I
n
t
ern
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
A
d
v
a
n
ces
i
n
A
p
p
l
i
ed
S
ci
en
ces
(
I
J
A
A
S
)
V
o
l
.
7
,
N
o
.
1
,
M
ar
ch
20
1
8
,
pp
.
66
~
72
I
S
S
N
:
225
2
-
88
14
,
D
OI
:
10.
115
91
/ij
a
a
s
.
v7
.
i
1
.
p
p
66
-
72
66
Jo
u
r
n
al
h
om
e
pa
ge
:
h
t
t
p
:
/
/
i
a
e
s
co
r
e
.
c
o
m/
o
n
l
i
n
e
/
i
n
d
e
x
.
p
h
p
/
I
J
A
A
S
A
N
ov
e
l
C
A
Z
A
C
Se
que
nce
B
a
s
e
d T
i
mi
ng
Sy
nc
hroni
z
a
t
i
o
n
Sc
he
me
f
or
O
F
D
M
Sy
s
t
em
A
n
u
ja
D
a
s
,
B
i
s
w
a
ji
t
M
o
h
a
n
ty
,
B
e
n
u
d
h
a
r
S
a
h
u
D
e
pa
rt
m
e
nt
o
f E
l
e
c
t
roni
c
s
a
nd C
om
m
uni
c
a
t
i
on E
ngi
ne
e
r
i
ng,
IT
E
R,
S
oA
U
ni
ve
rs
i
t
y
,
Bhub
a
ne
s
w
a
r
,
O
di
s
ha
,
Indi
a
A
rt
i
cl
e
I
n
f
o
A
B
S
T
RA
C
T
Ar
t
i
c
l
e
h
i
s
t
o
r
y
:
R
ecei
v
ed
Ma
y
2
6
,
2
01
7
Re
v
i
s
e
d
J
a
n
15
,
201
8
A
ccep
t
e
d
F
eb
2
,
20
1
8
S
e
ve
ra
l
c
l
a
s
s
i
c
a
l
t
i
m
i
ng s
y
nc
hro
ni
z
a
t
i
on s
c
h
e
m
e
s
ha
ve
b
e
e
n
pro
pos
e
d for
t
he
t
i
m
i
ng s
y
nc
hroni
z
a
t
i
on i
n
O
F
D
M
s
y
s
t
e
m
s
ba
s
e
d on t
he
c
orre
l
a
t
i
o
n
b
et
w
een
i
d
en
t
i
c
al
p
ar
t
s
o
f
O
F
D
M
s
y
m
b
o
l
. T
h
es
e s
ch
em
es
s
how
poor
pe
rform
a
nc
e
du
e
t
o t
he
pre
s
e
n
c
e
of pl
a
t
e
a
u a
nd s
i
gni
fi
c
a
nt
s
i
de
l
o
be
.
In t
hi
s
pa
pe
r w
e
pre
s
e
nt
a
t
i
m
i
ng s
y
n
c
hroni
z
a
t
i
on
s
c
he
m
e
s
w
i
t
h t
i
m
i
ng m
e
t
ri
c
ba
s
e
d o
n
a
Cons
t
a
nt
A
m
pl
i
t
ud
e
Z
e
ro A
ut
o Co
rre
l
a
t
i
on
(CA
Z
A
C) s
e
que
nc
e
.
T
he
pe
rform
a
nc
e
of t
he
propos
e
d t
i
m
i
ng s
y
nc
h
roni
z
a
t
i
on s
c
he
m
e
i
s
be
t
t
e
r
t
h
an
t
h
e
cl
as
s
i
ca
l
t
ech
n
i
q
u
es
.
Ke
y
wo
r
d
:
C
AZ
AC
D
i
f
f
e
r
e
n
t
i
a
l
n
o
r
m
a
l
i
z
a
t
i
o
n
O
F
DM
T
im
i
ng
s
y
nc
hr
oni
z
a
t
i
o
n
Copy
r
i
ght
©
201
8
Ins
t
i
t
ut
e
o
f
A
d
v
anc
e
d
E
ngi
n
e
e
r
i
ng and S
c
i
e
nc
e
.
A
l
l
ri
g
h
t
s re
se
rv
e
d
.
C
or
r
e
s
po
n
di
n
g
A
u
t
h
or
:
A
nuj
a
D
a
s
,
D
e
p
a
rt
m
e
n
t
o
f
E
l
e
c
t
r
oni
c
s
a
n
d
T
e
l
e
c
om
m
uni
c
a
t
i
on
E
ngi
ne
e
r
i
n
g
,
K
o
na
r
k
I
ns
t
i
t
ut
e
o
f
S
c
i
e
nc
e
a
n
d
T
e
c
h
nol
ogy
,
B
hu
ba
ne
s
w
a
r
,
I
n
di
a
.
E
m
a
i
l
:
a
nuja
da
s
20
0
6@
gm
a
i
l
.
c
om
1.
I
N
T
R
O
D
U
C
T
I
O
N
I
n
r
ecen
t
t
i
m
es
t
h
er
e i
s
an
ex
p
o
n
en
t
i
al
r
i
s
e i
n
t
h
e d
em
an
d
o
f
m
u
l
t
i
m
ed
i
a
w
i
r
el
es
s
s
er
v
i
ces
b
as
ed
o
n
br
oa
dba
nd s
t
a
nda
r
d.
A
c
om
m
on
t
e
c
hnol
o
gy
i
n
m
os
t
o
f
t
he
br
oa
dba
nd s
t
a
nda
r
ds
de
s
i
gne
d t
o p
r
ovi
de
br
oa
dba
nd
s
e
r
v
i
c
e
s
i
s
Or
t
hog
o
na
l
F
r
e
que
nc
y
Di
vi
s
i
on
M
u
l
t
i
p
l
e
x
i
ng
[
1
-
2
]
.
O
F
D
M
i
s
a
m
u
l
t
i
c
a
r
r
i
e
r
m
o
d
u
l
a
t
i
o
n
t
ech
n
i
q
u
e,
w
h
e
r
e h
i
g
h
d
at
a r
at
e s
er
i
a
l
b
i
t
s
ar
e co
n
v
er
t
ed
i
n
t
o
l
o
w
d
at
a r
at
e p
ar
al
l
el
p
at
h
s
an
d
t
h
e s
i
g
n
al
s
i
n
e
a
c
h of
t
he
pa
r
a
l
l
e
l pa
t
hs
m
o
dul
a
t
e
or
t
ho
go
na
l
s
ub
-
c
a
rri
e
r
s
.
T
h
i
s
p
ro
c
e
s
s
o
f t
ra
n
s
m
i
s
s
i
o
n
o
f
O
F
DM
s
i
gna
l
c
onve
r
t
s
f
r
e
qu
e
nc
y
s
e
l
e
c
ti
ve
c
ha
n
ne
l
i
nt
o
f
r
e
que
nc
y
f
l
a
t
f
a
di
ng
c
ha
nne
l
.
I
n c
ont
r
a
s
t
t
o s
i
ngl
e
c
a
r
r
i
e
r
c
om
m
uni
c
a
ti
on,
O
F
D
M
c
om
ba
t
s
t
he
e
f
f
e
c
t
s
of
f
r
e
q
ue
nc
y
f
l
a
t
f
a
di
ng
c
ha
nne
l
i
n
f
r
e
que
nc
y
do
m
a
i
n
us
i
ng
ba
n
k
of
s
i
m
pl
e
one
t
a
p e
qua
l
i
z
e
r
.
