I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
3
,
No
.
2
,
J
u
n
e
201
4
,
p
p
.
65
~
69
I
SS
N:
2252
-
8814
65
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
A
T
her
m
a
lly
No
n
-
equlibiri
u
m
A
p
p
ro
ch f
o
r C
FD
S
i
m
ula
tion
of
a
P
ulse Tub
e Re
f
rig
erato
r
Sa
chind
ra
K
u
m
a
r
Ro
ut
,
B
a
la
j
i K
u
m
a
r
Cho
ud
hu
ri
,
R
a
nj
it
K
u
m
a
r
Sa
ho
o
,
Su
ni
l K
u
ma
r
Sa
ra
ng
i
De
p
a
rte
m
e
n
t
o
f
M
e
c
h
a
n
i
c
a
l
En
g
in
e
e
rin
g
,
Na
ti
o
n
a
l
In
stit
u
te o
f
T
e
c
h
n
o
lo
g
y
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
r
ch
1
2
,
2
0
1
4
R
ev
i
s
ed
Ma
y
10
,
2
0
1
4
A
cc
ep
ted
Ma
y
2
2
,
2
0
1
4
T
h
is
p
a
p
e
r
d
e
a
ls
w
it
h
a
n
e
w
t
y
p
e
o
f
n
u
m
e
ri
c
a
l
c
o
m
p
u
tatio
n
a
l
f
lu
i
d
d
y
n
a
m
ic
(CF
D)
a
p
p
ro
a
c
h
o
f
m
a
k
in
g
m
o
r
e
re
a
li
stic
to
th
e
p
o
r
o
u
s
m
e
d
ia
in
sid
e
t
h
e
re
g
e
n
e
ra
to
r
o
f
a
p
u
lse
tu
b
e
re
f
ri
g
e
ra
to
r.
T
h
e
a
v
a
il
a
b
le
c
o
m
m
e
rc
i
a
l
so
f
t
wa
re
p
a
c
k
a
g
e
F
L
UEN
T
f
o
r
so
lv
in
g
Co
m
p
u
tatio
n
a
l
f
lu
i
d
d
y
n
a
m
ics
(
CF
D)
h
a
s
c
a
p
a
b
le
o
f
d
e
f
in
e
a
p
o
ro
u
s
m
e
d
ia
a
n
d
so
lv
e
th
e
g
o
v
e
rn
in
g
e
q
u
a
ti
o
n
f
o
r
th
is
re
g
io
n
.
Bu
t
o
n
e
p
r
o
b
lem
a
rise
s
is
th
a
t
i
n
sid
e
t
h
e
p
o
r
o
u
s
m
e
d
ia
re
g
io
n
th
e
so
f
t
w
a
re
c
o
n
sid
e
r
th
e
f
lu
i
d
m
e
d
iu
m
te
m
p
e
ra
tu
re
a
n
d
so
l
id
m
a
tri
x
m
e
d
iu
m
tem
p
e
r
a
tu
re
re
m
a
in
s
sa
m
e
in
a
n
y
sp
a
ti
a
l
l
o
c
a
ti
o
n
w
h
ich
is
im
p
ra
c
ti
c
a
l
in
re
a
l
c
a
se
.
S
o
to
a
v
o
i
d
th
is
im
p
ra
c
ti
c
a
l
situ
a
ti
o
n
w
e
m
a
d
e
a
tt
e
m
p
t
to
m
a
k
e
a
n
o
n
-
th
e
rm
a
ll
y
e
q
u
il
ib
ri
u
m
m
e
d
iu
m
in
sid
e
th
e
re
g
e
n
e
ra
to
r
b
y
p
u
tt
in
g
a
so
li
d
i
n
sid
e
th
e
re
g
e
n
e
ra
to
r,
a
siz
e
e
q
u
a
l
w
it
h
so
li
d
m
a
tri
x
a
n
d
a
d
d
e
d
t
h
e
so
u
rc
e
ter
m
to
th
e
f
lu
id
a
n
d
so
li
d
o
f
th
e
re
g
e
n
e
ra
to
r
b
y
u
se
r
d
e
f
in
e
f
u
n
c
ti
o
n
s
(U
DF).
