Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
48
4
~
49
4
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
442
4
84
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
High P
e
rf
orm
a
nce Control of Gri
d
Connected
Cas
c
ad
ed H-
Bridge Acti
ve Recti
f
ier Bas
e
d on Type II-Fuzzy Logic
Cont
roll
er with Low Fre
quency Modulation Technique
M. Dabb
aghjam
anesh
1
,
A.
Moeini
2
,
M.
Ashkaboosi
3
, P.
Kh
az
aei
4
K.
Mi
rz
apal
a
n
gi
3
1
Department of Electrical
Eng
i
n
eering
,
No
rth
e
rn
Illinois University
, DeK
a
lb, IL,
USA
2
Department
of
Electrical and
C
o
mputer Engin
e
ering,
Univers
i
t
y
of T
e
hran
,
Tehr
an, I
r
an
3
Is
lam
i
c
Azad
Univers
i
t
y
C
e
ntr
a
l
Tehr
an Bran
c
h
, T
e
hran
, Ir
an
4
Department
of
Electrical and
C
o
mputer Engin
e
er
ing, Shiraz university
techno
lo
g
y
, Shiraz, Iran
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 17, 2015
Rev
i
sed
D
ec 16
, 20
15
Accepte
d Ja
n
5, 2016
This pape
r tr
ies
to em
plo
y
a
fuz
z
y
logic
(FL) con
t
rolle
r t
y
p
e
II
to
control
the
Cas
caded H-Br
idge (CHB) ac
tive re
ctif
ier
.
This controller
has strong
perform
ance
, s
p
eci
all
y
,
when
a
l
o
w s
w
itching fr
equency
Se
lec
tiv
e Harm
onic
Elimination (SHE) method is used. In
order
to regulate all of the DC link
voltag
e
s, the o
p
tim
um
voltage balanc
ing strat
e
g
y
in th
e low
frequen
c
y
modulation technique is used in
the proposed method. Finally
,
th
e
performance an
d effectiven
ess of the proposed method is
valid
ated in
MATLAB environm
ent. All the sim
u
lation and result has been si
m
u
lated
b
y
MATLAB softwa
re
.
Keyword:
Activ
e rectifier
Cascaded H-Bridge
Fuzzy
L
o
gi
c C
ont
rol
l
e
r t
y
pe I
I
Mu
ltilev
e
l co
nv
erter
Opt
i
m
al
M
odu
l
a
t
i
on Tec
hni
q
u
e
Particle Swarm Op
ti
m
i
zatio
n
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A. M
o
eini,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
C
o
m
put
er E
ngi
neeri
n
g
,
Uni
v
ersity of
Tehra
n
, Te
hra
n
,
Iran
1.
INTRODUCTION
In
t
h
e recen
t
years, th
e m
u
ltil
ev
el con
v
e
rters are co
n
s
id
ered
m
o
re in
p
o
wer electron
i
cs ap
p
lication
s
.
Com
p
are to traditional powe
r
electronics
co
nv
erters, m
u
lt
ilev
e
l co
nv
erters h
a
v
e
sign
ifican
t b
e
nefits su
ch
as
l
o
we
r TH
D,
hi
ghe
r ef
fi
ci
ency
and l
o
we
r c
o
m
m
on
m
ode
n
o
ises (
C
M)
[1
, 2
]
. Mor
e
ov
er, these converte
rs can
be
use
d
i
n
m
odul
a
r
st
r
u
ct
u
r
e
s
. S
o
,
i
n
t
h
i
s
c
o
n
v
e
r
t
e
r, t
h
e
v
o
l
t
a
ge l
e
vel
ca
n easi
l
y
be
i
n
c
r
eased
t
o
ha
ve
a bet
t
e
r
p
e
rform
a
n
ce in
h
i
g
h
vo
ltage an
d
h
i
gh
po
wer app
lica
tio
n
s
. As th
e resu
lt, th
e ap
p
l
icatio
n
of m
u
ltilev
e
l
co
nv
erters i
n
grid
app
licatio
ns
has
ra
pi
dl
y
b
een i
n
c
r
ease
d
[
3
-
7
]
.
Mu
ltilev
e
l co
nv
erters can
b
e
o
r
g
a
n
i
zed
i
n
three cat
egories: Neu
t
ral Po
in
t
Cla
m
p
e
d
(NPC), Cascaded
H-B
r
i
d
ge (C
H
B
), a
n
d
Fl
y
i
n
g
C
a
paci
t
o
r
(
F
C
)
[2]
.
I
n
t
h
i
s
pa
per,
t
h
e
C
H
B
co
n
v
ert
e
r
due
t
o
i
t
s
m
odul
ar
st
ruct
u
r
e, m
o
re redu
n
d
an
cy
st
at
es i
n
generat
i
ng t
h
e
out
put
v
o
l
t
a
ge an
d l
o
w
e
r el
ect
roni
c c
o
m
pone
nt
s has
been
considere
d
[2].
A l
o
t
of
pa
pe
r
di
scu
ssed
ab
o
u
t
usi
n
g t
h
e C
H
B
co
n
v
ert
e
r i
n
bot
h i
n
ve
rt
i
n
g (
D
C
/
AC
) a
n
d re
ct
i
f
y
i
ng
(AC
/
DC
) m
o
d
e
s [
8
-
12]
.
O
p
t
i
m
a
l
m
odul
at
ion
t
ech
ni
q
u
e
al
so ha
s bee
n
em
pl
oy
ed i
n
or
der
t
o
i
n
cre
a
se t
h
e
efficiency a
n
d m
e
et the power
quality requi
rem
e
nts.