Due
t
o
t
he
r
ob
u
s
t
n
e
s
s
o
f
O
F
D
M
t
o
m
u
l
t
i
p
a
t
h
f
a
d
i
n
g
,
i
t
i
s
a
d
o
p
t
e
d
i
n
W
L
A
N
,
D
VB
-
T,
LTE
-
A
,
M
B
-
O
F
D
M
UW
B
t
o
p
ro
v
i
d
e
wi
re
l
e
s
s
b
ro
a
d
b
a
n
d
s
e
rv
i
c
e
s
.
H
o
w
e
v
e
r,
O
F
DM
i
s
v
e
ry
s
e
ns
i
t
i
ve
of
t
im
e
a
nd f
r
e
que
nc
y
s
y
nc
hr
o
ni
z
a
t
i
on e
r
r
or
[
3]
.
I
n a
n
OF
DM
s
y
s
t
e
m
,
t
he
tim
i
ng a
nd f
r
e
q
ue
nc
y
of
t
h
e
r
ecei
v
ed
O
F
D
M
s
i
g
n
al
s
h
o
u
l
d
b
e s
y
n
ch
r
o
n
i
zed
w
i
t
h
t
h
e
r
ef
er
en
c
e s
i
g
n
al
at
t
h
e
r
ecei
v
er
.
F
r
e
q
u
en
cy
s
y
nc
hr
o
ni
z
a
t
i
on e
r
r
or
i
n OF
DM
s
y
s
t
e
m
r
e
s
ul
t
s
I
nt
e
r
C
ha
nne
l
I
nt
e
r
f
e
r
e
nc
e
(IC
I).
T
i
m
i
n
g
s
y
n
c
h
ro
n
i
z
a
t
i
o
n
e
rro
r
[
2]
i
n OF
D
M
s
y
s
t
e
m
r
e
s
ul
t
s
i
n I
nt
e
r
S
ym
bol
I
nt
e
r
f
e
re
n
c
e
(IS
I
),
In
t
e
r C
h
a
n
n
e
l
In
t
e
rfe
re
n
c
e
(IC
I
)
a
n
d
c
ha
nge
i
n
t
he
a
m
p
l
it
ude
of
t
he
r
e
c
e
i
ve
d
s
i
gna
l
[6
]
.
S
e
ve
r
a
l
t
im
i
ng s
y
nc
hr
oni
z
a
t
i
on s
c
he
m
e
s
ha
ve
be
e
n r
e
p
or
t
e
d f
or
O
F
DM
s
y
s
t
e
m
s
whi
c
h a
r
e
m
os
t
ly
ba
s
e
d on t
he
a
ut
o
-
c
or
r
e
l
a
t
i
on be
t
we
e
n i
de
nt
i
c
a
l r
e
pe
a
t
e
d pa
r
t
s
of
OF
D
M
s
ym
bol
.
S
c
him
dl
e
t
a
l
[
3
]
ha
ve
pr
o
pos
e
d a
t
r
a
i
ni
ng s
y
m
bol
h
a
vi
ng t
w
o i
de
n
t
i
c
a
l
s
e
que
nc
e
s
.
H
ow
e
ve
r
,
t
he
t
im
i
ng m
e
t
r
i
c
ha
s
a
pl
a
t
e
a
u a
nd
r
e
s
ul
t
s
i
n hi
gh
t
im
i
ng s
y
nc
hr
o
ni
z
a
t
i
on va
r
i
a
nc
e
.
S
ubs
e
q
ue
nt
l
y
Mi
nn e
t
a
l
[
4]
ha
ve
pr
op
os
e
d t
r
a
i
ni
ng s
y
m
bol
w
i
t
h
r
ep
eat
ed
s
eq
u
en
ces
an
d
P
ar
k
et
al
[
5]
pr
op
os
e
d t
r
a
i
ni
n
g s
ym
bol
wi
t
h c
onj
uga
t
e
s
y
m
m
et
r
y
s
eq
u
en
ce.
I
t
i
s
obs
e
r
ve
d
t
ha
t
t
he
pr
o
pos
e
d
t
e
c
hni
que
s
s
how
po
or
pe
r
f
or
m
a
nc
e
due
t
o
t
he
pr
e
s
e
nc
e
of
s
i
g
ni
f
i
c
a
nt
powe
r
i
n s
i
de
l
o
b
e
.
Be
s
i
d
e
s
P
N
-
s
eq
u
en
ce
[
8
]
C
A
Z
A
C
s
eq
u
e
n
ce
h
as
a
g
o
o
d
au
t
o
-
c
or
r
e
l
a
t
i
on.
S
o
i
t
s
h
ows
i
m
pr
ove
f
r
e
q
ue
nc
y
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
A
S
I
S
S
N
:
225
2
-
88
14
A
N
ov
e
l
C
A
Z
A
C
Se
que
nc
e
B
a
s
e
d
T
i
m
i
n
g
Sy
n
c
hr
oni
z
at
i
on
S
c
he
m
e
f
or
OF
D
M
Sy
s
t
e
m
(
A
nuj
a
D
as
)
67
a
nd
t
im
i
ng
of
f
s
e
t
e
s
tim
a
t
i
on
unde
r
f
r
e
q
ue
n
cy
-
s
el
ect
i
v
e ch
an
n
el
.
F
an
g
et
al
h
av
e
[
7
]
p
r
es
en
t
ed
a
n
o
v
el
C
A
Z
A
C
s
e
que
nc
e
ba
s
e
d s
y
nc
hr
o
ni
z
a
t
ion a
l
gor
i
t
hm
f
or
t
im
i
ng a
nd f
r
e
que
nc
y
s
y
nc
hr
o
ni
z
a
t
i
on.
S
c
he
m
e
due
t
o F
a
ng a
t
al
h
as
a
b
et
t
er
p
er
f
o
r
m
an
ce
t
h
an
P
ar
k
et
al
[
5
]
.
H
o
w
ev
er
,
t
h
e
s
ch
e
m
e
d
u
e
t
o
F
an
g
et
al
[
7]
ha
s
poo
r
pe
r
f
o
r
m
a
nc
e
due
t
o
pr
e
s
e
nc
e
of
s
i
de
l
o
be
i
n t
he
t
im
i
ng
m
e
t
r
i
c
.
F
a
ng e
t
a
l
[
7]
ha
ve
de
s
i
g
ne
d a
s
ym
bol
w
it
h t
wo i
de
nt
i
c
a
l
s
e
que
nc
e
us
i
ng C
A
Z
AC
s
e
que
nc
e
f
or
t
im
i
ng s
y
nc
hr
o
ni
z
a
t
i
on.
How
e
ve
r
,
t
he
t
im
i
ng
m
e
t
r
i
c
of
t
hi
s
t
e
c
hni
que
i
ndi
c
a
t
e
t
he
pr
e
s
e
nc
e
of
s
i
de
l
obe
a
nd
doe
s
not
im
pr
o
ve
t
h
e
p
er
f
o
r
m
an
ce
s
i
g
n
i
f
i
can
t
l
y
.
I
n t
hi
s
pa
pe
r
we
p
r
o
pos
e
a
t
r
a
i
ni
ng s
ym
bol
wi
t
h r
e
pe
a
t
e
d s
ym
m
e
t
r
i
c
c
onj
uga
t
e
s
e
q
u
e
nc
e
ba
s
e
d
C
AZ
A
C
s
e
que
nc
e
.