In
t
h
is
a
n
a
ly
sis
w
e
u
se
d
in
e
rtan
c
e
tu
b
e
p
u
lse
tu
b
e
re
f
rig
e
ra
to
r
(IT
P
T
R)
a
n
d
h
e
li
u
m
is
th
e
w
o
rk
in
g
f
lu
id
.
K
ey
w
o
r
d
:
C
FD
H
ea
t e
x
ch
a
n
g
er
I
T
PT
E
R
N
on
-
eq
u
ilib
ir
iu
m
T
em
p
er
atu
r
e
Co
p
y
rig
h
t
©
201
4
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sach
i
n
d
r
a
Ku
m
ar
R
o
u
t,
Dep
ar
te
m
en
t o
f
Me
ch
a
n
ical
E
n
g
i
n
ee
r
i
n
g
,
Natio
n
al
I
n
s
tit
u
te
o
f
T
ec
h
n
o
lo
g
y
,
R
o
u
r
k
ela
-
7
6
9
0
0
8
,
Od
is
h
a,
I
n
d
ia.
E
m
ail: sac
h
i
n
d
r
an
it
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Sin
ce
1
9
6
4
it
is
th
e
v
as
t
ar
ea
o
f
r
esear
ch
o
n
p
u
l
s
e
t
u
b
e
r
ef
r
i
g
er
ato
r
w
h
ic
h
w
a
s
d
is
co
v
er
ed
b
y
Gi
f
f
o
r
d
an
d
L
o
n
g
s
w
o
r
th
o
n
t
h
at
y
ea
r
.
Da
y
b
y
d
a
y
it
w
a
s
i
m
p
r
o
v
ed
t
o
p
r
o
d
u
ce
m
o
r
e
co
llin
g
e
f
f
ec
t
an
d
m
o
r
e
ca
p
ac
it
y
b
y
r
esear
c
h
er
s
.
Mi
k
u
lu
i
n
[
2
]
b
r
in
g
a
m
o
d
i
f
icatio
n
to
th
e
i
n
t
r
o
d
u
cto
r
y
t
y
p
e
B
as
ic
p
u
ls
e
tu
b
e
R
ef
r
i
g
er
ato
r
.
T
o
g
et
b
etter
co
o
lin
g
e
f
f
ec
t
h
e
m
o
d
if
ied
in
s
u
c
h
a
w
a
y
th
at
th
e
p
h
ase
a
n
g
le
b
et
w
ee
n
te
m
p
e
r
atu
r
e
an
d
v
elo
cit
y
ch
an
g
es
d
u
e
to
ad
d
in
g
a
s
m
all
o
r
if
ice
w
h
ich
ca
u
s
e
s
en
th
alp
y
f
lo
w
i
n
cr
ea
s
i
n
g
n
ea
r
h
o
t
e
n
d
.
Su
c
h
t
y
p
e
o
f
p
u
l
s
e
t
y
p
e
o
f
r
ef
r
i
g
er
ato
r
is
n
a
m
ed
as
Or
i
f
ice
P
u
l
s
e
T
u
b
e
R
e
f
r
i
g
e
r
ato
r
(
OPT
R
)
.
T
h
er
e
ar
e
s
o
m
e
o
th
er
p
ap
er
s
w
h
ich
d
ea
l
w
i
th
th
eo
r
etica
l
ap
p
r
o
ac
h
es
to
s
t
u
d
y
th
e
p
h
ase
s
h
i
f
t,
ef
f
icien
c
y
an
d
f
lo
w
c
y
cle
s
[
3
]
-
[
1
0
]
in
s
id
e
t
h
e
p
u
l
s
e
tu
b
e
r
ef
r
i
g
er
ato
r
.
C
h
a
et
al.
[
1
1
]
f
ir
s
t
ti
m
e
m
ad
e
a
C
F
D
m
o
d
el
o
n
a
s
i
n
g
le
s
tag
e
iter
an
ce
p
u
l
s
e
t
u
b
e
r
ef
r
ig
er
ato
r
u
s
i
n
g
F
L
UE
NT
s
o
f
t
w
ar
e
w
h
ic
h
g
i
v
es
a
b
etter
s
o
lu
tio
n
to
o
p
tim
i
s
e
p
u
ls
e
t
u
b
e
r
ef
r
ig
er
ato
r
.
