I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
,
p
p
.
1
0
9
~1
1
7
I
SS
N:
2252
-
8814
109
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
The Co
m
bined
R
epro
ducing
K
ern
el Method
and
Ta
y
lo
r Series
for So
lv
ing
Wea
kly
Singu
la
r F
red
h
o
l
m
In
tegra
l Equ
a
tions
Aziz
a
lla
h Alv
a
nd
i
1
,
M
a
h
m
o
ud
P
a
ripo
ur
2
1
De
p
a
rtme
n
t
o
f
M
a
th
e
m
a
ti
c
s,
Ha
m
e
d
a
n
Bra
n
c
h
,
Isla
m
ic Az
a
d
Un
iv
e
rsit
y
,
Ira
n
2
De
p
a
rtme
n
t
o
f
M
a
th
e
m
a
ti
c
s,
Ha
m
e
d
a
n
Un
iv
e
rsity
o
f
T
e
c
h
n
o
lo
g
y
,
Ira
n
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Me
i 2
2
,
2
0
1
6
R
ev
i
s
ed
A
u
g
1
0
,
2
0
1
6
A
cc
ep
ted
A
u
g
2
2
,
2
0
1
6
In
t
h
is
p
a
p
e
r,
a
n
u
m
e
rica
l
m
e
th
o
d
is
p
r
o
p
o
se
d
f
o
r
so
lv
i
n
g
w
e
a
k
ly
sin
g
u
lar
F
re
d
h
o
lm
in
teg
ra
l
e
q
u
a
ti
o
n
s
in
Hi
lb
e
rt
re
p
r
o
d
u
c
in
g
k
e
rn
e
l
sp
a
c
e
(RKH
S
).
T
h
e
T
a
y
lo
r
se
ries
is
u
se
d
t
o
re
m
o
v
e
sin
g
u
larity
a
n
d
re
p
ro
d
u
c
i
n
g
k
e
rn
e
l
f
u
n
c
ti
o
n
a
re
u
se
d
a
s
a
b
a
sis.
T
h
e
e
ff
e
c
ti
v
e
n
e
ss
a
n
d
sta
b
il
it
y
o
f
th
e
n
u
m
e
rica
l
sc
h
e
m
e
is
il
lu
stra
ted
t
h
ro
u
g
h
tw
o
n
u
m
e
rica
l
e
x
a
m
p
les
.
K
ey
w
o
r
d
:
Fre
d
h
o
l
m
i
n
te
g
r
al
R
ep
r
o
d
u
cin
g
k
er
n
e
l
T
ay
lo
r
s
er
ies
W
ea
k
l
y
s
in
g
u
lar
Co
p
y
rig
h
t
©
201
6
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
A
ziza
l
lah
A
l
v
a
n
d
i,
Dep
ar
t
m
en
t o
f
Ma
th
e
m
at
ics,
Ha
m
ed
an
B
r
an
c
h
,
I
s
la
m
ic
A
za
d
U
n
iv
er
s
it
y
,
Ha
m
ed
an
,
I
r
an
.
E
m
ail:
A
l
v
a
n
d
y
a
@
g
m
ai
l.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
W
ea
k
l
y
s
i
n
g
u
lar
Fre
d
h
o
l
m
i
n
teg
r
al
eq
u
atio
n
s
(
W
SF
I
E
s
)
h
av
e
m
a
n
y
ap
p
licatio
n
s
in
p
r
o
b
lem
s
o
f
ap
p
lied
s
cien
ce
s
,
m
ath
e
m
at
ica
l
p
h
y
s
ics,
as
tr
o
p
h
y
s
ics
a
n
d
s
o
l
id
m
ec
h
a
n
ic
s
.
T
h
e
n
u
m
er
ical
s
o
lv
ab
ilit
y
o
f
t
h
e
s
e
eq
u
atio
n
s
an
d
o
t
h
er
r
elate
d
eq
u
atio
n
s
h
a
v
e
b
ee
n
p
u
r
s
u
ed
b
y
s
e
v
er
al
a
u
th
o
r
s
a
n
d
s
o
l
v
ed
b
y
m
a
n
y
n
u
m
er
ical
m
et
h
o
d
s
s
u
ch
a
s
g
en
er
aliza
t
i
o
n
o
f
t
h
e
E
u
ler
-
Ma
cla
u
r
i
n
s
u
m
m
at
io
n
f
o
r
m
u
la
[
1
]
,
ap
p
licatio
n
o
f
h
o
m
o
to
p
y
p
er
tu
r
b
atio
n
m
e
th
o
d
[
2
]
,
d
if
f
er
en
tial
tr
an
s
f
o
r
m
m
e
th
o
d
[
3
]
,
d
is
cr
ete
Gale
r
k
in
m
et
h
o
d
[
4
]
,
m
o
d
if
ied
HP
M
m
et
h
o
d
[
5
]
,
SC
W
m
et
h
o
d
[
6
]
,
s
p
ec
tr
al
m
et
h
o
d
s
[
7
]
,
f
r
ac
tio
n
al
lin
ea
r
m
u
lti
-
s
tep
m
et
h
o
d
s
[
8
]
,
J
ac
o
b
i
s
p
ec
tr
al
m
et
h
o
d
[
9
]
an
d
o
th
er
m
et
h
o
d
s
o
cc
u
r
ed
in
[
1
0
-
1
4
]
.
R
ec
en
t
l
y
,
b
ased
o
n
r
ep
r
o
d
u
cin
g
k
er
n
el
t
h
eo
r
y
,
th
e
r
ep
r
o
d
u
cin
g
k
er
n
el
m
et
h
o
d
(
R
KM
)
h
as
b
ee
n
s
u
cc
e
s
s
f
u
ll
y
ap
p
lied
to
in
te
g
r
al
eq
u
atio
n
s
,
Hilb
er
t
t
y
p
e
s
in
g
u
lar
i
n
te
g
r
al
eq
u
atio
n
s
o
f
t
h
e
s
ec
o
n
d
k
i
n
d
[
1
5
]
,
Fre
d
h
o
l
m
i
n
te
g
r
al
eq
u
a
tio
n
o
f
t
h
e
f
ir
s
t
k
i
n
d
[
1
6
]
,
s
in
g
u
lar
in
te
g
r
al
eq
u
at
io
n
w
i
th
co
s
ec
an
t
k
er
n
el
[
1
7
]
,
th
e
r
ep
r
o
d
u
cin
g
k
er
n
el
m
e
th
o
d
h
a
s
b
ee
n
p
r
es
en
ted
an
d
d
ev
elo
p
e
d
in
[
1
8
-
2
5
]
.
I
n
th
is
letter
,
a
n
u
m
er
ical
s
c
h
e
m
e
b
y
u
s
in
g
r
ep
r
o
d
u
cin
g
k
er
n
el
s
p
ac
e
an
d
T
ay
lo
r
s
er
ies
to
s
o
lv
e
th
e
f
o
llo
w
in
g
w
ea
k
l
y
s
i
n
g
u
lar
Fre
d
h
o
l
m
i
n
teg
r
al
eq
u
atio
n
i
s
p
r
o
v
id
ed
:
1,
0
,
d
)
(
)
,
(
)
(
=
)
(
1
0
x
t
t
u
t
x
k
x
f
x
u
(
1
)
w
h
er
e
k
er
n
el
)
(1
1
=
)
,
(
t
t
x
k
w
ith
th
e
a
s
s
u
m
p
tio
n
1
<
<
0
,
is
w
ea
k
l
y
s
i
n
g
u
lar
an
d
)
(
x
u
is
t
h
e
u
n
k
n
o
w
n
f
u
n
ctio
n
to
b
e
d
eter
m
i
n
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
I
J
AA
S
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
0
9
–
1
1
7
110
T
h
is
p
ap
er
is
o
r
g
an
ized
as
f
i
v
e
s
ec
tio
n
s
in
c
lu
d
i
n
g
th
e
i
n
tr
o
d
u
c
tio
n
.