W
e
a
l
s
o
pr
op
os
e
a
ne
w
t
i
m
i
ng
m
e
t
r
i
c
f
or
t
he
t
im
i
ng
s
ync
hr
oni
z
a
t
i
on
ut
i
l
iz
i
ng
t
he
m
odi
f
i
e
d
t
r
a
i
ni
ng s
ym
bol
.
T
im
i
ng
m
e
t
r
i
c
,
m
a
i
n t
o s
i
de
l
obe
r
a
t
i
o a
nd p
r
o
ba
bi
l
i
ty
of
de
t
e
c
t
i
on i
s
e
va
l
ua
t
e
d us
i
ng
s
im
ul
a
t
i
on.
T
h
e
pe
r
f
or
m
a
nc
e
i
s
obs
e
r
ve
d
t
o
be
be
t
t
e
r
t
ha
n
t
he
pr
e
vi
ous
t
e
c
hni
q
ue
s
.
T
he
r
e
s
t
of
t
he
pa
pe
r
i
s
or
ga
ni
z
e
d
a
s
f
ol
l
ow
s
.
S
e
c
t
i
on
I
I
pr
e
s
e
nt
s
a
br
i
e
f
de
s
c
r
i
pt
i
on
of
OF
DM
s
y
s
t
e
m
f
ol
l
owe
d
by
pr
op
os
e
d m
e
t
hod
i
n S
e
c
t
i
on I
I
I
.
P
e
r
f
or
m
a
nc
e
of
t
he
pr
op
os
e
ds
c
he
m
e
i
s
pr
e
s
e
nt
e
d i
n S
e
c
t
ion V
I
a
nd
t
he
p
a
pe
r
i
s
c
onc
l
ude
d i
n
s
e
c
t
i
on V
.
2.
O
F
D
M
SY
ST
E
M
D
E
SC
R
I
P
T
I
O
N
A
n
I
F
F
T
o
pe
r
a
t
i
on i
s
c
a
r
r
i
e
d o
ut
o
n a
gr
ou
p
of
N s
y
m
bol
s
t
o ge
ne
r
a
t
e
t
im
e
dom
a
i
n OF
DM
s
ym
bol
.
T
he
n
t
h
t
i
m
e
-
dom
a
i
n
s
a
m
pl
e
s
of
O
F
D
M
s
i
gna
l
t
r
a
ns
m
i
tt
e
d t
hr
o
ug
h a
f
a
di
n
g c
ha
n
ne
l
i
s
r
e
p
r
e
s
e
nt
e
d
as
[
]
=
∑
2
−
1
=
0
(
1)
w
h
e
re
N
i
s
t
h
e
t
o
t
a
l
n
u
m
b
e
r
o
f
o
r
t
h
o
g
o
n
a
l
s
u
b
c
a
r
r
i
e
r
s
,
c
k
’
s
ar
e t
h
ek
th
c
o
m
pl
e
x i
nf
o
r
m
a
t
i
on s
y
m
bol
w
hi
c
h
m
odul
a
t
e
s
k
th
s
u
b
c
a
rri
e
r.
T
h
e
n
t
h
r
e
c
e
i
ve
d s
a
m
pl
e
f
r
om
a
m
ul
t
i
pa
t
h
f
a
di
ng
c
ha
nne
l
ha
vi
n
g c
ha
n
ne
l
i
m
pul
s
e
r
e
s
p
o
ns
e
h(
m
)
i
s
gi
ve
n
a
s
[
]
=
∑
ℎ
[
]
[
−
]
,
0
<
<
−
1
=
0
(
2)
w
h
er
e
L
i
s
t
h
e
m
e
m
or
y
of
t
he
c
ha
n
ne
l
.
I
n O
F
D
M
s
y
s
t
e
m
,
tim
i
ng of
f
s
e
t
i
s
c
ons
i
de
r
e
d a
s
a
n u
nk
n
ow
n t
i
m
i
ng
i
ns
t
a
nt
o
f
r
e
c
e
i
ve
d
s
i
g
na
l
a
nd
f
r
e
q
ue
nc
y
of
f
s
e
t
i
s
c
o
ns
i
de
r
e
d a
s
a
p
ha
s
e
r
ot
a
t
i
o
n
of
t
he
r
e
c
e
i
ve
d
da
t
a
i
n t
he
t
im
e
dom
a
i
n.
C
ons
i
de
r
i
ng
t
h
es
e t
w
o
u
n
cer
t
ai
n
t
i
es
o
n
r
ec
ei
v
ed
s
i
g
n
al
,
t
h
e
n
t
h
r
e
c
e
i
v
e
d
s
i
g
n
a
l
s
a
m
p
l
e
i
n
A
W
G
N
c
ha
n
n
e
l
i
s
gi
ve
n
a
s
[
]
=
[
−
∈
]
2
∈
+
[
]
(
3)
w
h
er
e
,
n
∈
i
s
t
h
e
i
n
t
e
g
e
r
-
va
l
ue
d un
kn
ow
n
a
r
r
i
v
a
l
t
i
m
e
o
f
a
s
y
m
bol
θ
∈
i
s
t
h
e
f
r
e
que
nc
y
of
f
s
e
t
a
n
d
w
(
n)
is
the
a
d
d
i
t
i
v
e
w
h
i
t
e
G
a
u
s
s
i
a
n
N
o
i
s
e
(A
W
G
N
)
.
2
.
1
.
O
F
D
M
T
i
m
i
ng
S
y
nc
hr
o
ni
z
a
t
i
o
n
Sc
h
e
m
e
s
I
t
i
s
obs
e
r
ve
d
f
r
om
t
he
r
e
c
e
ive
d
k
th
s
u
bc
a
r
r
i
e
r
out
put
of
OF
DM
t
ha
t
t
h
e
out
put
e
x
pe
r
i
e
nc
e
s
p
ha
s
e
r
ot
a
t
i
o
n,
a
m
pl
it
ude
va
r
i
a
t
i
on
,
I
C
I
a
n
d
I
S
I
d
u
e
t
o
t
he
pr
e
s
e
n
c
e
of
t
im
i
ng
of
f
s
e
t
.
S
o
,
t
h
er
e
i
s
a
n
eed
t
o
es
t
i
m
at
e
t
im
i
ng of
f
s
e
t
a
nd c
om
pe
ns
a
t
e
t
he
e
s
t
im
a
t
e
d
t
im
i
ng of
f
s
e
t
.
S
e
ve
r
a
l
c
l
a
s
s
i
c
a
l
t
im
i
ng s
y
nc
hr
o
ni
z
a
t
i
on s
c
he
m
e
s
s
uc
h a
s
S
c
hm
idl
e
t
a
l
,
M
i
n
e
t
a
l
,
P
a
r
k e
t
a
l
.
T
he
s
c
he
m
e
due
t
o S
c
hm
i
dl
a
nd C
o
x e
m
pl
oy
t
w
o r
e
p
e
a
t
e
d
s
eq
u
en
ce
i
n
o
n
e
OF
D
M
s
y
m
bol
f
or
t
im
ing
s
y
nc
hr
o
ni
z
a
t
i
on a
nd
p
r
o
pos
e
d a
t
im
i
ng m
e
t
r
i
c
ba
s
e
d
on
t
h
e
c
or
r
e
l
a
t
i
on
be
t
we
e
n t
wo
i
de
nt
i
c
a
l
pa
r
t
s
of
OF
D
M
s
y
m
b
ol
n
or
m
a
l
i
z
e
d wi
t
h t
he
e
ne
r
gy
of
t
he
s
y
m
bol
.