One
of t
h
e c
h
a
llenges i
n
the
optim
a
l
m
odulation
t
echni
q
u
es
i
s
havi
ng
hi
gh
p
e
rf
orm
a
nce co
nt
r
o
l
i
n
t
h
e C
H
B
act
i
v
e
rec
t
i
f
i
e
r [
5
]
.
I
n
pape
r
[6]
,
a c
ont
rol
t
echni
q
u
e
base
d
on
P
I
c
ont
ro
l
l
e
r has
bee
n
p
r
o
p
o
sed
t
o
i
m
p
r
o
v
e t
h
e
per
f
o
r
m
a
nce o
f
t
h
e c
o
n
v
e
r
t
e
r.
H
o
w
e
ve
r
,
th
e CHB active rectifier is a
n
o
n
lin
ear system
. Th
u
s
,
non
lin
ear con
t
ro
ller can
h
a
v
e
a
bet
t
er perform
ance than
the linear controller s
u
ch as
PI [5,
6].
In
t
h
is p
a
p
e
r ty
p
e
II Fu
zzy log
i
c con
t
ro
ller
wh
ic
h is nonlinear
one has
been
used
on the CHB active
r
ectif
ier
in
o
r
der
to
im
p
r
ov
e
th
e p
e
r
f
o
r
m
a
n
ce o
f
t
h
e conver
t
er
. M
o
r
e
o
v
e
r
,
th
e
op
ti
m
a
l
Selectiv
e H
a
rm
o
n
i
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
48
4 – 4
9
4
48
5
El
im
i
n
at
i
on t
echni
que
has
be
en em
pl
oy
ed
o
n
t
h
e
C
H
B
co
nve
rt
er
w
h
e
n
t
h
e
harm
oni
cs
of
t
h
e c
o
nve
rt
e
r
up
t
o
25
th
a
r
e el
im
i
n
at
ed i
n
t
h
e
out
put
vol
t
a
ge a
n
d cu
rre
nt
o
f
t
h
e conve
r
ter. T
h
e num
b
er of
switch
i
ng
tran
sitio
n
s
i
n
t
h
e
pr
op
ose
d
t
e
chni
que
i
s
red
u
ced t
o
9 i
n
eac
h
qu
art
e
r
o
f
t
h
e pe
riod t
o
im
prove t
h
e e
fficie
n
cy
of the c
onverter
[1
2-
1
5
]
.
2.
CASCADED H-BRIDGE
CONVERTER STRUCT
URE
The si
ngle
pha
s
e diagram
of
the CHB c
o
nverter is s
h
ow
ed
in
Figu
re 1.
As it can see i
n
th
is
figu
re,
the conve
rter i
s
connected t
o
the AC
grid
v
o
ltag
e
, b
y
u
s
i
n
g an
in
du
ctor to
p
r
og
ram
th
e in
j
ected
cu
rren
t
o
f
th
e
CHB. Also
, in o
r
d
e
r t
o
filter rip
p
l
es i
n
th
e v
o
ltag
e
o
f
t
h
e DC lin
k
o
f
t
h
e conv
erter,
a cap
acito
r
h
a
s b
een
p
a
ralleled
t
o
each
lo
ad
i
n
th
e cell. It shou
ld
be m
e
n
tio
n
e
d t
h
at
, i
n
or
der
t
o
t
r
ans
f
er
AC
power
of th
e grid to
th
e
d
e
sired
DC
vo
ltag
e
s, th
e
4
so
lid
state switches with
an
t
i
-
pa
ral
l
e
l
di
odes
ha
s bee
n
em
pl
oy
ed i
n
eac
h cel
l
of t
h
e
con
v
e
r
t
e
r. T
h
e
AC
v
o
l
t
a
ge
of
t
h
e C
H
B
c
o
n
v
e
rt
er ca
n sy
nt
h
e
si
s a seve
n l
e
vel
v
o
l
t
a
ge i
n
AC
si
de,
w
h
en
t
h
e
r
e
are s
o
m
e
redundancy
states
f
o
r
pr
od
uci
n
g ea
ch l
e
vel
.
C1
R1
Vd
c
1
S1
S
3
S2
S
4
CE
L
L
1
C2
R2
Vd
c
2
S1
S
3
S2
S
4
CE
L
L
2
C3
R3
Vd
c
3
S1
S
3
S2
S
4
CE
L
L
3
R
L
AC
Va
n
Fig
u
re
1
.
Con
f
i
g
uration
o
f
t
h
e
CHB m
u
lti
lev
e
l activ
e rectifier
0
1
2
3
4
-1
-2
-3
-4
T/2
T
0
ϴ
1
ϴ
2
ϴ
3
ϴ
4
ϴ
5
ϴ
6
ϴ
7
ϴ
8
ϴ
9
Fi
gu
re
2.
Pre
d
e
f
i
n
e
d
wave
fo
r
m
of 7-l
e
vel
S
H
E-
P
W
M
,
w
h
en
fre
que
ncy
o
f
eac
h cel
l
i
s
e
qual
t
o
15
0
H
z
3.
SELECTIVE HARMONIC ELIMI
NATION-PWM TE
CHNIQUE
One
of t
h
e o
p
t
i
m
a
l
m
odul
at
i
on t
ech
ni
q
u
e
s
whi
c
h can
be use
d
i
n
or
der t
o
el
i
m
i
n
at
e l
o
w o
r
de
r
harm
oni
cs o
f
t
h
e out
put
v
o
l
t
age of t
h
e c
o
nve
rt
er i
s
Sel
ect
i
v
e Harm
on
i
c
El
im
i
n
at
i
on (SHE
-P
WM
).
