Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
65
4
~
66
5
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.7
836
6
54
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
An Eff
e
ctive Developmen
t and An
alysi
s
of a M
o
bile Rob
o
t
Jagann
ath S
a
hu
a
, B.B.
Choudhur
y
b
, M.
R
.
P
a
tr
a
c
a,c
Department of
Computer Sc.,
Be
rhampur Univ
ersity
, Odisha, I
ndia
b
Departm
e
nt
of
Mechani
cal
Eng
g
., IGIT Sar
a
ng,
An
Autonom
ous Institut
e
of
Gov
t
. of
Odisha, Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 17, 2015
Rev
i
sed
No
v
25
, 20
15
Accepted Dec 14, 2015
This paper deals with the design of a
batter
y
o
p
erated Mobile
Robot with
various modes
of its control. The M
obile Robot can be operated in three
differen
t
modes, namely
Du
al Tone Multi
Fr
equency
(DTMF), Radio
Frequency
Input Devices (RFID) and la
ptop control with ZigBee techn
i
que,
thereb
y
enabl
i
ng
a m
u
lti- dim
e
nsional co
n
t
rol s
y
s
t
em
. The Mobi
le Robot is a
single seated car
r
ier and can also
be us
ed to trans
port substantial
amount of
ph
y
s
ic
al
load
for
short dist
anc
e
s.
It is
a pro
t
oty
p
e
of a multi-use ro
bot hav
i
ng
a wide rang
e o
f
appli
cabi
lit
y
a
ccordi
ng
to the
requirem
e
nt
af
ter suit
able
modifications. There are four microcontro
llers used in this mobile robot. The
input to microco
n
troller sent via
the
devices lik
e cellphone, RFID
and laptop
.
Thus
it can be e
a
s
i
l
y
appli
e
d ins
i
de a hos
pita
l to
carr
y
p
a
ti
ents
,
as
a wheel
chair
for ph
y
s
ically
challeng
ed
pe
ople, to
carr
y goods in
larg
e shopping
malls, as
golf
cars, can
also b
e
used
for
industrial purposes with ad
equate
modifications. It us
es a DC pow
er source and n
o
t an
y
conventional en
er
g
y
sources. Hence it is ecofriend
l
y
and this
Mobile
Robot can
be termed as an
advancing step in the field of
mobile robot.
Keyword:
AVR ST
UD
IO
4
DTM
F
Laptop with ZigBee
Mo
b
ile Robo
t
RFID
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
B.B. Chou
dhu
ry,
Depa
rt
m
e
nt
of
M
echani
cal
E
n
gi
nee
r
i
n
g,
Ind
i
ra Gan
d
h
i
In
stitu
te o
f
Tech
no
log
y
, Sarang
,
(An
Au
t
o
no
m
o
u
s
In
stitu
te o
f
Gov
t
. of
Od
isha)
Odi
s
ha,
I
ndi
a.
Em
a
il: b
b
c
ig
it@g
m
ail.co
m
1.
INTRODUCTION
Robotics is a
very attention-gra
b
bing field
because once a robot is
de
velope
d; it
m
a
k
e
s our work
trou
b
l
e-free. Th
e wo
rd
ro
bo
t g
e
n
e
rates a fascin
atin
g
im
agination
of a human-like st
ruct
ure
.
Ho
we
ver
a rob
o
t
is a m
ech
an
ical o
r
v
i
rt
u
a
l artificial ag
en
t, u
s
u
a
lly an
el
ectro-m
echani
cal
m
achine
t
h
at is c
ontroll
ed
by a
co
m
p
u
t
er program
o
r
electro
nic circu
itry ai
med
at p
e
rfo
rm
i
n
g
certain
tasks. Mob
ile rob
o
ts h
a
v
e
th
e capab
ility
t
o
m
ove aro
u
n
d
i
n
t
h
ei
r e
n
vi
ro
nm
ent
whi
l
e
per
f
o
r
m
i
ng t
h
e gi
ve
n t
a
sks a
nd a
r
e n
o
t
fi
xe
d t
o
o
n
e l
o
cat
i
o
n
o
f
i
n
st
al
l
a
t
i
on. M
obi
l
e
r
o
bot
s m
a
y
be cl
assi
fi
e
d
o
n
basi
s
of t
h
ei
r f
u
nct
i
o
ns,
appl
i
cat
i
o
ns,
out
put
ca
paci
t
y
et
c. A
m
a
nual
l
y
ope
r
a
t
e
d r
o
bot
i
s
u
nde
r c
o
m
p
l
e
t
e
cont
rol
of
t
h
e
ope
rat
o
r a
n
d
i
s
us
ual
l
y
ope
rat
e
d
wi
t
h
a
j
o
y
s
t
i
c
k o
r
an
y si
m
ilar co
n
t
ro
l d
e
v
i
ce. An
au
to
m
a
ted
robo
t h
a
s th
e
ab
ility to
sen
s
e an
d
avo
i
d
ob
stacles. Th
e p
r
op
o
s
ed
M
obi
l
e
R
o
b
o
t
i
s
a
m
a
nual
cu
m
aut
o
m
a
t
e
d rob
o
t
.
It
w
oul
d be ap
pr
op
ri
at
e t
o
cal
l
t
h
i
s
vehi
cl
e a robot
an
d n
o
t
an a
u
tom
obile as it
does
n
’t
contain a
n
y com
ponents
of
traditional a
u
tom
obiles.
Rather it posse
sses
digita
l
electro
n
i
c
ci
rcu
its, wireless data
tran
sm
issio
n
techn
i
qu
es, so
ft
ware
prog
rammin
g
sk
ills, etc.
Aru
n
a et
al
. [1]
prop
osed a
m
e
t
hod for d
i
st
ant cont
rol
of a devi
ce t
h
rou
gh t
h
e use
of DTM
F
Technol
o
g
y
.
T
h
ey
used t
h
i
s
t
echnol
o
g
y
t
o
cont
rol
a l
a
nd
r
over
by
gi
vi
ng
a cal
l
t
o
a cell
ph
one co
nnect
ed t
o
i
t
.
Any
key
p
r
essed d
u
ri
ng
t
h
e c
a
l
l
shal
l
act
as
a com
m
a
nd for
t
h
e ro
bot
. T
u
l
j
a
ppa M
Lad
w
a
et
al
. [2]
pro
p
o
sed
t
h
e use of
DT
M
F
si
gnal
s
t
o
m
onit
o
r and c
ont
rol
ho
useho
l
d appl
i
a
nces. They
used v
o
i
ce cal
l
faci
li
ty
t
o
send
si
gnal
s
t
o
t
u
rn
on an
d o
ff va
ri
ous h
ouse
hol
d
appl
i
a
nces l
i
k
e bul
bs, fa
n, et
c. Jasm
i
n
Vel
a
gi
c et
.al
[3]
desi
g
n
ed a
rob
u
st
rob
o
t
w
h
i
c
h was capabl
e
of st
ori
ng
i
t
s
surroun
d d
e
t
a
il
s and generat
e
s a vi
rt
ual
m
a
p so as
t
o
fi
nd a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
65
4 – 6
6
5
65
5
collis
ion-free t
r
ajectory between
the starting configur
ation and the goal configuration in its environm
e
n
t. The
vari
ous s
o
ft
com
put
i
ng
m
e
tho
dol
o
g
i
e
s used fo
r t
h
i
s
pur
pose were
fuz
z
y
l
ogi
c, genet
i
c
al
gori
t
h
m
and t
h
e
Dem
p
ster–Sha
fer t
h
eory
of e
v
i
d
ence. X.J. Ji
ng [
4
]
prop
ose
d
i
n
hi
s wor
k
t
h
at
by
m
odeli
ng t
h
e dy
nam
i
c
process
o
f
th
e in
teracti
o
n
b
e
tween
th
e ro
bo
t an
d
its lo
cal en
v
i
ro
nm
ent
,
we can fo
r
m
u
l
ate a dy
nam
i
c
m
o
ti
on-pl
a
nni
n
g
proble
m
which can then be
transform
e
d
into an optim
ization problem
in the robot’s acceleration space
. The
sol
u
t
i
on t
o
t
h
i
s
pro
b
l
e
m
provi
des an opt
i
m
al
m
o
t
i
on of t
h
e rob
o
t
i
n
t
h
e unk
now
n en
vi
ro
nm
ent
.
G
u
an
-Ch
un
Luh
an
d
W
e
i-Ch
ong
C
h
eng [5
] r
e
i
n
fo
r
c
ed
t
h
e ad
ap
tive lear
n
i
n
g
m
e
ch
an
ism
b
y
co
m
b
in
in
g know
ledg
e
reg
a
rd
i
n
g on
-li
n
e ad
ap
ting
cap
a
b
ilities o
f
i
mmu
n
e
syst
em an
d
ap
p
lied it to
so
m
e
in
tellig
en
t robo
ts. As a
resul
t
,
t
h
e
r
o
b
o
t
i
s
no
w ca
pa
bl
e of t
a
ki
n
g
d
eci
si
ons a
nd m
odi
fy
i
ng i
t
s
p
r
ope
rt
i
e
s. A
rea
l
l
i
f
e case st
ud
y
was
al
so pe
rf
orm
e
d by
co
nsi
d
e
r
i
ng a f
o
od
fo
ra
gi
n
g
w
o
r
k
p
r
o
b
l
e
m
.
Noure
d
d
i
ne O
u
ada
h
e
t
a
l
.
[6]
i
n
t
h
ei
r wo
rk
men
tio
n
e
d th
e
u
s
e
o
f
fu
zzy l
o
g
i
c con
t
ro
llers
in
m
o
b
ile rob
o
ts. Th
ey
u
s
ed two
con
t
ro
llers
to
en
ab
le th
e
m
o
b
ile
robot to m
ove
along a
fi
xed path a
n
d accom
p
lish its s
p
eci
fi
ed tas
k
.
The
te
chni
que
was al
so im
ple
m
ented
on a
car-lik
e ro
bo
t.
Krzy
szto
f Tc
ho
ń
e
t
a
l
.