H
o
we
ve
r
,
t
he
t
im
i
ng
m
e
t
r
i
c
obs
e
r
ve
d
t
o
ha
v
e
a
pl
a
t
e
a
u
wi
t
h
a
d
ur
a
t
i
o
n
r
e
l
a
t
e
d
to
c
yc
lic
pr
e
f
ix
dur
a
tio
n.
T
h
is
r
e
s
ul
t
s
i
n
hi
gh
e
r
m
e
a
n s
q
ua
r
e
e
r
r
or
o
f
t
he
t
im
i
ng
of
f
s
e
t
.
S
u
bs
e
q
ue
nt
l
y
M
i
n e
t
a
l
ha
ve
pr
o
po
s
e
d
a
s
c
he
m
e
c
on
s
i
s
t
i
ng
o
f
s
e
ve
r
a
l
r
e
pe
a
t
e
d
pa
r
t
s
i
n a
n
OF
D
M
s
y
m
bol
.
T
he
t
i
m
i
ng
m
e
t
r
i
c
of
t
hi
s
s
c
he
m
e
i
ndi
c
a
t
e
s
i
de
l
obe
s
o
f
hi
g
he
r
m
a
gni
t
ude
a
n
d
l
e
a
d
s
t
o
p
o
or
t
im
i
ng
s
y
nc
hr
oni
z
a
t
i
o
n
pe
r
f
o
r
m
a
nc
e
.
F
ur
t
he
r
e
nha
nc
e
m
e
nt
s
i
n t
im
ing s
y
nc
h
r
o
ni
z
a
t
i
on ha
ve
be
e
n
pr
op
os
e
d by
P
a
r
k e
t
a
l
[
5]
a
nd P
a
n
g e
t
a
l
[
7]
whi
c
h
a
r
e
de
s
c
r
i
be
d
be
l
ow
.
1.
P
ar
k
’
s
S
c
h
em
e:
T
o
r
e
d
u
ce t
h
e s
i
d
e l
o
b
e an
d
i
n
c
r
eas
e t
h
e
d
i
f
f
e
r
e
n
ce b
et
w
een
t
h
e p
ea
k
v
al
u
es
o
f
t
i
m
i
n
g
m
e
t
r
i
c
obs
e
r
ve
d i
n t
he
s
c
he
m
e
due
t
o M
i
n e
t
a
l
,
P
a
r
k e
t
a
l
ha
ve
pr
o
p
os
e
d a
p
r
e
a
m
bl
e
c
ons
i
s
t
i
n
g
o
f
c
on
j
uga
t
e
a
n
d
s
ym
m
e
t
r
i
c
s
e
que
nc
e
i
n a
n
O
F
DM
s
y
m
bol
.
T
he
p
r
e
a
m
bl
e
de
s
i
g
n pr
o
p
os
e
d
by
P
a
r
k i
s
gi
ve
n
a
s
TR
P
ar
k
=
C
N
4
D
N
4
C
∗
N
4
D
∗
N
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-
88
14
IJ
A
A
S
V
o
l
.
7
,
N
o
.
1
,
Ma
r
c
h
20
18
:
6
6
–
72
68
w
h
e
re
C
N
4
r
ep
r
es
e
n
t
s
s
am
p
l
es
o
f
l
en
g
t
h
4
g
en
er
a
t
ed
b
y
I
F
F
T
o
f
a P
N
s
e
q
u
e
n
ce,
an
d
∗
N
4
r
ep
r
es
en
t
s
a
c
onj
uga
t
e
of
C
N
4
.
∗
N
4
Sy
m
m
e
t
r
i
c
t
o
N
4
[3
]
.
T
he
T
im
i
ng
Me
t
r
ic
is
gi
ve
n
by
:
M
Pa
r
k
(
d
)
=
|
P
P
ar
k
(
d
)
|
2
R
P
ar
k
2
(
d
)
(
4)
w
h
er
e
P
Pa
r
k
(
d
)
=
∑
r
(
d
−
k
)
.
r
(
d
+
k
)
N
2
−
1
k
=
0
(
5)
R
Pa
r
k
(
d
)
=
∑
|
r
(
d
+
k
)
|
2
N
2
−
1
k
=
0
(
6)
D
ue
t
o
i
m
p
u
l
s
e
-
s
h
a
p
e
t
i
m
i
n
g
m
e
t
r
i
c
F
i
g
u
r
e
1,
i
t
pr
o
duc
e
s
l
ow
e
r
M
e
a
n
S
q
ua
r
e
E
r
r
or
(
M
S
E
)
i
n
t
i
m
i
n
g
o
f
f
s
e
t
t
h
a
n
S
c
h
m
i
d
l
e
t
a
l
a
n
d
M
i
n
e
t
a
l
[3
-
4
].
In
am
u
l
t
i
p
at
h
f
a
d
i
n
g
ch
an
n
el
,
i
t
s
p
e
r
f
o
r
m
an
ces
d
e
cr
eas
e
due
t
o t
he
pr
e
s
e
nc
e
o
f
s
i
de
l
obe
s
.
F
o
r
be
t
t
e
r
pe
r
f
o
r
m
a
nc
e
F
a
ng
pr
o
p
os
e
d a
m
e
t
hod ba
s
e
d o
n C
A
Z
A
C
s
eq
u
en
ce
.
2.
F
a
n
g S
c
he
m
e
: T
he
c
or
r
e
l
a
t
i
o
n
ba
s
e
d
s
y
nc
h
r
o
ni
z
a
t
i
on
m
e
tho
d i
s
ba
s
e
d
o
n a
ut
o
-
c
o
r
r
e
l
a
t
i
on pr
o
pe
r
ty o
f
PN
(
Ps
e
u
d
o
-
r
a
nd
om
N
oi
s
e
)
-
s
e
que
nc
e
.
C
om
pa
r
e
d t
o P
N s
e
que
nc
e
,
C
A
Z
A
C
s
e
que
nc
e
ha
s
a
be
t
t
e
r
a
ut
o
-
c
or
r
e
l
a
t
i
on a
nd c
r
o
s
s
-
c
or
r
e
l
a
t
i
on pr
o
pe
r
t
y
a
nd
he
n
c
e
,
im
pr
o
ve
s
t
he
t
im
i
ng s
y
nc
h
r
o
ni
z
a
t
i
on
p
er
f
o
r
m
an
ces
.
T
h
e s
c
h
em
e d
u
e t
o
F
a
n
g
as
s
u
m
e s
eq
u
e
n
ce
s
(
k
)
as
a C
A
Z
A
C
s
e
que
nc
e
w
i
t
h
l
e
n
gt
h
o
f
N
(
e
ve
n
n
um
be
r
)
.