Thi
s
tech
n
i
qu
e is ver
y
u
s
efu
l
wh
en th
e con
v
e
r
t
er
h
a
s
b
e
en
em
p
l
o
y
ed
on
t
h
e
h
i
g
h
pow
er conver
t
er
t
h
at is con
n
ected
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
High
Perf
o
r
man
ce C
o
n
t
ro
l o
f
Grid
C
o
n
n
ected
C
a
scad
ed
H-Brid
g
e
Active
Rectifier Ba
sed on
… (A. Mo
ei
n
i
)
48
6
to
th
e
g
r
i
d
v
o
l
t
a
g
e
.
Th
is m
e
th
o
d
tries to u
s
e
th
e Fo
urie
r e
q
uat
i
o
n
s
o
f
t
h
e
pre
d
efi
n
ed
wa
vef
o
rm
(Fi
g
ur
e 2)
t
o
ext
r
act
t
h
e
ha
r
m
oni
c equat
i
o
ns
of
t
h
e
wa
vef
o
rm
[6]
.
In this m
e
thod, in each
qua
rt
er of the pe
riod of
output voltage of the c
o
nve
rter, a
nine
-switchi
ng
transition
waveform
has be
e
n
em
ployed
[7-12]. S
o
, th
is
m
odulation tec
hni
que
ca
n s
u
ppress
the l
o
w orde
r
h
a
r
m
o
n
i
cs of
t
h
e ou
tpu
t
vo
ltag
e
up
to
29
th
harm
oni
c. T
h
e
equat
i
o
ns
of t
h
e ha
rm
oni
cs of t
h
e co
nv
ert
e
r has
been prese
n
ted below,
1
234
5
67
8
9
Cos
C
os
Cos
C
os
C
o
s
Co
s
C
o
s
Co
s
C
o
s
M
(1
)
1
234
5
67
8
9
0
C
o
s
m
Cos
m
Cos
m
Cosm
Cos
m
Cos
m
Cosm
Cos
m
Cos
m
(2
)
Fo
r
m
=
5
,
7
,
11
, 13
, 17
, 19
, 23
, 25
4
pe
ak
dc
V
M
V
(
3
)
here
,
1
to
9
: Switch
i
ng
an
g
l
es;
M : Mo
du
lation
ind
e
x
;
V
dc
: Desired
valu
e of
DC link
v
o
ltag
e
;
V
peak
: Peak
val
u
e
of AC te
rm
inal voltage;
To
reach
go
als in
th
e eq
u
a
tion
s
(1
-3
), Particle
Swarm
Optimization (PSO) ap
proach
has
been us
e
d
t
o
o
p
t
i
m
i
ze t
h
e no
nl
i
n
ea
r t
r
ansce
nde
nt
al
equat
i
o
ns
of t
h
e SHE
-
P
W
M
m
e
t
hod.
Fi
g
u
r
e
3 sh
o
w
s t
h
a
t
t
h
e
obt
ai
ne
d
sol
u
t
i
ons
by
t
h
e P
S
O
opt
i
m
i
zati
o
n
t
echni
que
s are
so c
o
m
p
l
e
t
e
and
co
ve
r
wi
de
ran
g
e
fo
r t
h
e c
ont
rol
pu
r
poses
.
1.
4
1.6
1.8
2
2.2
2.4
2.6
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
1.
6
M
o
dul
a
t
i
o
n
Inde
x
S
w
it
c
h
in
g
A
n
g
l
e
s
(
r
a
d
)
θ
1
θ
2
θ
3
θ
4
θ
5
θ
6
θ
7
θ
8
θ
9
Fi
gu
re
3.
S
w
i
t
c
hi
n
g
t
r
a
n
si
t
i
o
n
s
i
n
radi
a
n
vers
us m
o
d
u
l
a
tio
n
in
d
i
ces t
o
m
eet
th
e
requ
ired
li
mits in
eq
u
a
tion
(1-
3)
4.
PROP
OSE
D
CO
NTR
O
L
S
T
RATEG
Y
The c
o
nt
rol
l
e
r
w
h
i
c
h
has
be
en
use
d
i
n
t
h
i
s
pa
per
i
s
Ty
pe
II
Fuzzy
L
ogi
c C
o
nt
rol
l
e
r. T
h
e m
a
i
n
pu
r
pose
of
t
h
i
s
co
nt
r
o
l
l
e
r i
s
t
o
bal
a
nce
t
h
e
DC
l
i
n
k
v
o
l
t
a
ges acc
o
r
di
ng
t
o
t
h
e
re
fere
nc
e val
u
e, a
n
d
k
eep i
n
p
h
a
se and
sinuso
i
d
a
l th
e input cu
r
r
e
n
t
and
vo
ltag
e
of
th
e C
H
B con
v
e
r
t
er. Fig
u
r
e
4
pr
esen
ts th
e bo
ck
d
i
ag
r
a
m
of t
h
e F
u
zzy
c
ont
rol
l
e
r
w
h
i
c
h i
s
u
s
ed i
n
t
h
e pr
o
pos
ed c
o
nt
r
o
l
l
e
r. T
h
e c
ont
rol
l
e
r
w
h
i
c
h i
s
em
pl
oy
ed
i
n
t
h
e
Fig
u
re
4
is similar to
the co
n
t
ro
ller th
at
h
a
s
b
een in
tr
o
duce
d
i
n
[
5
]
a
n
d
[
1
6-
1
8
]
.
T
h
e m
a
in
di
ffe
re
nce i
s
usi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
48
4 – 4
9
4
48
7
the Type II fuz
z
y logic cont
roller instead of PI cont
ro
llers to
im
p
r
o
v
e
th
e
p
e
rform
a
n
ce o
f
th
e Op
tim
a
l
SHE-
P
W
M
t
e
c
hni
qu
e.