[7]
deri
ve
d an
ext
e
n
d
ed Ja
cobi
a
n
i
n
vers
e ki
nem
a
t
i
c
s
al
go
ri
t
h
m
by
gene
ral
i
z
i
ng t
h
e ext
e
nde
d J
acobi
a
n
m
e
t
hod f
o
r st
at
i
o
nar
y
m
a
ni
pul
at
or
s and a
p
pl
i
e
d
i
t
t
o
non
h
o
l
o
nom
i
c
m
o
b
ile ro
bo
ts. Th
ey
d
i
v
i
d
e
d
th
e en
tire sp
ace in
to
a
fin
ite
and
an i
n
fi
ni
t
e
regi
on
an
d m
odi
fi
ed t
h
em
t
o
f
o
rm
t
h
e m
a
p for
ex
t
e
nde
d
ki
nem
a
t
i
c
s. The t
r
ut
h
of t
h
i
s
t
ech
ni
q
u
e w
a
s v
e
ri
fi
e
d
by
si
m
u
l
a
t
i
on st
u
d
i
e
s.
Ir
fa
n
Qua
z
i
e
t
a
l
.
[8]
pr
o
p
o
se
d t
h
e use o
f
AVR
s
o
ft
wa
re i
n
m
a
ki
ng e
n
er
gy
m
easuri
ng m
e
t
e
rs for
ho
use
h
ol
d use
.
They
pr
o
g
ram
m
ed the 8
-
bi
t
ATM
e
ga1
6
m
i
croco
n
t
r
ol
l
e
r so t
h
at
m
e
t
e
ri
ng of d
o
m
e
st
i
c
powe
r
cons
um
ed coul
d be
accom
p
lished.
Mike Stilm
a
n
[9] in his
work descri
bed
thre
e algorithm
s
regarding the
unified re
prese
n
t
a
tion
for task s
p
ace
constraints i
n
t
h
e c
onte
x
t of
joint s
p
ace m
o
tion
planning.
After com
p
aris
ons
, the First
-
order
R
e
t
r
act
i
on
was
f
o
u
n
d
t
o
be f
a
st
er t
h
a
n
t
h
e
ot
hers
. L
u
ca
I
o
c
c
hi
a
n
d
Da
ni
el
e Na
rdi
[
10]
st
resse
d
on
l
o
cat
i
ng t
h
e
p
o
s
ition
o
f
a
ro
bo
t in
its environ
m
en
t with
p
r
ecision
as
t
h
e critical ele
m
en
t in
d
e
term
i
n
ing
th
e effici
en
cy in
com
p
l
e
t
i
ng a speci
fi
ed t
a
s
k
a
nd
fo
r t
h
i
s
t
h
e
y
used t
h
e
H
o
ug
h t
r
a
n
sf
o
r
m
fo
r m
a
t
c
hi
ng a geom
et
ri
c ref
e
rence
m
a
p wi
t
h
a rep
r
esent
a
t
i
o
n o
f
r
a
nge i
n
f
o
rm
at
ion ac
q
u
i
r
ed
by
t
h
e ro
bot
’s se
nso
r
s. T
h
i
s
t
echni
que
pr
o
v
ed
usef
ul
i
n
i
n
d
o
o
r
a
r
eas
w
h
ere
t
h
e
r
e a
r
e rest
ri
ct
i
o
ns i
n
m
o
t
i
on.
K
o
o
k
t
ae Lee
e
t
a
l
.
[1
1]
p
r
op
ose
d
vari
ous
sc
hem
e
s f
o
r
calib
r
a
tio
n
o
f
syste
m
at
ic er
r
o
rs an
d
r
e
du
ction o
f
non
-
s
ystematic er
r
o
rs in
a car
-
lik
e-
m
o
b
ile-
r
o
b
o
t
. Th
ey fo
und
t
h
at
sy
st
em
at
i
s
err
o
rs ca
n
be r
e
duce
d
by
co
u
p
l
e
o
f
t
e
st dri
v
es while the non-system
a
tic er
rors ca
n be
re
duced
b
y
u
s
e
o
f
ex
tend
ed k
a
lm
an
filters.
Step
h
e
n
Marslan
d
et
al
.
[
1
2
]
p
r
ov
id
ed
w
ith
an
algo
r
ith
m
t
h
at wo
u
l
d
h
e
l
p
a
m
o
b
ile r
obot in
n
a
v
i
g
a
tion.
Th
rou
g
h
th
is alg
o
rith
m
,
it
wo
u
l
d
b
e
ab
le to
g
e
n
e
rate a
m
a
p
o
f
its lo
cality
b
y
ch
oo
sing
an id
eal lan
d
m
ar
k
as its
refe
rence
poi
nt
. Thi
s
al
g
o
ri
t
h
m
can be used
t
o
m
a
ke
m
a
pping m
echanism
s
m
o
re efficient and
reliable. Ila
n
Zo
har et
al
. [1
3]
prese
n
t
e
d i
n
t
h
ei
r wor
k
a cont
rol
schem
e
fo
r w
h
eel
ed m
obi
l
e
ro
b
o
t
s
w
hos
e
m
odel
i
n
cl
ude
d
bot
h t
h
e ki
ne
m
a
t
i
c
and t
h
e dy
nam
i
c effect
s. Fi
rst
l
y
a cont
r
o
l
l
e
r was
d
e
si
gne
d t
o
t
r
ac
k t
h
e t
r
a
j
ect
o
r
y
of t
h
e
robo
t an
d
th
en
it was e
m
p
l
o
y
ed
in
its co
n
t
ro
l syste
m
so
as to
d
r
iv
e a group
o
f
v
e
h
i
cles in
co
nvo
y. Sim
u
lat
i
o
n
s
and lab e
x
peri
ments were
done to eval
uate
t
h
e e
ffective
n
es
s of the
propos
ed sc
hem
e
.
2.
METHO
D
OL
OGY
To desi
gn a
n
adva
nce
d
sem
i
-aut
om
at
ed Mobi
l
e
R
o
bot
t
h
at
can be cont
rol
l
e
d
by
a
m
i
croc
o
n
t
r
ol
l
e
r
th
is wo
rk
s
on
th
e op
erat
o
r
’s
in
stru
ction
s
. Th
e inpu
t
t
o
m
i
croc
o
n
t
r
ol
l
e
r
c
a
n
be se
nt
t
h
r
o
u
g
h
very
c
o
m
m
on
devi
ces l
i
k
e ce
l
l
u
l
a
r p
h
o
n
e, l
a
pt
o
p
. T
h
ere i
s
al
so p
r
o
v
i
s
i
o
n
fo
r rem
o
t
e
con
t
rol
usi
ng
ra
di
o f
r
eq
ue
ncy
si
gnal
s
.
The s
o
l
e
p
u
r
p
o
s
e of t
h
e w
o
rk
i
s
t
o
b
u
i
l
d
a p
r
ot
ot
y
p
e t
h
at
can be
use
d
t
o
pr
edi
c
t
t
h
e best
m
ode of
ope
rat
i
on
fo
r
cont
rol
o
f
an aut
o
m
a
t
e
d M
obi
l
e
R
obot
. T
h
i
s
M
obi
l
e
R
o
b
o
t
i
s
capabl
e
of car
ry
i
ng a
pers
o
n
or e
qui
val
e
nt
phy
si
cal
l
o
a
d
a
nd m
ove
wi
t
h
a spee
d o
f
ar
o
u
n
d
3km
/
h
r.
A
nd t
h
e m
a
t
e
ri
als t
a
ken a
r
e m
e
nt
i
one
d Ta
bl
e
1. T
h
e
main
ai
m
o
f
desig
n
i
n
g
th
e
Mo
b
ile Robo
t
is to
carry a
person
or an
equ
i
v
a
len
t
ph
ysical lo
ad, th
at
h
a
v
i
ng
m
u
l
tip
le co
n
t
ro
llin
g
system
w
ith
a
f
acto
r
of
saf
e
ty
o
f
2
or
m
o
r
e
. App
a
ren
t
sub
s
tan
tial lo
ad
of
150
kg
along
wi
t
h
i
t
s
o
w
n
wei
g
ht
was as
sum
e
d t
o
be a
ppl
i
e
d
on
i
t
.
T
o
obt
ai
n t
h
i
s
t
h
e m
a
t
e
ri
al
us
ed s
h
oul
d
ha
v
e
a
hi
g
h
t
e
nsi
l
e
st
ren
g
t
h
a
n
d
ben
d
i
n
g
st
re
ngt
h as
w
e
l
l
as cr
us
hi
n
g
st
re
ngt
h.
The
st
ruct
u
r
e
o
f
M
obi
l
e
R
o
b
o
t
m
u
st
be
st
abl
e
,
bal
a
nce
d
,
vi
b
r
at
i
o
n
fre
e an
d l
i
g
ht
. T
h
e m
o
t
o
r sh
o
u
l
d
be ca
pa
bl
e
of
pr
o
v
i
d
i
n
g
nece
ssary
st
art
i
n
g a
s
wel
l
as the running
and
bra
k
ing torques to
provide neces
sary
m
o
tion to the
Robo
t. A st
rong and capa
b
le
wheel is
t
o
be use
d
t
o
s
u
st
ai
n t
h
e l
o
a
d
and
havi
ng a
p
e
rfect
fri
ct
i
o
n f
o
r
go
o
d
co
nt
r
o
l
and d
r
i
v
i
n
g.
A rel
i
a
bl
e bat
t
ery
fo
r
ener
gy
s
o
u
r
ce
i
s
al
so re
q
u
i
r
e
d
t
h
at
ca
n
del
i
v
er t
h
e
req
u
i
r
e
d
am
ount
of
p
o
we
r
fo
r a l
o
n
g
peri
o
d
o
f
t
i
m
e.
A
per
f
ect
l
o
gi
c i
s
t
o
be
pr
o
g
ram
m
ed o
n
t
h
e M
i
croc
o
n
t
r
ol
l
e
rs
t
o
have
a
fi
rm
cont
rol
of
t
h
e
R
o
b
o
t
.
The
el
ect
ro
ni
c
com
pone
nts s
h
oul
d
be held s
ecurely in
posi
tions
of t
h
e R
o
bot s
o
t
h
at a perfect
worki
ng condition is c
r
eated
wi
t
h
o
u
t
dam
a
ge
an
d heat
.
