I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
,
p
p
.
20
6
~
2
1
4
I
SS
N:
2252
-
8814
206
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
Artif
i
cia
l Neural
Netw
o
rk
Ba
sed E
co
no
m
ic
G
en
erati
o
n
Scheduling
in
Nig
eria
P
o
w
er Ne
tw
o
rk
O
m
o
ro
g
iuw
a
E
s
eo
s
a
,
O
no
ha
ebi S.
O
De
p
a
rtme
n
t
o
f
El
e
c
t
-
El
e
c
t
En
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
Un
iv
e
rsit
y
o
f
P
o
rt
Ha
rc
o
u
rt,
Nig
e
ria
De
p
a
rtme
n
t
o
f
El
e
c
t
-
El
e
c
t
En
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
Un
iv
e
rsit
y
o
f
Be
n
in
,
Nig
e
ria
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
1
6
,
2
0
1
4
R
ev
i
s
ed
No
v
8
,
2
0
1
4
A
cc
ep
ted
No
v
2
20
,
2
0
1
4
Eco
n
o
m
ic
g
e
n
e
ra
ti
o
n
sc
h
e
d
u
li
n
g
d
e
term
in
e
s
th
e
m
o
st
e
ff
icie
n
t
a
n
d
e
c
o
n
o
m
ic
m
e
a
n
s
o
f
d
isp
a
tch
o
f
g
e
n
e
ra
ted
e
n
e
rg
y
to
m
e
e
t
th
e
c
o
n
t
in
u
o
u
sly
v
a
r
y
in
g
lo
a
d
d
e
m
a
n
d
a
t
th
e
m
o
st
a
p
p
ro
p
riate
m
in
i
m
u
m
c
o
st,
w
h
il
e
m
e
e
ti
n
g
a
l
l
th
e
u
n
i
ts
e
q
u
a
li
ty
a
n
d
in
e
q
u
a
l
it
y
c
o
n
stra
in
ts
in
p
o
w
e
r
n
e
t
w
o
rk
.
T
h
is
is
c
u
rre
n
tl
y
n
o
t
a
p
p
li
c
a
b
le
in
Nig
e
ria
p
o
w
e
r
n
e
t
w
o
rk
.
T
h
e
n
e
t
w
o
rk
u
n
d
e
r
stu
d
y
c
o
n
sists
o
f
se
v
e
n
tee
n
(1
7
)
g
e
n
e
ra
ti
n
g
sta
ti
o
n
s
(Ex
isti
n
g
Ne
t
w
o
rk
,
Na
ti
o
n
a
l
In
teg
ra
ted
P
o
w
e
r
P
ro
jec
ts
a
n
d
t
h
e
In
d
e
p
e
n
d
e
n
t
P
o
w
e
r
P
ro
d
u
c
e
rs).
T
h
is
w
o
rk
in
v
e
stig
a
tes
e
c
o
n
o
m
ic
g
e
n
e
ra
ti
o
n
a
n
d
sc
h
e
d
u
li
n
g
in
Nig
e
ri
a
3
3
0
K
V
in
teg
ra
ted
p
o
w
e
r
n
e
tw
o
rk
a
t
m
i
n
im
u
m
o
p
e
ra
ti
n
g
c
o
st
u
si
n
g
th
e
c
las
sic
a
l
k
ir
m
a
y
e
r’s
m
e
th
o
d
a
n
d
A
rti
f
icia
l
Ne
u
ra
l
Ne
t
w
o
rk
(
A
N
N)
f
o
r
it
s
o
p
ti
m
iza
ti
o
n
in
M
a
tl
a
b
e
n
v
iro
n
m
e
n
t.
A
NN
is
train
e
d
t
o
a
d
o
p
t
it
s
p
a
tt
e
r
n
a
t
d
if
fe
re
n
t
lo
a
d
d
e
m
a
n
d
s
a
n
d
a
c
q
u
ires
th
e
a
b
il
it
y
to
g
i
v
e
lo
a
d
d
e
m
a
n
d
a
s
so
o
n
a
s
th
e
se
t
targ
e
t
a
n
d
g
o
a
l
ten
d
s
to
e
q
u
a
li
ty
.
Co
st
f
u
n
c
ti
o
n
f
o
r
e
a
c
h
g
e
n
e
ra
ti
n
g
u
n
it
a
s
w
e
ll
a
s a
m
o
d
e
l
f
o
r
e
c
o
n
o
m
ic g
e
n
e
ra
ti
o
n
sc
h
e
d
u
li
n
g
w
a
s d
e
v
e
lo
p
e
d
.
K
ey
w
o
r
d
:
A
N
N,
C
o
s
t f
u
n
ctio
n
,
Nig
er
ia,
P
HC
N
Co
p
y
rig
h
t
©
201
4
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
O
m
o
r
o
g
i
u
w
a
E
s
eo
s
a
,
Dep
ar
t
m
en
t o
f
E
lect
-
E
lec
t E
n
g
in
ee
r
i
n
g
,
Facu
lt
y
o
f
E
n
g
i
n
ee
r
i
n
g
,
U
n
i
v
e
r
s
it
y
o
f
P
o
r
t H
ar
co
u
r
t
,
R
iv
er
s
State,
Ni
g
er
ia
.
E
m
ail:
o
o
m
o
r
o
g
i
u
w
a
@
y
a
h
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
E
co
n
o
m
ic
g
en
er
at
io
n
s
ch
ed
u
li
n
g
in
v
o
l
v
es
o
p
ti
m
izatio
n
o
f
c
er
tain
eq
u
al
it
y
an
d
in
eq
u
alit
y
co
n
s
tr
ain
ts
in
p
o
w
er
n
et
w
o
r
k
,
w
h
ile
s
atis
f
y
in
g
lo
ad
d
e
m
a
n
d
at
m
in
i
m
u
m
o
p
er
atin
g
co
s
t.
I
t
d
eter
m
i
n
e
s
th
e
m
o
s
t
e
f
f
icie
n
t,
lo
w
-
co
s
t
a
n
d
r
eliab
le
o
p
er
atio
n
o
f
p
o
w
er
s
y
s
te
m
b
y
d
is
p
a
tc
h
in
g
t
h
e
a
v
ailab
le
elec
tr
icit
y
g
en
er
atio
n
r
eso
u
r
ce
s
to
s
u
p
p
l
y
lo
ad
to
th
e
s
y
s
te
m
[
1
]
.
Gen
er
all
y
,
g
en
er
atio
n
s
c
h
ed
u
lin
g
h
as
b
ec
o
m
e
n
ec
es
s
ar
y
b
ec
au
s
e
o
f
r
ap
id
in
cr
ea
s
e
o
f
e
n
er
g
y
r
eq
u
ir
e
m
e
n
ts
.
R
esear
ch
er
s
r
ev
ie
w
ed
ec
o
n
o
m
ic
lo
ad
d
is
p
atch
a
n
d
g
e
n
er
atio
n
s
c
h
e
d
u
li
n
g
an
d
ap
p
lied
it
to
p
o
w
e
r
n
et
w
o
r
k
[
1
]
-
[
5
]
.
C
o
n
s
id
er
in
g
th
e
co
n
v
en
tio
n
al
ap
p
r
o
ac
h
es
o
f
s
ch
ed
u
le
[
6
]
-
[
1
0
]
an
d
th
e
u
s
e
o
f
i
n
telli
g
e
n
t
m
et
h
o
d
s
f
o
r
o
p
ti
m
al
s
ch
ed
u
l
in
g
s
u
c
h
as
Si
m
u
lated
An
n
e
alin
g
(
S
A
)
,
A
r
ti
f
icia
l
Ne
u
r
al
Net
w
o
r
k
(
A
N
N)
,
Gen
etic
Alg
o
r
it
h
m
(
G
A
)
,
[
1
1
]
-
[
1
7
]
,
it
w
a
s
f
o
u
n
d
th
a
t
ac
cu
r
ate
r
esu
lt
s
w
er
e
o
b
tain
ed
e
v
e
n
i
n
v
er
y
lar
g
e
a
n
d
co
m
p
le
x
p
o
w
er
n
et
w
o
r
k
s
co
m
p
ar
ed
to
th
e
co
n
v
e
n
tio
n
al
m
et
h
o
d
s
.
I
n
telli
g
e
n
t
m
e
th
o
d
s
ar
e
co
m
p
u
ter
-
b
ased
p
r
o
b
lem
s
o
l
v
i
n
g
s
y
s
te
m
s
w
h
ic
h
ar
e
co
m
p
u
tatio
n
a
l
m
o
d
els
o
f
e
v
o
lu
tio
n
ar
y
p
r
o
ce
s
s
e
s
as
k
e
y
ele
m
en
ts
i
n
t
h
eir
d
esig
n
an
d
i
m
p
le
m
en
tatio
n
[
1
8
]
.
I
t
is
u
n
-
ec
o
n
o
m
ical
to
o
p
er
ate
all
av
ailab
le
u
n
its
i
n
g
en
er
ati
n
g
s
tatio
n
s
d
u
r
in
g
p
ea
k
an
d
o
f
f
p
ea
k
p
er
i
o
d
,
h
en
ce
th
e
p
r
o
b
lem
o
f
u
n
it
co
m
m
it
m
e
n
t
o
f
ea
ch
g
en
er
at
o
r
in
th
e
n
et
w
o
r
k
.
Un
it
co
m
m
it
m
en
t
p
r
o
b
le
m
i
s
s
o
lv
ed
b
y
e
n
s
u
r
in
g
t
h
at
t
h
er
e
is
a
p
lan
o
f
u
n
it
s
to
b
e
s
elec
t
ed
f
r
o
m
g
e
n
er
ati
n
g
f
ac
ilit
ies
to
m
ee
t
p
r
ed
icted
d
em
an
d
in
a
r
eliab
le
a
n
d
ec
o
n
o
m
ic
m
a
n
n
er
[
1
9
]
.
I
n
s
o
l
v
in
g
t
h
is
p
r
o
b
lem
,
A
NN
w
a
s
u
s
ed
to
g
e
n
er
ate
p
r
e
-
s
c
h
e
d
u
lin
g
b
y
ad
j
u
s
t
in
g
t
h
eir
o
u
tp
u
t a
cc
o
r
d
in
g
to
p
r
io
r
ity
o
f
f
u
el
co
s
t p
er
u
n
it o
u
tp
u
t
[
2
0
]
,
[
2
1
]
.
T
h
is
w
o
r
k
ai
m
s
at
u
s
i
n
g
A
NN
b
ased
o
p
ti
m
i
za
tio
n
tech
n
iq
u
e
f
o
r
ec
o
n
o
m
ic
g
en
er
at
io
n
a
n
d
s
ch
ed
u
lin
g
in
Ni
g
er
ia
3
3
0
k
V
p
o
w
er
n
et
w
o
r
k
an
d
m
i
n
i
m
iz
e
o
v
er
all
co
s
t
o
f
g
e
n
er
atio
n
a
n
d
p
o
w
er
lo
s
s
e
s
.