The c
o
m
p
l
e
t
e
bl
oc
k di
a
g
ram
of Ty
pe I
I
F
u
zzy
Lo
gi
c C
ont
rol
(
T
y
p
e
I
I-F
LC
) sy
st
em
i
s
sho
w
n i
n
Fi
gu
re 5. B
a
se
d o
n
t
h
e Fi
g
u
r
e
5, fo
u
r
sect
i
ons
have
been
defi
ne
d as t
h
e
m
a
i
n
co
m
ponent
s o
f
t
h
e T
y
pe II
Fuzzy L
o
gic Cont
roller
[18-20];
First,
th
e Kn
owledg
e
Base (KB) wh
ich
is en
co
m
p
a
ssing
k
now
ledg
e r
e
gar
d
s
of
all th
e in
pu
t and
o
u
t
p
u
t
fu
zzy p
a
rts. Al
so
, it co
n
t
ain
s
th
e term set an
d
th
e m
e
m
b
ers
h
ip
fu
nctio
n
s
of th
e co
n
t
ro
ller ab
ou
t th
e in
put
vari
a
b
l
e
s t
o
t
h
e
f
u
zzy
‘R
ul
e-B
a
se’
(R
B
)
sy
st
e
m
and t
h
e
out
p
u
t
o
r
deci
si
o
n
vari
a
b
l
e
s t
o
t
h
e
pl
ant
.
Second, the
Fuzzifica
tion Inte
rface (FI).
Thi
r
d, t
h
e i
n
fe
r
e
nce e
ngi
ne
(I
E).
Fourt
h
,
t
h
e Defuzzification
Int
e
rface (DI).
The i
n
put
s
of
t
h
e Ty
pe I
I
Fuzzy
Lo
gi
c
Controller (Type II-FLC) are error (
e
),
wh
ich
is the
diffe
re
nce bet
w
een t
h
e phase
of the c
u
rre
nt and
phase of
the g
r
i
d
vo
ltag
e
o
f
the CHB act
iv
e rectifier and
error
change (
ce
)
wh
ich
is
d
e
ri
v
a
tiv
es of th
e erro
r
(
e
). Each
in
pu
t and
ou
tpu
t
of
th
e Ty
pe I
I
-
F
LC
h
a
s
sev
e
n
m
e
m
b
ershi
p
f
unct
i
o
ns w
h
i
c
h
ca
n
be de
fi
n
e
d
as NB
(Ne
g
ative Big),
NS (Nega
tiv
e Small), NM (Neg
ativ
e
Med
i
u
m
), ZE
(Zero), PS (Po
s
itiv
e Sm
al
l), PM (Po
s
itiv
e
M
e
d
i
u
m
), and
PB (Po
s
itiv
e Bi
g
)
b
a
sed on
t
h
e ran
g
e
o
f
ch
ang
e
s.
The n
e
x
t
step in
desig
n
i
n
g
a Type II-FLC
is ru
l
e
d
e
fin
itio
n.
Three
Fuzzy
L
ogi
c C
o
nt
r
o
l
l
e
r
s
(Ty
p
e I
I
-
F
LC
) are re
q
u
i
r
ed i
n
t
h
e p
r
o
p
o
se
d
cont
r
o
l
m
e
t
hod. T
h
e fi
rst
Ty
pe II
-FLC
t
r
i
e
s t
o
reduc
e t
h
e err
o
r am
ong p
h
ases o
f
t
h
e
curre
nt
an
d p
h
a
se of t
h
e g
r
i
d
vol
t
a
ge
of t
h
e
act
i
v
e
rectifier to produce a
n
accept
a
ble term
inal
voltage in CHB active rectifier
(Figure 4(b)). T
h
e inputs of the
cont
roller are t
h
e error c
h
anges whic
h
ar
e w
ith
in
(-
200
, 20
0)
and
th
e d
e
rivative of error cha
n
ges which are
with
in
(-10
, 10
). Fu
rt
h
e
rm
o
r
e, th
e ou
tpu
t
of th
e con
t
r
o
ller varies betwe
e
n (-
16
, 1
6
)
t
o
p
r
o
v
ide
the
d
e
sire
d
per
f
o
r
m
a
nce.
The sec
o
nd
Ty
pe
II
-FLC
i
s
us
ed t
o
deci
de t
h
e m
odul
at
i
o
n
i
nde
x
o
f
t
h
e
co
nve
rt
er
(Fi
g
u
r
e
4
(a)
)
.
A
s
i
t
can see
,
t
w
o T
y
pe I
I-F
LC
s ar
e nee
d
ed
t
o
ke
ep t
h
e
m
odul
at
i
on i
nde
x i
n
t
h
e desi
re
d
val
u
e
.
Th
e fi
r
s
t
Ty
p
e
I
I
-
FLC
t
r
i
e
s t
o
m
i
nim
i
ze t
h
e di
ffere
nce bet
w
ee
n al
l
of t
h
e
DC
l
i
nk v
o
l
t
a
ges
and
kee
p
eq
ual
t
o
speci
fi
c val
u
e. I
n
th
is case, th
e erro
r is in
in
terv
al (-3
0
, 30
), an
d
th
e
d
e
ri
v
a
ti
v
e
o
f
erro
r is in
in
terval (-600
0, 60
00
). Th
e o
u
t
pu
t
o
f
th
e Ty
p
e
II-FLC is th
e referen
c
e of th
e curren
t
am
p
lit
ude o
f
t
h
e
rect
i
f
i
e
r
t
h
at
va
ri
es i
n
r
a
nge
o
f
(-
5,
5
)
.
