ed
. In
t
h
is design
,
a goo
d stab
ility was
ach
iev
e
d
(un
c
on
d
ition
a
lly stab
le)
b
y
em
p
l
o
y
in
g
t
h
e sign
al flo
w
t
h
eory and S-p
a
ram
e
ter [6
]. Altern
ativ
el
y, th
e
a
m
p
lifier will
b
e
un
cond
itio
nally stab
le, wh
en
th
e stab
ility
facto
r
(K) an
d d
e
lta facto
r
(
∆
) follo
win
g
nec
e
ssar
y
an
d su
fficien
t
co
nd
itio
ns are
met:
1
2
1
21
12
2
2
22
2
11
S
S
S
S
K
(1
)
and
1
21
12
22
11
S
S
S
S
(2
)
(K >
1
)
a
n
d
(|
Δ
| < 1) is con
d
itio
n
requ
irem
e
n
t fo
r un
co
nd
itio
n
a
l stab
ility.
By u
s
ing
stab
ility circle th
at is b
a
sed
on
rad
i
u
s
and
ce
n
t
er, t
h
e Tab
l
e
2
b
e
lo
w shows t
h
at
th
e two
circles n
e
ed
t
o
d
r
a
w
bot
h i
n
put
a
n
d
out
put
.
Tab
l
e
2
.
In
pu
t
an
d ou
tpu
t
stabilit
y circle
Input stabili
ty cir
c
le
Outp
ut s
t
ability c
i
rcle
=
=1
=
=1
Ra
dius
∗
∗
|
|
Center
Radius
∗
∗
|
|
Cen
t
er
These t
w
o ci
r
c
l
e
s are d
r
aw
n
on a
Sm
i
t
h
C
h
art
usi
n
g
S-Pa
r
a
m
e
t
e
r val
u
es
of t
h
e FET
,
i
n
put
m
a
t
c
hi
ng
in
ou
tpu
t
m
a
tc
h
i
ng
out
. Figure 2
and
Fi
g
u
re
3
sh
ows th
e i
n
p
u
t
and
o
u
t
p
u
t
stab
ility circles
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
61
1 – 6
2
0
61
4
Fig
u
re
2
.
Ou
tpu
t
Stab
ility Circles [7
]
Fig
u
re
3
.
In
pu
t
Stab
ility Circles [7
]
No
ise
op
ti
m
i
za
tio
n
is th
e m
o
st critical step
pro
c
edu
r
e i
n
th
e LNA
d
e
sign
.
Th
e
b
e
st way t
o
m
a
k
e
th
e
bal
a
nce
opt
i
m
izat
i
on o
f
n
o
i
s
e
fi
gu
re an
d gai
n
usi
ng c
o
n
s
t
a
nt
gai
n
ci
rcl
e
s
and ci
rcl
e
s
of
con
s
t
a
nt
n
o
i
s
e fi
g
u
re.
2-
p
o
rt
t
r
a
n
si
st
or
has
a m
i
ni
m
u
m
val
u
e o
f
t
h
e
noi
se
fi
g
u
r
e at
t
h
e
speci
fi
ed a
d
m
i
tt
ance
gi
ve
n
by
t
h
e
e
quat
i
o
n
(3
), [
8
]
:
2
min
|
|
opt
s
S
N
Y
Y
G
R
F
F
(3
)
Fo
r
low no
ise tran
sistors,
m
a
nufacturers
us
ually provide
F
mi
n
, R
N
and
Y
opt
by
f
r
eq
ue
nc
i
e
s.
N
defi
ned
by
t
h
e
fo
rm
ula for
de
sired
n
o
ise fi
g
u
re
, s
h
o
w
n in
e
quatio
n
(
4
):
2
0
min
2
2
|
1
|
/
4
|
|
1
|
|
opt
N
S
opt
s
Z
R
F
F
N
(4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Design
an
d Ana
l
ysis Hi
g
h
Gain
PHEMT LN
A fo
r
Wireless
App
lica
tio
n a
t
5
.
8
GHz
(
K
a
m
i
l
Po
ng
ot
)
61
5
The Power
g
a
i
n
of
2-p
o
rt
net
w
or
ks wi
t
h
ci
rcui
t
im
pedance or l
o
ad im
pedance of t
h
e po
wer am
pli
f
i
e
r
are represented with scattering coeffici
ent classified into Available Power
Gain, Power
Transd
ucer Ga
in and
Operating P
o
w
e
r Gain [
9
]
.