I
t
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
r
tifi
cia
l Neu
r
a
l
N
etw
o
r
k
B
a
s
ed
E
co
n
o
mic
Gen
era
tio
n
S
c
h
e
d
u
lin
g
in
N
ig
eria
…
(
Omo
r
o
g
i
u
w
a
E
s
eo
s
a
)
207
also
i
n
v
o
l
v
es
m
o
d
elli
n
g
t
h
e
n
et
w
o
r
k
s
u
c
h
t
h
at
it
ca
n
ea
s
il
y
b
e
ad
j
u
s
ted
to
s
u
it
d
ail
y
r
eq
u
i
r
e
m
en
t
an
d
ch
a
n
g
es
s
u
c
h
as a
d
d
itio
n
an
d
r
e
m
o
v
al
o
f
g
e
n
er
atin
g
u
n
it
s
.
2.
NIGER
I
A
P
O
WE
R
NE
T
W
O
RK
I
n
an
atte
m
p
t
to
m
ee
t
th
e
i
n
cr
ea
s
in
g
p
o
w
er
d
e
m
a
n
d
,
th
e
co
u
n
tr
y
’
s
elec
tr
icit
y
i
n
d
u
s
tr
y
is
u
n
d
er
g
o
i
n
g
ch
an
g
es
in
ter
m
s
o
f
b
u
ild
i
n
g
m
o
r
e
g
e
n
er
ati
n
g
s
tatio
n
s
,
t
r
an
s
m
is
s
io
n
li
n
e
s
an
d
d
is
tr
ib
u
tio
n
l
in
e
s
/s
ta
tio
n
s
th
r
o
u
g
h
Natio
n
al
I
n
d
ep
en
d
en
t
P
o
w
er
P
r
o
j
ec
ts
(
NI
P
P)
an
d
I
n
d
ep
en
d
en
t
P
o
w
er
p
r
o
d
u
ce
r
s
(
I
P
P).
NI
P
P
an
d
I
P
P
h
av
e
i
n
cr
ea
s
ed
th
e
n
u
m
b
er
s
o
f
g
e
n
er
atin
g
s
tat
io
n
s
f
r
o
m
n
i
n
e
(
9
)
to
s
ev
en
teen
(
1
7
)
,
tr
an
s
m
is
s
io
n
li
n
es
f
r
o
m
th
ir
t
y
(
3
0
)
to
s
ix
t
y
-
f
o
u
r
(
6
4
)
a
n
d
b
u
s
es
f
r
o
m
t
w
en
t
y
-
ei
g
h
t
(
2
8
)
to
th
ir
t
y
-
t
w
o
(
5
2
)
f
o
r
th
e
3
3
0
k
V
tr
an
s
m
i
s
s
io
n
g
r
id
.
P
r
esen
tl
y
,
o
f
t
h
e
s
e
v
e
n
te
en
(
1
7
)
ac
tiv
e
p
o
w
er
g
e
n
er
ati
n
g
s
tat
io
n
s
,
eig
h
t
o
f
th
e
s
e
ar
e
o
w
n
ed
b
y
Fed
er
al
Go
v
er
n
m
en
t
(
ex
is
t
in
g
)
w
ith
i
n
s
tal
led
ca
p
ac
ity
o
f
6
,
2
5
6
M
W
an
d
2
,
4
8
4
MW
is
av
ailab
le.
T
h
e
r
em
ai
n
i
n
g
n
i
n
e
(
9
)
ar
e
f
r
o
m
b
o
th
Natio
n
al
I
n
d
e
p
en
d
en
t
P
o
w
er
P
r
o
j
ec
t
(
NI
P
P)
an
d
t
h
e
I
n
d
ep
en
d
e
n
t
P
o
wer
P
r
o
d
u
ce
r
s
(
I
PP
)
w
it
h
to
tal
d
esi
g
n
ed
ca
p
ac
it
y
o
f
2
,
8
0
9
MW
,
o
f
w
h
ic
h
1
,
3
3
6
.
5
MW
is
av
ailab
le
[
2
3
]
.
T
ab
le
1
s
h
o
w
s
m
ax
i
m
u
m
an
d
av
ailab
le
g
e
n
er
ati
n
g
ca
p
ac
i
ties
,
th
e
ir
lo
ca
tio
n
an
d
t
y
p
e
o
f
tu
r
b
i
n
e.
T
ab
le
2
sh
o
w
s
b
u
s
n
a
m
e
s
.
T
ab
le
1
.
Nig
er
ia
P
o
w
er
Net
w
o
r
k
Sh
o
w
i
n
g
T
h
eir
Ma
x
i
m
u
m
a
n
d
Av
ailab
le
Ge
n
er
ati
n
g
C
ap
ac
ities
[
2
3
]
S
/
N
P
o
w
e
r
st
a
t
i
o
n
L
o
c
a
t
i
o
n
T
u
r
b
i
n
e
t
y
p
e
I
n
st
a
l
l
e
d
u
n
i
t
A
v
a
i
l
a
b
l
e
u
n
i
t
M
a
x
i
m
u
m
C
a
p
a
c
i
t
y
(
M
W
)
A
v
a
i
l
a
b
l
e
C
a
p
a
c
i
t
y
(
M
W
)
1
K
a
i
n
j
i
N
i
g
e
r
H
y
d
r
o
8
6
7
6
0
2
5
9
2
Je
b
b
a
N
i
g
e
r
H
y
d
r
o
6
5
5
4
0
4
0
2
3
S
h
i
r
o
r
o
N
i
g
e
r
H
y
d
r
o
4
3
6
0
0
4
0
8
4
Eg
b
i
n
L
a
g
o
s
S
t
e
a
m
6
4
1
3
2
0
9
0
0
5
T
r
a
n
s
-
A
mad
i
R
i
v
e
r
s
G
a
s
4
1
1
0
0
7
.
3
5
A
.
E.
S
(
Eg
b
i
n
)
L
a
g
o
s
G
a
s
9
8
2
5
0
2
3
3
.
8
6
S
a
p
e
l
e
D
e
l
t
a
G
a
s
10
2
1
0
2
0
1
7
0
7
I
b
o
m
A
k
w
a
-
I
b
o
m
G
a
s
4
1
1
5
5
2
5
.
3
8
O
k
p
a
i
D
e
l
t
a
G
a
s
3
2
9
0
0
2
2
3
9
A
f
a
m
I
-
V
R
i
v
e
r
s
G
a
s
20
3
7
2
6
60
10
A
f
a
mV
I
(
S
h
e
l
l
)
R
i
v
e
r
s
G
a
s
6
5
6
5
0
5
5
0
11
D
e
l
t
a
D
e
l
t
a
G
a
s
18
12
9
1
2
2
8
1
12
G
e
r
e
g
u
K
o
g
i
G
a
s
3
3
4
1
4
1
2
0
13
O
mo
k
u
R
i
v
e
r
s
G
a
s
6
4
1
5
0
28
14
O
mo
t
o
sh
o
O
n
d
o
G
a
s
8
2
3
0
4
8
8
.
3
15
O
k
p
a
i
(
A
g
i
p
)
D
e
l
t
a
G
a
s
6
6
4
8
0
4
8
0
16
O
l
o
r
u
n
sh
o
g
o
p
h
a
se
I
O
g
u
n
G
a
s
8
2
2
0
0
1
1
4
.
5
17
O
l
o
r
u
n
sh
o
g
o
p
h
a
se
I
I
O
g
u
n
G
a
s
8
2
2
0
0
2
0
0
T
o
t
a
l
P
o
w
e
r
9
5
4
5
4
4
0
4
T
ab
le
2
.
B
u
s
Na
m
e
s
[
2
3
]
S
/
N
o
B
u
se
s
S
/
N
o
B
u
se
s
S
/
N
o
B
u
se
s
1
S
h
i
r
o
r
o
21
N
e
w
h
a
v
e
n
so
u
t
h
41
Y
o
l
a
2
A
f
a
m
22
M
a
k
u
r
d
i
42
G
w
a
g
w
a
l
a
d
a
3
I
k
o
t
-
Ek
p
e
n
e
23
B
-
k
e
b
b
i
43
S
a
k
e
t
e
4
P
o
r
t
-
H
a
r
c
o
u
r
t
24
K
a
i
n
j
i
44
I
k
o
t
-
A
b
a
si
5
A
i
y
e
d
e
25
O
sh
o
g
b
o
45
Jal
i
n
g
o
6
I
k
e
j
a
w
e
st
26
O
n
i
t
sh
a
46
K
a
d
u
n
a
7
P
a
p
a
l
a
n
t
o
27
B
e
n
i
n
n
o
r
t
h
47
Je
b
b
a
G
S
8
A
j
a
28
O
mo
t
o
sh
o
48
K
a
n
o
9
Eg
b
i
n
P
S
29
Ey
a
e
n
49
K
a
t
a
mp
e
10
A
j
a
o
k
u
t
a
30
C
a
l
a
b
a
r
50
O
k
p
a
i
11
B
e
n
i
n
31
A
l
a
g
b
o
n
51
Je
b
b
a
12
G
e
r
e
g
u
32
D
a
mat
u
r
u
52
A
ES
13
L
o
k
o
j
a
33
G
o
mb
e
14
A
k
a
n
g
b
a
34
M
a
i
d
u
g
u
r
i
15
S
a
p
e
l
e
35
Eg
b
e
ma
16
A
l
a
d
j
a
36
O
mo
k
u
17
D
e
l
t
a
P
S
37
O
w
e
r
r
i
18
A
l
a
o
j
i
38
Er
u
n
k
a
n
19
A
l
i
a
d
e
39
G
a
n
mo
20
N
e
w
h
a
v
e
n
40
Jo
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
2
0
4
–
2
1
2
208
Nig
er
ia
as
a
n
atio
n
is
y
et
to
m
ee
t
th
e
i
n
cr
ea
s
i
n
g
en
er
g
y
r
eq
u
ir
e
m
e
n
ts
f
u
ll
y
b
ec
au
s
e
o
f
its
li
m
ite
d
p
o
w
er
s
y
s
te
m
s
f
o
r
g
en
er
atio
n
an
d
tr
an
s
m
is
s
io
n
,
s
o
it
is
i
m
p
o
r
tan
t
n
o
t
to
w
as
te
th
e
li
m
it
ed
en
er
g
y
g
en
er
ate
d
an
d
th
i
s
ca
n
b
e
ac
h
ie
v
ed
ef
f
ec
tiv
el
y
b
y
o
p
ti
m
al
g
e
n
er
atio
n
a
n
d
s
ch
ed
u
li
n
g
.
2
.
1
.