The sec
o
nd Ty
pe II-F
LC com
p
ensa
tes fu
nd
amen
tal cu
rren
t
o
f
the r
ectifie
r an
d re
fere
nce
cur
r
ent
of
th
e rectifier to
h
a
v
e
th
e least erro
r. As th
e resu
lt, th
e
i
n
d
u
c
t
o
r an
d pa
rasi
t
e
resi
st
or v
o
l
t
a
ges are t
h
e
ou
t
put
o
f
this controller. All of the Ty
pe II
FL
Cs in the Figure
4
(a)
and Figure
4
(b) a
r
e e
x
actly sam
e
with each
other
and
u
s
e se
ven
t
r
i
a
n
gul
ar
m
e
m
b
ers
h
i
p
f
u
nct
i
o
ns
fo
r eac
h i
n
p
u
t
an
d
o
u
t
p
ut
.
The v
o
l
t
a
ge b
a
l
a
nci
ng st
rat
e
gy
of t
h
e p
r
o
p
o
se
d SH
E
-
PWM technique is the
sa
m
e
as
the approach
whi
c
h i
s
ex
pl
ai
ned i
n
[
6
]
.
M
o
r
e
ove
r, t
h
e
fl
o
w
chart
o
f
t
h
e
vol
t
a
ge bal
a
nci
ng
st
rat
e
gy
has
be
en p
r
ese
n
t
e
d i
n
t
h
e
Fi
gu
re 9.
It
sh
oul
d be
m
e
nt
i
oned t
h
a
t
t
h
e swi
t
c
hi
n
g
t
r
an
s
itio
n
s
o
f
th
e activ
e
rectifier app
lied
b
y
using
opt
oco
u
p
l
e
r
o
r
i
s
ol
at
i
on t
r
ans
f
orm
e
r. T
h
eses
com
pone
nt
s a
r
e re
qui
red
,
bec
a
use si
gn
al
o
f
t
h
e c
o
nt
rol
l
e
r
s
h
o
u
l
d
b
e
iso
l
ated
from
th
e v
o
ltag
e
th
at is im
p
o
s
ed
to
th
e
g
a
te driver of th
e Po
wer
MO
SFET or
I
G
BT sw
itch
e
s
[
15-
17]
.
5.
COMPRASION OF
THE
TYPE
I AND
TYPE II
FUZ
Z
Y
LOGIC CONTROLLERS
In
t
h
e
rece
nt
y
ears,
t
h
e
Fuzz
y
Lo
gi
c C
o
nt
r
o
l
l
e
r
has
bee
n
em
pl
oy
ed i
n
v
a
ri
o
u
s a
p
pl
i
cat
i
ons
.
One
o
f
th
e
m
o
st i
m
p
o
rtan
t reason
s wh
ich
co
nv
i
n
ced
th
e scien
tist to
e
m
p
l
o
y
Fu
zzy lo
g
i
c syste
m
s
is
t
h
e h
i
gh
cap
ab
ility o
f
decisio
n
m
a
k
i
n
g
in
Fu
zzy C
o
n
t
ro
ller
[1
3-17
].
There a
r
e t
w
o
t
y
pes of Fuz
z
y
C
ont
rol
l
e
r
whi
c
h are use
d
i
n
ap
pl
i
cat
ions:
Ty
pe I F
u
zzy
Logi
c
C
ont
r
o
l
l
e
r
(Ty
p
e I
-
FLC
)
an
d
Ty
pe I
I
F
u
zz
y
Logi
c C
ont
r
o
l
l
e
r (Ty
p
e I
I
-
F
LC
) [
1
8-
2
2
]
.
The
bi
g
di
f
f
e
r
enc
e
b
e
tween
th
em
i
s
in
d
ealing
with
un
certain
ty issu
es.
In
ot
her
wo
rd
s, t
h
e
Ty
p
e
I-F
LC
can
not
per
f
ect
l
y
cove
r t
h
e
measu
r
em
en
ts
an
d
p
a
ram
e
ters o
f
un
certain
t
y p
r
ob
lem
s
.
T
h
erefore, in
o
r
d
e
r to
im
p
r
ov
e th
e ab
ility o
f
fu
zzy
syste
m
s to
co
ntro
l th
e un
certain
ties,
Ty
pe I
-
FLC
ha
s bee
n
used
. M
o
reo
v
e
r, i
n
Ty
p
e
I-
F
L
C
,
t
h
e m
e
m
b
ershi
p
function grade
s
are determ
ined by a cris
p value. Howeve
r, in
Typ
e
II-FLC, th
e m
e
m
b
er
sh
ip
fun
c
tion
s
g
r
ad
es
for e
v
ery elem
ent is
not
a s
p
e
c
ific crisp
value. Figure
7 a
n
d
8,
s
h
o
w
di
f
f
er
ence
bet
w
ee
n t
y
pe I
an
d
I
I
.
I
n
deed
,
Ty
pe I
I-F
LC
i
s
a p
o
we
rf
ul
t
ool
whe
n
e
x
ac
t
val
u
e f
o
r t
h
e
m
e
m
b
ershi
p
fu
nct
i
on m
u
st
be
t
une
d.
In t
h
i
s
st
udy
,
FLC
t
y
pe I
I
ha
s bee
n
em
pl
oy
ed,
due
t
o
t
h
e
unce
r
t
a
i
n
t
y
i
n
t
h
e DC
l
i
n
k v
o
l
t
a
ge bal
a
nci
n
g an
d al
s
o
p
r
o
v
i
d
e a
b
e
tter
p
e
rforman
ce in d
y
n
a
m
i
c con
d
ition
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
High
Perf
o
r
man
ce C
o
n
t
ro
l o
f
Grid
C
o
n
n
ected
C
a
scad
ed
H-Brid
g
e
Active
Rectifier Ba
sed on
… (A. Mo
ei
n
i
)
48
8
T
ype
I
I
Fu
z
z
y
Co
n
t
r
o
l
l
e
r
∑
V
ci
NV
re
f
+
_
+
_
Typ
e
I
I
Fu
z
z
y
C
ont
r
o
l
l
e
r
+
+
(a)
T
ype
I
I
F
u
z
z
y
Con
t
r
o
l
l
e
r
Δθ
re
f
θ
v m
e
a
s
θ
i m
e
a
s
Δθ
me
a
s
φ
*
(b
)
Fi
gu
re
4.