Thi
s
i
s
t
h
e m
a
in s
k
el
et
o
n
of t
h
e M
obi
l
e
R
o
b
o
t
an
d t
h
u
s
s
h
o
u
l
d
be
gi
ve
n t
h
e m
o
st
pri
o
ri
t
y
. I
r
o
n
(M
S
an
g
l
e 30
) is u
s
ed
as to
o
b
t
ain req
u
i
red
streng
th
and
stab
ility. Th
e lo
wer part o
f
b
a
se is a sq
u
a
re o
f
sid
e
7
0
c
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
An Effective Development
and A
n
alysis of
a Mobile Robot
(
D
r. B.
B. C
h
ou
dh
ury)
65
6
and
3
0
m
m
t
h
i
c
kne
ss. T
h
e
up
per
part
i
s
a s
h
ape o
f
pa
ral
l
e
l
o
g
r
am
havi
n
g
paral
l
e
l
si
des
o
f
7
0
cm
, 40cm
and t
h
e
non-pa
rallel sides
of 43cm
each as
shown in figure
1.
Tabl
e
1. M
a
t
e
r
i
al
s R
e
qui
re
d
Sl. No.
Co
m
ponents (Ha
r
dware)
Quantity
1 Chassis
M
S
-
3
0
m
m
x
5
m
m angle,
30 ft.
AL
UM
I
N
I
U
M sheet-
3
m
m
thickness, 5ft x 3ft
-
2 Wheels
M
A
TE
RI
AL
:
HI
GH
D
E
N
S
IT
Y
PO
LY
M
E
R
15cm
diam
eter
, 4 cm
thickness
2
3
FREE
WH
EEL
7cm
diam
eter
: 2 in nu
m
b
er
.
2
4
DC Stepper
M
o
tor
with
M
O
SFE
T an
d Motor Drive
r
24V,
250r
p
m
, 300kg load bear
ing capacity
2
5 Dc
Rechargeable
Battery
12V,
35A
1
6
Dc Char
ging Sy
stem
(for
the batter
i
es
)
3
7 Driver
Chai
r
1
Electronic Co
m
p
o
n
ents
Softwar
e
Co
m
ponents
Har
d
ware Co
m
ponents
1
AVR Progra
m
m
e
r
Kit
ATM
E
GA
32
2 SI
NAPROG
RF
m
odule
XICTE
DTMF
DRI
V
ER
3 PL
232
Dr
iver
Z
i
gBee
m
odule
4 USBASP
USB
pr
ogr
am
m
e
r
Fi
gu
re 1.
Di
m
e
nsi
o
nal
vi
ew o
f
m
obi
l
e
R
o
b
o
t
Each pa
rts of
base we
re cut and
polis
hed s
o
that
each part
m
a
tches perfectly. A butt joint technique
is used to provide a perfect plane sha
p
e of t
h
e base
.
The
n
part
s we
re ass
e
m
b
l
e
d t
oget
h
er by
wel
d
i
n
g
at
t
h
e
joi
n
t
s
by
usi
n
g
2.5m
m
wel
d
ro
d wi
t
h
com
m
on arc wel
d
i
ng m
e
t
hod. T
h
e Two pa
ral
l
e
l
beam
s i
n
m
i
ddl
e of
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
65
4 – 6
6
5
65
7
f
r
a
m
e
p
r
o
v
i
d
e
th
e su
ppo
r
t
t
o
th
e b
a
se
p
l
ywo
o
d
,
ch
ai
r
an
d b
a
tter
y
.
Sep
a
rate b
a
r suppo
r
t
s ho
ld th
e
b
a
tter
y
in
p
o
s
ition
firm
ly
. All th
e p
a
rts
weld
ed
b
y
sing
le sid
e
bu
tt jo
in
t.
Th
e slag
s were rem
o
v
e
d
an
d th
e
p
a
rt
s were
pol
i
s
hed
.
Tw
o
cl
am
ps of
10
c
m
have b
een
w
e
l
d
ed
on
b
o
t
h
t
h
e si
des at
a
di
st
ance o
f
1
0
cm
fr
om
t
h
e back
si
de
of the fram
e.
Motors a
r
e pla
ced in
bet
w
een
t
h
e cl
am
ps. R
u
b
b
e
r
pac
k
i
n
g l
a
y
e
r of 5m
m
pr
o
v
i
d
es t
h
e n
ecessary
f
r
i
ctio
n to ho
ld th
e m
o
to
r and pr
ov
id
es
d
a
mp
ing
.
Two ho
l
e
s of
6
mm
d
i
ameter
w
e
r
e
bor
ed on squ
a
r
e
p
a
r
t
of
cl
am
ps. Tw
o st
ri
ps
of
5cm
X
15cm
wi
t
h
t
w
o
h
o
l
e
s o
f
6m
m
at
14cm
di
st
an
ce we
re m
a
de and
al
i
gne
d
wi
t
h
t
h
e
cla
m
p
to
f
i
x
t
h
e m
o
to
r
s
. The p
a
ck
ing
str
i
p
s
o
f
3
c
m
X
2
c
m
X
0
.
5
c
m also
u
s
ed
to
o
b
t
ain a
g
ood m
o
to
r
clearance from
the ground.
Th
e selectio
n
o
f
th
e m
o
to
rs
is b
a
sed
on
the d
e
sired
lo
ad to
b
e
app
lied
o
n
t
h
e Mob
ile Ro
bo
t. Th
e
av
erag
e lo
ad
is tak
e
n
to
b
e
40
0kg
. Th
e actual wo
rk
ing
lo
ad
app
lied
is tak
e
n
is an
av
erag
e of 200
kg
.
Hen
ce
two
m
o
to
rs each
o
f
300
kg-cm lo
ad
b
eari
n
g cap
acity m
o
to
r
have
been used. T
h
e m
o
tor is
3cm
in diam
eter a
n
d
i
t
s
hei
ght
i
s
8
c
m
.
It
has an ang
u
l
a
r s
p
eed
of
25
0 r
p
m
an
d p
r
o
v
i
d
es a c
onst
a
nt
t
o
r
que
of 3
0
0
k
g
-cm
.
Th
e
gear
b
ox i
s
a cub
o
i
d
ha
vi
n
g
di
m
e
nsi
ons o
f
12cm
X 8cm
X 3cm
.
A sk
et
ch of t
h
e m
o
t
o
r i
s
gi
ve
n be
l
o
w i
n
figu
re
2
.
Each
m
o
to
r weigh
e
d 1
.
28
k
g
. M
o
tors
were h
e
l
d
at
th
eir
po
sitio
n
firm
l
y
with
rubb
er p
a
ck
ing
.
R
u
bb
er
rest
ri
ct
s je
r
k
,
v
i
brat
i
o
n a
nd
p
r
ovi
des s
u
s
p
en
s
i
on
fo
r t
h
e m
o
tor
.
T
h
e m
o
t
o
r
has a
rat
i
n
g o
f
24
V,
6
0
A
m
p
. 12
V,
35
Am
p cur
r
en
t
i
s
pro
v
i
d
e
d
fr
om
bat
t
e
ry
used co
nsi
d
eri
n
g t
h
e ease
of c
o
n
t
rol
l
i
ng i
t
s
s
p
e
e
d. B
a
t
t
e
ry
use
d
f
o
r
Mo
b
ile Rob
o
t
is d
r
y cell rech
arg
e
ab
le b
a
ttery. Th
e m
o
to
r r
o
t
a
t
e
s at
25
0r
pm
at
rat
e
d spee
d. M
o
t
o
r
shaft
i
s
m
a
de up
o
f
hi
gh
-s
peed
st
eel
havi
ng
1cm
radi
us a
n
d 3cm
l
e
ngt
h
.
A
key
way
i
s
b
o
re
d
t
o
h
o
l
d
t
h
e
w
h
eel
i
n
p
o
s
ition
o
n
the sh
aft.
Ho
les o
f
3
mm d
i
a
m
e
t
er and
2
m
m
d
e
p
t
h
are m
a
d
e
o
n
m
o
to
r to
ho
ld
th
e set screw i
n
p
o
s
ition
.
Set
p
i
n
are also pro
v
id
ed
t
o
k
eep the m
o
to
r in
po
sitio
n
.
A
groun
d
clearan
ce
of
1
2
c
m
is
m
a
in
tain
ed
.
Fig
u
r
e
2
.
D
C
Mo
to
r w
ith g
e
ar
box
Vehi
cl
e fl
oo
r i
s
m
a
de up o
f
pl
y
w
o
o
d
. F
o
r
rect
an
gul
a
r
pi
e
ces, di
m
e
nsi
o
n
s
are 7
0
cm
X 21cm
.
The
t
r
apezi
um
was
cut
i
n
di
m
e
nsi
ons
o
f
70cm
X
28cm
.
Th
e
paral
l
e
l
si
des
were m
a
i
n
t
a
i
n
ed at
70cm
an
d
40cm
,
whi
l
e
t
h
e
ot
he
r t
w
o si
des
w
e
re
43cm
l
o
n
g
.
R
ect
an
gul
a
r
part
s
we
re m
a
de
of
5m
m
t
h
i
c
k pl
y
w
o
o
d
whi
l
e
t
r
apezi
um
was
m
a
de from
10m
m
t
h
i
c
k pl
y
w
o
o
d
.
T
h
e f
r
o
n
t
pa
rt
o
f
fl
oo
r
pr
o
v
i
d
e
d
wi
t
h
1cm
t
h
i
c
kne
ss
p
l
ywood
to
resist ex
tra fo
re du
ri
n
g
a
p
e
rso
n
g
e
ttin
g
i
n
to
t
h
e Mob
ile Rob
o
t
.
Ex
t
r
a lin
k is p
r
ov
id
ed
on
m
a
in
b
a
se t
o
su
ppo
r
t
th
e
w
e
igh
t
of
p
l
yw
ood
.
Th
e
Mo
b
ile Robo
t
f
l
oo
r
t
h
us for
m
s a
b
e
st p
l
atfo
rm
to
car
r
y
a per
s
on
.