T
h
is
m
o
d
el
w
as
b
ased
o
n
th
er
m
al
l
y
eq
u
ilib
r
iu
m
to
th
e
r
eg
e
n
er
ato
r
.
So
th
e
f
l
u
id
a
n
d
s
o
lid
m
atr
i
x
te
m
p
er
atu
r
e
r
e
m
ain
s
s
a
m
e
i
n
a
n
y
s
p
atial
a
x
ial
lo
ca
tio
n
.
U
s
i
n
g
th
e
s
a
m
e
C
FD
So
l
u
tio
n
m
e
th
o
d
b
y
c
h
a
n
g
i
n
g
t
h
e
d
i
m
e
n
s
io
n
o
f
(
I
T
PT
R
)
A
s
h
w
i
n
et
al.
[
1
2]
p
r
o
ce
ed
w
ith
a
n
o
n
-
t
h
er
m
all
y
eq
u
i
lib
r
i
u
m
m
ed
iu
m
b
y
ad
d
in
g
s
o
u
r
ce
ter
m
u
s
i
n
g
s
o
m
e
s
p
ec
ial
t
y
p
e
f
u
n
ct
io
n
ca
lled
User
Def
in
ed
Scala
r
s
(
UDSs
)
an
d
g
en
er
al
s
ca
lar
tr
an
s
p
o
r
t
eq
u
atio
n
s
also
ad
d
ed
w
it
h
t
h
e
d
if
f
er
en
t
UDSs
.
Dio
n
et
al.
[
13
]
u
s
e
d
an
ad
v
an
ce
d
r
ar
el
y
av
a
i
lab
le
s
o
f
t
w
ar
e
p
ac
k
a
g
e
C
FD
-
AC
E
+
to
s
o
l
v
e
th
e
g
o
v
e
r
n
in
g
eq
u
a
tio
n
w
h
ic
h
h
as
ca
p
ac
it
y
to
s
o
l
v
e
t
h
er
m
a
ll
y
n
o
n
e
q
u
ilib
r
iu
m
eq
u
at
io
n
f
o
r
p
o
r
o
u
s
zo
n
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
3
,
No
.
2
,
J
u
n
e
2
0
1
4
:
65
–
69
66
2.
G
E
M
O
T
RICA
L
D
E
SI
G
N
O
F
P
T
R
F
O
R
CF
D
ANALY
SI
S
2
.
1
.
M
a
t
he
m
a
t
ica
l F
o
r
m
u
la
t
io
n
Fig
u
r
e
1
s
h
o
w
s
t
h
e
s
c
h
e
m
atic
r
ep
r
esen
tati
o
n
o
f
t
h
e
2
D
ax
i
-
s
y
m
m
etr
ic
m
o
d
el
o
f
t
h
e
i
n
er
t
an
ce
p
u
ls
e
tu
b
e
r
ef
r
ig
er
ato
r
u
s
ed
f
o
r
th
e
p
r
esen
t c
o
m
p
u
tatio
n
a
l a
n
al
y
s
i
s
.
T
h
e
d
etail
d
im
en
s
io
n
i
s
g
iv
e
n
in
th
e
T
ab
le
1
.
Fig
u
r
e
1
.
Sch
e
m
atic
d
iag
r
a
m
o
f
co
m
p
u
tat
io
n
al
d
o
m
ai
n
o
f
I
T
PT
R
: A
-
co
m
p
r
ess
o
r
,
B
–
tr
an
s
f
er
lin
e,
C
-
a
f
ter
co
o
ler
,
D
–
r
eg
en
er
ato
r
,
E
–
c
o
ld
h
ea
t e
x
ch
a
n
g
er
,
F
–
p
u
ls
e
t
u
b
e,
G
–
h
o
t h
ea
t e
x
c
h
an
g
er
,
H
-
in
er
ta
n
ce
t
u
b
e,
I
–
r
eser
v
o
ir
T
ab
le
1
.