Ope
r
at
i
n
g po
w
e
r
gai
n
(G
P
), is th
e ratio b
e
t
w
een
th
e power
d
e
liv
ered
t
o
the lo
ad (P
L
)
and
th
e pow
e
r
in
pu
t (P
in
) to the n
e
twork. Th
e Op
erating
Power Gai
n
ca
n
be specifie
d
as
a
n
e
quation
(5),
[8]:
2
22
2
2
2
21
1
1
1
L
in
L
in
L
P
S
S
P
P
G
(5
)
Avai
l
a
bl
e po
w
e
r
gai
n
(
G
A
) is th
e ratio
b
e
t
w
een
th
e
p
o
wer
av
ailab
l
e fro
m
th
e n
e
two
r
k
(P
avn
) and the
powe
r
available from
the s
o
urce
(P
avs
) as s
h
ow
n i
n
e
quat
i
o
n
(
6
),
[
8
]
:
2
22
2
21
2
11
2
|
1
|
1
|
|
|
1
|
|
|
1
L
S
S
avs
avn
A
S
S
S
P
P
G
(6
)
Transducer power
gai
n
(G
T
) is th
e
ratio
b
e
tween th
e
po
wer d
e
li
v
e
red
to th
e lo
ad
(P
L
) a
n
d
th
e pow
e
r
ava
ila
b
l
e
fr
om
t
h
e so
urc
e
(P
in
) as sho
w
n
in equ
a
tion
(7
),
[8
] :
2
21
12
22
11
2
2
2
21
|
)
(
)
1
)(
1
(
|
)
|
|
1
)(
|
|
1
(
|
|
L
S
L
S
L
S
in
L
T
S
S
S
S
S
P
P
G
(7
)
3.
DESIGN OF LNA CASCADED WITH
DOUBLE
ST
AGES CASCODED
LNA
In this
researc
h
, t
h
e t
h
ree
-
stage L
N
A ca
n
be de
si
gne
d by
cascadi
n
g by
u
s
i
n
g
si
n
g
l
e
L
N
A
casca
de
d
wi
t
h
do
u
b
l
e
st
a
g
e casc
o
ded
L
N
A
as s
h
ow
n
o
n
Fi
gu
re
4.
Fi
gu
re
4.
Th
re
e St
ages
LN
A
B
l
ock
Di
ag
ram
Th
ere can
b
e
sev
e
ral
ways to attain
at th
e desig
n
;
three
differe
n
t active devices (tra
nsist
o
rs
) ca
n be
u
tilized
if th
e sam
e
d
e
v
i
ce is n
o
t
ab
le to
han
d
l
e th
e si
g
n
al lev
e
l in
p
r
og
ressi
v
e
stag
es. As th
e LNA
u
nder
co
nsid
eration is a sm
all sig
n
a
l a
m
p
lifier, all th
e three
sta
g
es use
the
same transist
or
de
vice. T
h
e i
n
ter-stage
m
a
t
c
hi
ng net
w
o
r
k i
s
nee
d
e
d
beca
use t
h
i
s
conce
p
t
i
o
n i
s
wi
deba
n
d
am
pli
f
i
e
r, and
t
h
e i
n
p
u
t
and
out
p
u
t
im
pedance
of
each le
vel is
matched to 50
Ω
. In
itially th
e d
e
si
g
n
was
g
i
v
e
n VSW
R
’s
m
o
re th
an
t
w
o at the
in
pu
t and
ou
tpu
t
po
rts, m
e
rely b
y
u
s
ing
th
e
ADS op
tim
izat
io
n
too
l
s VSWR’s are redu
ced
to
less th
an
two
t
o
minimize the reflections
at th
e in
pu
t an
d ou
t
p
u
t
po
r
t
s.
Fig
u
re 5
shows th
e co
m
p
lete
sch
e
m
a
t
i
c sin
g
le
LNA casc
a
ded
with double stage cascode
d L
NA
usi
n
g i
n
d
u
ct
i
v
e fee
dbac
k
.
T
h
e sel
ect
i
o
n
o
f
t
h
e
t
r
a
n
si
st
o
r
i
s
im
port
a
nt
i
n
t
h
e
desi
g
n
of
LNA
.
The
de
si
gn
o
f
the single LNA with double
stages casc
o
d
e
d LN
A i
s
bas
e
d o
n
t
h
e spec
i
f
i
cat
i
on i
n
Tabl
e 1. F
o
r rea
s
on
abl
e
gai
n
a
nd l
o
w
n
o
i
s
e fi
g
u
re at
t
h
e re
qui
red
fre
que
ncy
re
qui
re
m
e
nt
, t
h
e t
r
ans
i
st
or use
d
f
o
r t
h
e desi
gn
of L
NA i
s
PHEM
T T
r
a
n
s
i
st
or F
H
X
7
6L
P. T
h
e t
r
a
n
si
st
or
param
e
t
e
r at
freq
u
e
n
cy
5
.