Wheel design
Rear wheel:
At
rat
e
d
vol
t
a
g
e
o
f
24
V,
Th
e sp
eed
o
f
m
o
to
r
N
= 250 rp
m
.
The diam
eter
of
wheel D= 0.165
m
H
e
n
c
e sp
eed of
Mob
ile Robot is v
=
π
DN/
60
=
π
X
0
.
16
5 X
2
5
0
/
60
=2.159
m
/
s
=7.77km
/
hr
Fo
r a 16
.5
cm
w
h
eel,
sp
eed
of
Mob
ile Ro
bot is 7
.
77k
m
/
h
r
. Th
e
w
i
d
t
h
of
th
e wh
eel is 3c
m
h
a
v
i
ng
hole
diam
eter of 1.6cm
at the center. T
w
o
5mm 45° set
k
e
y screw are u
s
ed
to ho
ld th
e
wh
eel tigh
tly
with
ou
t
any
vi
brat
i
o
n.
The c
r
u
s
hi
ng
l
o
ad
o
f
w
h
eel
c
hos
en
i
s
1
K
N.
The
w
h
eel
i
s
m
a
de u
p
of
hi
g
h
den
s
i
t
y
pol
y
m
er.
V
type tire track
were
use
d
around the
wheel for m
a
king th
e g
r
i
p
of Mob
ile Ro
bo
t stro
nger. Th
e leng
th
o
f
tire
u
s
ed
is 53
cm
a
n
d
wid
t
h
of
3
.
5
c
m
.
W
e
i
g
h
t
of wh
eel is
1.08k
g
each
.
Wh
eels are fitted
in
p
o
s
ition
su
ch th
at th
e
clear
an
ce
b
e
tween
g
r
ou
nd
and
Mob
ile Robot b
a
se is
12
cm
.
Mo
to
r
Shaf
t
Gearbox
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
An Effective Development
and A
n
alysis of
a Mobile Robot
(
D
r. B.
B. C
h
ou
dh
ury)
65
8
Front wheel
Two
free wh
eels are u
s
ed
in th
e Mob
ile Ro
bo
t to
pr
o
v
i
d
e pr
o
p
er c
o
nt
r
o
l
o
f
i
t
by
usi
ng t
w
o
rea
r
wheels
.
The
di
a
m
eter of
whe
e
l is 4 cm
. The wheel is
c
o
nnected with
a
shaft
t
o
w
h
eel
hol
der
.
Wheel
hol
der
has a beari
ng
m
echani
s
m
whi
c
h pr
ovi
des a
x
i
a
l
rot
a
t
i
on a
nd m
a
ki
ng t
h
e
wheel
t
o
ori
e
nt
i
n
desi
re
d d
i
rect
i
on.
Greasi
ng was do
ne pr
op
erl
y
t
o
pr
o
v
i
d
e
sm
oot
h
o
p
e
r
at
i
o
n
of wheel
. The
angl
e of rot
a
t
i
on of fr
ont
w
h
eel
i
s
kept a
b
out
52°.
W
h
eels are
fitted to t
h
e m
a
in base th
rough two
10M bolts.
Hol
d
er
piece
have welde
d
in
frame
t
o
hol
d t
h
e w
h
eel
s i
n
posi
t
i
o
n
.
The cl
eara
n
ce
of M
o
bi
l
e
R
obot
ba
se fr
om
gr
o
u
n
d
was m
a
i
n
t
a
i
n
ed
12c
m
.
A t
i
e
ro
d
of
di
m
e
nsi
ons
4
0
cm
X3cm
X0.2cm
i
s
con
n
ect
ed
bet
w
een t
h
e t
w
o
fr
ont
whe
e
l
s
. T
h
e t
i
e
ro
d i
s
bol
t
e
d
lo
o
s
ely with
a M6
bo
lt at th
e u
p
p
e
r cov
e
r. Prop
er
cleara
n
ce bet
w
een t
h
e front wheel
tires and the
nut is
main
tain
ed
. Tie rod
p
r
ov
id
es
a lin
er fun
c
tion
a
l relatio
n
bet
w
een the
front
wheels.
Henc
e the angle turned
by
o
n
e
o
f
t
h
e wh
eel is eq
u
i
v
a
len
t
to
th
e ang
l
e tu
rn
ed
b
y
th
e
o
t
her wh
eel. Th
is
h
e
lp
s to
ob
tain d
i
rectio
n
a
l stab
ility
and the
robot is able to m
ove in
a
single dire
ction uni
form
ly. Seat of the
Mobile
Robot
is placed i
n
m
i
ddle
of
the Mobile Robot
base
. Seat
is ha
ving a
di
mension 40
cm X
40cm
. It is placed 52
cm from
ground
level.
H
e
igh
t
of
b
a
ck sid
e
is 10
1
c
m
f
r
o
m
g
r
o
und
.
Fou
r
L clam
p
h
a
s b
e
en
w
ound
w
ith
b
e
n
d
i
n
g
w
i
r
e
ar
e attach
ed
t
o
l
e
gs
of c
h
ai
r
.
3m
m
di
am
et
er h
o
l
e
s
were
m
a
de
on
cl
am
ps an
d
hol
der
s
t
o
set
t
h
e c
h
ai
r
fi
rm
l
y
wi
t
h
M
obi
l
e
Ro
bo
t b
a
se.
7M b
o
lts are u
s
ed
to
ho
ld
th
e
ch
air in
po
sition
.
Ex
tra fo
am
with
silk
cov
e
r is p
r
ov
id
ed
to
seat th
at
hel
p
s
com
f
ort
seat
i
ng.
Ga
pe
di
st
ance
fr
om
das
h
b
o
a
r
d
i
s
kept
3
5
cm
enabl
i
n
g
u
s
er t
o
g
e
t
i
n
an
d
o
u
t
e
a
si
l
y
.
C
h
ai
r i
s
m
a
de up
o
f
s
qua
re
p
i
pe o
f
c
r
oss
se
ct
i
on
1.
5cm
X 1.
5cm
.
The cr
ushi
n
g
st
re
ngt
h
of si
m
i
l
a
r chai
r i
s
fo
u
nd t
o
be
5
KN
. T
h
e bat
t
e
r
y
used i
n
M
o
bi
l
e
R
o
b
o
t
i
s
a g
e
neral
ca
r bat
t
ery
m
a
nufact
ur
ed by
E
x
i
d
e
.
V
o
l
t
a
ge
su
pp
lied
b
y
it is 12
vo
lts and
t
h
e curren
t is
35
am
p
e
res. The b
a
ttery is 20
cm lo
n
g
, 15
cm
wid
e
and
30
cm h
i
gh
.
It
i
s
kept
at
a
hei
g
ht
35cm
from
grou
nd
. It
i
s
fi
xed t
o
M
o
b
i
l
e
R
obot
base
wi
t
h
3 g
u
i
d
e
d
pi
ns an
d a si
de
. It
i
s
placed
on right
side
at a distance of
30
cm
from
back si
de
of fram
e.
W
e
ight
of battery is
11.29kg.
It is
placed
in
th
is
po
sitio
n su
ch
t
h
at th
e
who
l
e
weigh
t
is d
i
stri
b
u
t
ed
p
r
o
p
e
rly on
wh
eels.
Tw
o M
S
angl
e
30
of
hei
g
ht
4
5
cm
were wel
d
ed t
o
t
h
e M
o
bi
l
e
R
o
b
o
t
bas
e
. A t
op
paral
l
el
M
S
angl
e3
0
of
5
0
cm
was
j
o
i
n
e
d
t
o
m
a
ke a f
r
am
e for
f
r
o
n
t
dash
boa
r
d
.
Tw
o
3cm
h
i
nge
cl
am
p were
used
t
o
h
o
l
d
t
h
e
das
h
b
o
ar
d.
Da
shb
o
a
r
d
i
s
m
a
de
u
p
of
0
.
5cm
t
h
i
c
k pl
y
w
o
o
d
ha
vi
n
g
di
m
e
nsi
ons
48cm
X
3
0
c
m
. The
micro
c
on
tro
ller bo
ard
is attach
ed
t
o
it b
y
m
e
an
s of sc
re
ws
. The da
sh
boa
r
d
has a si
ngl
e
deg
r
ee o
f
f
r
ee
d
o
m
of
rot
a
t
i
o
n a
b
o
u
t
brea
dt
h
si
de
. E
l
ect
roni
c c
o
m
pone
nt
s a
r
e
pl
ac
e o
n
das
h
b
o
a
r
d
an
d
fl
o
o
r
o
f
M
obi
l
e
R
o
b
o
t
bel
o
w
the seat. Plastic foam
of 1.5c
m
thickness is
used t
o
hold t
h
e electronic c
o
m
pone
nts in
position
without any
vi
b
r
at
i
o
n
an
d
j
e
rk
. El
ect
r
oni
c
com
pone
nt
s
r
e
qui
red m
o
re s
a
fet
y
an
d care
f
ul
ha
n
d
l
i
n
g
.
P
C
B
boa
rd
s are
bol
t
e
d
to
a p
l
astic b
o
a
rd
of d
i
m
e
n
s
io
n
1
5
m
m
X 3
0
mm X 0
.
5
mm
.
Plastic b
o
a
rd
was fitted
to d
a
shb
o
a
rd
b
y
4
3
mm
head
an
d
3.
5c
m
l
ong
scre
ws
. B
a
t
t
e
ry
char
g
e
r,
rel
a
y
board and MOSFET
s
are attach
ed
to
th
e M
o
b
ile
Ro
bo
t
base
fi
rm
ly
. The M
o
bi
l
e
R
o
b
o
t
b
o
d
y
i
s
m
a
d
e
u
p
o
f
0.
5m
m t
h
i
c
k
n
ess al
u
m
i
num
sheet
and
1.
5cm
squa
re i
r
o
n
pi
pes
.
The s
h
e
e
t
used f
o
r t
h
i
s
pu
rp
ose ha
s a 16
0cm
l
e
ngt
h
75cm
wi
dt
h. A
fram
e
of ro
of
i
s
m
a
de up o
f
5m
m
d
i
am
e
t
er iron
ro
d
s
.