T
h
e
d
etail
d
im
e
n
s
io
n
C
o
n
st
i
t
u
e
n
t
p
a
r
t
D
i
a
me
t
e
r
(
m)
L
e
n
g
t
h
(
m)
B
o
u
n
d
a
r
y
c
o
n
d
i
t
i
o
n
C
o
mp
r
e
sso
r
(
A)
0
.
0
1
9
0
8
0
.
0
0
7
5
A
d
i
a
b
a
t
i
c
T
r
a
n
sf
e
r
l
i
n
e
(
B
)
0
.
0
0
3
1
0
.
1
0
1
A
d
i
a
b
a
t
i
c
A
f
t
e
r
c
o
o
l
e
r
(
C
)
0
.
0
0
8
0
.
0
2
3
0
0
K
R
e
g
e
n
e
r
a
t
o
r
(
D
)
0
.
0
0
8
0
.
0
5
8
A
d
i
a
b
a
t
i
c
C
o
l
d
h
e
a
t
e
x
c
h
a
n
g
e
r
(
E)
0
.
0
0
6
0
.
0
0
5
7
A
d
i
a
b
a
t
i
c
P
u
l
se
t
u
b
e
(
F
)
0
.
0
0
5
0
.
0
6
A
d
i
a
b
a
t
i
c
H
o
t
h
e
a
t
e
x
c
h
a
n
g
e
r
(
G
)
0
.
0
0
8
0
.
0
1
3
0
0
K
I
n
e
r
t
a
n
c
e
t
u
b
e
(
H
)
0
.
0
0
0
8
5
0
.
6
8
4
A
d
i
a
b
a
t
i
c
R
e
se
r
v
o
i
r
(
I
)
0
.
0
2
6
0
.
1
3
A
d
i
a
b
a
t
i
c
1.
G
o
v
er
nin
g
equa
t
io
ns
T
h
e
g
o
v
er
n
i
n
g
eq
u
a
tio
n
s
f
o
r
t
h
e
ab
o
v
e
an
al
y
s
i
s
ca
n
b
e
w
r
itt
en
as:
a)
C
o
n
tin
u
it
y
E
q
u
at
io
n
1
0
y
f
x
rv
t
y
y
x
(
1
)
b
)
Mo
m
e
n
tu
m
E
q
u
at
io
n
Fo
r
ax
ial
d
ir
ec
tio
n
:
11
1
2
1
2.
3
x
y
f
x
y
yy
x
y
v
rv
v
y
v
v
t
y
y
y
y
vv
v
p
y
v
y
S
y
y
y
x
y
y
y
y
(
2
)
Fo
r
r
ad
ial
d
ir
ec
tio
n
:
1
1
1
1
1
2.
3
.
12
2
.
.
33
x
f
y
x
y
f
y
y
y
x
x
v
p
v
rv
v
x
v
v
x
v
t
y
x
y
x
x
r
x
x
y
y
v
v
v
y
v
v
S
y
y
y
(
3
)
W
h
er
e
S
x
an
d
S
y
ar
e
th
e
t
w
o
s
o
u
r
ce
ter
m
in
t
h
e
ax
ial
a
n
d
r
ad
ial
d
ir
ec
tio
n
w
h
ich
v
alu
e
s
is
ze
r
o
f
o
r
n
o
n
p
o
r
o
u
s
zo
n
e.
B
u
t
f
o
r
t
h
e
p
o
r
o
u
s
zo
n
e
t
h
e
s
o
u
r
ce
ter
m
w
h
ich
is
s
o
lv
ed
b
y
t
h
e
s
o
lv
er
is
g
iv
en
b
y
t
h
e
f
o
llo
w
i
n
g
eq
u
atio
n
.