8 G
H
z a
r
e S
11
=0.712
∟
-86
.
54
,
S
12
=
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
61
1 – 6
2
0
61
6
0.
06
5
∟
33
.8
8, S
21
= 8
.
994
∟
17
8.66
an
d
S
22
=
0.
23
7
∟
-10.46, where t
h
e param
e
ters were obtained at
V
DD
=
2V
an
d
I
DS
=
1
0
m
A
of
bi
as
se
t
at
PHEM
T
.
From
t
h
e S
-
p
a
ram
e
t
e
rs, det
e
rm
i
n
i
ng t
h
e
ove
ral
l
pe
rf
o
r
m
a
nce o
f
L
N
A ca
n
be
det
e
rm
i
n
ed by
cal
cul
a
t
i
ng t
h
e
t
r
ansd
ucer
ga
i
n
(GT
)
, n
o
i
s
e
fi
gu
re (N
F)
and t
h
e i
n
p
u
t
and
out
put
st
andi
ng
wave ra
t
i
o
s,
VS
W
R
IN
a
nd
VS
W
R
OUT
. The o
p
tim
u
m
,
Γ
op
t
and
Γ
L
we
r
e
obt
ai
ne
d as
Γ
o
p
t
= 2
1
+ j
4
8.
02 a
nd
Γ
L =
79.
9
0
-
j7
.2
9
9
fo
r
casc
ode
d LN
A.
While,
Γ
op
t =
1
8
.41
+
j5
0.12
and
Γ
L = 79
.91
3
-j
7.304
f
o
r
a si
n
g
l
e
LNA
.
Fig
u
r
e
5
.
Th
e co
m
p
lete sch
e
matic LN
A cascad
e
d w
ith doub
le stag
e cascod
e
d LN
A u
s
i
n
g
indu
ctiv
e
f
e
ed
b
a
ck
In
t
h
is con
f
i
g
uratio
n, it co
m
b
in
es LNA at th
e fi
rst
stage, then use
casc
o
d
e
d
LNA with
in
du
ctiv
e
feedbac
k
at t
h
e drain
on the sec
ond
an
d
th
ir
d stag
e. Th
e
p
r
op
o
s
ed
LN
A
d
e
sign
i
s
b
a
sed
on
a
so
ur
ce
dege
ne
rat
e
d t
o
pol
ogy
(L
10
), i
n
du
ctiv
e
shun
t p
e
ak
ing
at th
e d
r
ai
n
(L
15
) a
n
d T
-
m
a
t
c
hi
ng
net
w
or
k at
t
h
e
i
n
p
u
t
and
out
put
i
m
pedance
(i
n
put
i
m
pedance m
a
tchi
n
g
at
L
11
, L
12
, C
11
, and o
u
t
put
i
m
pedance
m
a
t
c
hi
ng at
L
18
, L
19
,
C
12
).
W
h
ile th
e do
ub
le stag
es casco
d
e
d
LNA t
o
po
log
y
u
s
ing
latest t
ech
n
i
q
u
e
s consistin
g
of in
ductiv
e
feedbac
k
(L
26
and
L
36
)
a
r
e at d
r
a
i
n
M
2
an
d M
4
, i
n
duct
i
v
e
ge
nerat
i
o
n s
o
urce
(L
20
and
L
30
) connected to the
source of the
M
3
and M
5
. In
Add
itio
n, th
ere L
25
and L
35
inductive RF c
h
oke
were
placed betwee
n the
sourc
e
drai
n o
n
t
h
e M
2
and M
3
, and t
h
e source
drai
n on the M
4
and M
5
respect
i
v
el
y
.
Thi
s
t
opol
ogy
al
so
used t
h
e T-
match
i
n
g
n
e
two
r
k
at t
h
e input an
d ou
tpu
t
i
m
p
e
d
a
n
ce (
i
n
p
u
t
im
p
e
d
a
n
ce
match
i
n
g
co
mp
on
en
t at L
21
, L
22
, L
31
,
L
32
, C
21
and C
31
and
o
u
t
p
ut
i
m
pedance m
a
tchi
n
g
c
o
m
pon
ent
at
L
28
, L
29
, L
38
, L
39
, C
22
and C
32
)
.