I
n
t
h
e
n
ex
t
s
ec
tio
n
,
th
e
r
e
p
r
o
d
u
cin
g
k
er
n
el
s
p
ac
es
ar
e
p
r
esen
ted
in
o
r
d
er
to
co
n
s
tr
u
ct
r
ep
r
o
d
u
cin
g
k
er
n
el
f
u
n
ctio
n
s
i
n
t
h
e
s
p
ac
e
[
0
,
1
]
2
m
W
.
E
q
u
atio
n
(
1
)
is
c
o
n
v
er
ted
in
to
an
eq
u
iv
alen
t
eq
u
atio
n
an
d
th
e
r
ep
r
esen
tat
io
n
o
f
ap
p
r
o
x
i
m
ate
s
o
lu
tio
n
f
o
r
Fre
d
h
o
l
m
in
te
g
r
al
eq
u
atio
n
s
w
ith
a
w
ea
k
l
y
s
i
n
g
u
lar
k
er
n
el
is
o
b
tain
ed
i
n
Sectio
n
3
.
T
h
e
n
u
m
er
ical
ex
a
m
p
les
ar
e
p
r
esen
ted
to
d
em
o
n
s
tr
ate
t
h
e
ac
cu
r
ac
y
o
f
th
e
m
et
h
o
d
in
Sect
io
n
4
.
T
h
e
last
s
ec
tio
n
is
a
b
r
ief
co
n
cl
u
s
i
o
n
.
2.
A
RE
P
RO
DUC
I
N
G
K
E
RN
E
L
H
I
L
B
E
R
T
SPAC
E
[
0
,
1
]
2
m
W
T
h
e
f
u
n
c
tio
n
s
p
ac
e
[
0
,
1
]
2
m
W
is
d
ef
in
ed
as f
o
llo
w
s
:
Def
ini
t
io
n
2
.
1
.
)
(
|
)
(
{
=
[
0
,
1
]
1)
(
2
x
u
x
u
W
m
m
is
an
ab
s
o
lu
tel
y
co
n
ti
n
u
o
u
s
r
ea
l
v
al
u
e
f
u
n
ctio
n
,
[
0
,
1
]
}
)
(
2
)
(
L
x
u
m
.
T
h
e
in
n
er
p
r
o
d
u
ct
an
d
n
o
r
m
i
n
[
0
,
1
]
2
m
W
ar
e
d
ef
in
ed
r
esp
ec
tiv
el
y
b
y
,
d
)
(
)
(
(
0
)
(
0
)
=
,
)
(
)
(
1
0
)
(
)
(
1
0
=
2
x
x
v
x
u
v
u
v
u
m
m
i
i
m
i
m
W
(
2
)
An
d
[
0
,
1
]
.
,
,
,
=
2
m
m
m
W
v
u
u
u
u
(
3
)
I
n
g
e
n
er
al,
th
e
f
u
n
ctio
n
s
p
ac
e
[
0
,
1
]
2
m
W
is
a
r
ep
r
o
d
u
cin
g
k
er
n
el
s
p
a
ce
an
d
its
r
ep
r
o
d
u
cin
g
k
er
n
el
)
(
y
R
x
h
as t
h
e
f
o
llo
w
i
n
g
r
ep
r
o
d
u
cin
g
p
r
o
p
e
r
ty
[
0
,
1
]
.
),
(
=
)
(
),
(
2
m
x
W
u
x
u
y
R
y
u
T
h
e
r
ep
r
o
d
u
cin
g
k
er
n
el
)
(
y
R
x
ca
n
b
e
d
en
o
ted
b
y
,
>
,
)
(
,
,
)
(
=
)
(
1
2
1
=
1
2
1
=
y
x
x
y
d
y
x
x
y
c
y
R
i
i
m
i
i
i
m
i
x
(
4
)
w
h
er
e
co
ef
f
icien
ts
}
,2
1
,
2
,
=
{
),
(
),
(
m
i
y
d
y
c
i
i
,
co
u
ld
b
e
o
b
tain
ed
b
y
s
o
lv
i
n
g
th
e
f
o
llo
w
i
n
g
eq
u
atio
n
s
2,
,2
0
,
1
,
2
,
=
,
|
)
(
=
|
)
(
=
=
m
i
x
x
R
x
x
R
y
x
i
y
i
y
x
i
y
i
(
5
)
1,
=
)
|
)
(
|
)
(
(
1)
(
=
1
2
1
2
=
1
2
1
2
y
x
m
y
m
y
x
m
y
m
m
x
x
R
x
x
R
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Th
e
C
o
mb
in
ed
R
ep
r
o
d
u
cin
g
K
ern
el
Meth
o
d
a
n
d
Ta
ylo
r
S
eries
fo
r
S
o
lvin
g
W
ea
kly
…
(
A
z
i
z
a
lla
h
A
lva
n
d
i
)
111
1.
,
0
,
1
,
=
0,
=
(
1
)
1,
,
0
,
1
,
=
0,
=
(
0
)
1)
(
(
0
)
1
2
1
2
1
2
1
2
1
m
i
x
R
m
i
x
R
x
R
i
m
y
i
m
i
m
y
i
m
i
m
i
y
i
(
7
)
3.
SO
L
VI
NG
E
Q
UA
T
I
O
N
(
1
)
I
N
T
H
E
R
E
P
RO
DU
CIN
G
K
E
RNE
L
SPAC
E
3
.
1
.
An Eq
uiv
a
lent
T
ra
ns
f
o
r
m
a
t
i
o
n o
f
E
qu
a
t
io
n (
1
)
I
n
th
is
s
ec
tio
n
,
f
o
r
s
o
l
v
in
g
E
q
u
atio
n
(
1
)
an
eq
u
i
v
alen
t
tr
an
s
f
o
r
m
a
tio
n
o
f
E
q
u
atio
n
(
1
)
is
p
r
o
p
o
s
ed
.
C
o
n
s
id
er
th
e
in
te
g
r
al
eq
u
atio
n
w
it
h
th
e
g
iv
e
n
co
n
d
itio
n
s
in
r
elatio
n
(
1
)
.
W
ith
th
e
T
ay
lo
r
s
er
ies
ex
p
an
s
io
n
o
f
)
(
t
u
b
ased
o
n
ex
p
an
d
in
g
ab
o
u
t
th
e
g
iv
e
n
p
o
in
t
x
b
elo
n
g
in
g
to
th
e
in
ter
v
a
l
0
,
1
,
w
e
h
av
e
t
h
e
T
ay
lo
r
s
er
ies
ap
p
r
o
x
im
a
tio
n
o
f
)
(
t
u
in
th
e
f
o
llo
w
i
n
g
f
o
r
m
),
(
1
)
!
(
)
(
)
(
!
)
(
)
(
2
)
(
)
(
)
(
)
(
=
)
(
,
1)
(
1
)
(
2
t
x
n
n
n
n
u
n
x
t
x
u
n
x
t
x
u
x
t
x
u
x
t
x
u
t
u
(
8
)
w
h
er
e
t
x
,
is
b
et
w
ee
n
x
an
d
t.