1
2
x
x
f
x
S
v
C
v
v
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
T
h
erma
lly
N
o
n
-
eq
u
lib
ir
iu
m
A
p
p
r
o
ch
fo
r
C
F
D
S
imu
la
t
io
n
o
f a
P
u
ls
e
Tu
b
e…
(
S
a
ch
i
n
d
r
a
K
u
ma
r
R
o
u
t
)
67
1
2
y
y
f
y
S
v
C
v
v
(
5
)
I
n
th
e
ab
o
v
e
eq
u
a
tio
n
t
h
e
f
ir
s
t
ter
m
i
s
ca
lled
Dar
c
y
te
r
m
an
d
t
h
e
s
ec
o
n
d
ter
m
is
ca
lled
th
e
Fo
r
ch
h
ei
m
er
ter
m
w
h
ic
h
ar
e
r
esp
o
n
s
ib
le
f
o
r
t
h
e
p
r
ess
u
r
e
d
r
o
p
in
s
id
e
th
e
p
o
r
o
u
s
zo
n
e.
c)
E
n
er
g
y
E
q
u
at
io
n
:
1
.
.
.
f
s
s
f
f
f
E
E
v
E
p
k
T
v
t
(
6
)
W
h
er
e
,
1
fs
k
k
k
(
7
)
2
/
/
2
ff
E
h
p
v
(
8
)
2
.
2
.
Det
a
il
M
o
delin
g
a
nd
B
o
un
da
ry
Co
nd
it
io
ns
A
ll
t
h
e
b
o
u
n
d
ar
y
co
n
d
itio
n
w
i
th
d
i
m
e
n
s
io
n
is
s
h
o
w
n
i
n
T
ab
le
1
.
Si
m
ilar
t
y
p
e
o
f
2
-
D
A
x
i
-
s
y
m
m
etr
ic
g
eo
m
etr
y
w
as
m
o
d
elled
u
s
in
g
th
e
m
o
d
ellin
g
s
o
f
t
w
ar
e
G
AM
B
I
T
as
s
h
o
w
n
in
Fi
g
u
r
e
1
.
T
h
e
n
u
m
b
er
o
f
m
e
s
h
f
o
r
th
i
s
ca
s
e
is
4
4
0
0
w
h
ich
is
ch
o
s
en
af
ter
a
g
r
id
i
n
d
ep
en
d
e
n
c
y
test
w
h
ich
s
h
o
w
s
t
h
at
a
f
te
r
th
is
v
al
u
e
th
er
e
n
o
v
ar
iatio
n
i
n
th
e
r
esu
lt
o
f
s
i
m
u
l
atio
n
.
T
o
g
u
id
e
th
e
co
m
p
r
ess
o
r
p
is
to
n
a
FL
UE
NT
User
Def
in
e
Fu
n
ctio
n
(
UDF)
is
attac
h
ed
to
th
e
p
is
to
n
w
ith
a
co
r
r
elatio
n
a
=
a
0
*
s
in
*
(
ω
t
)
.
T
h
e
o
p
e
r
at
in
g
f
r
eq
u
e
n
c
y
i
s
tak
en
z
=
3
4
Hz.
W
h
er
e
a
is
t
h
e
p
is
to
n
d
i
s
p
lace
m
en
t
an
d
a
0
=
0
.
0
0
4
5
m
i
s
t
h
e
a
m
p
lit
u
d
e
w
it
h
a
ti
m
e
i
n
cr
em
en
t
o
f
0
.
0
0
0
7
s
is
ass
u
m
ed
an
d
th
e
p
is
to
n
h
ea
d
v
elo
cit
y
i
s
r
elate
d
w
it
h
th
e
co
r
r
elatio
n
v
=
a
0
*
ω
*
co
s
*
(
ω
t)
.
W
h
er
e
v
is
th
e
p
is
to
n
h
ea
d
v
e
lo
cit
y
.
Fo
r
p
o
r
o
u
s
m
e
d
ia
r
eg
io
n
t
h
e
p
ar
a
m
e
ter
s
ar
e
tak
en
f
r
o
m
[
1
5
]
,
in
er
tial r
esi
s
t
an
ce
7
6
0
9
0
m
-
1
an
d
p
er
m
ea
b
ili
t
y
1
.
0
6
×
1
0
-
10
m
2
.
Steel
is
c
h
o
s
e
n
as t
h
e
co
m
p
o
n
en
t
m
ater
ial.