By u
s
ing
Ans
o
ft
Desi
g
n
e
r SV, Sm
i
t
h
Chart
m
a
t
c
hi
ng t
echni
que
, t
h
e l
u
m
p
ed-c
om
ponent
s f
o
r t
h
e am
pli
f
i
e
r are sh
ow
n i
n
Tabl
e
3.
Whi
l
e
t
h
e L
N
A am
pl
i
f
i
e
r f
o
r
M
u
rat
a
-com
po
nent
s
h
o
w
n i
n
Ta
bl
e
4.
Tabl
e
3. L
N
A
Am
pl
i
f
i
e
r para
m
e
t
e
rs wi
t
h
L
u
m
p
ed-C
om
pon
ent
L
u
m
p
ed-
C
o
m
ponents
1
st
Stage
LNA
L
10
(nH)
L
11
(nH)
L
12
(nH)
L
13
(nH)
L
14
(nH)
L
15
(nH)
L
16
(nH)
L
17
(nH)
L
18
(nH)
L
19
(nH)
C
11
(pF)
C
12
(pF)
Value
0.
078 1.
346
1.
371 0.
449
0.
439 1.
271 0.
445
1.
366
1.
195 1.
368
0.
264
0.
010
2
nd
Stage
Cascoded
LNA
L
20
(nH)
L
21
(nH)
L
22
(nH)
L
23
(nH)
L
24
(nH)
L
25
(nH)
L
26
(nH)
L
27
(nH)
L
28
(nH)
L
29
(nH)
C
21
(pF)
C
22
(pF)
Value
0.
064 1.
346
1.
016 0.
698
0.
367 1.
159 9.
000
1.
367
0.
658 1.
369
0.
100
0.
600
3
rd
Cascoded
LNA
L
30
(nH)
L
31
(nH)
L
32
(nH)
L
33
(nH)
L
34
(nH)
L
35
(nH)
L
36
(nH)
L
37
(nH)
L
38
(nH)
L
39
(nH)
C
31
(pF)
C
32
(pF)
Value
0.
084 1.
318
1.
278 0.
658
0.
283 1.
139 9.
560
1.
368
0.
658 0.
228
0.
500
0.
750
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Design
an
d Ana
l
ysis Hi
g
h
Gain
PHEMT LN
A fo
r
Wireless
App
lica
tio
n a
t
5
.
8
GHz
(
K
a
m
i
l
Po
ng
ot
)
61
7
Tab
l
e
4
.
LNA
Am
p
lifier p
a
rameters with
M
u
rata-C
o
m
p
o
n
en
t
M
u
r
a
ta-
C
o
m
ponen
t
s
1
s
t
Stage
LNA
L
10
(nH)
L
11
(nH)
L
12
(nH)
L
13
(nH)
L
14
(nH)
L
15
(nH)
L
16
(nH)
L
17
(nH)
L
18
(nH)
L
19
(nH)
C
11
(pF)
C
12
(pF)
Value
0.
078 1.
346 1.
372 0.
449 0.
440 1.
270 0.
445
1.
366
1.
196 1.
368
0.
1
0.
3
2
nd
Stage
Cascoded
LNA
L
20
(nH)
L
21
(nH)
L
22
(nH)
L
23
(nH)
L
24
(nH)
L
25
(nH)
L
26
(nH)
L
27
(nH)
L
28
(nH)
L
29
(nH)
C
21
(pF)
C
22
(pF)
Value
0.
077 1.
345 1.
016 0.
676 0.
366
9
1.
159
1.
365
0.
053
1.
112 1.
369
0.
3
0.
5
3
r
d
Cascoded
LNA
L
30
(nH)
L
31
(nH)
L
32
(nH)
L
33
(nH)
L
34
(nH)
L
35
(nH)
L
36
(nH)
L
37
(nH)
L
38
(nH)
L
39
(nH)
C
31
(pF)
C
32
(pF)
Value
0.
081
0.
227
0.
705
0.
657
0.
365
1.
138
1.
372
0.
658
0.
225
0.
220
0.
3
0.
7
4.
RESULTS
B
a
sed
o
n
Fi
gu
re
6 s
h
ows
t
h
e
s-
param
e
t
e
rs
out
put
o
f
t
h
e l
u
m
p
ed-c
om
ponent
i
n
use
d
i
n
t
h
e t
o
p
o
l
o
gy
desi
g
n
.
T
h
e
Ga
i
n
at
5.
8
GHz
ari
s
i
n
g
f
r
o
m
cons
um
pt
i
on
o
f
l
u
m
p
ed-com
po
nent
i
n
t
h
i
s
t
o
p
o
l
o
gy
wa
s
68
.9
4
dB
.