Sc
he
m
a
t
i
c
di
agram
of
t
h
e
pr
o
p
o
s
e
d
c
ont
rol
l
e
r
Fi
gu
re
5.
The
f
u
zzy
l
o
gi
c c
ont
rol
l
e
r c
o
nfi
g
u
r
at
i
o
n
Fi
gu
re 6.
The
FLC
st
r
u
ct
u
r
e whi
c
h
i
s
use
d
on
t
h
e
C
H
B
Fi
gu
re
7.
A
t
y
p
e
-I m
e
m
b
ershi
p
fu
nct
i
o
n,
(b
)
B
l
urre
d t
y
pe
-I
I
m
e
m
b
ershi
p
f
unct
i
o
n
[
18]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
48
4 – 4
9
4
48
9
Fi
gu
re
8.
3
D
i
l
l
u
st
rat
i
o
n
o
f
t
y
pe-
I
I
f
u
zzy
Ga
ussi
an
m
e
m
b
ershi
p
f
unct
i
o
n
[
19]
Tab
l
e II
. The ru
le b
a
se for
th
e Typ
e
I
I
FLC
Rule No.
e
ce
U
1
PB ZE
PB
2
PM
ZE
PM
3
PS ZE
PS
4
ZE
NB
NB
5
ZE
NM
NM
6
ZE
NS
NS
7
NB ZE
NB
8
NM
ZE
NM
9
NS ZE
NS
10
ZE
PB PB
11
ZE
PM
PM
12
ZE
PS
PS
13
ZE
ZE
ZE
14
PB NS
PM
15
PS NB
NM
16
NB PS
NM
17
NS PB
PM
18
PS NS
ZE
19
NS PS
ZE
0
2
4
6
8
10
0
0.
2
0.
4
0.
6
0.
8
1
0
0.
5
1
Axi
s
x
Axi
s
y
Ax
i
s
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
High
Perf
o
r
man
ce C
o
n
t
ro
l o
f
Grid
C
o
n
n
ected
C
a
scad
ed
H-Brid
g
e
Active
Rectifier Ba
sed on
… (A. Mo
ei
n
i
)
49
0
Tabl
e I
I
I
.
T
h
e
sort
o
f
t
h
e
DC
l
i
nk
vol
t
a
g
e
s i
n
diffe
re
nt avai
lable re
dundant states conditions
Sort of DC link vo
ltages
V
o
ltage level a
f
ter
transition
Optimal selected s
w
itching state
(Vd
c
1
≥
Vd
c
2
≥
Vd
c
)
VL=1
(
0
, 0,
1)
(Vd
c
1
≥
Vd
c
3
≥
Vd
c
)
VL=1
(
0
, 1,
0)
(Vd
c
2
≥
Vd
c
3
≥
Vd
c
)
VL=1
(
1
, 0,
0)
(Vd
c
2
≥
Vd
c
1
≥
Vd
c
)
VL=1
(
0
, 0,
1)
(Vd
c
3
≥
Vd
c
1
≥
Vd
c
)
VL=1
(
0
, 1,
0)
(Vd
c
3
≥
Vd
c
2
≥
Vd
c
)
VL=1
(
1
, 0,
0)
(Vd
c
1
≥
Vd
c
2
≥
Vd
c
)
VL=2
(
0
, 1,
1)
(Vd
c
1
≥
Vd
c
3
≥
Vd
c
)
VL=2
(
0
, 1,
1)
(Vd
c
2
≥
Vd
c
3
≥
Vd
c
)
VL=2
(
1
, 0,
1)
(Vd
c
2
≥
Vd
c
1
≥
Vd
c
)
VL=2
(
1
, 0,
1)
(Vd
c
3
≥
Vd
c
1
≥
Vd
c
)
VL=2
(
1
, 1,
0)
(Vd
c
3
≥
Vd
c
2
≥
Vd
c
)
VL=2
(
1
, 1,
0)
-
VL=3
(
1
, 1,
1)
(Vd
c
1
≥
Vd
c
2
≥
Vd
c
)
VL=-1
(0
,
0
,
-
1
)
(Vd
c
1
≥
Vd
c
3
≥
Vd
c
)
VL=-1
(0
,
-
1
,
0
)
(Vd
c
2
≥
Vd
c
3
≥
Vd
c
)
VL=-1
(-1
, 0
,
0
)
(Vd
c
2
≥
Vd
c
1
≥
Vd
c
)
VL=-1
(0
,
0
,
-
1
)
(Vd
c
3
≥
Vd
c
1
≥
Vd
c
)
VL=-1
(0
,
-
1
,
0
)
(Vd
c
3
≥
Vd
c
2
≥
Vd
c
)
VL=-1
(-1
, 0
,
0
)
(Vd
c
1
≥
Vd
c
2
≥
Vd
c
)
VL=-2
(
0
,
-1
,
-1
)
(Vd
c
1
≥
Vd
c
3
≥
Vd
c
)
VL=-2
(
0
,
-1
,
-1
)
(Vd
c
2
≥
Vd
c
3
≥
Vd
c
)
VL=-2
(-1
, 0
,
-1
)
(Vd
c
2
≥
Vd
c
1
≥
Vd
c
)
VL=-2
(-1
, 0
,
-1
)
(Vd
c
3
≥
Vd
c
1
≥
Vd
c
)
VL=-2
(-1
, -1
,
0
)
(Vd
c
3
≥
Vd
c
2
≥
Vd
c
)
VL=-2
(-1
, -1
,
0
)
-
VL=-3
(-1
, -1
,
-1
)
-
VL=0
(
0
, 0,
0)
Sta
r
t
Se
le
c
tin
g
th
e
s
w
i
t
c
h
i
ng a
n
g
l
e
s
by
c
o
n
s
id
e
r
in
g
th
e
m
o
dul
a
t
i
o
n
i
n
de
x
G
e
n
e
r
a
t
i
ng t
h
e
v
o
l
t
ag
e l
e
v
e
l
(
V
L
)
Sa
m
p
l
i
n
g
th
e
c
a
p
a
c
i
t
o
r
vol
t
a
ge
s
j
u
s
t
0.