E
co
no
m
ic
G
e
nera
t
io
n
a
nd
Sche
du
li
ng
M
e
t
ho
ds
I
n
p
o
w
er
s
y
s
te
m
s
en
g
i
n
ee
r
i
n
g
,
ec
o
n
o
m
ic
g
en
er
atio
n
an
d
s
ch
ed
u
li
n
g
h
a
v
e
b
ee
n
u
s
ed
to
p
lan
o
v
er
a
g
iv
e
n
ti
m
e
h
o
r
izo
n
i
n
o
r
d
er
to
o
b
tain
t
h
e
m
o
s
t
ec
o
n
o
m
ical
s
c
h
ed
u
le
o
f
co
m
m
i
tti
n
g
an
d
d
i
s
p
atch
i
n
g
g
en
er
ati
n
g
u
n
it
s
.
T
h
e
ess
e
n
ce
is
to
m
ee
t
f
o
r
ec
asted
d
e
m
a
n
d
lev
els
a
n
d
s
p
in
n
i
n
g
r
eser
v
e
r
eq
u
ir
e
m
en
ts
w
h
ile
all
th
e
g
e
n
er
atin
g
u
n
it
co
n
s
tr
ain
ts
ar
e
s
ati
s
f
ied
.
Fo
r
in
ter
co
n
n
ec
ted
p
o
w
er
s
y
s
te
m
s
w
h
i
ch
co
n
tai
n
m
u
ltip
le
ar
ea
s
an
d
tie
li
n
es,
ca
p
ac
it
y
co
n
s
tr
ai
n
ts
ar
e
also
n
ee
d
ed
to
b
e
co
n
s
id
er
ed
in
th
e
m
u
lti
-
ar
ea
E
L
D.
T
h
e
g
en
er
ati
n
g
u
n
it
s
c
h
ed
u
le
th
at
y
ield
s
m
in
i
m
u
m
to
tal
p
r
o
d
u
ctio
n
co
s
t
w
h
ic
h
co
n
s
is
t
s
o
f
th
e
f
o
llo
w
i
n
g
co
s
t
:
f
u
el,
o
p
er
atin
g
cr
e
w
m
e
m
b
er
s
,
m
a
in
te
n
an
ce
,
s
tar
tin
g
u
p
an
d
s
h
u
tti
n
g
d
o
w
n
o
f
g
e
n
er
ati
n
g
u
n
its
,
w
h
ic
h
is
t
h
e
o
p
tim
a
l
s
o
l
u
tio
n
o
f
ec
o
n
o
m
ic
g
en
er
atio
n
an
d
s
ch
ed
u
lin
g
(
E
GS
ar
e
co
n
s
id
er
ed
.
T
h
e
co
s
t
o
f
p
o
w
er
g
en
er
atio
n
is
s
o
lel
y
d
ep
en
d
en
t
o
n
th
e
t
y
p
e
o
f
f
u
el
u
s
ed
,
th
e
e
n
er
g
y
r
eq
u
ir
e
m
e
n
t
o
f
co
n
s
u
m
er
s
an
d
o
n
p
o
w
er
lo
s
s
e
s
ex
p
er
ien
ce
d
i
n
t
h
e
p
o
w
er
s
y
s
t
e
m
.
T
h
e
E
L
D
p
r
o
b
le
m
m
i
n
i
m
izes
t
h
e
to
tal
co
s
t
o
f
g
e
n
er
ati
o
n
w
h
ile
h
o
n
o
r
in
g
th
e
o
p
er
atio
n
al
co
n
s
tr
ai
n
ts
o
f
t
h
e
a
v
ailab
le
g
en
er
atio
n
r
e
s
o
u
r
ce
s
.
E
GS
u
t
ilizes
th
e
u
s
e
o
f
e
v
er
y
p
o
w
er
g
en
er
ated
t
h
er
eb
y
s
av
i
n
g
co
s
t,
lo
s
s
es a
n
d
e
n
ab
lin
g
a
n
e
f
f
ec
ti
v
e
p
o
w
er
p
la
n
t.
I
t
w
i
ll
h
elp
co
u
n
tr
ie
s
li
k
e
Ni
g
er
ia
s
tr
u
g
g
lin
g
w
it
h
t
h
e
h
i
g
h
d
e
m
a
n
d
o
f
elec
tr
icit
y
to
av
o
id
w
a
s
t
ag
e
o
f
its
l
i
m
ited
p
o
w
er
g
e
n
er
ated
.
E
co
n
o
m
ic
g
e
n
er
atio
n
an
d
s
c
h
ed
u
lin
g
(
E
GS)
in
v
o
lv
es
s
o
l
u
ti
o
n
o
f
t
w
o
d
if
f
er
en
t
p
r
o
b
le
m
s
.
T
h
ese
ar
e
th
e
u
n
it
co
m
m
it
m
e
n
t
(
UC
)
a
n
d
th
e
o
n
-
li
n
e
ec
o
n
o
m
ic
d
i
s
p
at
ch
(
E
P
)
.
Un
it
C
o
m
m
i
t
m
e
n
t
(
UC
)
o
r
p
r
e
-
d
is
p
atch
p
r
o
b
lem
i
n
v
o
lv
es
o
p
ti
m
al
s
el
ec
tio
n
o
f
av
a
ilab
le
g
e
n
er
ati
n
g
s
o
u
r
ce
s
,
to
o
p
er
ate
an
d
m
ee
t
th
e
e
x
p
ec
ted
lo
ad
d
em
a
n
d
at
m
i
n
i
m
u
m
co
s
t
f
o
r
a
s
p
e
cif
ied
p
er
io
d
o
f
ti
m
e.
T
h
e
o
n
-
l
in
e
ec
o
n
o
m
ic
lo
ad
d
is
p
atch
i
s
r
eq
u
ir
ed
t
o
d
is
tr
ib
u
te
lo
ad
am
o
n
g
g
e
n
er
ati
n
g
u
n
i
ts
to
m
i
n
i
m
ize
to
tal
co
s
t
o
f
s
u
p
p
l
y
i
n
g
t
h
e
m
i
n
u
te
to
m
i
n
u
te
r
eq
u
ir
e
m
e
n
ts
o
f
th
e
s
y
s
te
m
an
d
ex
p
ec
ted
lo
s
s
es.
Var
io
u
s
m
eth
o
d
s
h
av
e
b
ee
n
u
s
ed
to
tack
l
e
E
GS.
Ma
th
e
m
atica
l
f
o
r
m
u
latio
n
s
in
c
lu
d
e
co
n
v
e
n
tio
n
al
m
et
h
o
d
s
lik
e
E
x
h
a
u
s
ti
v
e
E
n
u
m
er
atio
n
,
P
r
io
r
ity
L
i
s
t,
L
ag
r
a
n
g
ia
n
R
elax
a
tio
n
,
Seq
u
e
n
tial
Me
t
h
o
d
,
Mix
ed
I
n
te
g
er
P
r
o
g
r
a
m
m
in
g
,
Dec
o
m
m
it
m
e
n
t
Me
th
o
d
,
D
y
n
a
m
ic
P
r
o
g
r
am
m
i
n
g
,
B
r
an
c
h
a
n
d
B
o
u
n
d
tec
h
n
iq
u
e,
L
a
m
b
d
a
I
ter
ativ
e
Me
t
h
o
d
,
Gr
ad
ien
t
Me
t
h
o
d
,
Ne
w
to
n
’
s
L
i
n
ea
r
P
r
o
g
r
am
m
i
n
g
.
T
h
ese
m
et
h
o
d
s
ar
e
u
s
u
al
l
y
ti
m
e
co
n
s
u
m
i
n
g
a
n
d
u
s
u
all
y
p
r
o
n
e
to
er
r
o
r
s
.
W
i
th
t
h
e
ad
v
an
ce
m
e
n
t
in
tec
h
n
o
lo
g
y
,
ea
s
ier
an
d
m
o
r
e
ac
cu
r
ate
m
et
h
o
d
s
h
av
e
b
e
en
ad
o
p
ted
.
T
h
ese
m
eth
o
d
s
i
n
v
o
l
v
e
t
h
e
u
s
e
o
f
co
m
p
u
ter
p
r
o
g
r
a
m
s
.
T
h
o
u
g
h
t
h
e
y
m
a
y
r
eq
u
ir
e
s
p
ec
ial
tr
ai
n
i
n
g
an
d
s
k
il
ls
,
t
h
e
y
h
a
v
e
p
r
o
v
e
n
to
b
e
t
h
e
b
est
i
n
s
o
lv
i
n
g
s
u
c
h
p
r
o
b
lem
s
.
T
h
ese
m
et
h
o
d
s
in
cl
u
d
e
Gen
etic
A
l
g
o
r
ith
m
(
G
A
)
,
F
u
zz
y
L
o
g
ic(
F
L
)
,
T
a
b
u
Sear
ch
(
T
S),
A
r
ti
f
icial
Ne
u
r
al
Net
w
o
r
k
(
ANN)
,
P
ar
ticle
S
w
ar
m
Op
ti
m
i
za
tio
n
(
P
SO)
e.
t.c
.
ANN
h
as
p
r
o
v
en
to
b
e
r
o
b
u
s
t,
ea
s
y
to
m
o
d
i
f
y
,
n
o
t
li
m
ited
to
a
s
p
ec
if
ic
n
u
m
b
er
o
f
i
n
p
u
t
a
n
d
o
u
tp
u
t,
a
n
d
it
co
n
tr
o
ls
n
o
n
-
li
n
ea
r
s
y
s
te
m
s
th
a
t
w
o
u
ld
b
e
d
if
f
ic
u
lt o
r
i
m
p
o
s
s
ib
le
to
m
o
d
el
m
ath
e
m
at
icall
y
[
1
3
]
-
[
14
]
,
[
21
]
-
[
2
2
]
.
3.
M
E
T
H
O
DO
L
O
G
Y
C
las
s
ical
Kir
c
h
m
a
y
er
’
s
m
et
h
o
d
is
u
s
ed
in
t
h
i
s
r
esear
ch
w
o
r
k
w
i
th
ANN
b
ased
o
p
ti
m
izat
io
n
tech
n
iq
u
e
b
ec
au
s
e
o
f
its
r
o
b
u
s
t,
ea
s
y
to
ad
j
u
s
t
an
d
i
ts
i
n
ab
ilit
y
to
b
e
li
m
i
ted
w
h
ic
h
ar
e
i
ts
ad
v
a
n
tag
e
s
.
T
h
e
ac
h
iev
in
g
t
h
e
s
et
o
b
j
ec
tiv
e,
th
e
f
o
llo
w
in
g
p
r
o
ce
d
u
r
es is
a
d
o
p
ted
f
o
r
th
e
w
o
r
k
:
1.
Def
i
n
e
th
e
co
n
tr
o
l o
b
j
ec
tiv
es,
cr
iter
ia
an
d
co
n
s
tr
ain
ts
.