B
y
s
u
b
s
t
itu
t
in
g
r
elatio
n
(
8
)
in
to
E
q
u
atio
n
(
1
)
,
w
e
h
a
v
e
)
(
d
)
(
!
)
(
)
(1
)
(
)
(
0
=
1
0
x
E
t
x
u
k
x
t
t
x
u
n
k
k
n
k
),
(
=
)
(
d
)
(
)
(1
!
)
(
)
(
=
1
0
)
(
0
=
x
f
x
E
t
x
t
t
k
x
u
x
u
n
k
k
n
k
(
9
)
w
h
er
e
)
(
=
)
(
(
0
)
x
u
x
u
an
d
t
u
x
t
t
n
x
E
t
x
n
n
n
d
)
(
)
(
)
(1
1
)
!
(
1
=
)
(
,
1)
(
1
1
0
.
A
lter
n
a
tiv
e
l
y
,
w
e
u
s
e
th
e
tr
u
n
ca
ted
T
ay
lo
r
s
er
ies o
f
)
(
t
u
an
d
s
o
lv
e
th
e
f
o
llo
w
in
g
eq
u
atio
n
),
(
=
d
)
(
)
(1
!
)
(
)
(
1
0
)
(
0
=
x
f
t
x
t
t
k
x
u
x
u
k
k
n
k
(
1
0
)
w
h
e
n
1
<
<
0
,
t
x
t
t
k
d
)
(
)
(1
1
0
is
co
m
p
u
tab
le
f
o
r
.
,
0
,
1
,
=
n
k
Hen
ce
,
E
q
u
atio
n
(
1
0
)
ca
n
b
e
w
r
itte
n
as f
o
llo
w
i
n
g
).
(
=
)
(
)
(
)
(
0
=
x
f
x
u
x
a
k
k
n
k
(
1
1
)
3
.
2
.
T
he
E
x
a
ct
a
nd
Appro
x
i
m
a
t
e
So
lutio
n
T
h
e
s
o
lu
tio
n
o
f
E
q
u
at
io
n
(
1
1
)
is
g
i
v
en
i
n
t
h
e
r
ep
r
o
d
u
cin
g
k
er
n
el
Hilb
er
t
s
p
ac
e
),
>
[
0
,
1
]
(
2
n
m
W
m
p
ar
am
eter
n
is
r
elate
d
to
th
e
n
u
m
b
er
o
f
ter
m
s
T
a
y
lo
r
s
e
r
ies
th
at
ar
e
c
h
o
s
e
n
.
W
e
d
ef
i
n
e
th
e
o
p
er
ato
r
[
0
,
1
]
[
0
,
1
]
:
2
2
n
m
m
W
W
L
as
),
(
)
(
=
)
(
)
(
0
=
x
u
x
a
x
u
k
k
n
k
L
(
1
2
)
th
en
E
q
u
atio
n
(
1
1
)
ca
n
b
e
w
r
it
ten
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
I
J
AA
S
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
0
9
–
1
1
7
112
).
(
=
)
(
x
f
u
L
(
1
3
)
I
t
is
clea
r
t
h
at
L
is
a
b
o
u
n
d
ed
li
n
ea
r
o
p
er
ato
r
an
d
L
is
t
h
e
ad
j
o
i
n
t
o
p
er
ato
r
o
f
L
.
I
n
o
r
d
er
to
o
b
tain
th
e
r
ep
r
esen
tatio
n
o
f
t
h
e
s
o
lu
ti
o
n
o
f
E
q
u
atio
n
(
1
1
)
,
let
(
)
=
(
)
,
(
)
=
∗
(
)
=
[
(
)
]
(
)
,
(
=
1
,
2
,
…
)
,
(
1
4
)
w
h
er
e
1
=
}
{
i
i
x
is
d
en
s
e
i
n
t
h
e
in
ter
v
al
[
0
,
1
]
.
Hen
ce
,
o
n
e
g
et
s
.
|
)
,
(
)
(
=
)
(
=
0
=
i
x
y
k
k
i
k
n
k
i
y
y
x
R
x
a
x
(
1
5
)
T
heo
re
m
3
.
2
.
1
.
I
f
1
=
}
{
i
i
x
is
d
en
s
e
in
[
0
,
1
]
,
th
en
1
=
)}
(
{
i
i
x
is
co
m
p
lete
s
y
s
te
m
i
n
[
0
,
1
]
.
2
m
W
P
r
o
o
f.
I
f
f
o
r
an
y
[
0
,
1
]
,
)
(
2
m
W
x
u
it h
as
,
1
,
2
,
=
0
=
)
(
),
(
i
x
x
u
i
n
a
m
el
y
)
)(
(
(
),
(
=
)
(
),
(
i
x
i
x
y
yR
x
u
x
x
u
L
0.
=
)
)](
(
[
=
)
(
)
(
),
(
=
i
y
i
x
y
x
y
u
x
y
R
x
u
L
L
(
1
6
)
No
te
th
at
1
=
}
{
i
i
x
is
a
d
en
s
e
s
et,
h
e
n
ce
0.
)
(
x
u
y
L
I
t
f
o
llo
w
s
th
at
0
)
(
x
u
.
So
th
e
p
r
o
o
f
o
f
th
eo
r
e
m
is
co
m
p
lete.
B
y
Gr
am
-
Sc
h
m
id
t
p
r
o
ce
s
s
,
w
e
o
b
tain
an
o
r
th
o
g
o
n
a
l
b
asis
1
=
)}
(
{
i
i
x
o
f
[
0
,
1
]
,
2
m
W
s
u
c
h
th
a
t
),
(
=
)
(
1
=
x
x
k
ik
i
k
i
(
1
7
)
w
h
er
e
ik
ar
e
o
r
th
o
g
o
n
al
co
ef
f
ici
en
ts
.
I
n
o
r
d
er
to
o
b
tain
ij
,
let
).
(
=
)
(
1
=
x
B
x
k
ik
i
k
i
,
=
)
(
),
(
2
2
1
1
=
ii
ik
i
k
i
i
B
B
x
x
.
)
(
),
(
=
2
1
1
=
ik
i
k
i
i
ii
B
x
x
B
.
)
(
),
(
1
=
2
1
1
=
ik
i
k
i
i
ii
B
x
x
.
=
1
=
kj
ik
i
j
k
ii
ij
B
(
1
8
)
T
heo
re
m
3
.
2
.
2
I
f
)
(
x
u
is
th
e
s
o
l
u
ti
o
n
o
f
E
q
u
atio
n
(
1
)
,
th
en
).
(
)
(
=
)
(
1
=
1
=
x
x
f
x
u
i
k
ik
i
k
i
(
1
9
)
P
r
o
o
f.
)
(
x
u
ca
n
b
e
ex
p
an
d
ed
to
Fo
u
r
ier
s
er
ies i
n
ter
m
o
f
n
o
r
m
al
o
r
th
o
g
o
n
al
b
asi
s
)
(
x
i
in
[
0
,
1
]
,
2
m
W
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Th
e
C
o
mb
in
ed
R
ep
r
o
d
u
cin
g
K
ern
el
Meth
o
d
a
n
d
Ta
ylo
r
S
eries
fo
r
S
o
lvin
g
W
ea
kly
…
(
A
z
i
z
a
lla
h
A
lva
n
d
i
)
113
)
(
)
(
),
(
=
)
(
)
(
),
(
=
)
(
1
=
1
=
1
=
x
x
x
u
x
x
x
u
x
u
i
k
ik
i
k
i
i
i
i
)
(
)
(
),
(
=
)
(
)
(
),
(
=
1
=
1
=
1
=
1
=
x
x
x
u
x
x
x
u
i
k
ik
i
k
i
i
k
ik
i
k
i
L
L
).