1
m
s
be
f
o
r
e
ea
ch
t
r
a
n
s
i
t
i
o
n
S
e
le
c
t
in
g
a
ppr
op
r
i
a
t
e
s
w
i
t
c
h
i
ng s
t
a
t
e
ba
s
e
d
on
T
a
bl
e
I
I
I
I
m
po
s
i
ng s
e
l
e
c
t
e
d
a
ppr
op
r
i
a
t
e
s
w
it
c
h
in
g
s
t
a
t
e
to
th
e
a
c
tiv
e
r
e
c
tif
ie
r
Do
es
t
h
e
m
o
d
u
l
a
t
i
o
n
i
n
de
x c
h
a
n
g
e
?
No
Ye
s
Do
es
t
h
e
s
w
i
t
ch
i
n
g
pe
r
i
od f
i
n
i
s
h
?
Ye
s
No
Fi
gu
re
9.
The
f
l
owc
h
art
of
t
h
e
DC
l
i
n
k
v
o
l
t
a
ge
bal
a
nci
n
g
a
p
p
r
oach
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
48
4 – 4
9
4
49
1
6.
SIMULATION RESULTS
In o
r
der t
o
s
h
o
w
su
pe
ri
o
r
i
t
y
and effect
i
v
eness o
f
t
h
e
pr
o
pose
d
co
nt
rol
st
rat
e
gy
a
p
p
r
oach
, t
h
e
co
nv
erter is si
m
u
la
ted
in
MATLAB Sim
u
l
i
n
k
en
v
i
ron
m
e
n
t. Tab
l
e IV illu
strates th
e
param
e
ters o
f
th
e CHB
Active Rectifier. The sta
r
t-up and steady state behavi
or
of the rectifi
e
r has
been
presen
ted
in
the first
si
m
u
latio
n
.
As far as it can
see in
Figure 8, th
e b
e
h
a
v
i
or
of th
e con
v
e
rter is v
e
ry
go
od
esp
ecially, in
st
art-up
and st
ea
dy
st
at
e poi
nt
s. T
h
e
secon
d
si
m
u
lat
i
on sh
o
w
s t
h
e DC
l
i
nk
ri
ppl
es
of t
h
e c
o
n
v
e
r
t
e
r i
n
di
ffe
rent
switch
i
ng
frequ
en
cy
of th
e con
t
ro
l strateg
y
.
The dy
nam
i
c
beha
vi
o
r
o
f
t
h
e cont
r
o
l
l
e
r,
w
h
en t
h
e l
o
a
d
s
of t
h
e c
o
nve
rt
er ha
ve s
u
d
d
e
n
l
y
i
n
crease
d
50% in each c
e
ll has been illustrated i
n
the
last si
m
u
lat
i
on. Based on the
Figure 10, t
h
e cont
roller
has
a high
per
f
o
r
m
a
nce i
n
dy
nam
i
c con
d
i
t
i
ons.
Table I
V
.
Circ
uit pa
ram
e
ters use
d
f
o
r sim
u
lation
Pa
ra
m
e
ter
Sy
m
b
ol
Value
Nu
m
b
er
of H-
br
id
ges
N
3
Cell no
m
i
nal load
P
150W
Grid Voltage
V
ac
120V
DC bus voltage
V
dc
73V
I
nput inductance
L
6m
H
Line resistance
R
0.
2
Ω
DC bus capacitor
C
3m
F
L
i
ne fr
equency
F
60Hz
Conver
t
er
total power
P
to
ta
l
450W
(a)
(b
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
High
Perf
o
r
man
ce C
o
n
t
ro
l o
f
Grid
C
o
n
n
ected
C
a
scad
ed
H-Brid
g
e
Active
Rectifier Ba
sed on
… (A. Mo
ei
n
i
)
49
2
(c)
(d
)
Fi
gu
re
9.
The
s
t
art
-
u
p
a
n
d
st
e
a
dy
st
at
e co
n
d
i
t
i
on
of
t
h
e c
o
n
v
ert
e
r
.
(a)
AC
vol
t
a
ge
an
d
cu
rre
nt
o
f
t
h
e
gri
d
a
n
d
CHB AC term
i
n
al vo
ltag
e
(b
)
DC link
v
o
ltages, (c)
DC
l
i
n
k
vol
t
a
ge
ri
ppl
es
o
f
t
h
e
p
r
o
p
o
se
d S
H
E
-
P
W
M
(
d
)
harm
onic s
p
ect
ra
of t
h
e c
u
rrent
(a)
(b
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
48
4 – 4
9
4
49
3
(c)
(d
)
Figure
11.