2.
Dete
r
m
i
n
e
th
e
n
u
m
b
er
o
f
g
en
e
r
atin
g
s
tatio
n
s
to
b
e
s
tu
d
ied
an
d
th
eir
ca
p
ac
it
y
.
3.
C
r
ea
te
ANN
an
d
d
ef
i
n
e
t
h
e
v
a
lu
es o
f
in
p
u
t/o
u
tp
u
t te
r
m
s
.
4.
C
r
ea
te
th
e
n
ec
ess
ar
y
p
r
e
an
d
p
o
s
t p
r
o
ce
s
s
in
g
A
NN
r
o
u
ti
n
es.
5.
Set
u
p
an
d
test
t
h
e
3
3
0
KV
Net
w
o
r
k
u
s
in
g
th
e
lo
ad
f
lo
w
r
esu
lts
o
b
tain
ed
f
r
o
m
P
o
w
er
W
o
r
d
Si
m
u
lato
r
en
v
ir
o
n
m
e
n
t.
6.
E
v
alu
a
te
th
e
r
es
u
lt
s
.
3
.
1
.
M
a
t
he
m
a
t
ica
l
M
o
delin
g
o
f
E
co
no
m
ic
L
o
a
d Di
s
pa
t
ch
(
E
LD
)
P
ro
ble
m
Ma
th
e
m
atica
ll
y
,
th
e
co
n
v
e
n
t
io
n
al
E
L
D
ca
n
b
e
r
ep
r
esen
ted
as
:
∑
(
1
)
(
2
)
W
ith
P
i
mi
n
P
i
P
i
max
T
r
an
s
m
is
s
io
n
lo
s
s
is
g
iv
e
n
as
:
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
r
tifi
cia
l Neu
r
a
l
N
etw
o
r
k
B
a
s
ed
E
co
n
o
mic
Gen
era
tio
n
S
c
h
e
d
u
lin
g
in
N
ig
eria
…
(
Omo
r
o
g
i
u
w
a
E
s
eo
s
a
)
209
P
i
P
j
j
(
3
)
Su
b
j
ec
t to
:
P
P
L
∑
P
n
N
n
(
4
)
Usi
n
g
t
h
e
lag
r
a
n
g
ian
m
u
ltip
lie
r
λ
,
th
e
au
x
iliar
y
f
u
n
c
tio
n
i
s
g
i
v
en
b
y
:
A
A
T
λ
(
P
P
L
-
∑
P
n
N
n
)
(
5
)
P
ar
tial
d
if
f
er
e
n
tial
o
f
th
i
s
e
x
p
r
ess
io
n
w
h
e
n
eq
u
a
ted
to
ze
r
o
g
iv
e
s
t
h
e
co
n
d
itio
n
f
o
r
t
h
e
ec
o
n
o
m
ic
lo
ad
d
is
p
atch
,
i.e
.
:
A
P
n
T
P
n
λ
[
P
L
P
n
-
]
(
6
)
O
r
,
A
T
d
P
λ
P
L
P
λ
(
7
)
T
h
e
ter
m
is
k
n
o
w
n
as
t
h
e
in
cr
e
m
e
n
tal
tr
an
s
m
is
s
io
n
lo
s
s
at
a
p
lan
t
n
an
d
λ
is
k
n
o
wn
as
th
e
in
cr
e
m
e
n
tal
co
s
t o
f
th
e
r
ec
ei
v
e
d
p
o
w
er
.
T
h
e
E
q
u
atio
n
(
4
)
an
d
(
5
)
a
r
e
a
s
et
o
f
n
eq
u
a
tio
n
s
w
it
h
(
n
+1
)
u
n
k
n
o
w
n
s
.
T
h
ese
eq
u
ati
o
n
s
co
n
tr
o
l
b
o
th
th
e
in
cr
e
m
e
n
tal
tr
an
s
m
is
s
io
n
lo
s
s
es a
n
d
p
r
o
d
u
ctio
n
co
s
t
.
T
o
s
o
lv
e
th
ese
eq
u
a
tio
n
s
,
th
e
l
o
s
s
f
o
r
m
u
la
is
e
x
p
r
ess
ed
i
n
ter
m
s
o
f
g
en
er
atio
n
s
a
n
d
is
ap
p
r
o
x
i
m
ate
l
y
ex
p
r
ess
ed
as:
∑
∑
∑
(
8
)
W
ith
P
i
,
m
in
P
i
P
i
,
m
ax
W
h
er
e,
F
=
is
th
e
s
y
s
te
m
o
v
er
al
l c
o
s
t f
u
n
ct
io
n
;
N
=
th
e
n
u
m
b
er
o
f
g
e
n
er
ato
r
s
in
th
e
s
y
s
te
m
,
C
i
,b
i
an
d
a
i
ar
e
c
o
s
t
co
n
s
tan
t
s
w
h
ic
h
i
n
clu
d
e
th
e
f
o
llo
w
in
g
;
c
i
=
is
a
m
ea
s
u
r
e
o
f
lo
s
s
es
i
n
th
e
s
y
s
te
m
,
b
i
is
t
h
e
f
u
el
co
s
t
an
d
a
i
is
th
e
s
alar
y
/
w
a
g
es,
i
n
ter
est
a
n
d
d
ep
r
ec
iatio
n
o
f
th
e
m
ac
h
i
n
es.
P
D
=th
e
to
tal
p
o
w
er
s
y
s
te
m
d
e
m
an
d
;
P
L
=t
h
e
to
tal
s
y
s
te
m
tr
a
n
s
m
i
s
s
io
n
lo
s
s
es
P
i
=th
e
ac
tiv
e
p
o
w
er
g
en
e
r
atio
n
o
f
g
e
n
er
ato
r
n
u
m
b
er
I;
B
ij
, B
0i
, B
00
=
T
r
an
s
m
i
s
s
io
n
lo
s
s
co
e
f
f
icien
ts
.
Fig
u
r
e
1
.
M
o
d
ellin
g
o
f
Ni
g
er
i
a
3
3
0
k
V
p
o
w
er
n
et
w
o
r
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
2
0
4
–
2
1
2
210
Fig
u
r
e
1
s
h
o
w
s
th
e
m
o
d
ell
in
g
o
f
Ni
g
er
ia
3
3
0
k
V
p
o
w
er
n
et
w
o
r
k
i
n
p
o
w
er
w
o
r
ld
s
i
m
u
lato
r
en
v
ir
o
n
m
e
n
t.
T
h
is
m
o
d
el
is
a
ch
iev
ed
b
y
o
b
tain
i
n
g
d
ata
s
u
c
h
as
tr
an
s
m
is
s
io
n
li
n
e
p
ar
a
m
e
ter
s
,
b
u
s
d
ata,
lo
ad
d
ata,
r
ea
cto
r
s
s
izes
,
tr
a
n
s
f
o
r
m
er
s
s
izes
an
d
g
e
n
er
ato
r
s
p
o
w
er
li
m
it
(
ac
tiv
e
an
d
r
ea
cti
v
e)
.
T
ab
le
3
s
h
o
w
s
t
h
e
r
esu
lt
o
b
tain
ed
f
o
r
th
e
v
ar
io
u
s
t
h
i
s
g
i
v
e
t
h
e
p
o
w
er
f
lo
w
an
d
lo
s
s
e
s
i
n
th
e
n
e
t
w
o
r
k
a
s
s
h
o
w
n
.
T
h
e
r
es
u
lt
o
b
tain
ed
f
r
o
m
th
is
m
o
d
el
i
s
n
o
w
u
s
ed
f
o
r
th
e
tr
ai
n
i
n
g
o
f
th
e
n
et
w
o
r
k
u
s
i
n
g
ar
tif
icia
l n
e
u
r
al
n
et
w
o
r
k
.
3
.
2
.
T
ra
ini
ng
t
he
Net
w
o
rk
U
s
ing
ANN
T
h
e
alg
o
r
ith
m
to
tr
ai
n
t
h
e
n
e
u
r
al
n
e
t
w
o
r
k
i
s
t
y
p
ed
o
n
th
e
ed
ito
r
w
i
n
d
o
w
o
f
Ma
tlab
.
T
h
i
s
p
r
o
g
r
a
m
ca
lls
u
p
t
h
e
n
e
u
r
al
n
et
w
o
r
k
to
o
l
an
d
a
n
al
y
s
es
t
h
e
to
tal
ar
ea
lo
ad
d
em
a
n
d
a
s
t
h
e
in
p
u
t
to
t
h
e
n
eu
r
al
n
et
w
o
r
k
.
T
h
e
elec
tr
ic
p
o
w
er
g
e
n
er
atio
n
o
f
th
e
s
e
v
en
tee
n
p
o
w
er
s
ta
tio
n
s
,
ar
e
tak
e
n
as
th
e
o
u
tp
u
t
o
f
t
h
e
n
e
u
r
al
n
et
w
o
r
k
.
Fo
r
th
e
p
u
r
p
o
s
e
o
f
tr
ai
n
in
g
t
h
e
n
e
u
r
al
n
et
w
o
r
k
,
d
ata
w
er
e
o
b
tain
ed
f
r
o
m
t
h
e
s
i
m
u
lated
r
esu
lt
s
f
r
o
m
P
o
w
er
W
o
r
ld
Si
m
u
lato
r
at
f
o
u
r
teen
d
if
f
er
e
n
t
to
tal
ar
ea
lo
ad
d
e
m
an
d
to
en
s
u
r
e
a
f
ast
lear
n
i
n
g
r
ate
an
d
ab
ilit
y
to
p
r
o
d
u
ce
co
r
r
ec
t
o
u
tp
u
t
w
h
e
n
f
ed
w
it
h
a
d
i
f
f
er
en
t
in
p
u
t.
T
h
es
e
d
ata
ar
e
s
h
o
w
n
i
n
ap
p
en
d
ix
A
.
Af
ter
p
r
ep
ar
in
g
ad
eq
u
ate
d
ata
f
o
r
tr
ain
i
n
g
a
n
d
test
o
f
n
e
u
r
al
n
et
w
o
r
k
s
,
n
o
w
t
h
e
i
m
p
o
r
tan
t
k
e
y
is
s
elec
t
in
g
th
e
n
u
m
b
er
o
f
n
eu
r
o
n
s
in
t
h
e
h
id
d
en
la
y
er
o
f
th
e
n
et
w
o
r
k
s
s
u
ch
t
h
at
th
e
e
x
ac
tn
es
s
o
f
n
et
w
o
r
k
is
m
a
x
i
m
u
m
.
Fo
r
th
is
r
ea
s
o
n
,
th
e
n
e
u
r
al
n
et
w
o
r
k
i
s
tr
ain
ed
w
it
h
f
i
v
e
n
e
u
r
o
n
s
in
th
e
h
id
d
en
la
y
er
a
n
d
a
n
e
u
r
o
n
i
n
t
h
e
o
u
t
p
u
t la
y
er
.