Th
e g
a
i
n
is fou
n
d
to
b
e
n
e
arly sa
m
e
as wa
s calcu
lated
during
th
e d
e
sign p
r
o
cedure. In
ad
d
ition
,
th
e
use o
f
l
u
m
p
ed - c
o
m
p
o
n
e
n
t
s
of t
h
i
s
t
o
p
o
l
o
gy
has
pr
o
duce
d
a
3
-
dB
ban
d
w
i
d
t
h
of
1
.
7
2
GH
z.
The m
easure
d
ret
u
r
n
loss S
12
is -8
8.3
9
d
B
wh
ile the ou
tpu
t
reflectio
n
l
o
ss
S
22
is
-17
.
37
d
B
, an
d in
pu
t
reflection
S
11
is – 15
.77
d
B
.
Wh
ile Figu
re
7
sho
w
n
,
th
e stab
ility
facto
r
o
b
t
ain
e
d
af
ter match
i
n
g
lo
ad is 4
.
5
4
at 5.8
GHz freq
u
e
n
c
y. Th
e
v
a
lu
e of stab
ility o
b
t
ain
e
d
is
g
r
eater th
an
1
,
an
d th
e LN
A am
p
l
ifiers are cu
rren
tly in a st
ate o
f
u
n
c
on
d
i
t
i
o
n
a
lly
st
abl
e
. Fi
gu
re
8 s
h
o
w
n
noi
se
fi
g
u
re
o
f
0.
64
dB
ove
r t
h
e
b
a
nd
i
s
ac
hi
eve
d
.
Th
us,
t
h
ese
val
u
es
achi
e
ve
d t
h
e
desi
g
n
s
p
eci
fi
c
a
t
i
on, a
s
stated in Ta
ble
2.
Fi
gu
re
6.
S-
pa
r
a
m
e
t
e
r fo
r L
N
A C
a
sca
d
ed
wi
t
h
D
o
ubl
e
St
ag
es C
a
sco
d
e
d
L
N
A
usi
n
g
t
h
e
l
u
m
p
ed -
com
pone
nt
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
61
1 – 6
2
0
61
8
Figure
7. Stabi
lity for L
N
A C
a
scad
e
d
with Double
Stage
s
Cascode
d LNA using
t
h
e
lum
p
ed
-
c
o
m
ponent
Fi
gu
re
8.
N
o
i
s
e Fi
g
u
re
f
o
r
L
N
A
C
a
scade
d
wi
t
h
Do
u
b
l
e
St
ages C
a
sc
o
d
ed
LN
A
usi
n
g t
h
e l
u
m
p
ed -
co
m
ponent
Fi
gu
re 9 i
s
s-
param
e
t
e
r out
put
by
usi
ng
M
u
rat
a
m
a
nuf
act
ure
d
com
pone
nt
o
n
t
h
e Y-
Axi
s
a
n
d
fre
que
ncy
o
n
t
h
e X
-
A
x
i
s
. T
h
e l
o
w n
o
i
s
e a
m
pli
f
i
e
r (LN
A
)
usi
ng M
u
rat
a
m
a
nufact
ure
d
com
pone
nt
pr
ovi
des
th
e g
a
in
S
21
of
66.
3
8
dB
. Th
e out
p
u
t
refl
ec
t
i
on S
22
, in
pu
t reflection
S
11
and ret
u
r
n
l
o
ss
S
12
are -13.
8
8
dB
, -
12
.4
1 dB
a
nd -
8
9
.
9
0
dB
re
spe
c
t
i
v
el
y
.
In
a
d
di
t
i
on,
t
h
e use of
t
h
i
s
t
o
pol
ogy
has pr
o
duce
d
a
3-
dB
ban
d
w
i
d
t
h
o
f
1.
70
GHz
. Th
e gai
n
i
s
fo
u
n
d
t
o
be nearl
y
s
a
m
e
as l
u
m
p
ed-com
po
nent
d
u
r
i
n
g t
h
e desi
gn
pr
oced
ure
.
A
n
ot
he
r
param
e
ter that dictates the
perform
a
n
ce o
f
t
h
e lo
w
no
ise amp
lif
ier
is th
e noise f
i
gu
r
e
. Th
e
n
o
i
se
f
i
gu
re of
0
.
60
dB
as s
h
ow
n i
n
Fi
gu
re
10
i
s
o
b
t
a
i
n
ed
at
5
.