Alu
m
in
u
m
sh
eet is riv
e
ted
at each
si
de
with
6
m
m
h
e
a
d
ri
v
e
t. Fou
r
p
i
p
e
s
were fitted
firm
l
y
to
th
e Mob
ile
Ro
bo
t
b
a
se aro
und
the
5
m
m th
ickn
ess ro
ds. Th
e sh
eet is
b
e
n
t
aro
und
t
h
e p
i
pes an
d cl
a
m
p
e
d
.
Fro
n
t
si
de o
f
M
obi
l
e
R
o
b
o
t
head i
s
m
a
de up o
f
sheet
o
f
.5m
m
t
h
i
c
kn
ess sheet
and
76cm
X 45cm
cross
sect
i
on.
Hea
d
of M
obi
l
e
R
o
b
o
t
i
s
l
o
cat
ed at
49cm
from
gr
ou
n
d
.
Hei
g
ht
o
f
hea
d
i
s
3
7
cm
havi
ng a t
h
i
c
k
n
ess
1
1
c
m
.
th
e
h
e
ad is filled
with
plastic fo
am
as filler
m
a
te
rial. Th
e sh
ap
e
o
f
fro
n
t
h
e
ad
is shown in
figu
re 3.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
65
4 – 6
6
5
65
9
Fi
gu
re 3.
Si
de
vi
ew o
f
M
o
bi
l
e
R
o
bot
Fram
e o
f
M
o
bile Ro
bo
t is
p
a
in
ted
with
b
l
ack
co
lou
r
o
il
p
a
in
t. Plywo
od used
i
n
M
o
b
ile
Ro
bo
t fl
o
o
r
i
s
red
d
i
s
h y
e
l
l
o
w
.
B
l
ue
col
o
ur
seat
a
n
d
el
ect
ro
ni
c com
pone
nt
s e
n
hanc
es t
h
e
bea
u
t
y
of
M
o
bi
l
e
R
o
bot
t
o
a
great
l
e
vel
.
Fr
ont
si
de i
s
l
o
w
e
red by
5cm
t
h
an t
h
e r
ear side. It increases aerodynam
ic r
e
sistance and i
m
prove
th
e lo
ok
s. To
p
p
a
rt is
m
a
d
e
u
p
o
f
wh
ite co
l
o
ured
alu
m
in
u
m
sh
eet an
d
it
co
m
p
letes th
e
Mo
b
ile Ro
bo
t. Hen
c
e
th
e ov
erall lo
ok
o
f
Mob
ile Rob
o
t
is m
o
re attractiv
e.
Fi
gu
re
4.
Si
de
and
F
r
o
n
t
vi
ew
o
f
t
h
e
R
o
bot
AVR
trai
n
e
r
bo
ard
con
s
ists
o
f
a m
i
cro
c
ontro
ller t
h
at receiv
es th
e inp
u
t sig
n
a
l, pro
c
esses it and
p
r
ov
id
es ou
tput wh
ich
con
t
rols th
e Mo
b
ile Ro
bo
t. Th
e m
i
cro
c
on
tro
ller
used
is ATMEGA32
. It is a 3
2
b
i
t
m
i
croco
n
t
r
ol
l
e
r ha
vi
n
g
4
0
pi
ns.
The
va
ri
o
u
s
p
o
rt
s a
r
e
na
m
e
d as P
O
R
T
A,
POR
T
B
,
P
O
R
T
C
a
n
d
P
O
R
T
D
respect
i
v
el
y
f
o
r pi
n
0-
7, 1
6
-
23
, 2
4
-
3
1 an
d
32
-4
0. Pi
n 8
-
1
5
i
s
use
d
fo
r p
o
we
r, g
r
ou
nd
, an
d ena
b
l
e
m
e
nt
pu
r
poses
of t
h
e
m
i
crocont
rol
l
er IC
. T
h
e m
i
croc
o
n
t
r
ol
l
e
r
po
ssesses a R
A
M
t
h
at
st
ores t
h
e
l
ogi
c p
r
o
g
r
a
m
s
. The
program
s
stay in the m
e
m
o
ry till a new
program
replaces
it in the m
i
crocont
roller m
e
m
o
ry. All the
ports a
r
e
si
m
ilar an
d
thus u
s
e an
y of the
m
as in
pu
t or
o
u
t
p
u
t
term
in
als in
th
e circu
it. Ho
wev
e
r if
on
e port is cho
s
en
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
An Effective Development
and A
n
alysis of
a Mobile Robot
(
D
r. B.
B. C
h
ou
dh
ury)
66
0
i
n
p
u
t
t
h
en ha
ve t
o
use t
h
e
ot
hers as o
u
t
put
. Th
e sam
e
port
can
’t
be use
d
as b
o
t
h
i
n
put
an
d
out
p
u
t
sim
u
ltaneously
. Afte
r progra
m
is loaded
int
o
the m
i
cro controller succes
sfu
lly, inputs a
nd
outputs can
then
be
connected t
o
microcon
tro
ller th
ro
ugh
an
y
o
f
th
e
p
o
rts.
Micro
c
on
tro
ller p
r
o
cesses the sig
n
a
l and
giv
e
s th
e
desi
re
d o
u
t
p
ut
i
n
cor
r
es
po
n
d
i
ng
po
rt
/
s
. It
al
so has
pr
o
v
i
s
i
ons
fo
r di
s
p
l
a
y
i
ng t
h
e
out
put
on LC
D di
s
p
l
a
y
an
d
LED b
u
l
b
s. Si
gnal
s
a
r
e di
scr
e
t
e
i
n
nat
u
re
w
i
t
h
up
per sat
u
r
a
t
i
on set
at
5V
and l
o
we
r l
i
m
i
t at
0V re
prese
n
t
e
d by
logic 1
or 0
re
spectively. These signal val
u
es are then
tran
sferred
to
th
e
m
o
to
r driv
er
who
s
e
o
u
t
p
u
t
en
ab
les
th
e m
o
tio
n
o
f
th
e m
o
to
rs and
h
e
n
c
e th
e Mobile Ro
bo
t.
Th
e d
i
sp
lay u
s
ed
here
is 16
X2
Liq
u
i
d
Crystal Disp
lay
(LCD
). It s
h
o
w
s 1
6
c
h
aracte
r
s pe
r line in t
w
o
ro
ws.
A
st
an
d
a
rd
m
a
trix
o
f
n
u
m
b
e
rs exists wh
ich
allows th
e
ope
rat
o
r t
o
c
o
m
m
uni
cat
e wi
t
h
t
h
e
vast
m
a
jori
t
y
of
LC
Ds
rega
rdl
e
ss
of
t
h
ei
r m
a
nufact
ure
r
. T
h
e st
an
dar
d
i
s
refe
rre
d to as
HD44780U,
which is
the
na
me of t
h
e c
o
ntroller c
h
ip which
receive
s
data from
an
external
sou
r
ce.
The
At
m
e
ga32 m
i
cro
c
ont
rol
l
e
r c
o
m
m
uni
cat
es di
rect
l
y
wi
t
h
t
h
e LC
D t
h
ro
u
gh
a separat
e
set
of
pi
n
s
fi
xe
d as i
t
s
LC
D o
u
t
p
ut
s. T
h
e
m
oder
n
44
7
8
0
st
anda
rd
re
qui
res 3 c
o
nt
r
o
l
l
i
n
es a
nd
4 o
r
8
I/
O l
i
n
es
fo
r t
h
e dat
a
bus
. I
n
t
h
e con
cerne
d case, t
h
e 8-bi
t
m
ode of LC
D i
s
used
by
usi
n
g 8-
bi
t
dat
a
bus i
n
or
d
e
r t
o
wi
de
n t
h
e
dat
a
capacity. USBasp is a
USB
programm
er for
Atm
e
l AVR
mi
cro
c
on
tro
ller
circu
its. It
con
s
ists o
f
ATM
e
g
a
48,
ATM
e
ga
8
8
o
r
an ATM
e
ga8 a
nd a co
u
p
l
e
of
passi
ve c
o
m
pone
nt
s. T
h
e p
r
og
ram
m
er uses a USB
a
sp d
r
i
v
er t
o
lo
ad
t
h
e
error
‐
free
compiled
p
r
og
ram
o
n
t
o
th
e m
i
cro
c
o
n
t
ro
ller circu
it. On
ly th
en th
e ci
rcu
it is cap
a
b
l
e o
f
p
e
rform
i
n
g
task
s d
e
si
red
o
f
it. Th
e USBasp
d
r
i
v
er is
a freeware av
ailab
l
e o
n
th
e
web. It works un
d
e
r mu
ltip
le
pl
at
fo
rm
s l
i
k
e Li
nu
x, M
ac
O
S
an
d
W
i
n
d
o
w
s an
d P
r
o
g
r
am
m
i
ng spee
d i
s
up
t
o
5
kb
ps.
Here a
2 c
h
a
n
n
e
l
rel
a
y
boa
r
d
has bee
n
used w
h
i
c
h
g
e
t
s
enabl
e
d wi
t
h
t
h
e ap
pl
i
cat
ion
of a 5
V
su
ppl
y
acr
oss i
t
s
i
nput
t
e
rm
i
n
als. It
i
s
u
s
ed
to
con
v
e
rt th
e en
erg
y
of th
e 1
2
V b
a
ttery (wh
i
ch
is requ
ired
to
m
o
v
e
th
e
m
o
to
rs) to
an
app
r
op
riate lev
e
l
so as t
o
m
eet
the low
voltage
requirem
ents of t
h
e PW
M
ci
rcui
t
(
w
hi
c
h
ge
nerat
e
s t
h
e si
g
n
al
s f
o
r m
o
t
i
o
n
of t
h
e
m
o
to
rs). Th
e b
o
a
rd
u
s
es
h
i
gh
qu
ality relay
s
, wh
ich
are cap
a
b
l
e
o
f
h
a
ndlin
g
a m
a
x
i
m
u
m o
f
40
A/
2
4
V
DC
du
ri
n
g
t
r
a
n
si
en
t
di
st
ur
bance
s
.