(
)
(
=
)
(
)
(
),
(
=
1
=
1
=
1
=
1
=
x
x
f
x
x
x
f
i
k
ik
i
k
i
i
k
ik
i
k
i
(
2
0
)
T
h
e
p
r
o
o
f
is
co
m
p
lete.
B
y
tr
u
n
ca
t
in
g
t
h
e
s
er
ies o
f
t
h
e
lef
t
-
h
a
n
d
s
id
e
o
f
(
1
9
)
,
w
e
o
b
tain
th
e
ap
p
r
o
x
i
m
ate
s
o
l
u
tio
n
o
f
(
1
)
).
(
)
(
=
)
(
1
=
1
=
x
x
f
x
u
i
k
ik
i
k
N
i
N
(
2
1
)
)
(
x
u
N
in
(
2
1
)
is
th
e
N
-
ter
m
i
n
ter
ce
p
t
o
f
)
(
x
u
in
(
1
9
)
,
s
o
)
(
)
(
x
u
x
u
N
in
[
0
,
1
]
2
m
W
as
.
N
L
e
mm
a
3
.
2
.
1
.
I
f
[
0
,
1
]
)
(
2
m
W
x
u
,
th
en
th
er
e
e
x
is
t
s
a
co
n
s
ta
n
t
c
s
u
c
h
th
at
m
x
u
c
x
u
P
P
)
(
|
)
(
|
.
Pr
o
o
f.
,
)
(
)
(
|
)
(
),
(
|
=
|
)
(
|
m
x
x
y
R
y
u
y
R
y
u
x
u
th
er
e
ex
i
s
ts
a
co
n
s
tan
t
c
s
u
c
h
t
h
at
.
|
)
(
|
m
u
c
x
u
T
h
e
p
r
o
o
f
o
f
th
e
le
m
m
a
i
s
co
m
p
lete.
W
T
heo
re
m
3
.
2
.
3
.
Su
p
p
o
s
e
th
e
f
o
llo
w
i
n
g
co
n
d
it
io
n
s
ar
e
s
at
is
f
i
ed
(
i)
m
W
N
x
u
2
)
(
is
b
o
u
n
d
ed
;
(
ii)
1
=
}
{
i
i
x
is
d
en
s
e
in
[
0
,
1
]
.
T
h
en
N
-
ter
m
ap
p
r
o
x
i
m
ate
s
o
lu
t
io
n
)
(
x
u
N
co
n
v
er
g
es
to
th
e
ex
ac
t
s
o
lu
tio
n
)
(
x
u
o
f
E
q
u
atio
n
(
1
)
an
d
t
h
e
ex
ac
t so
l
u
tio
n
i
s
ex
p
r
ess
ed
as
),
(
=
)
(
1
=
x
B
x
u
i
i
i
(
2
2
)
w
h
er
e
).
(
=
1
=
k
ik
i
k
i
x
f
B
P
r
o
o
f.
(
i)
T
h
e
co
n
v
er
g
en
ce
o
f
)
(
x
u
N
w
ill b
e
p
r
o
v
ed
.
Fro
m
(
2
1
)
,
o
n
e
g
ets
).
(
)
(
=
)
(
1
x
B
x
u
x
u
N
N
N
N
(
2
3
)
Fro
m
th
e
o
r
th
o
g
o
n
alit
y
o
f
,
)}
(
{
1
=
i
i
x
it f
o
llo
w
s
t
h
at
.
)
(
=
)
(
2
2
2
1
2
2
N
m
W
N
m
W
N
B
x
u
x
u
T
h
e
s
eq
u
en
ce
m
W
N
x
u
2
)
(
is
m
o
n
o
to
n
e
i
n
c
r
ea
s
in
g
.
Du
e
to
m
W
N
x
u
2
)
(
b
ein
g
b
o
u
n
d
e
d
,
m
W
N
x
u
2
)
(
is
co
n
v
er
g
e
n
t
as so
o
n
as
.
N
T
h
en
th
er
e
ex
is
t
s
a
co
n
s
tan
t
c
s
u
c
h
t
h
at
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
I
J
AA
S
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
0
9
–
1
1
7
114
.
=
2
1
=
c
B
i
i
(
2
4
)
let
N
m
>
,
in
v
ie
w
o
f
),
(
)
(
)
(
1
2
1
1
N
N
m
m
m
m
u
u
u
u
u
u
it f
o
llo
w
s
th
at
2
2
1
2
1
1
2
2
=
)
(
m
W
N
N
m
m
m
m
m
W
N
m
u
u
u
u
u
u
u
u
2
2
1
2
2
2
1
2
2
1
=
m
W
N
N
m
W
m
m
m
W
m
m
u
u
u
u
u
u
).
(
0,
)
(
=
2
1
=
N
B
i
m
N
i
(
2
5
)
C
o
n
s
id
er
in
g
t
h
e
co
m
p
lete
n
es
s
o
f
[
0
,
1
]
2
m
W
,
it h
as
.
),
(
)
(
2
.
N
x
u
x
u
m
W
N
(
ii)
I
t is p
r
o
v
ed
th
at
)
(
x
u
is
th
e
s
o
l
u
tio
n
o
f
E
q
u
atio
n
(
1
1
)
.
Fro
m
(
2
2
)
,
it f
o
llo
w
s
)
(
),
(
=
)
)(
(
1
=
x
x
B
x
u
j
i
i
i
j
L
L
)
(
),
(
=
1
=
x
x
B
j
i
i
i
L
,
)
(
),
(
=
1
=
x
x
B
j
i
i
i
it f
o
llo
w
s
t
h
at
m
W
j
Nj
N
j
i
i
i
j
Nj
N
j
x
x
B
x
u
2
1
=
1
=
1
=
)
(
),
(
=
)
)(
(
L
.
=
)
(
),
(
=
2
1
=
N
m
W
N
i
i
i
B
x
x
B
I
f
1
=
N
,
th
en
)
(
=
)
)(
(
1
1
x
f
x
u
L
.
I
f
2
=
N
th
e
n
)
(
)
(
=
)
)(
(
)
)(
(
2
22
1
21
2
22
1
21
x
f
x
f
x
u
x
u
L
L
.
I
t is cle
ar
th
at
)
(
=
)
)(
(
2
2
x
f
x
u
L
.
Mo
r
eo
v
er
,
it
is
ea
s
y
to
s
ee
b
y
i
n
d
u
ctio
n
th
a
t
).
(
=
)
)(
(
j
j
x
f
x
u
L
Sin
ce
1
=
}
{
i
i
x
is
d
en
s
e
o
n
[
0
,
1
]
,
f
o
r
an
y
[
0
,
1
]
x
).
(
=
)
)(
(
x
f
x
u
L
(
2
6
)
T
h
at
is
,
)
(
x
u
is
th
e
s
o
l
u
tio
n
o
f
E
q
u
atio
n
(
1
1
)
an
d
).
(
=
)
(
1
=
x
B
x
u
i
i
i
(
2
7
)
T
h
e
p
r
o
o
f
is
co
m
p
lete.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Th
e
C
o
mb
in
ed
R
ep
r
o
d
u
cin
g
K
ern
el
Meth
o
d
a
n
d
Ta
ylo
r
S
eries
fo
r
S
o
lvin
g
W
ea
kly
…
(
A
z
i
z
a
lla
h
A
lva
n
d
i
)
115
4.