8
GHz t
h
at
al
s
o
sat
i
s
fi
es t
h
e
desi
g
n
req
u
i
r
e
m
ent
s
of
bel
o
w t
h
a
n
3dB
. The
Vol
t
age St
an
di
n
g
Wave R
a
t
i
o
(
V
S
W
R
)
at
t
h
e
i
n
p
u
t
and
o
u
t
put
s
h
o
w
n as Fi
gu
re 1
1
a
nd
12
. Th
e
VS
W
R
IN
and
VSW
R
OUT
curves are showing the inpu
t and o
u
t
pu
t Vo
ltage Stan
d
i
ng
W
a
v
e
Ratio
resp
ectiv
ely.
B
o
t
h
t
h
e st
a
n
d
i
ng
wave
rat
i
o
s are f
o
un
d t
o
be sam
e
as were cal
cul
a
t
e
d
du
ri
n
g
t
h
e
des
i
gn
pr
oce
d
u
r
e.
Thi
s
fact
or i
s
i
m
por
t
a
nt
as i
t
speci
fi
es p
h
en
om
enon
of st
a
ndi
n
g
wave
s d
u
e t
o
r
e
fl
ect
i
ons
on t
h
e t
r
an
sm
i
ssi
o
n
l
i
n
e
.
In
itially th
e d
e
sig
n
was g
i
v
e
n VSWR
IN
an
d
V
S
W
R
OUT
m
o
re t
h
a
n
t
w
o
at
t
h
e i
n
put
an
d
out
put
p
o
rt
s,
b
u
t
b
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Design
an
d Ana
l
ysis Hi
g
h
Gain
PHEMT LN
A fo
r
Wireless
App
lica
tio
n a
t
5
.
8
GHz
(
K
a
m
i
l
Po
ng
ot
)
61
9
usi
n
g t
h
e
A
D
S
opt
i
m
i
zati
on t
ool
s
VS
WR
’s
are re
du
ced t
o
less than t
w
o to m
i
nimize the re
flections
at the
in
pu
t and
ou
tpu
t
ports.
Figu
re
9.
S-
pa
r
a
m
e
ter fo
r
LN
A Casca
d
ed
wi
th
Do
u
b
l
e
St
age
s
C
a
scode
d LN
A usi
n
g
M
u
rat
a
m
a
nufact
ure
d
com
pone
nt
Fig
u
re
10
.
No
ise Figu
re fo
r
LNA Cascad
ed with
Do
u
b
l
e
St
age
s
C
a
scode
d LN
A usi
n
g
M
u
rat
a
m
a
nufact
ure
d
com
pone
nt
Fig
u
r
e
11
.
I
npu
t VSW
R
for
LN
A Cascad
ed w
ith
Do
u
b
l
e
St
age
s
C
a
scode
d LN
A usi
n
g
M
u
rat
a
m
a
nufact
ure
d
com
pone
nt
Figure
12.
O
u
tput
V
S
W
R
f
o
r L
N
A Casca
d
ed
with
Do
u
b
l
e
St
age
s
C
a
scode
d LN
A usi
n
g
M
u
rat
a
m
a
nufact
ure
d
com
pone
nt
Tabl
e 5 sh
o
w
s
t
h
e s-pa
ram
e
ters o
u
t
p
ut
fo
r com
p
ari
s
on
of
bet
w
een l
u
m
p
ed-c
om
pone
nt
and M
u
rat
a
m
a
nufact
ure
d
com
pone
nt
by
usi
n
g t
o
p
o
l
o
gy
si
ngl
e L
N
A
c
a
scade
d
wi
t
h
d
o
u
b
l
e
casc
ode
d L
NA
by
usi
ng t
h
e
in
du
ctiv
e
d
r
ai
n feed
b
a
ck
. From
th
is co
m
p
ariso
n
,
we
find
this to
po
log
y
h
a
s resu
lted
in imp
r
ov
ed
p
e
rfo
r
man
ce
i
n
gai
n
,
n
o
i
s
e
f
i
gu
re, a
n
d
ban
d
wi
dt
h.
I
n
a
v
a
ri
abl
e
gai
n
pe
rf
orm
a
nce i
m
p
r
o
v
em
ent
s
can
be
t
u
ned
t
o
re
ach t
o
gain as
a lum
p
ed - com
p
onent at
68.94
dB.
Meanwhile, there wa
s a si
gni
ficant
re
d
u
ctio
n on n
o
ise
fi
g
u
re o
f
0.
64
dB
t
o
0.