Each rel
a
y
has
al
l
t
h
ree con
n
ect
i
ons i
.
e. C
o
m
m
on, O
p
en a
nd C
l
o
s
e b
r
o
u
ght
out
to
3
p
i
n
term
in
als wh
ich
are
weld
ed
to
p
r
i
n
ted
circu
it bo
ard. Th
e
bo
ard
h
a
s a LED to
sh
ow th
e
statu
s
o
f
t
h
e
relay (ON/
OFF). T
h
e board
can accept inpu
ts within a wi
de ra
nge
of vol
t
ages
from
4V to 12V. Power
inputs
and
rel
a
y
co
nt
rol
si
g
n
al
s a
r
e
br
o
u
g
h
t
t
o
c
o
r
r
esp
o
ndi
ng t
e
r
m
i
n
al
pi
ns o
n
t
h
e b
o
ar
d.
O
u
t
put
of
2
4
V i
s
dra
w
n
fr
om
out
put
pi
n t
e
rm
i
n
al
s
.
This relay board is res
p
onsi
b
l
e
for a
nose
free operation
of the e
n
tire ass
e
m
b
ly
o
w
i
n
g to
t
h
e mag
n
e
tic cou
p
ling
p
r
esen
t in it
wh
ich
elim
in
at
es an
y im
b
a
lan
ce wh
en fou
n
d
o
n
its bo
th sid
e
s.
A bat
t
e
ry
i
s
u
s
ed t
o
s
u
ppl
y
po
we
r t
o
bot
h t
h
e
ro
b
o
t
and t
h
e el
ect
ro
ni
c ci
rcui
t
r
y
.
A 1
2
V
,
3
5
A
au
to
m
o
b
ile car b
a
ttery is
u
s
ed
to
d
r
iv
e th
e
robo
t. Its
ch
arg
i
ng
is
do
n
e
by a 4A
D
C
char
g
e
r
w
ith
i
n
pu
t of
a
2
30V
, 50H
z sup
p
l
y. Th
r
ee 6V
, 3A
dr
y cell
r
ech
arg
e
ab
le b
a
tteries are connected in se
ries to
su
pp
ly p
o
wer t
o
microcontrolle
r circ
uit. They
are c
h
arge
d
by a pa
ra
llel 175m
A charge
r m
u
ch sim
i
la
r to a cell
u
lar phone
charging syste
m
. The charge
rs are a
ttach
ed to
th
e Mob
ile Ro
bo
t shown in
figu
re
4
and
h
e
n
ce the Mo
b
ile
Robot ca
n
be c
h
arge
d at a
n
y place whe
r
e
v
er proper supplies
can be provide
d
.
To c
ont
r
o
l
t
h
e
m
o
t
i
on o
f
t
h
e
ro
b
o
t
,
re
qui
re
d si
g
n
al
s m
a
y be gi
ven t
h
r
o
ug
h a
n
y
o
f
t
h
e fol
l
o
wi
n
g
devi
ces:
i.
Cellu
lar p
hon
es:
A
n
y cellu
lar
ph
on
e w
ith
a 3.5
mm au
d
i
o
j
a
ck
ou
tpu
t
can be used as the input de
vice for the Mobil
e
R
o
b
o
t
.
T
h
e
ke
y
t
one
of t
h
e
p
h
o
n
e s
h
oul
d be
st
anda
rd
o
n
e a
nd
ke
pt
o
n
at
h
i
ghest
l
e
vel
du
ri
n
g
i
t
s
i
n
t
e
rfac
e
wi
t
h
th
e Mob
ile Rob
o
t
i
n
o
r
d
e
r to
g
e
t th
e
b
e
st
resu
lts.
ii. Lap
t
op
:
W
i
nd
ow
s op
erated
(98
o
n
w
a
r
d
s)
lap
t
op
w
ith
X
-
CTU
so
ft
ware in
stalled
in
it can
b
e
u
s
ed
as inp
u
t
devi
ce f
o
r t
h
e
M
obi
l
e
R
o
b
o
t
.
The si
g
n
al
s
are sent
t
h
ro
u
gh
vari
ou
s ke
y
s
set
befo
re
as per t
h
e
pr
o
g
ram
t
o
per
f
o
r
m
vari
o
u
s m
ovem
e
nt
s of t
h
e r
o
bot
enabl
i
n
g t
h
e
u
s
er t
o
co
nt
r
o
l
i
t
from
a di
st
ance. Is t
h
i
s
m
ode
of
ope
rat
i
o
n t
h
e
r
e
i
s
n
o
p
nee
d
of
a
hum
an
bei
n
g t
o
si
t
i
n
si
de
t
h
e
robot to dri
v
e it along t
h
e
route as
with t
h
e case
o
f
a cellu
lar pho
n
e
. Thu
s
, th
is
m
o
d
e
h
a
s v
a
st
sco
p
e
of wo
rk in
v
a
riou
s practical scen
arios wh
ere it is d
i
fficu
lt
for a h
u
m
an
b
e
in
g
to
go
ph
ysically
in
o
r
d
e
r to
co
m
p
lete a
t
a
sk
.
W
e
can
sim
p
l
y
en
g
a
g
e
th
e robo
t an
d
gu
id
e it
all the way a
nd it can
be
progra
mm
ed acco
rdingly s
o
as
to
perform
the job.
iii. RF con
t
ro
l
rem
o
te:
A
p
r
og
ramm
a
b
le RF con
t
rol rem
o
te is req
u
i
red to
op
erate th
e RF con
t
ro
l system
.
Th
e
v
a
riou
s
m
o
v
e
m
e
n
t
s can
b
e
set
on
t
h
e jo
ystick
t
h
ro
ug
h appr
opr
iate pr
og
r
a
mm
in
g
an
d th
e u
s
er
can
u
s
e t
h
e
r
e
mo
te to
cont
rol t
h
e robot from
a dista
n
ce.
He
re also
no driv
er is
requ
ired
to b
e
presen
t in
si
d
e
the
robo
t.
In
p
u
t
m
odul
es:
The va
ri
o
u
s
c
o
nt
r
o
l
l
i
ng si
g
n
al
s
are
lo
ad
ed to
micro
c
on
tro
ller throug
h th
ese in
pu
t m
o
du
les. Th
e inpu
t
m
odul
es use
d
i
n
t
h
e
p
r
op
ose
d
m
obi
l
e
rob
o
t
a
r
e:
i. DTMF:
Du
al ton
e
m
u
lti frequ
en
cy
(DTMF)
bo
ard
is requ
ir
ed
to
co
nv
ert th
e inp
u
t
si
g
n
a
l
g
e
nerated
fro
m
a
cell phone
s
o
that it can
be l
o
ade
d
on to the microcon
tro
l
ler.
A L2
93D
ch
ip
is u
s
ed
fo
r t
h
is
p
u
rpo
s
e. Th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
65
4 – 6
6
5
66
1
DTMF circu
it assem
b
ly h
a
s a p
r
ov
isio
n to
disp
lay th
e inp
u
t sig
n
a
l on
t
h
e
LED
b
u
l
b
s
p
r
esen
t on
it so
t
h
at an
y
wr
on
g
si
g
n
al
(i
f
gene
rat
e
d
)
ca
n
be easi
l
y
det
ect
ed.
ii. Zig
B
ee:
ZigBee transm
itter and receiver
m
odules are
provide
d
w
ith the robot. The
y
are
used to transfe
r
da
t
a
signals bet
w
ee
n the robot and a laptop. T
r
ansm
itter
m
odul
e is connecte
d
to the laptop through a USB port.
A
charact
e
r
t
y
ped i
n
t
h
e X
-
C
T
U so
ft
wa
re wi
nd
o
w
i
s
con
v
er
t
e
d i
n
t
o
i
t
s
equi
val
e
nt
si
g
n
al
as per t
h
e
pr
og
r
a
m
m
i
ng
done ea
rlier a
n
d is se
nt t
o
the
receive
r m
o
dule which
is located in the m
i
croc
ontroller
boa
rd locate
d
on the
d
a
sh
bo
ard
of
t
h
e M
o
b
ile Robo
t.
iii. RF m
odule
:
Sim
ilar to ZigBee
m
odule, the RF m
odule also contai
ns a
transm
itter and a receive
r circuit. Signal
gene
rated in t
h
e rem
o
te (transmitter) is sent
to the
r
ecei
ve
r whic
h is loca
ted in t
h
e M
o
bile Robot as a
radi
o
wave
.
3.
WOR
K
I
N
G P
R
O
C
ED
URE
An i
n
p
u
t
si
gn
al
generat
e
d i
n
t
h
e vari
ous
i
nput
de
vi
ce
s
m
e
nt
i
oned
earl
i
e
r can be
fed t
o
i
t
s
co
rresp
ond
ing
micro
c
on
tro
ller circu
it in
its
o
w
n
un
iqu
e
chan
n
e
l. Howev
e
r it is im
p
o
r
tan
t
to
rem
e
m
b
e
r
h
e
re
that at any instant only one
m
ode
can
be
ena
b
l
e
d.
The
ot
he
r m
odes
rem
a
i
n
i
n
act
i
v
e d
u
ri
n
g
t
h
e
wh
ol
e
du
rat
i
o
n. T
h
e i
n
p
u
t
si
g
n
al
i
s
pr
ocesse
d
by
r
e
spect
i
v
e m
i
croco
n
t
r
ol
l
e
r
(1
out
of
3
)
a
nd i
s
t
h
en
sent
t
o
t
h
e
4
th
m
i
croco
n
t
r
ol
l
e
r fo
r ge
nerat
i
o
n of P
W
M
si
g
n
al
s t
o
be
sent
to MOSFET
circuit. The M
O
SFE
T activates the
relay bo
ard
which
in
t
u
rn
cl
o
s
es th
e m
o
to
r circu
it.