NUM
E
RICAL
E
XAM
P
L
E
S
I
n
th
i
s
s
ec
t
io
n
,
t
w
o
ex
a
m
p
les
w
it
h
e
x
ac
t
s
o
l
u
tio
n
s
ar
e
g
i
v
e
n
.
W
e
tak
e
10
=
N
,
th
at
N
is
t
h
e
n
u
m
b
er
o
f
ter
m
s
o
f
t
h
e
Fo
u
r
ier
s
er
ies
o
f
t
h
e
u
n
k
n
o
w
n
f
u
n
ctio
n
)
(
x
u
.
P
ar
a
m
eter
n
is
th
e
n
u
m
b
er
o
f
ter
m
s
o
f
t
h
e
T
ay
lo
r
s
er
ies an
d
w
e
ch
o
o
s
e
n
m
>
f
o
r
s
o
lv
i
n
g
t
h
ese
e
x
a
m
p
les.
E
x
a
m
p
le
4
.
1
.
W
e
co
n
s
id
er
th
e
f
o
llo
w
in
g
w
ea
k
l
y
s
i
n
g
u
lar
Fr
ed
h
o
l
m
i
n
teg
r
al
E
q
u
a
tio
n
[
1
]
:
1,
0
,
d
1
)
(
15
16
=
)
(
1
0
2
x
t
t
t
u
x
x
u
(
2
8
)
w
it
h
t
h
e
ex
ac
t
s
o
lu
t
io
n
2
=
)
(
x
x
u
.
L
et
3
=
n
an
d
ap
p
ly
in
g
th
e
r
ep
r
o
d
u
cin
g
k
er
n
el
m
et
h
o
d
.
T
h
e
co
m
p
ar
is
o
n
b
et
w
ee
n
th
e
ex
ac
t
s
o
l
u
tio
n
an
d
th
e
ap
p
r
o
x
i
m
a
te
s
o
lu
tio
n
an
d
th
e
ab
s
o
l
u
te
er
r
o
r
s
in
s
p
ac
es
[
0
,
1
]
[
0
,
1
]
,
8
2
7
2
W
W
ar
e
g
r
ap
h
icall
y
s
h
o
w
n
i
n
Fig
u
r
e
1
,
r
esp
ec
tiv
el
y
.
T
h
e
ab
s
o
lu
te
er
r
o
r
s
b
etw
ee
n
)
(
x
u
an
d
)
(
10
x
u
in
s
p
ac
es
[
0
,
1
]
[
0
,
1
]
,
8
2
7
2
W
W
ar
e
s
h
o
w
n
in
T
ab
le
1
.
B
y
in
cr
ea
s
in
g
m
,
th
e
b
eh
av
io
r
i
m
p
r
o
v
e
s
.
T
h
is
i
s
an
i
n
d
icatio
n
o
f
s
tab
ilit
y
o
n
t
h
e
r
ep
r
o
d
u
cin
g
Ker
n
el.
I
t
i
s
o
b
v
io
u
s
l
y
o
u
r
p
r
esen
ted
m
et
h
o
d
is
m
o
r
e
ac
cu
r
ate
t
h
a
n
t
h
e
E
u
ler
-
M
ac
lau
r
in
s
u
m
m
a
tio
n
f
o
r
m
u
la
m
e
th
o
d
[
1
]
.
Fig
u
r
e
1
.
T
h
e
Fig
u
r
es o
f
t
h
e
Ap
p
r
o
x
im
a
te
So
lu
t
io
n
,
th
e
A
b
s
o
lu
te
E
r
r
o
r
s
in
7
2
W
an
d
8
2
W
,
R
esp
ec
ti
v
el
y
L
e
f
t to
R
i
g
h
t
T
ab
le
1
.
Nu
m
er
ical
R
es
u
lt
s
o
f
E
x
a
m
p
le
4
.
1
.
N
o
d
e
7
2
10
|
)
(
)
(
|
W
x
u
x
u
8
2
10
|
)
(
)
(
|
W
x
u
x
u
0
.
0
7
.
6
7
8
5
5
E
-
6
2
.
1
9
4
1
1
E
-
7
0
.
1
4
.
6
6
8
4
9
E
-
6
1
.
1
4
4
2
7
E
-
7
0
.
2
2
.
6
5
5
7
1
E
-
6
3
.
1
2
5
6
5
E
-
8
0
.
3
1
.
4
6
2
5
6
E
-
6
3
.
0
1
5
4
2
E
-
8
0
.
4
8
.
8
9
4
5
1
E
-
7
7
.
0
6
6
8
5
E
-
8
0
.
5
7
.
1
7
5
4
0
E
-
7
9
.
2
3
9
3
4
E
-
8
0
.
6
7
.
1
4
8
0
6
E
-
7
9
.
8
8
2
4
4
E
-
8
0
.
7
6
.
4
5
3
1
5
E
-
7
9
.
4
3
6
7
6
E
-
8
0
.
8
2
.
8
1
1
2
8
E
-
7
8
.
4
8
2
1
2
E
-
8
0
.
9
5
.
8
5
1
6
9
E
-
7
7
.
6
6
3
5
6
E
-
8
1
.
0
2
.
1
2
9
8
7
E
-
7
7
.
6
9
5
4
1
E
-
8
E
x
a
m
p
le
4
.
2
.
W
e
co
n
s
id
er
th
e
f
o
llo
w
in
g
w
ea
k
l
y
s
i
n
g
u
lar
Fr
ed
h
o
l
m
i
n
teg
r
al
E
q
u
a
tio
n
[
1
]
:
1,
0
,
d
1
)
(
4
.
0
6
0
2
=
)
(
1
0
x
t
t
t
u
e
x
u
x
(
2
9
)
th
e
co
r
r
esp
o
n
d
in
g
e
x
ac
t so
l
u
ti
o
n
is
g
i
v
e
n
b
y
x
e
x
u
=
)
(
.
L
et
7
=
n
an
d
ap
p
ly
in
g
th
e
r
ep
r
o
d
u
cin
g
k
er
n
el
m
et
h
o
d
.
T
h
e
co
m
p
ar
is
o
n
b
et
w
ee
n
th
e
ex
ac
t
s
o
l
u
tio
n
an
d
th
e
ap
p
r
o
x
i
m
ate
s
o
l
u
tio
n
an
d
th
e
ab
s
o
l
u
te
er
r
o
r
s
in
s
p
ac
es
[
0
,
1
]
[
0
,
1
]
,
9
2
8
2
W
W
ar
e
g
r
ap
h
icall
y
s
h
o
w
n
i
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
I
J
AA
S
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
0
9
–
1
1
7
116
Fig
u
r
e
2
,
r
esp
ec
tiv
el
y
.
T
h
e
a
b
s
o
lu
te
er
r
o
r
s
b
etw
ee
n
)
(
x
u
an
d
)
(
10
x
u
in
s
p
ac
es
[
0
,
1
]
[
0
,
1
]
,
9
2
8
2
W
W
ar
e
s
h
o
w
n
i
n
T
ab
le
2
.
B
y
in
cr
ea
s
in
g
m
,
th
e
b
e
h
av
io
r
i
m
p
r
o
v
es.
T
h
i
s
is
a
n
i
n
d
icatio
n
o
f
s
tab
ilit
y
o
n
th
e
r
ep
r
o
d
u
cin
g
Ker
n
el.