T
he
P
r
o
poe
r
t
i
e
s
o
f
C
A
Z
AC
s
e
q
ue
nc
e
a
r
e
|
s
(
k
)
|
=
C
o
ns
t
a
nt
,
w
h
er
ek
=
0
,
1
,
2
…
N
−
1
(
7)
∑
s
(
k
)
s
∗
(
k
+
τ
)
=
N
,
τ
=
0
0
,
τ
≠
0
N
−
1
k
=
0
(
8)
T
he
C
A
Z
A
C
s
e
que
nc
e
s
(
k)
d
e
s
c
r
i
be
d
i
n
[
8]
i
s
wr
i
t
t
e
n
a
s
s
(
k
)
=
e
j
2π
µ
k
2
N
,
k
=
0
,
1
,
2
…
N
−
1
(
9)
w
h
e
re
μ
i
s
a
p
o
s
i
t
i
v
e
i
n
t
e
g
e
r
c
o
-
p
r
i
m
e
t
o
N
.
Sy
nc
hr
o
ni
z
at
i
o
n P
r
e
a
m
bl
e
D
e
s
i
gn
:
T
he
p
r
o
pe
r
t
y
of
C
A
Z
AC
s
e
qu
e
nc
e
doe
s
n
’
t
c
ha
n
g
e
a
f
t
e
r
I
F
F
T
ope
r
a
t
i
o
n,
s
o
F
a
n
g pr
o
po
s
e
d
a
pr
e
a
m
bl
e
b
y
r
e
pe
a
t
i
ng C
A
Z
A
C
s
e
que
n
c
e
a
f
t
e
r
I
F
F
T
w
hi
c
h i
s
s
ho
w
n by
b
e
low
:
TR
F
an
g
=
N
cp
C
N
2
D
N
2
N
cp
D
a
t
a
H
er
e
C
N
2
i
s
gi
ve
n by
C
N
2
(
i
)
=
v
(
i
)
.
D
N
2
(
i
)
,
v
gi
ve
n
by
r
e
s
s
e
d by
:
a
f
t
e
r
I
F
F
T
m
bl
e
by
F
a
n
g
pr
o
pos
e
d a
m
e
t
ho
d ba
s
e
d
on C
AZ
A
C
s
e
que
nc
e
.
r
e
c
t
t
im
i
ng b
ut
s
t
i
l
l
w
h
er
e
i
=
0
,
1
…
N
2
−
1
,
v
(
i
)
=
ex
p
(
j
π
.
r
n
(
i
)
)
i
s
a
r
a
nd
om
s
e
que
nc
e
a
nd
r
n
(
i
)
i
s
t
he
uni
f
o
r
m
ly
di
s
t
r
i
but
e
d
s
e
q
u
e
nc
e
r
a
ngi
ng
f
ro
m
−
0
.
2
to
1
.
T
i
m
i
n
g
S
y
n
c
h
r
o
n
i
z
a
t
i
o
n
m
e
t
r
i
c
:
A
c
c
o
r
d
i
n
g
t
o
F
a
n
g
,
t
h
e
t
i
m
i
n
g
m
e
t
r
i
c
i
s
e
x
p
r
e
s
s
e
d
a
s
M
Fa
n
g
(
d
)
=
P
F
ang
(
d
)
2
R
F
ang
2
(
d
)
(
10
)
w
h
e
re
P
Fa
n
g
(
d
)
=
∑
v
∗
(
d
+
k
)
.
r
(
d
+
k
)
.
r
∗
(
d
+
k
+
N
/
2
)
N
2
−
1
k
=
0
(
11
)
R
F
an
g
(
d
)
=
1
2
∑
(
|
r
(
d
+
k
)
|
)
2
N
−
1
k
=
0
(
12
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
A
S
I
S
S
N
:
225
2
-
88
14
A
N
ov
e
l
C
A
Z
A
C
Se
que
nc
e
B
a
s
e
d
T
i
m
i
n
g
Sy
n
c
hr
oni
z
at
i
on
S
c
he
m
e
f
or
OF
D
M
Sy
s
t
e
m
(
A
nuj
a
D
as
)
69
T
hi
s
s
c
he
m
e
gi
ve
s
be
t
t
e
r
pe
r
f
or
m
a
nc
e
s
t
ha
n
P
a
r
k a
s
i
t
m
i
t
iga
t
e
s
t
he
s
i
de
l
obe
s
by
m
ul
t
i
pl
i
c
a
t
i
on of
w
e
i
g
ht
i
ng
f
a
c
t
or
.
Ho
w
e
ve
r
,
t
he
t
im
i
ng
m
e
t
r
i
c
i
ndi
c
a
t
e
s
t
he
pr
e
s
e
nc
e
o
f
s
m
a
l
l
a
m
ount
of
s
i
de
l
o
be
s
.
S
o,
w
e
pr
o
pos
e
a
ne
w t
i
m
i
ng s
y
n
c
hr
o
n
i
zat
i
o
n
s
ch
em
e w
h
i
ch
r
ed
u
ces
t
h
e s
i
d
e l
o
b
e t
o
al
m
o
s
t
zer
o
v
al
u
e a
n
d
i
m
p
r
o
v
e
s
t
h
e
p
r
o
b
a
b
i
l
i
t
y
o
f
d
e
t
e
c
t
i
o
n
.
3.
P
R
O
P
O
SE
D
M
E
T
H
O
D
I
n t
he
pr
op
os
e
d m
e
t
hod
we
i
g
ht
e
d C
A
Z
AC
s
e
que
nc
e
i
s
ut
i
l
i
z
e
d t
o ge
ne
r
a
t
e
a
n OF
D
M
s
y
m
bol
wi
t
h
r
ep
eat
e
d
co
n
j
u
g
at
e s
y
m
m
e
t
r
y
s
eq
u
e
n
ce.
W
e
a
l
s
o pr
op
os
e
a
ne
w t
i
m
i
ng m
e
t
r
i
c
f
or
t
im
ing s
y
nc
h
r
o
ni
z
a
t
i
on
b
as
e
d
o
n
d
i
f
f
er
en
t
i
al
ab
s
o
l
u
t
e
v
al
u
e
a
s
a
n
o
r
m
al
i
zed
f
act
o
r
.
3
.
1
.
S
yn
c
h
r
on
i
z
at
i
on
P
r
e
am
b
l
e
D
e
s
i
gn
O
u
r
m
e
t
hod i
s
t
he
m
odi
f
i
e
d
ve
r
s
i
on
o
f
P
a
r
k s
c
he
m
e
.
T
he
t
r
a
i
ni
n
g s
e
que
nc
e
(
e
xc
l
udi
ng
c
y
c
l
i
c
p
re
fi
x
),
e
x
p
re
s
s
e
d
a
s
:
TR
P
ro
po
se
d
=
C
N
4
D
N
4
C
∗
N
4
D
∗
N
4
w
h
e
re
/
4
re
p
re
s
e
n
t
s
fi
rs
t
q
u
a
rt
e
r
o
f C
A
Z
AC
s
e
q
u
e
n
c
e
(
)
o
f l
e
n
g
t
h
N
,
i
.
e
.
,
/
4
=
2
2
,
=
0
,
1
,
2
…
4
−
1
a
nd
/
4
is
c
onj
uga
te
a
n
d
s
ym
m
e
tr
ic
to
/
4
.
3
.
2
.
Ti
m
i
n
g
S
y
n
c
h
r
o
n
i
z
a
t
i
o
n
I
n c
on
ve
nt
i
ona
l
m
e
t
hod
s
,
a
n
or
m
a
l
i
z
i
ng f
a
c
t
or
w
hi
c
h i
s
e
qua
l
t
o t
he
ha
l
f
e
ne
r
gy
o
f
t
he
w
i
nd
o
w
i
s
us
e
d t
o
de
t
e
r
m
i
ne
t
he
t
i
m
ing
m
e
t
r
i
c
.