A
n
u
m
b
er
o
f
2
0
0
e
p
o
ch
s
is
co
n
s
id
er
ed
.
T
h
e
T
an
-
Sig
m
o
id
T
r
an
s
f
er
F
u
n
ctio
n
w
a
s
u
s
ed
in
t
h
e
h
id
d
en
la
y
er
w
h
ile
t
h
e
L
i
n
ea
r
T
r
an
s
f
er
Fu
n
ctio
n
w
a
s
u
s
ed
i
n
t
h
e
o
u
tp
u
t
la
y
er
.
Als
o
,
th
e
d
e
f
au
lt
L
e
v
en
b
er
g
-
M
ar
q
u
ar
d
t
alg
o
r
ith
m
(
tr
ain
l
m
)
w
as
ad
o
p
ted
to
ac
h
i
ev
e
a
b
etter
tr
ain
in
g
s
p
ee
d
.
T
h
e
f
i
g
u
r
e
s
o
f
t
h
e
T
r
ain
in
g
P
atter
n
o
f
t
h
e
Neu
r
al
Net
w
o
r
k
a
n
d
t
h
e
L
i
n
ea
r
R
eg
r
ess
io
n
f
o
r
th
e
Ge
n
er
atio
n
Ou
t
p
u
t
(
MW
)
o
f
th
e
tr
ai
n
ed
s
y
s
te
m
ar
e
o
b
tain
ed
a
f
ter
th
e
p
r
o
g
r
a
m
h
as
b
ee
n
r
u
n
f
o
r
an
al
y
s
i
s
b
y
clic
k
i
n
g
o
n
t
h
e
r
u
n
ico
n
.
Fi
g
u
r
e
2
s
h
o
w
s
t
h
e
t
r
ain
in
g
o
f
th
e
d
ata
o
b
tain
ed
f
r
o
m
P
HC
N.
T
h
i
s
g
i
v
es
a
R
eg
r
es
s
io
n
(
R
)
.
I
t
m
ea
s
u
r
es
t
h
e
co
r
r
elatio
n
b
et
w
ee
n
o
u
tp
u
ts
a
n
d
tar
g
et
s
.
An
R
v
al
u
e
o
f
1
m
ea
n
s
a
clo
s
e
r
elatio
n
s
h
ip
,
0
a
r
an
d
o
m
r
e
latio
n
s
h
ip
.
T
h
e
n
e
x
t
s
tep
t
h
e
n
in
v
o
lv
e
s
s
e
tti
n
g
a
g
o
al
s
o
as
to
k
n
o
w
w
h
en
t
h
e
tr
ain
in
g
w
i
ll
en
d
co
n
s
id
er
in
g
al
l
th
e
co
n
s
tr
ai
n
ts
.
Fig
u
r
e
3
s
h
o
w
s
t
h
at
t
h
e
p
er
f
o
r
m
a
n
ce
g
o
al
o
f
th
e
n
et
w
o
r
k
w
a
s
m
et
af
ter
6
1
ep
o
ch
s
.
Fig
u
r
e
2
.
T
r
ain
in
g
th
e
d
ata
u
s
i
n
g
ar
ti
f
icial
n
e
u
r
al
n
et
w
o
r
k
Fig
u
r
e
3
.
P
er
f
o
r
m
a
n
ce
g
o
al
o
f
th
e
n
et
w
o
r
k
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
r
tifi
cia
l Neu
r
a
l
N
etw
o
r
k
B
a
s
ed
E
co
n
o
mic
Gen
era
tio
n
S
c
h
e
d
u
lin
g
in
N
ig
eria
…
(
Omo
r
o
g
i
u
w
a
E
s
eo
s
a
)
211
T
ab
les
3
an
d
4
r
esp
ec
tiv
el
y
s
h
o
w
ed
th
e
g
e
n
er
atio
n
s
c
h
ed
u
l
in
g
u
s
i
n
g
p
o
w
er
w
o
r
ld
s
i
m
u
lato
r
an
d
th
e
n
ap
p
ly
i
n
g
A
NN
f
o
r
th
e
p
o
w
er
g
en
er
atio
n
s
ch
ed
u
li
n
g
r
esp
ec
ti
v
el
y
.
T
h
e
g
e
n
er
atin
g
s
tat
io
n
s
ar
e
s
h
o
w
n
also
f
o
r
r
an
g
e
o
f
p
o
w
er
b
et
w
ee
n
1
5
0
0
MW
an
d
6
0
0
0
MW
.
T
ab
le
3
.
Sim
u
lated
R
e
s
u
lts
o
f
Nig
er
ia
3
3
0
k
V
E
co
n
o
m
ic
Ge
n
er
atio
n
Sch
ed
u
li
n
g
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
Je
b
b
a
(
M
W
)
Eg
b
i
n
(
M
W
)
K
a
i
n
j
i
(
M
W
)
S
h
i
r
o
r
o
(
M
W
)
S
a
p
e
l
e
(
M
W
)
D
e
l
t
a
I
V
(
M
W
)
A
.
E.
S
(
M
W
)
1
5
0
0
.
0
0
2
0
6
.
6
6
1
9
5
.
0
6
2
0
6
.
0
7
1
7
6
.
0
4
1
6
5
.
5
9
1
7
0
.
6
9
4
4
.
7
0
1
7
5
0
.
0
0
2
2
8
.
2
9
2
2
3
.
1
4
2
2
9
.
2
0
2
0
2
.
1
8
1
9
2
.
1
4
1
9
3
.
7
0
5
7
.
6
3
2
0
0
0
.
0
0
2
4
7
.
8
9
2
5
3
.
1
6
2
4
9
.
9
0
2
2
4
.
7
5
2
1
5
.
4
7
2
1
2
.
1
6
7
1
.
3
0
2
2
5
0
.
0
0
2
6
6
.
9
7
2
8
1
.
5
2
2
7
0
.
1
4
2
4
6
.
1
7
2
4
3
.
8
1
2
3
6
.
8
9
8
4
.
0
9
2
5
0
0
.
0
0
2
8
7
.
6
1
3
1
2
.
6
4
2
9
2
.
0
1
2
7
0
.
1
6
2
7
2
.
4
0
2
6
0
.
9
4
9
7
.
9
7
2
7
0
0
.
0
0
3
0
4
.
0
0
3
2
7
.
5
9
3
1
0
.
1
2
2
9
3
.
2
3
2
9
5
.
0
8
2
8
3
.
9
0
1
0
4
.
6
0
3
0
0
0
.
0
0
3
2
7
.
5
2
3
7
0
.
7
7
3
3
4
.
8
5
3
1
7
.
0
2
3
3
2
.
4
8
3
1
5
.
7
5
1
2
3
.
5
2
3
7
0
0
.
0
0
3
8
1
.
0
7
4
4
8
.
0
2
3
9
1
.
7
4
3
8
3
.
5
0
4
1
5
.
9
5
3
8
7
.
9
2
1
5
6
.
6
9
4
0
0
0
.
0
0
4
0
7
.
0
7
4
8
8
.
4
1
4
1
9
.
6
8
4
0
6
.
4
4
4
5
5
.
6
7
4
2
0
.
6
1
1
7
3
.
6
7
4
2
5
0
.
0
0
4
3
1
.
4
6
5
2
0
.
0
8
4
4
5
.
8
1
4
3
6
.
5
4
4
8
4
.
1
5
4
4
5
.
3
1
1
8
6
.
8
4
4
7
5
0
.
0
0
4
7
5
.
7
0
5
8
8
.
2
0
4
9
3
.
0
7
4
8
5
.
2
8
5
5
0
.
4
6
5
0
2
.
8
8
2
1
4
.
6
6
5
5
0
0
.
0
0
5
4
0
.
0
0
7
0
3
.
1
0
5
8
2
.
2
7
5
9
0
.
8
8
6
6
3
.
8
3
5
9
8
.
9
7
2
6
0
.
0
8
5
7
5
0
.
0
0
5
4
0
.
0
0
7
5
6
.
8
3
6
1
4
.
1
4
6
0
0
.
0
0
7
2
1
.
4
3
6
0
0
.
0
0
2
7
0
.
0
0
6
0
0
0
.
0
0
5
4
0
.
0
0
8
3
3
.
2
3
6
8
7
.
2
6
6
0
0
.
0
0
7
9
1
.
8
0
5
9
9
.
6
8
2
7
0
.
0
0
C
a
l
a
b
a
r
(
M
W
)
A
f
a
m
(
M
W
)
O
j
i
(
M
W
)
I
j
o
r
a
(
M
W
)
O
mo
t
o
sh
o
(
M
W
)
G
e
r
e
g
u
(
M
W
)
O
mo
k
u
(
M
W
)
0
.
0
0
1
5
2
.
3
1
9
.
5
2
0
.
0
0
9
2
.
5
8
6
1
.
8
6
3
6
.
3
8
0
.
0
0
1
8
0
.
8
0
1
5
.
2
9
1
3
.
3
2
1
1
0
.
1
5
7
9
.
7
4
4
2
.
7
4
1
.
1
3
2
2
2
.
2
1
2
2
.
6
1
2
8
.
3
0
1
2
6
.
9
6
9
3
.
9
6
5
0
.
8
6
6
.
6
0
2
5
0
.
1
2
2
8
.
4
2
4
3
.
3
3
1
4
4
.
8
3
1
1
1
.
5
9
5
7
.
2
7
6
.
6
0
2
7
5
.
8
3
3
0
.
0
0
5
9
.
2
0
1
6
3
.
7
9
1
2
9
.
6
7
6
3
.
6
1
6
.
6
0
3
2
0
.
2
2
3
0
.
0
0
6
0
.
0
0
1
7
6
.
3
0
1
4
5
.
0
6
7
3
.
7
7
6
.
6
0
3
5
7
.
4
4
3
0
.
0
0
6
0
.
0
0
2
0
1
.
4
2
1
6
7
.
5
0
8
2
.
1
8
6
.
6
0
5
0
3
.
9
7
3
0
.
0
0
6
0
.
0
0
2
5
3
.
0
6
2
2
3
.
6
8
1
0
0
.
0
0
6
.
6
0
5
5
0
.
5
3
3
0
.
0
0
6
0
.
0
0
2
7
8
.
7
5
2
4
7
.
7
1
1
0
0
.
0
0
6
.
6
0
5
9
0
.
7
7
3
0
.
0
0
6
0
.
0
0
2
9
8
.
2
0
2
6
5
.
8
5
1
0
0
.
0
0
6
.
6
0
6
6
9
.
8
8
3
0
.
0
0
6
0
.
0
0
3
3
5
.
0
0
3
0
0
.
0
0
1
0
0
.
0
0
6
.
6
0
8
1
3
.
6
0
3
0
.
0
0
6
0
.