I
t
i
s
o
b
v
io
u
s
l
y
o
u
r
p
r
esen
ted
m
et
h
o
d
is
m
o
r
e
ac
cu
r
ate
t
h
a
n
t
h
e
E
u
ler
-
M
ac
lau
r
in
s
u
m
m
a
tio
n
f
o
r
m
u
la
m
e
th
o
d
[
1
]
.
Fig
u
r
e
2
.
T
h
e
F
ig
u
r
es o
f
t
h
e
Ap
p
r
o
x
im
a
te
So
lu
t
io
n
,
th
e
A
b
s
o
lu
te
E
r
r
o
r
s
in
8
2
W
an
d
9
2
W
,
R
esp
ec
ti
v
el
y
L
e
f
t to
Ri
g
h
t
T
ab
le
2
.
Nu
m
er
ical
R
es
u
lt
s
o
f
E
x
a
m
p
le
4
.
2
.
N
o
d
e
8
2
10
|
)
(
)
(
|
W
x
u
x
u
9
2
|
)
(
)
(
|
W
N
x
u
x
u
0
.
0
2
.
2
9
5
6
8
E
-
6
1
.
6
6
5
1
5
E
-
7
0
.
1
9
.
7
8
0
9
9
E
-
7
1
.
3
0
7
6
9
E
-
7
0
.
2
3
.
9
5
9
1
1
E
-
7
1
.
4
9
5
0
9
E
-
8
0
.
3
2
.
2
3
9
5
5
E
-
7
5
.
3
6
1
0
6
E
-
8
0
.
4
2
.
0
1
0
3
5
E
-
7
2
.
9
4
6
6
4
E
-
8
0
.
5
2
.
2
7
9
8
7
E
-
7
2
.
1
5
0
0
8
E
-
8
0
.
6
2
.
7
1
5
1
5
E
-
7
4
.
3
4
8
0
0
E
-
8
0
.
7
3
.
0
3
1
3
7
E
-
7
4
.
8
4
4
8
7
E
-
8
0
.
8
2
.
9
7
5
8
8
E
-
7
3
.
1
7
0
6
9
E
-
8
0
.
9
2
.
7
6
4
2
4
E
-
7
7
.
4
7
2
3
9
E
-
8
1
.
0
9
.
8
6
8
8
3
E
-
7
2
.
2
1
1
9
4
E
-
8
5.
CO
NCLU
SI
O
N
I
n
th
is
p
ap
er
,
w
e
estab
lis
h
ed
a
m
e
th
o
d
to
f
in
d
n
u
m
er
ical
s
o
l
u
tio
n
s
o
f
th
e
Fre
d
h
o
l
m
in
teg
r
a
l e
q
u
atio
n
s
w
it
h
a
w
ea
k
l
y
s
i
n
g
u
lar
k
er
n
el.
W
e
u
s
ed
t
h
e
T
ay
lo
r
s
er
ie
s
to
r
e
m
o
v
e
s
i
n
g
u
lar
it
y
a
n
d
s
o
lv
ed
s
o
m
e
ex
a
m
p
les
w
it
h
o
u
r
p
r
o
p
o
s
ed
m
et
h
o
d
.
A
cc
o
r
d
in
g
to
t
h
e
e
x
a
m
p
le
s
s
o
l
v
ed
i
n
t
w
o
d
i
f
f
er
en
t
s
p
ac
es,
b
y
i
n
cr
ea
s
in
g
m
,
th
e
b
eh
a
v
io
r
i
m
p
r
o
v
es.
T
h
is
is
an
i
n
d
icatio
n
o
f
s
tab
ilit
y
o
n
t
h
e
r
ep
r
o
d
u
cin
g
Ker
n
el.
T
h
e
r
esu
lts
f
r
o
m
t
h
e
n
u
m
er
ica
l
ex
a
m
p
le
s
s
h
o
w
t
h
at
th
e
p
r
ese
n
t
m
eth
o
d
i
s
ac
cu
r
ate
an
d
r
eliab
le
f
o
r
s
o
lv
in
g
t
h
e
s
e
eq
u
atio
n
s
.
RE
F
E
R
E
NC
E
S
[1
]
R.
Be
h
z
a
d
i,
E.
T
o
h
id
i
,
F
.
T
o
u
t
o
u
n
ian
,
"
Nu
m
e
ric
a
l
so
lu
ti
o
n
o
f
we
a
k
l
y
sin
g
u
lar
F
re
d
h
o
lm
in
teg
ra
l
e
q
u
a
ti
o
n
s
v
ia
g
e
n
e
ra
li
z
a
ti
o
n
o
f
th
e
Eu
ler
-
M
a
c
lau
rin
su
m
m
a
ti
o
n
f
o
rm
u
la,
"
J
o
u
rn
a
l
o
f
T
a
ib
a
h
U
n
ive
rs
it
y
fo
r
S
c
ien
c
e
,
v
o
l.
8
,
p
p
.
1
9
9
-
205
,
2
0
1
4
.
[2
]
J.
Biaz
a
r,
M
.
Esla
m
i,
H.
Am
in
ik
h
a
h
,
"
A
p
p
li
c
a
ti
o
n
o
f
h
o
m
o
to
p
y
p
e
rtu
rb
a
ti
o
n
m
e
th
o
d
f
o
r
sy
ste
m
s
o
f
V
o
l
terra
in
teg
ra
l
e
q
u
a
ti
o
n
s o
f
th
e
f
irst
k
in
d
,
"
C
h
a
o
s,
S
o
l
it
o
n
s
&
Fra
c
ta
ls
,
v
o
l.
42
,
p
p
.
3
0
2
0
-
3
0
2
6
,
2
0
0
9
.
[3
]
J.
Biaz
a
r,
M
.
Eslam
i,
M
.
R.
Isla
m
,
"
Diff
e
r
e
n
ti
a
l
tran
sf
o
rm
m
e
th
o
d
f
o
r
sp
e
c
ial
sy
ste
m
s o
f
in
teg
ra
l
e
q
u
a
ti
o
n
s,
"
J
o
u
rn
a
l
o
f
Ki
n
g
S
a
u
d
Un
ive
rs
it
y
-
S
c
ien
c
e
,
v
o
l.
24
,
p
p
.
2
1
1
-
2
1
4
,
2
0
1
2
.
[4
]
A
.
P
e
d
a
s,
E.
T
a
m
m
e
,
"
Disc
re
t
e
G
a
l
e
rk
in
m
e
th
o
d
f
o
r
F
re
d
h
o
lm
in
teg
ro
-
d
if
fe
re
n
ti
a
l
e
q
u
a
ti
o
n
s
w
it
h
w
e
a
k
l
y
sin
g
u
lar
k
e
rn
e
ls,
"
J
o
u
rn
a
l
o
f
C
o
mp
u
ta
ti
o
n
a
l
a
n
d
Ap
p
li
e
d
M
a
th
e
ma
t
ics
,
v
o
l.
213
,
p
p
.
1
1
1
-
1
2
6
,
20
08
.
[5
]
J.
Biaz
a
r,
M
.
Eslam
i,
"
M
o
d
if
ied
H
P
M
f
o
r
so
lv
in
g
sy
ste
m
s
o
f
V
o
lt
e
rr
a
in
teg
ra
l
e
q
u
a
ti
o
n
s
o
f
th
e
se
c
o
n
d
k
in
d
,
"
J
o
u
r
n
a
l
o
f
Ki
n
g
S
a
u
d
Un
ive
rs
it
y
-
S
c
ien
c
e
,
v
o
l.