B
ut
i
n
ou
r
m
e
t
ho
d t
o
ge
t
t
he
m
a
xim
u
m
va
l
ue
we
us
e
d a
di
f
f
e
r
e
nt
no
r
m
a
l
i
z
a
t
i
on f
a
c
t
or
w
hi
c
h i
s
t
he
di
f
f
e
r
e
nc
e
of
a
bs
ol
ut
e
v
a
l
ue
of
s
a
m
pl
e
s
gi
ve
n i
n (
13
)
.
T
he
p
r
op
os
e
d
n
o
r
m
al
i
za
t
i
o
n
f
act
o
r
i
s
e
x
p
r
es
s
ed
as
R
P
ro
po
se
d
(
d
)
=
∑
(
|
r
(
d
−
k
)
|
−
|
r
(
d
+
k
)
|
)
2
N
2
−
1
k
=
0
(
13
)
T
he
t
i
m
i
ng
m
e
t
r
i
c
ba
s
e
d
on
t
h
e
di
f
f
e
r
e
nc
e
o
f
m
a
gni
t
ude
a
s
a
n
or
m
a
l
i
z
e
d
f
a
c
t
or
i
s
gi
ve
n
a
s
M
P
ro
po
se
d
(
d
)
=
P
P
r
op
os
e
d
(
d
)
2
R
P
r
op
os
e
d
2
(
d
)
(
1
4)
w
h
er
e
P
P
ro
po
se
d
(
d
)
=
∑
r
(
d
−
k
)
.
r
(
d
+
k
)
N
2
−
1
k
=
0
(
1
5)
T
he
pe
r
f
o
r
m
a
nc
e
of
t
he
s
c
he
m
e
s
due
t
o P
a
r
k
,
F
a
n
g a
nd t
he
p
r
o
p
os
e
d s
c
he
m
e
a
r
e
e
va
l
u
a
t
e
d
u
s
i
n
g
s
i
m
u
l
a
t
i
o
n
.
I
n
F
i
g
u
r
e
1
,
t
h
e t
i
m
i
n
g
m
et
r
i
c o
f
each
d
i
f
f
er
e
n
t
s
c
h
em
e
s
ar
e
p
l
o
t
t
e
d
w
h
e
r
e eac
h
p
l
o
t
i
s
n
o
r
m
al
i
zed
t
o
t
h
ei
r
r
es
p
ect
i
v
e m
ax
i
m
u
m
v
al
u
e i
n
A
W
G
N
c
h
an
n
el
.
H
e
r
e t
o
t
al
s
u
b
car
r
i
er
i
s
t
a
k
e
n
as
1
0
2
4
;
l
e
ngt
h o
f
C
P
i
s
12
8 s
a
m
pl
e
s
.
F
r
om
t
he
F
i
g
ur
e
1,
c
om
pa
r
e
t
o P
a
r
k a
n
d F
a
n
g m
e
t
hod,
o
ur
m
e
t
hod ha
s
s
h
a
r
pe
r
pe
a
k a
n
d ha
vi
ng
ne
gl
i
gi
bl
e
s
i
de
l
obe
s
c
om
pa
r
e
d t
o pe
a
k v
a
l
ue
.
T
he
r
e
f
o
r
e
,
o
ur
m
e
t
hod
ha
s
a
hi
ghe
r
v
a
l
ue
o
f
p
r
o
b
a
b
i
l
i
t
y
o
f
d
e
t
e
c
t
i
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-
88
14
IJ
A
A
S
V
o
l
.
7
,
N
o
.
1
,
Ma
r
c
h
20
18
:
6
6
–
72
70
F
ig
ur
e
1
.
T
im
i
n
g
Me
tr
ic
of
D
i
f
f
er
e
n
t
S
c
h
em
es
N
o
r
m
al
i
zed
t
o
T
h
e
i
r
M
a
x
i
m
u
m
M
e
t
r
i
c
V
a
l
u
e
4.
P
E
R
F
O
R
MA
NC
E
E
V
A
L
U
AT
I
O
N
I
t
i
s
es
s
e
n
t
i
al
t
o
ev
al
u
at
e t
h
e p
e
r
f
o
r
m
an
ce o
f
t
h
e
p
r
o
p
o
s
ed
t
i
m
i
n
g
s
y
n
ch
r
o
n
i
zat
i
o
n
s
ch
em
e f
o
r
O
F
D
M
s
y
s
t
e
m
an
d
co
m
p
ar
e
w
i
t
h
t
h
e cl
as
s
i
cal
s
ch
em
es
.
W
e co
n
s
i
d
e
r
ed
an
O
F
D
M
s
y
s
t
e
m
w
i
t
h
6
4
s
u
b
-
car
r
i
er
s
(
N
)
,
cy
cl
i
c p
r
ef
i
x
w
i
t
h
1
6
s
am
p
l
es
,
n
o
r
m
al
i
ze
d
ca
r
r
i
er
f
r
eq
u
en
cy
o
f
f
s
et
=
0
.
1
t
o
ev
al
u
at
e t
h
e
pe
r
f
o
r
m
a
nc
e
o
f
t
i
m
i
ng s
y
nc
hr
o
ni
z
a
t
i
on
s
c
he
m
e
i
n e
x
po
ne
nt
i
a
l
de
c
a
y
i
ng
m
ul
t
i
pa
t
h f
a
di
n
g c
ha
nne
l
us
i
ng
s
i
m
u
l
at
i
o
n
.
T
h
e p
er
f
o
r
m
an
ce m
et
r
i
cs
w
h
i
ch
ar
e u
s
e
d
t
o
e
v
a
l
u
at
e t
h
e p
e
r
f
o
r
m
an
ce ar
e,
t
i
m
i
n
g
m
et
r
i
c,
P
eak
t
o
s
i
d
e
l
o
b
e
r
a
t
i
o
,
P
r
o
b
a
b
i
l
i
t
y
o
f
d
e
t
e
c
t
i
o
n
.
F
ig
ur
e
1 de
pi
c
t
s
t
he
no
r
m
a
l
i
z
e
d t
i
m
i
ng m
e
t
r
i
c
f
o
r
t
he
s
c
he
m
e
s
due
t
o P
a
r
k e
t
a
l
,
F
a
n
g e
t
a
l
a
nd
t
he
pr
o
pos
e
d s
c
he
m
e
a
t
10d
b S
NR
.
I
t
i
s
ob
s
e
r
ve
d f
r
om
t
he
t
im
i
ng m
e
t
r
i
c
f
o
r
P
a
r
k s
c
he
m
e
t
ha
t
t
he
s
i
de
l
o
be
p
o
w
e
r
i
s
o
f
s
i
g
n
i
f
i
c
a
n
t
m
a
g
n
i
t
ude
c
om
pa
r
e
d
t
o t
he
pe
a
k
va
l
ue
.
H
owe
ve
r
,
t
he
t
i
m
i
ng m
e
t
r
i
c
f
o
r
F
a
ng
s
c
h
e
m
e
i
ndi
c
a
t
e
s
i
de
l
obe
s
wi
t
h s
m
a
ll
e
r
m
a
gni
t
ude
c
om
pa
r
e
d t
o t
h
e
pe
a
k
va
l
ue
.