0
0
3
3
5
.
0
0
3
0
0
.
0
0
1
0
0
.
0
0
6
.
6
0
9
0
3
.
7
2
3
0
.
0
0
6
0
.
0
0
3
3
5
.
0
0
3
0
0
.
0
0
1
0
0
.
0
0
6
.
6
0
9
5
8
.
8
6
3
0
.
0
0
6
0
.
0
0
3
3
5
.
0
0
3
0
0
.
0
0
1
0
0
.
0
0
T
ab
le
4
.
A
NN’
s
R
esp
o
n
s
e
to
Si
m
u
lated
Ge
n
er
atio
n
O
u
tp
u
t
f
o
r
I
j
o
r
a
Po
w
er
Sta
tio
n
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
S
i
m
u
l
a
t
e
d
G
e
n
.
(
M
W
)
A
N
N
's R
e
sp
o
n
se
(
M
W
)
%
Er
r
o
r
1
7
5
0
.
0
0
1
3
.
3
2
1
3
.
4
0
0
.
6
0
2
0
0
0
.
0
0
2
8
.
3
0
2
8
.
4
1
0
.
3
9
2
2
5
0
.
0
0
4
3
.
3
3
4
3
.
2
4
0
.
2
1
2
5
0
0
.
0
0
5
9
.
2
0
5
8
.
9
9
0
.
3
5
2
7
0
0
.
0
0
6
0
.
0
0
5
9
.
9
7
0
.
0
5
3
0
0
0
.
0
0
6
0
.
0
0
5
9
.
9
4
0
.
1
0
4
0
0
0
.
0
0
6
0
.
0
0
6
0
.
0
0
0
.
0
0
4
2
5
0
.
0
0
6
0
.
0
0
6
0
.
0
0
0
.
0
0
5
5
0
0
.
0
0
6
0
.
0
0
6
0
.
0
0
0
.
0
0
6
0
0
0
.
0
0
6
0
.
0
0
6
0
.
0
0
0
.
0
0
F
o
r
Ca
la
ba
r
P
o
w
er
St
a
t
io
n
:
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
S
i
m
u
l
a
t
e
d
G
e
n
.
(
M
W
)
A
N
N
's R
e
sp
o
n
se
(
M
W
)
%E
r
r
o
r
1
7
5
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
2
0
0
0
.
0
0
1
.
1
3
1
.
1
0
2
.
6
5
2
2
5
0
.
0
0
6
.
6
0
6
.
6
1
0
.
1
5
2
5
0
0
.
0
0
6
.
6
0
6
.
6
0
0
.
0
0
2
7
0
0
.
0
0
6
.
6
0
6
.
0
0
9
.
1
1
3
0
0
0
.
0
0
6
.
6
0
5
.
9
9
9
.
2
4
4
0
0
0
.
0
0
6
.
6
0
5
.
9
8
9
.
3
9
4
2
5
0
.
0
0
6
.
6
0
6
.
6
1
0
.
1
5
5
5
0
0
.
0
0
6
.
6
0
6
.
6
0
0
.
0
0
6
0
0
0
.
0
0
6
.
6
0
6
.
6
0
0
.
0
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
2
0
4
–
2
1
2
212
F
o
r
Sh
iro
ro
P
o
w
er
Sta
t
i
o
n
:
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
S
i
m
u
l
a
t
e
d
G
e
n
.
(
M
W
)
A
N
N
's R
e
sp
o
n
se
(
M
W
)
%E
r
r
o
r
1
7
5
0
.
0
0
2
0
2
.
1
8
2
0
1
.
8
5
0
.
1
6
2
0
0
0
.
0
0
2
2
4
.
7
5
2
2
5
.
0
2
0
.
1
2
2
2
5
0
.
0
0
2
4
6
.
1
7
2
4
7
.
2
6
0
.
4
4
2
5
0
0
.
0
0
2
7
0
.
1
6
2
6
7
.
9
8
0
.
8
1
2
7
0
0
.
0
0
2
9
3
.
2
3
2
9
5
.
2
6
0
.
6
9
3
0
0
0
.
0
0
3
1
7
.
0
2
3
1
6
.
2
2
0
.
2
5
4
0
0
0
.
0
0
4
0
6
.
4
4
4
0
5
.
6
7
0
.
1
9
4
2
5
0
.
0
0
4
3
6
.
5
4
4
3
5
.
7
3
0
.
1
9
5
5
0
0
.
0
0
5
9
0
.
8
8
5
9
0
.
1
6
0
.
1
2
6
0
0
0
.
0
0
6
0
0
.
0
0
6
0
0
.
2
2
0
.
0
4
F
o
r
O
m
o
k
u P
o
w
er
Sta
t
io
n
:
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
S
i
m
u
l
a
t
e
d
.
G
e
n
.
(
M
W
)
A
N
N
's R
e
sp
o
n
se
(
M
W
)
%E
r
r
o
r
1
7
5
0
.
0
0
4
2
.
7
4
4
2
.
7
2
0
.
0
5
2
0
0
0
.
0
0
5
0
.
8
6
5
0
.
8
7
0
.
0
2
2
2
5
0
.
0
0
5
7
.
2
7
5
7
.
3
0
0
.
0
5
2
5
0
0
.
0
0
6
3
.
6
1
6
3
.
6
3
0
.
0
3
2
7
0
0
.
0
0
7
3
.
7
7
7
3
.
7
7
0
.
0
0
3
0
0
0
.
0
0
8
2
.
1
8
8
2
.
2
0
0
.
0
2
4
0
0
0
.
0
0
1
0
0
.
0
0
1
0
0
.
0
0
0
.
0
0
4
2
5
0
.
0
0
1
0
0
.
0
0
1
0
0
.
0
3
0
.
0
3
5
5
0
0
.
0
0
1
0
0
.
0
0
1
0
0
.
0
4
0
.
0
4
6
0
0
0
.
0
0
1
0
0
.
0
0
1
0
0
.
0
4
0
.
0
4
F
o
r
Af
a
m
P
o
w
er
Sta
t
io
n
:
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
S
i
m
u
l
a
t
e
d
G
e
n
.
(
M
W
)
A
N
N
's R
e
sp
o
n
se
(
M
W
)
%E
r
r
o
r
1
7
5
0
.
0
0
1
8
0
.
8
0
1
8
0
.
5
6
0
.
1
3
2
0
0
0
.
0
0
2
2
2
.
2
1
2
2
2
.
1
0
0
.
0
5
2
2
5
0
.
0
0
2
5
0
.
1
2
2
4
9
.
1
1
0
.
4
0
2
5
0
0
.
0
0
2
7
5
.
8
3
2
7
5
.
4
6
0
.
1
3
2
7
0
0
.
0
0
3
2
0
.
2
2
3
2
1
.
5
1
0
.
4
0
3
0
0
0
.
0
0
3
5
7
.
4
4
3
5
6
.
9
8
0
.
1
3
4
0
0
0
.
0
0
5
5
0
.
5
3
5
5
1
.
4
5
0
.
1
7
4
2
5
0
.
0
0
5
9
0
.
7
7
5
9
1
.
1
6
0
.
0
7
5
5
0
0
.
0
0
8
1
3
.
6
0
8
1
2
.
7
1
0
.
1
1
F
o
r
K
a
inji
H
y
dro
P
o
w
er
Sta
t
io
n
:
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
S
i
m
u
l
a
t
e
d
G
e
n
.
(
M
W
)
A
N
N
's R
e
sp
o
n
se
(
M
W
)
%E
r
r
o
r
1
7
5
0
.
0
0
2
2
9
.
2
0
2
2
9
.
2
5
0
.
0
2
2
0
0
0
.
0
0
2
4
9
.
9
0
2
4
9
.
1
0
0
.
3
2
2
2
5
0
.
0
0
2
7
0
.
1
4
2
6
9
.
9
8
0
.
0
6
2
5
0
0
.
0
0
2
9
2
.
0
1
2
9
2
.
1
0
0
.
0
3
2
7
0
0
.
0
0
3
1
0
.
1
2
3
1
2
.
2
2
0
.
6
8
3
0
0
0
.
0
0
3
3
4
.
8
5
3
3
3
.
9
9
0
.
2
6
4
0
0
0
.
0
0
4
1
9
.
6
8
4
2
0
.
2
2
0
.
1
3
4
2
5
0
.
0
0
4
4
5
.
8
1
4
4
6
.
1
8
0
.
0
8
5
5
0
0
.
0
0
5
8
2
.
2
7
5
8
3
.
6
2
0
.
2
3
6
0
0
0
.
0
0
6
8
7
.
2
6
6
8
6
.
7
9
0
.
0
7
F
o
r
O
rj
i P
o
w
er
St
a
t
io
n
:
T
o
t
a
l
A
r
e
a
L
o
a
d
(
M
W
)
S
i
m
u
l
a
t
e
d
G
e
n
.
(
M
W
)
A
N
N
's R
e
sp
o
n
se
(
M
W
)
%E
r
r
o
r
1
7
5
0
.
0
0
1
5
.
2
9
1
5
.
4
0
0
.
7
2
2
0
0
0
.
0
0
2
2
.
6
1
2
2
.
5
5
0
.
2
7
2
2
5
0
.
0
0
2
8
.
4
2
2
8
.
4
4
0
.
0
7
2
5
0
0
.
0
0
3
0
.
0
0
2
9
.
9
7
0
.
1
0
2
7
0
0
.
0
0
3
0
.
0
0
2
9
.
9
9
0
.
0
3
3
0
0
0
.
0
0
3
0
.
0
0
2
9
.
9
9
0
.
0
3
4
0
0
0
.
0
0
3
0
.
0
0
2
9
.
9
9
0
.
0
3
4
2
5
0
.
0
0
3
0
.
0
0
2
9
.
9
9
0
.
0
3
5
5
0
0
.
0
0
3
0
.
0
0
2
9
.
9
9
0
.
0
3
6
0
0
0
.
0
0
3
0
.
0
0
2
9
.
9
9
0
.
0
3
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
r
tifi
cia
l Neu
r
a
l
N
etw
o
r
k
B
a
s
ed
E
co
n
o
mic
Gen
era
tio
n
S
c
h
e
d
u
lin
g
in
N
ig
eria
…
(
Omo
r
o
g
i
u
w
a
E
s
eo
s
a
)
213
4.
DIS
CU
SS
I
O
N
I
n
o
th
er
to
ec
o
n
o
m
ical
l
y
d
is
p
atch
p
o
w
er
g
en
er
ated
,
it
m
u
s
t
b
e
as
ec
o
n
o
m
ical
as
p
o
s
s
ib
le
.