Af
t
e
r t
h
a
t
po
we
r i
s
dra
w
n
f
r
om
12
V
bat
t
e
ry
an
d t
h
e
m
o
t
o
r
r
u
n
s
. Th
is is ho
w
th
e
w
h
o
l
e electr
o
n
i
c cir
c
u
it clo
s
es r
e
sultin
g
in
th
e v
a
r
i
ou
s m
o
v
e
m
e
n
t
s o
f
th
e
r
obot. Th
is
ent
i
r
e
pr
oce
d
u
r
e m
a
y
be ex
p
r
e
ssed i
n
a
si
m
p
ler m
a
nner t
h
r
o
ug
h t
h
e
fol
l
o
wi
ng
bl
ock
di
a
g
r
a
m
.
Fig
u
r
e
5
.
W
o
rkin
g
pr
in
cip
l
e of
Mob
ile
Robot
Mob
ile in
terface:
In
th
e m
o
b
ile in
terface, a ton
e
wh
ich
is
gen
e
rated
on
pressin
g
a
k
e
y in
a cell p
hon
e is u
s
ed
to
p
r
od
u
c
e th
e req
u
i
red inp
u
t
sig
n
a
l. Si
g
n
a
l
gen
e
ration
i
n
t
h
e cell ph
on
e is don
e
b
y
DTMF (Du
a
l
To
ne Mu
lti
Fre
que
ncy)
principle.
It has
bee
n
s
u
ccess
f
ully use
d
for purposes like
voice m
a
il, electronic m
a
il and
t
e
l
e
pho
ne
ba
n
k
i
n
g, et
c
.
A
D
T
M
F
si
g
n
al
i
s
a si
g
n
al
p
r
oduced
by the
algebraic s
u
m
m
ati
on o
f
t
w
o si
n
u
soi
d
al
fre
que
nci
e
s,
w
h
i
c
h
bel
o
n
g
t
o
t
w
o m
u
t
u
al
l
y
excl
usi
v
e
gr
oups. T
h
ese
fre
quencies are
use
d
to differentia
te one
sig
n
a
l
f
r
o
m
th
e o
t
h
e
r
.
Each
ton
e
co
n
t
ai
n
s
o
n
e f
r
e
qu
ency of
th
e low
e
r row
(
697
H
z
,
77
0
H
z
,
85
2 H
z
,
94
1 Hz)
an
d on
e fr
equ
e
n
c
y of
t
h
e
h
i
gh
er ro
w (12
09 H
z
,
1
336
H
z
, 14
77H
z) an
d is su
mmed
tog
e
th
er
to r
e
pr
esen
t a
uni
que
signal (DTMF
signal). T
h
e freque
ncies that are
allo
cated
to
th
e
p
u
s
h-bu
tton
s
of th
e typ
i
cal cellu
lar
ph
o
n
e’s
key
p
a
d
a
r
e s
h
o
w
n
b
e
l
o
w i
n
t
h
e
Ta
bl
e 2
.
T
o
c
o
nt
r
o
l
t
h
e m
obi
l
e
r
o
b
o
t
by
a cel
l
u
l
a
r p
h
one
, eac
h
key
has bee
n
assi
g
n
ed
wi
t
h
an act
i
on.
Whe
n
a b
u
t
t
on i
s
pre
sse
d
on t
h
e m
obi
l
e
ph
o
n
e or i
n
t
h
e
cour
se of a cal
l
,
t
h
e
DTM
F
t
o
ne co
rres
p
on
di
n
g
t
o
t
h
at
but
t
o
n i
s
g
e
nerat
e
d. It
act
s as t
h
e i
nput
s
i
gnal
f
o
r t
h
e m
i
croc
ont
r
o
l
l
e
r.
As a
r
e
su
lt, t
h
e
r
obot
m
o
v
e
s
b
a
sed
o
n
th
e
pr
og
r
a
m
f
e
d
in it.
M
i
cr
ocontr
o
ller
1
M
i
cr
ocontr
o
ller
2
M
i
cr
ocontr
o
ller
4
Cell phone
it
L
a
ptop input
M
i
cr
ocontr
o
ller
3
MOSF
ET
Relay
boar
d
Battery
Mo
to
r
RFID
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
An Effective Development
and A
n
alysis of
a Mobile Robot
(
D
r. B.
B. C
h
ou
dh
ury)
66
2
Tab
l
e 2
.
Du
al Ton
e
Mu
ltip
le-Freq
u
e
n
c
y
1209 Hz
1336 Hz
1477 Hz
697 Hz
1
2
3
770 Hz
4
5
6
852 Hz
7
8
9
941 Hz
*
0
#
Lap
t
op
in
terf
ace:
Zig
B
ee is a wi
reless d
a
ta tran
sfer tech
no
log
y
wh
ic
h w
a
s de
si
gne
d
wi
t
h
t
h
e
ori
g
i
n
al
i
d
ea
of
creat
i
n
g
a
l
o
w c
o
st
l
o
w
po
we
r co
nsum
i
ng
but
hi
ghl
y
effi
ci
ent
dat
a
t
r
ansm
i
ssi
on m
e
di
um
. To som
e
ext
e
nt
i
t
has bee
n
success
f
ul i
n
a
c
hieving its ini
tial obj
ective
.
It can transm
it data ove
r
a ra
nge
of 10-75 meters
depe
nding on
t
h
e p
o
we
r co
n
s
um
pt
i
on o
f
t
h
e ci
rcui
t
at
a speed
of
2
50
k
b
p
s w
h
e
n
o
p
e
r
a
t
ed at
a fre
que
ncy
of
2.
4
GH
z. Thi
s
wonderful technology is a
product of the
com
b
ined
efforts of the ZigBee Allia
nce and the IEEE 802.15.4
co
mmittee. It i
s
similar to
Blu
e
too
t
h
i
n
u
nderstand
ing
b
u
t
lot better as
far as operati
on is
concerned.
Its range
o
f
d
a
ta tran
smissio
n
as well as th
e p
a
iri
n
g
streng
th
of the connected de
vices is
m
u
ch
b
e
tter th
an
with
B
l
uet
oot
h.
A
Zi
gB
ee
net
w
o
r
k
m
a
y
be of
any
o
f
t
h
e t
h
r
ee t
o
pol
ogi
es
-
star, pee
r-t
o-peer and cl
ust
e
r tree
.
Ho
we
ver
he
re
t
h
e
peer
-t
o
-
peer
t
o
pol
ogy
has
bee
n
i
m
pl
em
ent
e
d c
onsi
d
eri
n
g
t
h
e
si
m
p
l
i
c
i
t
y
and
t
h
e
requ
irem
en
t o
f
th
e syste
m
.
In
th
is
m
o
d
e
l, th
ere ex
ists
a
m
a
ster node and a slave
no
de.
The m
a
st
er sends t
h
e
data ove
r a wireless
m
e
dium while the slave receive
s
it and perform
s
the required operations
. In the
co
n
c
ern
e
d
p
r
oject, th
e m
a
ster
is co
nn
ected
t
o
a lap
t
op
an
d
it tran
smits th
e wireless d
a
ta i
n
d
i
g
ital fo
rm
t
o
th
e
slave
whic
h is
connecte
d
t
o
the ZigBee
pa
nel in t
h
e el
ectron
ic circu
it o
f
th
e
robo
t.
Th
e
p
a
n
e
l consists of
vari
ous c
o
m
ponent
s w
h
i
c
h re
cei
ve t
h
e si
gna
l
,
deco
de i
t
,
am
pli
f
y
i
t
and send
s i
t
t
o
t
h
e si
gnal
ge
nerat
o
r
ci
rcui
t
whi
c
h
gene
rat
e
s si
g
n
al
s f
o
r t
h
e re
qui
re
d m
o
t
i
o
n
o
f
t
h
e r
o
bot
.
RF contr
o
l syst
em:
R
a
di
o f
r
eq
ue
n
c
y
(R
F) co
nt
ro
l
uses radi
o wa
ves t
o
t
r
an
sm
it dat
a
ove
r a wi
rel
e
ss m
e
di
u
m
i
n
bet
w
ee
n
th
e rem
o
te co
n
t
ro
ller and
th
e
robo
t. Th
e rem
o
te tran
sm
its v
a
rious signals to the electroni
c device conne
c
ted
to its receiver
at the othe
r end. RF rem
o
tes
are nowa
days
use
d
in rem
o
te controlled t
o
ys and
rem
o
te car-e
ntry
key
l
o
cks et
c. A R
F
rem
o
t
e
enco
des t
h
e co
m
m
a
nd si
gnal
s
i
n
a bi
nary
not
at
i
on. T
h
ese si
gnal
s
are se
nt
i
n
fo
rm
of ra
dio
wa
ves
to the device a
t
the receiver e
n
d. The
r
e
agai
n signal conve
r
sion takes
plac
e before the si
gnal is
sen
t
to
t
h
e electron
ic circu
it
for ev
alu
a
tion
.
Th
ey ca
n
transmit sig
n
a
ls over a rang
e ex
ten
d
i
n
g
up
to 100
feet
(3
0.
5 m
e
t
e
rs) and
o
w
i
n
g t
o
i
t
s
radi
o
wave
na
t
u
re;
t
h
e si
gn
al
s can
pass t
h
r
o
ug
h
wal
l
s
an
d
fu
rni
t
u
re as
we
l
l
.
I
n
t
h
e gi
ve
n case
st
udy
,
t
h
e R
F
c
ont
rol
l
e
r,
i.e., t
h
e
j
o
ystick g
e
nerates a si
g
n
a
l
an
d tran
sm
its i
t
to
th
e RF
receiv
er
p
r
esen
t in
th
e
micro
c
on
tro
ller circu
it bo
ard o
f
th
e
m
obi
l
e
ro
bot
.
Aft
e
r r
e
qui
red
pr
oces
si
ng i
s
d
o
n
e b
y
t
h
e
microcontrolle
r circ
uit, the
output signal is
fed t
o
t
h
e m
o
tor
drive
r
a
nd t
h
e m
o
tor
runs
accordingly. Fi
gure
5
sh
ows with all co
n
t
ro
llers in
t
e
rface
d wi
t
h
eac
h ot
he
r.