6
0
dB
. Ta
bl
e
6 s
h
o
w
s t
h
e c
o
m
p
ari
s
o
n
of
rece
n
t
l
y
repo
rt
ed
L
N
A
.
Tabl
e
5. T
h
e
s-
param
e
t
e
rs o
u
t
put
f
o
r c
o
m
p
ar
i
s
on
o
f
bet
w
ee
n l
u
m
p
ed
-com
po
ne
nt
an
d M
u
rat
a
m
a
nufact
u
r
ed
com
pone
nt
Par
a
m
e
ter T
a
r
g
eted
L
u
m
p
ed-
C
o
m
ponent
M
u
r
a
ta
M
a
nufactur
ed
Co
m
ponent
I
nput Reflection S
11
dB
< -
10
-
15.
77
-
12.
41
Output Reflection
S
22
dB
< -
10
-
17.
37
-
13.
88
F
o
rward t
r
ansf
er S
21
dB
>+ 65
68.
94
66.
38
Return Loss S
12
dB
<-
10
-
88.
39
-
89.
90
NF dB
< 3
0.
64
0.
60
BW GHz
1
1.
72
1.
70
Stability
(K)
K > 1
4.54
6.81
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
61
1 – 6
2
0
62
0
Table
6. C
o
m
p
arison
of rece
ntly LNAs
S- para
m
e
te
r
This work
(
S
obhy
et al.
,
2011)
(
K
ar
paga
m
and Sam
p
ath,
2013)
T
opology
Single L
NA C
a
scaded with
Double Stages Cascoded L
N
A
CGLNA
with
m
u
lt
iple
f
eedback
Differential LNA
I
nput Reflection S
11
dB
-
12.
41
<-
10
-
15.
075
Output Reflection
S
22
dB
-
13.
88
<-
10
-
F
o
rward t
r
ansf
er S
21
dB
66.
38
23
25.
07
Return Loss S
12
dB
-
89.
90
-
-
NF
dB
0.
60
2
1.
07
BW
GHz
1.
70
1.
70
-
Stability (K)
6.
81 >1
1.12
5.
CO
NCL
USI
O
N
The m
a
i
n
aim
was t
o
desi
gn an
d anal
y
ze new t
o
p
o
l
ogy
usi
n
g an
i
nduct
i
v
e
dr
ai
n feed
bac
k
i
m
p
l
e
m
en
ted
in
PHEMT tech
no
log
y
at
5
.
8 GHz. Th
e im
p
o
rtan
t
p
a
ram
e
ters related to
micro
w
av
e am
p
lifiers
are desc
ri
be
d,
i
n
cl
udi
n
g
gai
n
an
d n
o
i
s
e fi
gu
re ci
rcl
e
s.
Trade
-
of
f bet
w
een
noi
se fi
gu
re an
d gai
n
i
s
al
so
considere
d
in
poi
nt for a low noise am
plifier.
Ob
tain
ed
fro
m
th
e p
r
opo
sed
to
po
log
y
allo
ws th
e
d
e
sig
n
e
r to
co
n
t
ro
l LNA
variab
le
p
e
rforman
ce, su
ch
as no
ise fi
g
u
re, b
a
n
d
wid
t
h
,
gain
and
stab
ility in
th
e LNA
circu
i
t
R
ecor
d
ed
res
u
l
t
fo
r am
pl
i
f
i
e
r obt
ai
ne
d t
h
e
n
o
i
s
e fi
gu
re (
N
F
)
o
f
0.
60
dB
a
n
d t
h
e
gai
n
(
S
21
)
of
6
6
.
3
8 dB
.
Whi
l
e
th
e stab
ility (K) is
6
.
8
1
a
nd
3
-
d
B
b
a
nd
wi
d
t
h
is 1
.
70
GHz. LNA p
e
rforman
ce can
b
e
furth
e
r enh
a
n
c
ed
b
y
st
ren
g
t
h
e
n
i
n
g i
n
p
u
t
an
d out
p
u
t
im
pedance
m
a
t
c
hi
ng o
f
t
h
e out
p
u
t
refl
ec
t
i
on l
o
ss (S
22
)
,
i
nput
re
fl
ect
i
on l
o
ss
(S
11
) a
nd
retu
r
n
loss
(S
12
)
of
t
h
e res
p
ect
i
v
e
val
u
e a
r
e -
1
3
.
8
8
dB
,
-1
2.
4
1
d
B
and -
8
9.
90
d
B
. In c
o
n
c
l
u
si
on
, use
of this topology has i
m
proved perf
orm
a
nce of the LNA am
pl
ifiers in
RF receiver m
a
i
n
ly on noise fi
gure,
g
a
in
, b
a
nd
wi
d
t
h
,
and
stab
ility
.