I
n
lar
g
e
in
ter
co
n
n
ec
ted
s
y
s
te
m
s
,
it
i
s
h
u
m
a
n
l
y
i
m
p
o
s
s
ib
le
to
ca
lcu
l
ate
an
d
ad
j
u
s
t
ea
ch
g
en
er
atio
n
an
d
h
e
n
ce
t
h
e
h
e
lp
o
f
d
ig
ital
co
m
p
u
ter
s
y
s
te
m
i
s
b
ein
g
u
s
ed
an
d
th
e
w
h
o
le
p
r
o
ce
s
s
is
ca
r
r
ied
o
u
t
a
u
to
m
at
ic
all
y
.
T
h
e
m
o
s
t
ec
o
n
o
m
ic
g
en
er
atio
n
s
ch
ed
u
lin
g
o
f
p
o
wer
in
th
e
Ni
g
er
ia
3
3
0
KV
n
et
w
o
r
k
is
d
eter
m
i
n
ed
f
o
r
ea
ch
s
tatio
n
as
s
h
o
w
n
b
o
t
h
i
n
T
ab
le
3
an
d
4
r
esp
ec
tiv
el
y
.
T
h
e
f
ir
s
t
s
tag
e
i
s
to
m
o
d
el
t
h
e
Nig
er
ia
3
3
0
KV
n
et
w
o
r
k
i
n
p
o
w
er
w
o
r
ld
s
i
m
u
lato
r
en
v
ir
o
n
m
e
n
t
in
o
r
d
er
to
o
b
tain
t
h
e
b
est
s
ch
ed
u
le
i
f
a
ce
r
tai
n
q
u
a
n
tit
y
o
f
g
e
n
er
atio
n
is
r
e
q
u
ir
ed
ass
u
m
e
a
r
an
g
e
o
f
(
1
5
0
0
MW
-
6
0
0
0
M
W
)
as
s
h
o
wn
i
n
T
ab
le
3
.
T
h
e
n
ex
t
s
ta
g
e
is
th
e
n
to
f
u
r
t
h
er
o
p
ti
m
ize
t
h
ese
g
en
er
atio
n
s
s
ch
ed
u
li
n
g
u
s
i
n
g
ANN
ap
p
r
o
ac
h
an
d
th
en
m
a
k
e
co
m
p
ar
is
o
n
b
et
w
ee
n
t
h
e
s
i
m
u
la
ted
s
ch
ed
u
l
in
g
w
it
h
an
d
w
i
t
h
o
u
t
o
p
ti
m
izatio
n
as
s
h
o
w
n
in
T
ab
le
4
.
I
n
th
e
co
u
r
s
e
o
f
th
i
s
w
o
r
k
,
P
W
S
(
p
o
w
er
s
y
s
te
m
m
o
d
ellin
g
s
o
f
t
w
a
r
e)
is
u
s
ed
to
d
eter
m
i
n
e
ec
o
n
o
m
ic
g
e
n
er
atio
n
s
c
h
ed
u
li
n
g
co
n
s
id
er
in
g
tr
a
n
s
m
i
s
s
io
n
l
o
s
s
es
o
f
p
o
w
er
p
la
n
ts
v
er
y
e
f
f
icie
n
tl
y
a
n
d
ac
c
u
r
atel
y
.
D
if
f
er
en
t
g
e
n
er
atio
n
s
c
h
ed
u
lin
g
v
al
u
e
s
r
an
g
in
g
f
r
o
m
1
5
0
0
MW
-
6
0
0
0
MW
w
er
e
u
s
ed
.
T
h
is
s
ch
ed
u
le
en
s
u
r
es
th
at
t
h
e
s
y
s
te
m
s
ar
e
al
w
a
y
s
n
o
t
s
tr
e
s
s
ed
b
e
y
o
n
d
t
h
eir
th
er
m
al
l
i
m
it
a
n
d
th
e
lo
s
s
es
o
f
ea
c
h
p
o
w
er
s
tatio
n
an
d
t
h
eir
co
n
s
tr
ain
ts
ar
e
p
u
t
in
to
co
n
s
i
d
er
atio
n
.
A
c
ase
o
f
lo
ad
s
ch
ed
u
le
o
f
1
5
0
0
MW
s
h
o
w
s
co
n
tr
ib
u
tio
n
o
f
in
d
i
v
id
u
al
g
en
er
ato
r
s
a
s
ec
o
n
o
m
ical
a
s
p
o
s
s
ib
le
co
n
s
id
er
i
n
g
g
e
n
er
ati
n
g
p
o
w
er
w
i
th
i
n
t
h
e
ac
ce
p
tab
le
lo
s
s
r
a
n
g
e
an
d
p
o
w
er
li
m
it
s
(
ac
ti
v
e
a
n
d
r
ea
cti
v
e)
.
T
ak
e
al
s
o
an
i
n
s
ta
n
ce
o
f
t
h
e
Ni
g
er
ia
p
o
w
er
n
et
w
o
r
k
g
e
n
er
at
i
n
g
2
5
0
0
MW
,
f
o
r
o
p
ti
m
al
s
ch
ed
u
lin
g
,
t
h
e
v
ar
io
u
s
s
ta
tio
n
s
ar
e
r
eq
u
ir
ed
to
g
e
n
er
ate
v
a
r
io
u
s
q
u
a
n
tit
y
o
f
p
o
w
er
as
s
h
o
w
n
i
n
tab
le
3
.
0
.
Ho
w
e
v
er
co
n
s
id
er
in
g
th
e
s
a
m
e
q
u
a
n
tit
y
o
f
p
o
w
er
g
e
n
er
atio
n
u
s
i
n
g
A
N
N
ap
p
r
o
ac
h
,
an
d
th
en
co
m
p
ar
i
n
g
th
e
s
a
m
e
r
es
u
lt
w
it
h
o
u
t
th
e
A
NN,
t
h
e
r
esu
lts
o
b
tain
ed
is
s
h
o
w
n
i
n
tab
le
4
.
0
.
P
e
r
ce
n
tag
e
er
r
o
r
s
w
er
e
co
m
p
u
ted
to
s
h
o
w
t
h
e
b
est
ap
p
r
o
ac
h
an
d
it
w
as
f
o
u
n
d
th
a
t a
d
o
p
tin
g
A
NN
f
o
r
g
en
er
atio
n
s
c
h
ed
u
li
n
g
is
b
est as it
s
v
er
y
ec
o
n
o
m
ical.
5.
CO
NCLU
SI
O
N/R
E
CO
M
M
E
NDA
T
I
O
N
E
co
n
o
m
ic
lo
ad
d
is
p
atch
i
n
el
ec
tr
ic
p
o
w
er
s
ec
to
r
is
a
n
i
m
p
o
r
tan
t
tas
k
,
as
it
is
r
eq
u
ir
ed
t
o
d
is
tr
ib
u
te
th
e
lo
ad
a
m
o
n
g
t
h
e
g
en
er
ati
n
g
u
n
it
s
ac
t
u
all
y
p
ar
alleled
w
i
t
h
t
h
e
s
y
s
te
m
i
n
s
u
c
h
a
m
a
n
n
e
r
as
to
m
i
n
i
m
is
e
t
h
e
co
s
t
o
f
s
u
p
p
l
y
i
n
g
t
h
e
m
i
n
u
te
to
m
i
n
u
te
r
eq
u
ir
e
m
e
n
t
o
f
th
e
s
y
s
te
m
w
h
i
ch
aid
s
in
p
r
o
f
it
-
m
ak
in
g
.
I
n
a
lar
g
e
in
ter
co
n
n
ec
ted
s
y
s
te
m
,
it
i
s
h
u
m
an
l
y
i
m
p
o
s
s
ib
le
to
ca
lcu
late
an
d
ad
j
u
s
t
ea
ch
g
e
n
er
atio
n
an
d
h
en
ce
t
h
e
h
elp
o
f
d
ig
ital
co
m
p
u
ter
s
y
s
te
m
i
s
b
ein
g
u
s
ed
a
n
d
th
e
w
h
o
le
p
r
o
ce
s
s
i
s
ca
r
r
ied
o
u
t
au
to
m
atic
all
y
.
C
u
r
r
e
n
tl
y
t
h
e
p
r
ac
t
ice
o
f
E
L
D
is
n
o
t
o
b
tain
a
b
le
in
Nig
er
ia.
I
t
is
th
er
ef
o
r
e
r
ec
o
m
m
e
n
d
ed
th
at
th
e
Ni
g
er
ia
g
o
v
er
n
m
e
n
t
s
h
o
u
ld
ad
o
p
t th
e
ap
p
r
o
ac
h
o
f
ec
o
n
o
m
icall
y
s
c
h
ed
u
lin
g
p
o
w
er
g
en
er
atio
n
.
RE
F
E
R
E
NC
E
S
[1
]
Ch
o
w
d
h
u
ry
B
.
H
.
,
e
t
a
l.
,
“
A
re
v
i
e
w
o
f
r
e
c
e
n
t
a
d
v
a
n
c
e
s
in
e
c
o
n
o
m
ic
d
isp
a
tch
,”
IEE
E
T
ra
n
s
Po
we
r
S
y
st
.,
1
9
9
0
,
Vo
l.
5
,
No
.
4
,
p
p
.
1
2
4
8
–
12
5
7
.
[2
]
Ro
ss
D
.
W
.
,
e
t
a
l
.
,
“
Dy
n
a
m
i
c
e
c
o
n
o
m
ic d
isp
a
tch
o
f
g
e
n
e
ra
ti
o
n
,”
IEE
E
T
ra
n
s P
o
we
r A
p
p
a
r S
y
st
.,
1
9
8
0
,
Vo
l.
99
,
No
.
6
,
p
p
.
2
0
6
0
–
2
0
6
8.
[3
]
Ra
b
in
A
.
J
.
,
e
t
a
l
.
,
“
A
h
o
m
o
g
e
n
e
o
u
s
li
n
e
a
r
p
ro
g
ra
m
m
in
g
a
lg
o
rit
h
m
f
o
r
th
e
se
c
u
rit
y
c
o
n
str
a
in
e
d
e
c
o
n
o
m
ic
d
isp
a
tch
p
ro
b
lem
,
”
IEE
E
T
ra
n
s P
o
we
r S
y
s
t
.
,
2
0
0
0
,
Vo
l.
15
,
No
.
3
,
p
p
.
9
3
0
–
93
6.
[4
]
L
in
C
.
E
.
,
e
t
a
l
.
,
“
Hie
ra
rc
h
ica
l
e
c
o
n
o
m
ic
d
isp
a
tch
f
o
r
p
iec
e
w
i
se
q
u
a
d
ra
ti
c
c
o
st
f
u
n
c
ti
o
n
s
,”
IEE
E
T
ra
n
s
Po
we
r
Ap
p
a
r S
y
st
.
,
1
9
8
4
,
V
o
l.
1
0
3
,
No
.
6
,
p
p
.
1
1
7
0
–
1
1
7
5.
[5
]
Ch
e
n
S
.
D
.
,
e
t
a
l
.