T
he
t
i
m
i
ng m
e
t
r
i
c
f
o
r
t
he
pr
o
pos
e
d
s
c
he
m
e
i
ndi
c
a
t
e
s
s
i
de
l
obe
m
a
gni
t
u
de
i
s
l
e
s
s
t
ha
n
t
he
s
c
he
m
e
d
ue
t
o
F
a
ng
an
d
a
l
m
os
t
e
qua
l
t
o
z
e
r
o.
4
.
1
.
P
ea
k
-
to
-
Si
de
L
o
be
R
a
t
i
o
v
s
.
SN
R
:
P
e
a
k
t
o
S
i
d
e
l
o
b
e
Ra
t
i
o
(
P
S
R)
v
s
S
N
R
i
n
d
B
i
s
p
r
e
s
e
nt
e
d
i
n
F
i
gu
r
e
2.
I
t
i
s
obs
e
r
ve
d
t
ha
t
t
he
P
S
R
f
o
r
P
ar
k
,
F
a
n
g
a
n
d
t
h
e
p
r
o
p
o
s
e
d
s
c
h
em
e i
n
cr
eas
es
w
i
t
h
i
n
c
r
eas
e i
n
S
N
R
.
H
o
w
e
v
er
,
t
h
e p
r
o
p
o
s
ed
s
c
h
e
m
e
obs
e
r
ve
d t
o
ha
ve
a
hi
g
he
r
P
S
R
of
1
0 c
om
pa
r
e
d t
o P
S
R
o
f
3 a
n
d 1.
7
5 f
o
r
F
a
n
g a
n
d pa
r
k
s
c
he
m
e
r
e
s
pe
c
t
i
ve
l
y
a
t
1
0
d
B
S
N
R.
F
ig
ur
e
2
.
P
e
ak
-
t
o
-
S
i
d
e
L
obe
R
a
t
i
o
v
s
.
S
N
R
i
n
d
B
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
A
A
S
I
S
S
N
:
225
2
-
88
14
A
N
ov
e
l
C
A
Z
A
C
Se
que
nc
e
B
a
s
e
d
T
i
m
i
n
g
Sy
n
c
hr
oni
z
at
i
on
S
c
he
m
e
f
or
OF
D
M
Sy
s
t
e
m
(
A
nuj
a
D
as
)
71
4
.
2
.
T
h
res
h
o
l
d
D
e
t
ect
i
o
n
:
W
e
us
e
t
he
t
h
r
e
s
h
ol
d va
l
ue
t
o de
t
e
c
t
t
he
t
im
i
ng of
t
he
s
t
a
t
r
t
of
t
he
s
ym
bol
.
S
o,
t
he
r
e
i
s
a
ne
e
d t
o
de
t
e
r
m
i
ne
t
hr
e
s
hol
d
va
l
ue
f
or
t
he
e
va
l
ua
t
i
o
n
of
p
r
oba
bi
l
i
t
y
of
de
t
e
c
t
i
o
n.
W
e
de
t
e
r
m
i
ne
t
he
s
ui
t
a
bl
e
t
hr
e
s
h
ol
d
v
a
l
u
e
w
h
i
c
h
w
i
l
l
l
e
a
d
t
o
h
i
g
h
e
r
p
r
o
b
a
b
i
l
i
t
y
o
f
d
e
t
e
c
t
i
o
n
.
T
o
o
b
t
a
i
n
t
h
i
s
s
u
i
t
a
b
l
e
t
h
r
e
s
h
o
l
d
v
a
l
u
e
w
e
o
b
s
e
r
e
v
e
t
h
e
v
a
r
i
a
t
i
o
n
o
f
P
r
o
b
a
b
i
l
i
t
y
o
f
D
e
t
e
c
t
i
o
n
F
a
i
l
u
r
e
f
o
r
d
i
f
f
e
r
e
n
t
v
a
l
u
e
s
o
f
t
h
r
e
s
h
o
l
d
.
T
h
e
v
a
r
i
a
t
i
o
n
o
f
p
r
o
b
a
b
i
l
i
t
y
of
de
t
e
c
t
i
on f
a
i
l
ur
e
vs
t
hr
e
s
h
ol
d va
l
ue
a
t
S
NR
o
f
1
0dB
i
s
s
ho
w
n i
n F
i
g
ur
e
3
.
It
i
s
o
bs
e
r
ve
d t
ha
t
t
he
s
ui
t
a
bl
e
t
hr
e
s
hol
d va
l
u
e
i
s
0.
3
5 a
nd
0
.
4 f
o
r
F
a
n
g a
n
d P
a
r
k s
c
he
m
e
r
e
s
pe
c
t
i
ve
l
y
.
H
o
w
e
ve
r
,
t
he
t
hr
e
s
h
ol
d
va
l
u
e f
o
r
t
h
e
pr
o
pos
e
d
s
c
he
m
e
i
s
1.
2.
4
.
3
.
P
r
o
b
a
b
i
l
i
ty
o
f
D
e
te
c
ti
o
n
v
s
.
S
N
R
:
P
r
o
b
a
b
i
l
i
t
y
o
f
D
t
e
c
t
i
o
n
v
s
S
N
R i
s
p
r
e
s
e
n
t
e
d
i
n
F
i
g
u
r
e
4
.
I
t
i
s
o
b
s
e
r
v
e
d
t
h
a
t
t
h
e
p
r
o
b
a
b
i
l
i
t
y
o
f
de
t
e
c
t
i
on r
e
m
a
i
ns
unc
ha
nge
d
t
i
l
l t
he
S
NR
of
0dB
f
o
r
t
he
s
c
he
m
e
due
t
o F
a
ng
a
nd P
a
r
k .
F
ur
t
he
r
i
nc
r
e
a
s
e
i
n
S
N
R
r
e
s
ul
t
s
i
n
s
ha
r
p
r
i
s
e
i
n
p
r
o
ba
bi
l
i
t
y
of
d
e
t
e
c
t
i
on a
nd
i
t
r
e
m
a
i
ns
unc
ha
ge
a
t
0.
9
f
or
t
h
e
S
N
R
va
l
ue
b
e
y
on
d
15
dB
.
Ho
w
e
ve
r
,
p
r
oba
bi
l
i
t
y
of
de
t
e
c
t
i
on
f
o
r
t
he
p
r
op
os
e
d
s
c
he
m
e
i
ndi
c
a
t
e
s
a
s
ha
r
p r
i
s
e
w
i
t
h S
NR
a
nd t
he
pr
o
ba
bi
l
i
t
y
of
de
t
e
c
t
i
on
r
e
m
a
i
n c
o
ns
t
a
nt
a
t
1 f
o
r
t
he
S
NR
be
y
o
nd
1
5
dB
.
I
t
i
s
o
bs
e
r
ve
d t
ha
t
t
he
p
r
o
ba
bi
l
t
y
of
de
t
e
c
t
i
on
f
or
t
he
pr
o
pos
e
d s
c
he
m
e
i
s
hi
gh
e
r
t
h
a
n
t
h
e P
a
r
k
s
ch
em
e an
d
F
a
n
g
s
c
h
em
e.
P
r
o
p
o
s
ed
s
ch
em
e
pr
o
ba
bi
l
t
y
of
d
e
t
e
c
t
i
on i
s
a
bo
ut
0
.
8
5 c
om
pa
r
e
d t
o
0.
25
a
n
d
0.