S
OFTWARE AN
D
PROGRA
M
MI
NG:
AVR studio4
Th
e AVR Stud
io4
is a
m
o
d
e
rn
sim
u
lato
r, asso
ciated
wit
h
fun
c
tion
s
like co
m
p
il
in
g
,
bu
ild
ing
and
deb
u
ggi
ng a
p
r
o
g
ram
for m
i
croc
o
n
t
r
ol
l
e
r c
i
rcui
t
s
. It
c
o
n
s
i
s
t
s
of a set
of
key
w
or
ds a
nd i
t
s
o
w
n u
n
i
qu
e
p
r
og
rammin
g
syn
t
ax
u
s
ing
which
pro
g
ram
s
can
b
e
wr
itten
.
Program
s written
in co
mm
o
n
lan
g
u
a
g
e
s lik
e
C are
also
foun
d
to
b
e
co
m
p
atib
le with
its co
mp
iler. Th
es
e program
codes after com
p
lete
error c
o
rrections are
co
m
p
iled
an
d
th
en
on
ly th
ey can
b
e
lo
ad
ed in
th
e
m
i
cro
c
o
n
t
ro
ller circu
it o
f
th
e ro
bo
t th
ereb
y creating
an
i
n
t
e
rface
bet
w
e
e
n t
h
e
el
ect
ro
n
i
c com
pone
nt
s
and
t
h
e
ha
rd
wa
re
of t
h
e m
obi
l
e
r
o
b
o
t
.
S
i
nap
ro
g
It is a freeware u
s
ed
to bu
rn
t
h
e
h
e
x file (p
ro
gram
written
for
AVRSt
u
d
i
o
4
are i
n
.h
ex
form
at) o
n
t
o
th
e
m
i
cro
c
on
tro
ller. After successfu
l
b
u
ild
i
n
g
o
f
th
e code in
AVRstudio
4
,
th
e
p
r
og
ra
m
is
lo
ad
ed
in
to
ATMega
32 m
i
croc
ontroller.
It is done
by
selecti
ng the
proper
path in Sina
prog inte
rface
window. The
p
r
og
ram
is lo
ad
ed in
.h
ex
fo
rmat at a fre
que
ncy of
1 M
H
z.
X-CT
U
X-C
T
U i
s
a W
i
n
d
o
w
s
-
ba
se
d ap
pl
i
cat
i
on
pr
o
v
i
d
e
d
by
D
i
gi
.
Thi
s
pr
og
r
a
m
was desi
g
n
e
d t
o
i
n
t
e
ract
wi
t
h
t
h
e fi
rm
ware fi
l
e
s fo
u
n
d
on
Di
gi
’s R
F
pr
o
duct
s
a
nd t
o
p
r
o
v
i
d
e a si
m
p
l
e
-t
o-use g
r
aphi
cal
us
er i
n
t
e
rfac
e
to
th
em
. X-CTU is
d
e
sign
ed
t
o
fun
c
tion
with
all
W
i
nd
ow
s-
b
a
sed
co
m
p
u
t
er
s r
unn
ing
Micr
o
s
of
t W
i
n
dow
s 98
SE
a
n
d
a
b
o
v
e.
Thi
s
so
ft
ware
has a vari
et
y
of opt
i
o
ns o
u
t
o
f
whi
c
h t
h
i
s
ro
bot
use
s
onl
y
t
h
e “t
erm
i
nal
”
tab fo
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
65
4 – 6
6
5
66
3
sending data t
o
its receive
r
circuit place
d
on t
h
e m
i
cr
ocont
roller ci
rcui
t boa
rd.
Whe
n
the term
inal tab is
p
r
essed, a
w
h
it
e w
i
ndo
w op
en
s.
It is t
h
is main
wh
ite portio
n wh
ere m
o
st o
f
th
e co
mm
u
n
i
catio
n
s
in
formatio
n
occu
rs
whi
l
e
u
s
i
ng
X-C
T
U as
a t
e
rm
i
n
al
emul
at
or
. T
h
e t
e
x
t
i
n
bl
ue i
s
w
h
a
t
has bee
n
t
y
pe
d i
n
a
n
d di
rect
ed o
u
t
to
th
e rad
i
o
’
s serial p
o
r
t wh
ile th
e red
tex
t
is th
e in
co
m
i
n
g
data fro
m
th
e rad
i
o’s serial p
o
rt. As in
th
is case th
e
l
a
pt
op i
s
onl
y
an i
n
put
de
vi
c
e
, o
n
e can fi
nd
onl
y
bl
ue l
e
t
t
e
rs o
n
t
h
e sc
re
en. H
e
l
e
t
t
e
rs t
h
at
are t
y
ped
on t
h
e
screen
are
not
hi
n
g
but
t
h
e i
n
p
u
t
si
gnal
s
f
r
o
m
t
h
e key
b
o
a
r
d. T
h
ese a
r
e
sent through t
h
e Zi
gBee tra
n
sm
itter
whi
c
h i
s
c
o
n
n
e
c
t
e
d at
t
h
e
US
B
po
rt
o
f
t
h
e l
a
pt
o
p
t
o
t
h
e c
o
rres
p
on
di
n
g
re
cei
ver
fi
xe
d t
o
t
h
e da
sh
b
o
ar
d
of
t
h
e
ro
b
o
t
.
T
h
en
t
h
e
dec
odi
ng
p
r
oc
ess st
art
s
fol
l
o
wed
by
p
r
o
p
er
m
ovem
e
nt
of t
h
e
ro
b
o
t
.
4.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Fo
r
o
b
t
ai
n
i
ng
a g
o
o
d
co
n
t
ro
l
an
d
stab
ility
th
e alig
n
m
en
t
o
f
variou
s parts is v
e
ry i
m
p
o
rtan
t. The
al
i
gnm
ent
t
e
st
s are req
u
i
r
e
d
t
o
be co
n
d
u
c
t
for
di
ffe
rent
pa
rt
s. The a
ngl
e
bet
w
ee
n t
h
e l
o
wer s
qua
re pa
r
t
s i
s
tested
to
b
e
at
9
0
° to ob
tain
a p
e
rfect squ
a
re. The top
b
a
r is alig
n
e
d
with
th
e top
p
a
rt
o
f
th
e lower squ
a
re t
o
obtain the tra
p
ezium
shape. T
h
e lower pa
rt of robot
base is
placed
on a fla
t
surface to test
the pla
n
arity of the
base. T
h
e whe
e
ls are tested to be at a clearance of
5cm
from
bot
h si
de
of t
h
e
base f
r
a
m
e. The cl
am
ps are
tested to be parallel each other to
ho
ld the
m
o
tor. T
h
e
cla
m
ps are also
tested to be
at 90° to a
v
oid the
i
n
cl
i
n
at
i
on
of t
i
res. Al
l
t
h
e w
h
eel
s we
re al
i
gne
d i
n
a
pl
an
e of
gr
ou
n
d
. T
h
e h
o
ri
z
ont
al
di
st
ance i
s
7
2
c
m
and
vert
i
cal
di
st
anc
e
i
s
11
0cm
.
The act
i
ng l
o
a
d
o
n
w
h
eel
d
u
ri
n
g
no l
o
ad c
o
ndi
t
i
on i
s
6
1
.
3
kg
.
Du
ri
n
g
st
art
u
p
l
o
ad
appl
i
e
d
on w
h
eel
i
s
N. Hence fri
ct
i
onal
fo
r
ce act
i
ng on w
h
eels is N.
W
h
eels have bee
n
attached with rubbe
r
dam
p
i
ng t
o
t
h
e M
obi
l
e
R
o
b
o
t
base t
o
rest
r
i
ct
vi
brat
i
o
n,
j
e
rk a
n
d p
r
o
v
i
d
es t
i
ght
h
o
l
d
i
n
g.
Any
M
obi
l
e
R
o
b
o
t
test always b
e
gin
s
with
th
e speed
test
. Th
e av
erag
e sp
eed
of th
is Mob
ile Ro
bo
t is 2
.
5k
m
/
h
r
. It is eq
u
i
v
a
l
e
n
t
to
wal
k
i
n
g spee
d
of a n
o
rm
al
perso
n
. T
h
at
i
s
best
sui
t
a
bl
e for
i
t
s
appl
i
cat
i
on and o
b
j
ect
i
v
e of w
o
rk
. Thi
s
spe
e
d
can be increa
s
e
d by increasi
ng the m
o
tor capacity and
t
h
e use of hi
gh
vol
t
bat
t
e
ry
. T
h
e spee
d t
e
st
resul
t
for
d
i
fferen
t
m
o
d
e
of co
n
t
ro
lling
syste
m
an
d
p
e
rcen
tag
e
of fu
ll
sp
eed
is tab
l
ed
b
e
llo
w and
grap
h
e
d
.
Th
e
Tabl
e 3. Spee
d
Test
res
u
l
t
s
Sl no
% of speed
PWM
voltage (
V
)
RPM
Speed
k
m
/h
1.
25
4
31
0.
97
2.
50
6
62
1.
93
3.
75
10
93
2.
88
4.
100
12
125
3.
89
Tabl
e 4. Wei
g
ht
di
st
ri
but
i
o
n
t
a
bl
e
Sl
no.
Co
m
ponent W
e
ight
(
kg)
Quantity Total
W
e
ight (
kg)
1.
Base
36.
15
1
36.
15
2.
Batter
y
11.
270
1
11.
270
3.
M
o
tor
1.
28
2
2.
56
4.
Chair
5.
07
1
5.
07
5.
Body
2.
50
1
2.
50
8.
2
nd
batter
y
1
3
3.
00
9.
electr
onic
par
t
s
0.
75
1
0.
75
10.
T
o
tal
61.
3
The s
p
eed test results are
calculated and
m
e
n
t
i
one
d i
n
Tabl
e 3
.
Ta
bl
e 4 s
h
ows
t
h
e wei
g
h
t
di
st
ri
b
u
t
i
on
o
f
di
ffe
re
nt
part
s
.
Al
l
t
h
e t
i
m
e
cal
cul
a
t
e
d as p
e
r t
h
e
di
st
ance
t
h
r
o
u
g
h
cel
l
p
ho
ne, R
F
I
D
, L
a
pt
o
p
and
t
h
e
st
an
dar
d
t
i
m
e show
n i
n
Ta
bl
e
5.
Evaluation Warning : The document was created with Spire.PDF for Python.