AC
KN
OWLE
DG
MENT
The
w
o
r
k
desc
ri
be
d i
n
t
h
i
s
p
a
per
was
f
u
l
l
y
su
pp
o
r
t
e
d
by
Centre
F
o
r Research
And Innovati
on
Manageme
nt
(
CR
IM
), Un
iversiti Tekn
ik
al
Malaysia Mel
a
k
a
(UTeM
)
.
Melak
a
, Malaysia, u
n
d
e
r research
g
r
an
t PJP/20
13/FK
EKK
(1
1
C
)
/
S011
82
.
REFERE
NC
ES
[1]
S. Lowe, 2007.
“
LTE vs W
i
MAX” in Hot Topic
s
Foru
m
:
LTE v
s
W
i
MAX and
Next Genera
tion
Internet
. Institu
t
i
on
of Engin
eerin
g and Technolog
y
.
2007: 1–38.
[2]
Pongot K, Ahmad A, Othman
A.R, Zak
a
ria Z, Suaidi M.
K, Hamidon A.H,
Hamidon J.S.
Design High Gain PHEM
T
LNA for Wireles
s
Application at
5.8 GHz
. Proceeding of the 1st I
n
ternational Co
n
f
erenc
e
on E
l
ec
t
r
ica
l
Engin
eer
in
g,
Computer Scien
ce
and Informatics. 2014: 456-46
1
[3]
Abdulrahm
an Yarali
. W
i
MAX: The Innov
a
tiv
e Broadban
d
W
i
reless Access Te
chnolo
g
y
.
Journal o
f
Communications
. 2008; 3(2): 53-
63.
[4]
Othman A. R, Hamidon A. H,
Abdul Wasli. C,
Mustaffa M.
F, Ting J. T.H, Ibr
a
him A.
B. Low Noise, High Gain
RF
Front End Receiver at 5
.
8
GHz for WiMAX
Application.
Journal of
Telecommunicati
on and Com
puter Engineerin
g
.
2010; 2 (2)
,
43
-5
4.
[5]
Somesh Ku
mar, Ravi Kuma
r. A 1.8V and
2GHz Inductiv
ely
Degen
e
rated
CMOS Low Noise Amplifier.
International Jo
urnal of
Electro
n
ics
Communica
tion and
Computer Technolog
y
. 2
012; 2(4): 150-1
54.
[6]
David M. Pozar
. Microwave and
RF Wireless S
y
s
t
em. Th
ird Aven
ue. N
.
Y.J
ohn Wiley
& Sons. 200
1.
[7]
Gonzales G
.
, Microwave Transis
t
or Amplif
ier
.
N
e
w Jersey
: Prentice Hall. 1997
.
[8]
Abu Bakar Ibrah
i
m, Abdul Rani
Othm
an, Mohd Nor Husain, and
Mohammad Sy
ah
rir Johal. Low
Noise, High Gain
LNA at 5
.
8GHz with Cas
c
ode
and Cascad
ed Technique
s Using
T-Match
i
ng Network
for Wireless Applications
.
International Jo
urnal of In
forma
tion and
Electroni
cs Eng
i
neering
. 2011; 1(2): 146
-149.
[9]
M
i
chae
l Angelo
G. Loren
z
o,
M
a
r
i
a
Theres
a G.
de
Leon
.
Comparison of LNA Top
o
logy
for Wimax Application in
a
Standard 90-nm CMOS Process
.
12th Int
e
rnat
ion
a
l Conf
erence o
n
Com
puter Mo
delling
and
Sim
u
lation
.
2010
: 6
42-
647.
[10]
Sobhy
,
E.
A.
; Helm
y
,
A.
A.; Hoy
o
s,
Seba
stian; En
tesari, K.; Sanchez-Sinencio
, E. A 2.8-mW
Sub-2-
dB Noise-Figure
Inductorl
ess Wi
deband CMOS
LNA Em
plo
y
ing
Multiple Feedb
ack.
IEEE Transactions on
Micr
owave Theory and
Techniques
. 201
1; 59(12): 3154-
3161.
[11]
S
.
Karpagam
, P
.
S
a
m
p
ath. A 1.8GHz Different
ial Low Nois
e Am
plifier for W
i
reles
s
Receiv
e
rs
.
Internation
a
l
Journal of Engin
eering Trends a
nd Technolog
y
.
2013; 4(4): 558-
564.
Evaluation Warning : The document was created with Spire.PDF for Python.