23
,
p
p
.
35
-
39
,
2
0
1
1
.
[6
]
L
.
Zh
u
,
Y.
W
a
n
g
,
"
Nu
m
e
rica
l
s
o
lu
ti
o
n
s
o
f
V
o
lt
e
rra
in
teg
ra
l
e
q
u
a
ti
o
n
w
it
h
w
e
a
k
l
y
sin
g
u
lar
k
e
rn
e
l
u
sin
g
S
CW
m
e
th
o
d
,
"
A
p
p
li
e
d
M
a
t
h
e
ma
ti
c
s a
n
d
C
o
mp
u
ta
t
io
n
,
v
o
l.
2
6
0
,
p
p
.
63
-
70
,
2
0
1
5
.
[7
]
Y.
Ch
e
n
,
T
.
T
a
n
g
,
"
S
p
e
c
tral
m
e
th
o
d
s
f
o
r
w
e
a
k
l
y
sin
g
u
lar
Vo
lt
e
rra
i
n
t
e
g
ra
l
e
q
u
a
ti
o
n
s
w
it
h
sm
o
o
th
s
o
l
u
ti
o
n
s,
"
J
o
u
rn
a
l
o
f
Co
m
p
u
t
a
ti
o
n
a
l
a
n
d
A
p
p
li
e
d
M
a
th
e
ma
t
ics
,
v
o
l.
2
3
3
,
p
p
.
9
3
8
-
9
5
0
,
2
0
0
9
.
[8
]
C.
L
u
b
ich
,
"
F
ra
c
ti
o
n
a
l
l
in
e
a
r
m
u
lt
i
-
ste
p
m
e
th
o
d
s
f
o
r
A
b
e
l
-
Vo
lt
e
rra
i
n
teg
ra
l
e
q
u
a
ti
o
n
s
o
f
th
e
se
c
o
n
d
k
in
d
,
"
M
a
th
e
ma
ti
c
s o
f
Co
m
p
u
t
a
ti
o
n
,
vo
l
.
45
,
p
p
.
4
6
3
-
4
6
9
,
1
9
8
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Th
e
C
o
mb
in
ed
R
ep
r
o
d
u
cin
g
K
ern
el
Meth
o
d
a
n
d
Ta
ylo
r
S
eries
fo
r
S
o
lvin
g
W
ea
kly
…
(
A
z
i
z
a
lla
h
A
lva
n
d
i
)
117
[9
]
Z.
X
ia
o
-
y
o
n
g
,
"
Ja
c
o
b
i
sp
e
c
tral
m
e
th
o
d
f
o
r
th
e
se
c
o
n
d
-
k
in
d
Vo
lt
e
rra
in
teg
ra
l
e
q
u
a
ti
o
n
s
w
it
h
a
w
e
a
k
l
y
s
in
g
u
lar
k
e
rn
e
l,
"
Ap
p
li
e
d
M
a
t
h
e
ma
ti
c
a
l
M
o
d
e
ll
i
n
g
v
o
l.
39
,
p
p
.
4
4
2
1
-
4
4
3
1
,
2
0
1
5
.
[1
0
]
Y.
Ch
e
n
,
T
.
T
a
n
g
,
“
Co
n
v
e
rg
e
n
c
e
a
n
a
ly
sis
o
f
th
e
Ja
c
o
b
i
sp
e
c
tral
-
c
o
ll
o
c
a
ti
o
n
m
e
th
o
d
s
f
o
r
Vo
lt
e
rra
in
t
e
g
ra
l
e
q
u
a
ti
o
n
s
w
it
h
a
we
a
k
l
y
sin
g
u
lar k
e
rn
e
l,
"
M
a
th
e
ma
t
ics
o
f
C
o
mp
u
ta
ti
o
n
,
v
o
l.
79
,
p
p
.
1
4
7
-
1
6
7
,
2
0
1
0
.
[1
1
]
E.
Ba
b
o
li
a
n
,
A
.
A
.
Ha
ji
k
a
n
d
i,
"
Th
e
a
p
p
r
o
x
im
a
te
so
lu
ti
o
n
o
f
a
c
las
s
o
f
F
re
d
h
o
lm
in
teg
ra
l
e
q
u
a
ti
o
n
s
w
it
h
a
w
e
a
k
l
y
sin
g
u
lar k
e
rn
e
l,
"
J
o
u
rn
a
l
o
f
Co
m
p
u
t
a
ti
o
n
a
l
a
n
d
Ap
p
li
e
d
M
a
th
e
ma
t
ics
,
p
p
.
2
3
5
,
p
p
.
1
1
4
8
-
1
1
5
9
,
2
0
1
1
.
[1
2
]
M
.
F
e
d
e
rso
n
,
R.
Bian
c
o
n
i,
L
.
Ba
rb
a
n
ti
,
"
L
in
e
a
r
V
o
lt
e
rra
in
teg
ra
l
e
q
u
a
ti
o
n
s
a
s
th
e
li
m
it
o
f
d
isc
re
te
sy
ste
m
s,
"
Acta
M
a
th
e
ma
ti
c
a
e
A
p
p
li
c
a
t
a
e
S
i
n
ica
, v
o
l.
20
,
p
p
.
6
2
3
-
6
4
0
,
2
0
0
4
.
[1
3
]
T
.
T
a
n
g
,
X
.
Xu
,
J.
C
h
e
n
g
,
“
On
s
p
e
c
tral
m
e
th
o
d
s
f
o
r
Vo
lt
e
rra
ty
p
e
in
teg
ra
l
e
q
u
a
ti
o
n
s
a
n
d
th
e
c
o
n
v
e
rg
e
n
c
e
a
n
a
l
y
sis,
"
J
o
u
rn
a
l
o
f
Co
m
p
u
t
a
ti
o
n
a
l
M
a
t
h
e
ma
ti
c
s
,
v
o
l.
26
,
p
p
.
8
2
5
-
8
3
7
,
2
0
0
8
.
[1
4
]
S
.
Ku
m
a
r,
A
.
Ku
m
a
r,
D.
Ku
m
a
r,
J.
S
in
g
h
,
A
.
S
in
g
h
,
"
A
n
a
l
y
ti
c
a
l
so
lu
ti
o
n
o
f
A
b
e
l
in
teg
ra
l
e
q
u
a
ti
o
n
a
risin
g
i
n
a
stro
p
h
y
sic
s v
ia
L
a
p
lac
e
tran
s
f
o
rm
,
"
J
o
u
rn
a
l
o
f
th
e
E
g
y
p
ti
a
n
M
a
th
e
ma
ti
c
a
l
S
o
c
iety
,
v
o
l.
23
,
p
p
.
1
0
2
-
1
0
7
,
2
0
1
5
.
[1
5
]
Z.
Ch
e
n
,
Y.
F
.
Zh
o
u
,
"
A
n
e
ff
i
c
ien
t
a
lg
o
rit
h
m
f
o
r
so
lv
in
g
Hilb
e
rt
ty
p
e
sin
g
u
lar i
n
teg
ra
l
e
q
u
a
ti
o
n
s
o
f
th
e
se
c
o
n
d
k
in
d
,
"
Co
mp
u
ter
s &
M
a
th
e
ma
ti
c
s wit
h
Ap
p
li
c
a
ti
o
n
s
,
v
o
l
.
58
,
p
p
.
6
3
2
-
6
4
0
,
2
0
0
9
.
[1
6
]
H.