T
h
e
w
o
r
k
i
n
g
g
a
s
is
ch
o
s
e
n
is
h
eli
u
m
an
d
t
h
e
p
r
o
p
er
ty
(
v
i
s
co
s
it
y
,
t
h
er
m
al
co
n
d
u
cti
v
it
y
,
s
p
ec
i
f
ic
h
ea
t)
o
f
t
h
e
g
as
ar
e
ta
k
en
as
te
m
p
er
at
u
r
e
d
ep
en
d
en
t
f
r
o
m
N
I
ST
d
ata
b
ase.
3.
NUM
E
RICAL
SO
L
U
T
I
O
N
P
RO
CE
DUR
E
T
h
e
g
o
v
er
n
i
n
g
eq
u
atio
n
s
as
d
escr
ib
ed
ab
o
v
e
ar
e
s
o
lv
ed
b
y
Fl
u
e
n
t.
A
x
is
y
m
m
etr
ic,
u
n
s
t
ea
d
y
,
ce
l
l
b
ased
,
p
h
y
s
ical
v
elo
cit
y
w
it
h
s
e
g
r
eg
ated
s
o
l
v
er
is
ta
k
e
n
f
o
r
an
al
y
s
i
s
.
P
I
SO
alg
o
r
ith
m
w
it
h
a
P
R
E
ST
O
(
P
r
ess
u
r
e
Stag
g
er
ed
Op
tio
n
)
s
ch
e
m
e
f
o
r
th
e
p
r
es
s
u
r
e
v
elo
cit
y
co
u
p
li
n
g
is
u
s
ed
f
o
r
t
h
e
p
r
ess
u
r
e
co
r
r
ec
tio
n
eq
u
atio
n
.
Su
itab
le
Un
d
er
r
ela
x
atio
n
f
ac
to
r
s
f
o
r
p
r
ess
u
r
e,
m
o
m
e
n
t
u
m
an
d
f
o
r
e
n
er
g
y
w
er
e
u
s
ed
f
o
r
th
e
b
etter
co
n
v
er
g
e
n
ce
.
Qu
ad
later
al
ce
ll
s
w
er
e
u
s
ed
f
o
r
th
e
en
tire
co
m
p
u
tatio
n
al
d
o
m
ai
n
.
Fo
r
all
eq
u
atio
n
C
o
n
v
er
g
e
n
ce
o
f
th
e
d
is
cr
etize
d
eq
u
atio
n
s
ar
e
s
aid
to
h
av
e
b
ee
n
ac
h
iev
ed
w
h
e
n
th
e
w
h
o
le
f
ie
ld
r
esid
u
al
w
a
s
k
ep
t a
t 1
0
-
6
.
4.
RE
SU
L
T
AND
DI
SCUS
SI
O
N
T
h
e
Fig
u
r
e
2
s
h
o
w
s
t
h
at
th
e
p
r
esen
t
C
FD
r
e
s
u
lt
s
m
atc
h
well
w
it
h
t
h
e
C
h
a
et
al.
[
1
1
]
m
o
d
el.
I
t
i
s
n
o
ticeb
le
f
r
o
m
t
h
e
Fi
g
u
r
e
3
th
at
th
e
s
tead
y
s
tate
te
m
p
er
at
u
r
e
is
r
ea
ch
ed
af
ter
5
0
s
f
o
r
b
o
th
th
e
ca
s
e
af
ter
w
h
ic
h
th
er
e
n
o
ch
a
n
g
e
in
te
m
p
er
atu
r
e
w
it
h
r
esp
ec
t
to
ti
m
e.
T
h
e
C
h
a
et
al.
m
o
d
el
r
ep
o
r
tin
g
a
te
m
p
er
at
u
r
e
o
f
8
7
K
u
s
i
n
g
4
2
0
0
n
u
m
b
er
o
f
ce
ll
w
h
er
e
in
th
e
p
r
esen
t c
ase
it is
f
o
u
n
d
a
8
6
K
u
s
in
g
3
9
0
0
ce
ll.
T
o
m
ak
i
n
g
m
o
r
e
r
ea
li
s
tic
w
e
m
ad
e
atte
m
p
t
to
m
a
k
e
a
n
o
n
-
t
h
er
m
al
l
y
eq
u
ilib
r
iu
m
to
t
h
e
r
e
g
en
er
ato
r
.