,
“
A
d
irec
t
Ne
w
t
o
n
–
Ra
p
h
so
n
e
c
o
n
o
m
ic
e
m
issio
n
d
isp
a
tch
,”
El
e
c
tr
Po
we
r
E
n
e
rg
y
S
y
st
.,
2
0
0
3
,
V
o
l.
2
5
,
p
p
.
4
1
1
–
41
7.
[6
]
W
o
o
d
A
.
J
.
,
e
t
a
l.
.
“
P
o
w
e
r
g
e
n
e
ra
ti
o
n
,
o
p
e
ra
ti
o
n
a
n
d
c
o
n
tro
l
,”
Ne
w
Y
o
rk
:
J
o
h
n
W
il
e
y
&
S
o
n
s
.
1
9
9
4
.
[7
]
L
ian
g
Z
.
X
.
,
e
t
a
l
.
,
“
A
z
o
o
m
f
e
a
tu
re
f
o
r
a
p
ro
g
ra
m
m
in
g
so
lu
ti
o
n
to
e
c
o
n
o
m
ic
d
isp
a
tc
h
in
c
l
u
d
i
n
g
tran
sm
is
sio
n
lo
ss
e
s,”
IEE
E
T
ra
n
s P
o
we
r S
y
st
.
,
1
9
9
2
,
Vo
l.
7
,
N
o
.
3
,
p
p
.
5
4
4
–
5
5
0
.
[8
]
F
a
n
J
.
Y
.
,
e
t
a
l
.
,
“
Re
a
l
-
ti
m
e
e
c
o
n
o
m
ic
d
isp
a
tch
w
it
h
li
n
e
f
l
o
w
a
n
d
e
m
issio
n
c
o
n
stra
i
n
ts
u
sin
g
q
u
a
d
ra
ti
c
p
ro
g
ra
m
m
in
g
,
”
IEE
E
T
ra
n
s P
o
we
r S
y
st
.,
1
9
9
8
,
Vo
l.
13
,
No
.
2
,
p
p
.
320
–
32
5.
[9
]
Ch
e
n
C
.
L
.
,
e
t
a
l
.
,
“
Bra
n
c
h
-
a
n
d
-
b
o
u
n
d
sc
h
e
d
u
l
in
g
f
o
r
th
e
r
m
a
l
g
e
n
e
ra
ti
n
g
u
n
it
s
,”
IEE
E
T
ra
n
s E
n
e
rg
y
Co
n
v
e
r
.,
1
9
9
3
,
V
o
l
.
8
,
No
.
2
,
p
p
.
1
8
4
–
18
9.
[1
0
]
Ya
n
g
H
.
T
.
,
e
t
a
l
.
,
“
In
c
o
rp
o
ra
ti
n
g
a
m
u
lt
i
-
c
rit
e
ria
d
e
c
isi
o
n
p
r
o
c
e
d
u
re
i
n
to
t
h
e
c
o
m
b
in
e
d
d
y
n
a
m
i
c
p
ro
g
ra
m
m
in
g
/p
ro
d
u
c
ti
o
n
sim
u
latio
n
a
lg
o
rit
h
m
f
o
r
g
e
n
e
ra
ti
o
n
e
x
p
a
n
sio
n
p
la
n
n
i
n
g
,
”
IEE
E
T
ra
n
s
Po
we
r
S
y
st
.,
1
9
8
9
,
V
o
l
.
4
,
No
.
1
,
p
p
.
1
6
5
–
1
7
5
.
[1
1
]
S
in
h
a
N
.
,
e
t
a
l
.
,
“
Ev
o
l
u
ti
o
n
a
ry
p
ro
g
ra
m
m
in
g
tec
h
n
i
q
u
e
s
f
o
r
e
c
o
n
o
m
ic
lo
a
d
d
is
p
a
tch
,
”
IE
EE
T
r
a
n
s
Evo
l
C
o
mp
u
t
.,
2
0
0
3
,
Vo
l.
7
,
N
o
.
1
,
p
p
.
83
–
9
4
.
[1
2
]
Ro
a
-
S
e
p
u
lv
e
d
a
C
.
A
.
,
e
t
a
l
.
,
“
A
so
lu
t
io
n
t
o
t
h
e
o
p
ti
m
a
l
p
o
w
e
r
fl
o
w
u
sin
g
sim
u
late
d
a
n
n
e
a
li
n
g
,
”
El
e
c
tr
Po
we
r
En
e
rg
y
S
y
st
,
2
0
0
3
,
V
o
l
.
25
,
N
o
.
1
,
p
p
.
47
–
5
7
.
[1
3
]
Ku
m
a
r
J
.
,
e
t
a
l
.
,
“
Clam
p
e
d
sta
te
s
o
lu
ti
o
n
o
f
a
rti
f
icia
l
n
e
u
ra
l
n
e
t
w
o
rk
f
o
r
re
a
l
-
ti
m
e
e
c
o
n
o
m
ic
d
isp
a
tch
,”
IEE
E
T
ra
n
s
Po
we
r S
y
st
,
1
9
9
5
,
Vo
l.
10
,
No
.
2
,
p
p
.
9
2
5
–
9
31.
[1
4
]
Ya
lcin
o
z
T
.
,
e
t
a
l
.
,
“
Ne
u
ra
l
n
e
tw
o
rk
a
p
p
ro
a
c
h
f
o
r
so
lv
in
g
e
c
o
n
o
m
ic
d
isp
a
tch
p
ro
b
lem
w
it
h
tr
a
n
sm
is
sio
n
c
a
p
a
c
it
y
c
o
n
stra
in
ts,
”
IE
EE
T
r
a
n
s P
o
we
r S
y
st
.,
1
9
9
8
,
V
o
l
.
13
,
N
o
.
2
,
p
p
.
3
0
7
–
3
1
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
2
0
4
–
2
1
2
214
[1
5
]
M
ich
a
lew
icz
Z
.
,
e
t
a
l
.
,
“
Ev
o
lu
ti
o
n
a
ry
a
l
g
o
rit
h
m
s
f
o
r
c
o
n
stra
in
e
d
p
a
ra
m
e
ter
o
p
t
im
iz
a
ti
o
n
p
r
o
b
lem
s,”
Evo
l
Co
m
p
u
t
.
,
1
9
9
6
,
Vo
l.
4
,
N
o
.
1
,
p
p
.
1
–
3
2
.
[1
6
]
G
a
in
g
Z
.
L
.
,
“
P
a
rti
c
le
s
w
a
r
m
o
p
ti
m
iz
a
ti
o
n
to
so
lv
in
g
th
e
e
c
o
n
o
m
ic
d
isp
a
tch
c
o
n
si
d
e
rin
g
th
e
g
e
n
e
ra
to
r
c
o
n
stra
in
ts
,”
IEE
E
T
ra
n
s P
o
we
r S
y
st
.,
2
0
0
3
,
Vo
l.
18
,
No
.
3
,
p
p
.
1
1
8
7
–
11
9
5
.
[1
7
]
P
a
rk
J
.
B
.
,
e
t
a
l
.
,
“
A
p
a
rti
c
le
sw
a
r
m
o
p
ti
m
iza
ti
o
n
f
o
r
e
c
o
n
o
m
ic
d
isp
a
tch
w
it
h
n
o
n
sm
o
o
th
c
o
st
f
u
n
c
ti
o
n
,”
IE
EE
T
ra
n
s P
o
we
r S
y
st
.,
2
0
0
5
,
V
o
l
.
20
,
No
.
1
,
p
p
.
34
–
42.
[1
8
]
N.
Ra
jk
u
m
a
r,
e
t
a
l.
,
”
A
Re
v
ie
w
o
f
G
e
n
e
ti
c
A
lg
o
rit
h
m
s
in
P
o
w
e
r
En
g
in
e
e
rin
g
,
”
AI
a
n
d
M
a
c
h
in
e
Co
n
sc
io
u
sn
e
ss
,
Pro
c
e
e
d
in
g
s
o
f
t
h
e
1
3
th
F
in
n
ish
,
Arti
fi
c
ia
l
I
n
telli
g
e
n
c
e
Co
n
fer
e
n
c
e
S
tep
,
2
0
0
8
,
pp
.
15
-
3
2
.
[1
9
]
R.
Na
y
a
k
,
e
t
a
l.
,
“
A
H
y
b
rid
N
e
u
ra
l
Ne
tw
o
rk
a
n
d
S
im
u
late
d
A
n
n
e
a
li
n
g
A
p
p
ro
a
c
h
to
t
h
e
Un
it
Co
m
m
it
m
e
n
t
P
r
o
b
lem
”
.
[2
0
]
Na
y
a
k
R.
,
“
Ne
u
ra
l
Ne
tw
o
rk
A
p
p
ro
a
c
h
t
o
Un
i
t
Co
m
m
it
m
e
n
t
P
ro
b
l
e
m
,”
M
.
E.
-
Diss
e
rta
ti
o
n
,
De
p
t
o
f
El
e
c
trica
l
En
g
.
,
Un
ive
rs
it
y
o
f
Ro
o
rk
e
e
,
In
d
ia
,
1
9
9
5
.
[2
1
]
Ou
y
a
n
g
Z.
,
e
t
a
l
.,
“
A
H
y
b
rid
A
rt
if
icia
l
Ne
u
ra
l
Ne
t
w
o
rk
-
D
y
n
a
m
ic
P
r
o
g
ra
m
m
in
g
A
p
p
ro
a
c
h
to
Un
it
Co
m
m
it
m
e
n
t
,”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
PS
,
1
9
9
2
,
pp.
2
3
6
-
2
4
2
.
[2
2
]
S
a
sa
k
i
H.,
e
t
a
l
.,
“
A
so
lu
ti
o
n
M
e
th
o
d
u
sin
g
Ne
u
ra
l
Ne
tw
o
rk
f
o
r
t
h
e
Ge
n
e
ra
to
r
Co
m
m
it
m
e
n
t
P
ro
b
l
e
m
,”
El
e
c
trica
l
En
g
.
in
J
a
p
a
n
,
1
9
9
2
,
Vo
l.
1
1
2
,
p
p
.
55
-
6
1
.
[2
3
]
E
O
m
o
ro
g
iu
w
a
,
e
t
a
l.
,
“
De
ter
m
in
a
ti
o
n
Of
Bu
s
V
o
lt
a
g
e
s,
P
o
w
e
r
L
o
ss
e
s
A
n
d
F
lo
w
s
In
T
h
e
Nig
e
ria
3
3
0
k
v
In
teg
ra
ted
P
o
w
e
r
S
y
ste
m
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
Of
A
d
v
a
n
c
e
s In
En
g
in
e
e
rin
g
&
T
e
c
h
n
o
l
o
g
y
,
2
0
1
2
,
V
o
l.
4
,
N
o
.
1
,
p
p
.
9
4
-
1
0
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.