1 f
or
F
a
ng
a
n
d P
a
r
k
s
c
he
m
e
r
e
s
pe
c
t
i
ve
l
y
a
t
a
n
S
N
R
o
f
5
d
B.
F
ig
ur
e
3.
P
r
oba
bi
l
i
t
y
of
D
e
t
e
c
t
i
on
F
a
i
l
ur
e
vs
.
T
hr
e
s
h
ol
d
V
a
l
ue
s
F
ig
ur
e
4
.
P
r
o
b
a
b
i
l
i
t
y
o
f
D
e
t
e
c
t
i
o
n
v
s
.
S
N
R
5.
C
O
N
CL
U
S
I
O
N
I
n t
hi
s
pa
pe
r
,
w
e
pr
op
os
e
d a
n
ove
l
t
i
m
i
ng s
y
nc
h
r
o
ni
z
a
t
i
o
n m
e
t
hod
f
o
r
OF
D
M
s
y
s
t
e
m
ba
s
e
d
on
C
A
Z
A
C
s
e
q
ue
nc
e
a
n
d
di
f
f
e
r
e
nt
i
a
l
no
r
m
a
li
z
a
t
i
on m
e
t
hod,
w
hi
c
h s
ho
w
s
be
t
t
e
r
pe
r
f
o
r
m
a
nc
e
s
t
ha
n P
a
r
k a
n
d
F
a
n
g
m
e
t
hod.
A
g
oo
d c
or
r
e
l
a
t
i
on p
r
o
pe
r
t
y
of
C
A
Z
AC
s
e
q
u
e
nc
e
,
hi
g
h im
pul
s
e
-
s
ha
pe
d
pe
a
k a
t
t
he
c
or
r
e
c
t
i
ng
t
im
i
ng a
n
d
r
e
d
uc
e
d
s
i
de
l
o
be
m
a
ke
s
t
he
p
r
o
pos
e
d
m
e
t
hod
s
up
e
r
i
o
r
t
ha
n
o
t
he
r
s
c
l
a
s
s
i
c
a
l
m
e
t
hods
.
T
he
us
e
o
f
d
i
f
f
e
r
e
n
t
i
a
l
n
o
r
m
a
l
i
z
a
t
i
o
n
a
l
l
o
w
s
t
h
e
s
y
s
t
e
m
t
o
r
e
d
u
c
e
s
i
d
e
l
o
b
e
an
d
i
m
p
r
o
v
es
t
h
e
p
er
f
o
r
m
an
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-
88
14
IJ
A
A
S
V
o
l
.
7
,
N
o
.
1
,
Ma
r
c
h
20
18
:
6
6
–
72
72
R
EF
ER
E
N
C
ES
[1]
V
a
n N
e
e
,
R.
,
&
P
ra
s
a
d,
R
.
(2000)
.
O
F
D
M
for
W
ir
e
le
s
s
M
ul
t
i
m
e
d
i
a
Com
m
uni
c
a
t
i
ons
.
Bos
t
on,
M
A
:
A
rt
e
c
h H
ous
e
P
ubl
i
s
he
rs
.
[2]
M
. S
p
et
h
, S
. F
ec
h
t
el
, G
. F
o
ck
, an
d
H
. M
e
y
r
.
, ”O
p
t
i
m
u
m
R
ecei
v
er
D
es
i
g
n
f
o
r
W
i
r
el
es
s
B
r
o
ad
-
Ba
nd
S
y
s
t
e
m
s Usi
n
g
OF
DM
-
P
a
rt
I,
”
IE
E
E
T
r
ans
.
O
n
Com
m
.
,
47(11)
:
1668
–
1677,
N
ov
e
m
be
r 1999.
[3]
T
.
M
.
S
c
hm
i
dl
a
nd D
.
C.
Cox,
“
Robus
t
fre
que
nc
y
a
nd t
i
m
i
ng s
y
n
c
hroni
z
a
t
i
on for
O
F
D
M
,
”
IE
E
E
T
r
ans
.
Com
m
un
.
,
vol
.
45
,
pp
.
1613
–
1621,
D
e
c
.
199
7.
[4]
H
. M
i
n
n
, V
. B
h
a
r
g
av
a,
an
d
K
. L
e
t
ai
e
f,
“
A
robus
t
t
i
m
i
ng a
nd fre
qu
e
nc
y
s
y
n
c
hroni
z
a
t
i
on for O
F
D
M
s
y
s
t
e
m
s
,
”
I
E
E
E
T
ra
n
s.
W
i
re
l
e
ss C
o
mmu
n
.
,
vol
.
2
,
no
.
4
,
pp
.
822
–
839,
J
ul
y
2003
.
[5]
B.
P
a
rk,
H
.
Ch
e
on,
C
.
K
a
ng
,
a
nd D
.
H
ong,
“
A
nove
l
t
i
m
i
ng
e
s
t
i
m
a
t
i
on m
e
t
hod for O
F
D
M
s
y
s
t
e
m
s
,
”
I
EEE
Com
m
un.
L
e
t
t
.
,
vol
.
7
,
pp
.
239
–
2
41,
M
a
y
2003
.
[6]
S
u
y
ot
o S
u
y
ot
o
,
I Is
ka
nd
a
r,
S
S
ugi
ha
rt
ono,
A
di
t
K
urni
a
w
a
n
,
“
Im
prove
d T
i
m
i
ng E
s
t
i
m
a
t
i
o
n U
s
i
ng It
e
ra
t
i
ve
N
orm
a
l
i
z
a
t
i
on T
e
c
hni
qu
e
for O
F
D
M
S
y
s
t
e
m
s
,
”
Int
e
r
nat
i
ona
l
J
our
nal
of
E
l
e
c
t
r
i
c
al
and Com
put
e
r
E
ngi
ne
e
r
i
n
g
(
I
JE
C
E
)
,
pp.
905
-
911,
2012
.
[7]
F
a
ng,
Y
i
bo,
Z
h
a
ng,
Z
uot
a
o,
L
i
u
G
ua
nghui
,
“
A
N
ove
l
S
y
n
c
hroni
z
a
t
i
on A
l
gori
t
hm
Ba
s
e
d on CA
Z
A
C S
e
que
nc
e
for
OF
DM S
y
st
e
m
s,
”
Int
e
r
nat
i
onal
Conf
e
r
e
nc
e
on
Wi
r
e
l
e
s
s
Com
m
uni
c
at
i
ons
,
Ne
t
wo
r
k
i
ng and Mobi
l
e
Com
put
i
ng
, v
o
l
.,
no.
,
pp.
1,
4
,
21
-
23,
S
e
pt
e
m
be
r.
2
012.
[8]
H
a
n W
A
N
G
,
L
e
i
j
i
Z
H
U
,
Y
us
on
g S
H
I ,
T
a
o X
IN
G
,
Y
i
nggua
n W
A
N
G
,
“
A
N
o
ve
l
S
y
n
c
hroni
z
a
t
i
on A
l
gori
t
hm
f
or
O
F
D
M
S
y
s
t
em
s
w
i
t
h
W
ei
g
h
t
ed
C
A
Z
A
C
S
eq
u
en
ce,
”
J
our
nal
of
Com
put
at
i
onal
I
nf
or
m
at
i
on Sy
s
t
e
m
s
,
pp.
2275
-
2283,
2012.
Evaluation Warning : The document was created with Spire.PDF for Python.