I
n
th
er
m
al
n
o
n
-
eq
u
ilib
r
iu
m
ap
p
r
o
ac
h
it
co
n
s
id
er
s
th
e
h
ea
t
in
ter
ac
tio
n
b
et
w
ee
n
g
a
s
a
n
d
s
o
li
d
m
atr
ix
o
f
p
o
r
o
u
s
r
eg
io
n
.
T
h
u
s
to
ca
lcu
late
t
h
e
h
ea
t
in
ter
ac
tio
n
it
r
eq
u
ir
es
t
h
e
s
o
lid
m
atr
i
x
an
d
g
as
to
b
e
d
escr
ib
ed
b
y
t
w
o
d
if
f
er
e
n
t
en
er
g
y
eq
u
at
io
n
s
.
T
h
e
h
ea
t
t
r
an
s
f
er
co
-
ef
f
icie
n
t
b
et
w
ee
n
s
o
lid
an
d
f
l
u
id
ca
n
b
e
ca
lcu
lated
u
s
i
n
g
s
tan
d
ar
d
co
r
r
elatio
n
s
.
No
n
-
th
er
m
al
m
o
d
el
ac
co
u
n
ts
f
o
r
th
er
m
al
lo
s
s
es
in
p
o
r
o
u
s
zo
n
e
in
co
m
p
o
n
en
ts
lik
e
r
eg
en
er
ato
r
s
,
w
h
er
e
t
h
er
m
al
i
n
er
tia
p
la
y
s
a
v
er
y
i
m
p
o
r
tan
t
r
o
le,
n
o
n
-
eq
u
ilib
r
iu
m
m
o
d
el
ten
d
s
to
b
e
m
o
r
e
ac
cu
r
ate.
FLUE
NT
s
o
lv
e
th
e
e
x
tr
a
eq
u
atio
n
i
n
a
r
eg
io
n
o
r
zo
n
e
w
it
h
th
e
h
elp
o
f
s
o
m
e
f
u
n
ct
io
n
s
ca
lled
User
.
Def
i
n
ed
Scalar
s
(
UD
Ss
)
.
T
h
e
s
i
m
u
lat
io
n
o
f
th
e
e
x
tr
a
eq
u
ati
o
n
s
i
n
t
h
e
p
o
r
o
u
s
zo
n
e
is
ac
c
o
m
p
li
s
h
e
d
w
it
h
t
h
e
h
elp
o
f
s
ep
ar
ate
UDS
s
.
T
h
e
f
u
n
d
a
m
en
tal
s
ca
lar
tr
an
s
p
o
r
t
eq
u
atio
n
d
ef
in
ed
w
it
h
th
e
h
elp
o
f
th
e
UDS
s
co
n
tain
s
f
o
u
r
ter
m
s
,
n
a
m
el
y
,
c
o
n
v
ec
tio
n
ter
m
,
t
h
e
u
n
s
tead
y
t
er
m
,
th
e
s
o
u
r
ce
ter
m
an
d
d
i
f
f
u
s
io
n
ter
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
3
,
No
.
2
,
J
u
n
e
2
0
1
4
:
65
–
69
68
Fig
u
r
e
2
.
Valid
atio
n
p
lo
t b
et
w
ee
n
p
r
esen
t
m
o
d
el
a
n
d
C
h
a
et
al.
[
1
1
]
m
o
d
el
Fig
u
r
e
3
.
Ax
ial
te
m
p
er
at
u
r
e
v
ar
iatio
n
f
o
r
th
e
p
u
ls
e
tu
b
e
s
y
s
te
m
af
ter
s
tead
y
s
ta
te
o
f
te
m
p
er
atu
r
e
f
o
r
No
n
-
t
h
er
m
a
ll
y
eq
u
ilib
r
iu
m
m
o
d
el
T
h
e
Fig
u
r
e
3
s
h
o
w
s
t
h
e
A
x
ia
l
te
m
p
er
atu
r
e
v
ar
iatio
n
f
o
r
th
e
p
u
ls
e
tu
b
e
s
y
s
te
m
a
f
ter
s
tea
d
y
s
tate
o
f
te
m
p
er
atu
r
e
f
o
r
No
n
-
t
h
er
m
all
y
eq
u
i
lib
r
iu
m
m
o
d
el.