The DC link
voltages
of each cel
l in 50%
lo
a
d
variations i
n
t
h
e
proposed Type II-FLC
and T
y
pe
I-F
LC co
ntr
o
llers,
(a)
T
h
e
A
C
gri
d
voltag
e
and
CHB
v
o
ltage a
n
d
AC
cu
rr
ent in
p
r
o
p
o
se
d Ty
pe-
II
FLC
(b
)
DC link
v
o
ltages in
Ty
p
e
II-FLC (c) Th
e
AC grid
vo
ltag
e
an
d CHB
vo
ltage and
AC
cu
rr
en
t in
T
y
p
e
-I
FL
C
(d
)
DC
l
i
n
k
vol
t
a
ges i
n
Ty
pe
I
-
FLC
7.
CO
NCL
USI
O
N
In t
h
i
s
pa
pe
r,
i
n
or
der t
o
c
ont
rol
t
h
e sev
e
n-
lev
e
l CHB activ
e rectifier, a Typ
e
II
Fu
zzy Log
i
c
C
ont
r
o
l
l
e
r
(Ty
p
e
II
-FLC
)
ha
s bee
n
use
d
.
T
h
i
s
m
e
t
hod
i
s
very
use
f
ul
w
h
en
t
h
e
co
n
v
er
t
e
r em
pl
oy
s D
C
l
i
n
k
b
a
lan
c
ing
ap
pro
a
ch
in
t
h
e [6
]. Also
, th
e
Selectiv
e Harm
o
n
i
c Eli
m
in
atio
n
PWM wh
ich
h
a
s th
e lo
west
swi
t
c
hi
n
g
fr
eq
uency
bet
w
een
t
h
e
m
odul
at
i
o
n t
echni
que
s i
s
used t
o
dec
r
ea
se t
h
e swi
t
c
hi
n
g
l
o
sses an
d i
n
crease
the efficiency
of t
h
e c
o
nvert
e
r.
T
h
e
proposed SHE
-
PWM technique c
a
n eliminate the
harm
onics
of t
h
e
v
o
ltag
e
an
d injected
cu
rren
t
up
to 29
th
h
a
rm
o
n
i
c. As it is illu
strated
i
n
t
h
e sim
u
lat
i
o
n
sectio
n
,
t
h
e sim
u
latio
n
resul
t
s
o
f
t
h
e
Ty
pe II
Fuzzy
Logi
c C
ont
r
o
l
l
er has
bet
t
e
r dy
nam
i
c perfo
rm
ance t
h
an t
h
e PI co
nt
r
o
l
l
e
r
due t
o
bet
t
e
r
deci
si
o
n
m
a
ki
ng t
h
a
n
P
I
co
nt
r
o
l
l
e
r t
o
r
e
duce
t
h
e phas
e
differe
n
ce be
tween
gr
id
vo
ltag
e
an
d cur
r
e
nt.
REFERE
NC
ES
[1]
S. Khom
foi, L.M. Tolber
t, "Multil
evel Power
Converters"
, Po
wer Electroni
cs Handbook, T
h
e Universit
y
of
Tennessee, Dep
a
rtment of
Electr
i
cal
and
Computer
Eng
i
neer
ing,
[2]
J. Rodriguez, L. Jih-Sh
eng, P.F. Zheng, "Multi
level
inverters: a survey
of
topol
ogies, con
t
rols,
a
nd applications
,"
IEEE Tr
ansactio
ns on
Industrial
Electronics, vo1
. 49, no.
4, pp. 72
4-738,
Aug 200
2
[3]
A. Marzoughi
,
H. Im
aneini
, A. Moeini, “An o
p
tim
al se
l
ect
ive harm
onic m
itig
ation
techn
i
que
for high power
converters”, Internation
a
l Journ
a
l of
Electrical Po
wer &
Energ
y
S
y
stems,
Volume
49, July
2013
, P
a
ges 34-39
[4]
A. Moeini
, H. I
m
an-Eini, M. B
a
khshi
zadeh
, "Sel
ect
ive h
a
rm
onic
m
itigation-pu
lse-width m
odulati
on technique wit
h
variab
le DC-link
voltages in sing
le and
thr
ee-ph
a
s
e cas
cad
ed H-bridge inver
t
ers
"
,
Power Ele
c
troni
cs, IET
, vo
l. 7,
no. 4
,
pp
. 924-9
32, Apr. 2014.
[5]
A. Moeini, A. M
a
rzoughi, H.
Iman-Ein
i, S.
Farh
angi, "A modified c
ontrol strateg
y
for
cascad
ed
H-bridge
rectif
iers
based on
the
low frequen
c
y SHE-PWM", Envir
onment and
Electr
i
cal Engineer
ing
(EEEIC),
2013
12
th
International Co
nference on
, vol
., no., pp
.501,50
6, 5-8
May
2013
.
[6]
A. Moeini, H.
Iman-Eini, A.
Marz
oughi, "D
C link voltag
e
balan
c
ing appr
o
ach for cascaded H-bridge active
rectifier b
a
sed o
n
selective h
a
rmonic
elimination
-
pulse
width modulation"
,
Powe
r
Electr
oni
cs
, IE
T
, vol. 8, no
. 4,
pp. 583-590
, 20
15.
[7]
A.J
.
W
a
ts
on, J
.
C. Clar
e, P
.
W
.
W
h
eeler
, "A S
e
l
ect
ive Ha
rmonic Elimination ap
proach to
DC link balan
c
ing for
a
Multilev
e
l
Rect
ifier", Power
Electroni
cs and
Moti
on Con
t
r
o
l Confer
ence, 2006.
EPE-PEMC 2006. 12
th
International, vo
l., no., pp
.154-
1
59, Aug. 30 200
6-Sept. 1
2006.
Evaluation Warning : The document was created with Spire.PDF for Python.