Du
,
M
.
C
u
i,
"
A
p
p
ro
x
im
a
t
e
so
lu
ti
o
n
o
f
t
h
e
F
re
d
h
o
lm
in
teg
ra
l
e
q
u
a
ti
o
n
o
f
t
h
e
f
irst
k
in
d
i
n
a
re
p
r
o
d
u
c
i
n
g
k
e
rn
e
l
Hilb
e
rt
sp
a
c
e
,
"
Ap
p
l
ied
M
a
t
h
e
ma
t
ics
L
e
tt
e
rs
,
v
o
l.
21
,
p
p
.
6
1
7
-
6
2
3
,
2
0
0
8
.
[1
7
]
H.
Du
,
J.
S
h
e
n
,
"
Re
p
ro
d
u
c
in
g
k
e
rn
e
l
m
e
th
o
d
o
f
so
lv
in
g
sin
g
u
lar
in
t
e
g
ra
l
e
q
u
a
ti
o
n
w
it
h
c
o
se
c
a
n
t
k
e
rn
e
l,
"
J
o
u
rn
a
l
o
f
M
a
th
e
ma
ti
c
a
l
An
a
lys
is a
n
d
Ap
p
li
c
a
ti
o
n
s
,
v
o
l.
3
4
8
,
p
p
.
3
0
8
-
3
1
4
,
2
0
0
8
.
[1
8
]
M
-
Q.
X
u
,
Y
-
Z.
L
in
,
"
S
im
p
li
f
ied
re
p
ro
d
u
c
in
g
k
e
rn
e
l
m
e
th
o
d
f
o
r
f
ra
c
ti
o
n
a
l
d
if
f
e
r
e
n
ti
a
l
e
q
u
a
ti
o
n
s
w
it
h
d
a
ley
,
"
Ap
p
li
e
d
M
a
th
e
ma
ti
c
s L
e
tt
e
rs
,
v
o
l
52
,
p
p
.
156
-
1
6
1
,
2
0
1
6
.
[1
9
]
S
.
A
b
b
a
sb
a
n
d
y
a
,
B.
A
z
a
rn
a
v
id
,
M
.
S
.
A
lh
u
th
a
li
,
"
A
sh
o
o
ti
n
g
re
p
r
o
d
u
c
i
n
g
k
e
rn
e
l
Hil
b
e
rt
sp
a
c
e
m
e
th
o
d
f
o
r
m
u
lt
ip
le
so
lu
ti
o
n
s
o
f
n
o
n
li
n
e
a
r
b
o
u
n
d
a
ry
v
a
lu
e
p
ro
b
lem
s,
"
J
o
u
rn
a
l
o
f
Co
mp
u
ta
ti
o
n
a
l
a
n
d
Ap
p
li
e
d
M
a
t
h
e
ma
ti
c
s
,
v
o
l.
2
7
9
,
pp.
2
9
3
-
305
,
2
0
1
5
.
[2
0
]
M
.
G
h
a
se
m
i
-
Ku
z
e
h
k
a
n
a
n
,
M
.
F
a
r
d
i,
R
.
K.
G
h
a
z
ian
i,
"
Nu
m
e
rica
l
so
lu
ti
o
n
o
f
n
o
n
li
n
e
a
r
d
e
lay
d
if
fe
re
n
ti
a
l
e
q
u
a
ti
o
n
s
o
f
f
ra
c
ti
o
n
a
l
o
r
d
e
r
in
re
p
r
o
d
u
c
in
g
k
e
rn
e
l
Hilb
e
rt
sp
a
c
e
,
"
Ap
p
li
e
d
M
a
th
e
ma
ti
c
s
a
n
d
C
o
mp
u
ta
t
i
o
n
,
v
o
l
.
2
6
8
,
pp.
8
1
5
-
831
,
2
0
1
5
.
[2
1
]
W
.
Jia
n
g
,
T
.
T
ian
,
"
Nu
m
e
rica
l
so
lu
ti
o
n
o
f
n
o
n
li
n
e
a
r
V
o
lt
e
rra
in
teg
r
o
-
d
if
f
e
re
n
ti
a
l
e
q
u
a
ti
o
n
s
o
f
f
ra
c
ti
o
n
a
l
o
r
d
e
r
b
y
th
e
re
p
ro
d
u
c
in
g
k
e
rn
e
l
m
e
th
o
d
,
"
Ap
p
l
ied
M
a
th
e
ma
t
ica
l
M
o
d
e
ll
in
g
,
v
o
l.
39
,
p
p
.
4
8
7
1
-
4
8
7
6
,
2
0
1
5
.
[2
2
]
F
.
Z.
G
e
n
g
,
S
.
P
.
Qia
n
,
"
M
o
d
if
ied
re
p
ro
d
u
c
in
g
k
e
rn
e
l
m
e
th
o
d
f
o
r
si
n
g
u
larly
p
e
rtu
rb
e
d
b
o
u
n
d
a
ry
v
a
lu
e
p
ro
b
lem
s
w
it
h
a
d
e
lay
,
"
Ap
p
li
e
d
M
a
th
e
ma
ti
c
a
l
M
o
d
e
ll
in
g
,
v
o
l
.
39
,
p
p
.
5
5
9
2
-
5
5
9
7
,
2
0
1
5
.
[2
3
]
H.
Du
,
G
.
Zh
a
o
,
C.
Zh
a
o
,
"
Re
p
ro
d
u
c
in
g
k
e
rn
e
l
m
e
th
o
d
f
o
r
so
lv
in
g
F
re
d
h
o
m
in
teg
ro
-
d
if
fe
re
n
ti
a
l
e
q
u
a
ti
o
n
s
w
it
h
w
e
a
k
l
y
sin
g
u
larity
,
"
J
o
u
rn
a
l
o
f
C
o
mp
u
t
a
ti
o
n
a
l
a
n
d
A
p
p
li
e
d
M
a
t
h
e
ma
ti
c
s
,
v
o
l.
2
5
5
,
p
p
.
1
2
2
-
1
3
2
,
2
0
1
4
.
[2
4
]
F
.
Z.
G
e
n
g
,
S
.
P
.
Qia
n
,
S
.
L
i,
"
A
n
u
m
e
ric
a
l
m
e
th
o
d
f
o
r
sin
g
u
larly
p
e
rtu
rb
e
d
t
u
r
n
in
g
p
o
i
n
t
p
r
o
b
lem
s
w
it
h
a
n
in
terio
r
la
y
e
r,
"
J
o
u
rn
a
l
o
f
Co
m
p
u
t
a
ti
o
n
a
l
a
n
d
Ap
p
li
e
d
M
a
th
e
ma
ti
c
s
,
v
o
l.
2
5
5
,
p
p
.
97
-
1
0
5
,
2
0
1
4
.
[2
5
]
T
.
Jo
rd
ã
o
,
V
.
A
.
M
e
n
e
g
a
tt
o
,
"
W
e
ig
h
ted
F
o
u
rier
-
L
a
p
lac
e
tran
sf
o
r
m
s
in
re
p
ro
d
u
c
in
g
k
e
rn
e
l
Hilb
e
r
t
sp
a
c
e
s
o
n
th
e
sp
h
e
re
,
"
J
o
u
rn
a
l
o
f
M
a
t
h
e
ma
ti
c
a
l
An
a
lys
is a
n
d
A
p
p
l
ica
ti
o
n
s
,
v
o
l.
4
1
1
,
p
p
.
7
3
2
-
7
4
1
,
2
0
1
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.