I
t
c
an
b
e
f
o
u
n
d
f
r
o
m
th
e
s
i
m
u
latio
n
t
h
at
a
g
o
o
d
te
m
p
er
atu
r
e
g
r
ad
ien
t
i
s
g
en
er
ated
ax
iall
y
b
et
w
ee
n
t
h
e
h
o
t
h
ea
t
e
x
c
h
an
g
er
,
p
u
ls
e
tu
b
e
a
n
d
t
h
e
r
e
g
en
er
ato
r
,
r
esp
ec
tiv
el
y
.
T
h
e
p
lo
t
is
tak
e
n
af
ter
a
s
tead
y
s
tate
te
m
p
er
atu
r
e
ac
h
ie
v
ed
b
y
t
h
e
p
u
ls
e
t
u
b
e
r
ef
r
ig
er
ato
r
.
I
t
s
h
o
w
s
t
h
at
th
e
co
ld
h
ea
t
ex
c
h
an
g
er
en
d
te
m
p
er
atu
r
e
r
ea
ch
a
te
m
p
er
atu
r
e
o
f
b
elo
w
1
1
5
K
f
o
r
th
e
p
r
esen
t
th
er
m
a
ll
y
n
o
n
eq
u
ilib
r
iu
m
ca
s
e
w
h
er
e
t
h
e
r
eser
v
o
ir
te
m
p
er
atu
r
e
i
s
m
ax
i
m
u
m
ab
o
u
t
5
0
0
K.
Du
e
to
th
e
e
f
f
ec
t
o
f
s
o
lid
m
atr
i
x
in
s
id
e
r
eg
en
e
r
ato
r
th
e
te
m
p
er
atu
r
e
at
co
ld
en
d
r
is
es
f
r
o
m
t
h
e
id
ea
l
th
er
m
all
y
eq
u
ilib
r
iu
m
m
o
d
el.
As
it
is
w
el
l
k
n
o
w
n
t
h
at
th
e
t
h
er
m
all
y
eq
u
i
lib
r
iu
m
m
o
d
el
h
as
t
h
e
s
a
m
e
te
m
p
er
atu
r
e
o
f
f
l
u
id
w
it
h
t
h
e
s
o
lid
m
atr
ix
at
a
n
y
s
p
atial
lo
ca
tio
n
o
f
p
o
r
o
u
s
r
eg
io
n
.
Fig
u
r
e
4
an
d
Fi
g
u
r
e
5
s
h
o
w
s
t
h
e
te
m
p
er
at
u
r
e
p
r
o
f
ile
f
o
r
s
o
li
d
m
a
tr
ix
a
n
d
th
e
g
as
i
n
s
id
e
r
eg
en
er
ato
r
.
A
t
t
h
e
i
n
let
o
f
r
e
g
en
er
ato
r
t
h
e
f
l
u
id
a
n
d
s
o
lid
m
atr
i
x
te
m
p
er
atu
r
e
r
e
m
a
in
s
3
0
0
K
b
u
t
at
e
x
it
th
e
s
o
lid
m
atr
i
x
te
m
p
er
atu
r
e
is
ab
o
u
t 2
0
k
h
i
g
h
er
.
F
ig
u
r
e
4
.
Ax
ial
te
m
p
er
at
u
r
e
d
is
tr
ib
u
tio
n
o
f
s
o
lid
m
atr
i
x
in
s
id
e
r
eg
en
er
ato
r
Fig
u
r
e
5
.
Ax
ial
te
m
p
er
at
u
r
e
d
is
tr
ib
u
ti
o
n
o
f
f
l
u
id
in
s
id
e
R
e
g
e
n
er
ato
r
R
eg
e
n
er
at
o
r
5.
CO
NCLU
SI
O
N
T
h
e
s
tu
d
y
f
o
cu
s
e
s
o
n
C
FD
in
v
esti
g
atio
n
to
m
a
k
e
m
o
r
e
r
ea
l
is
tic
m
o
d
el
o
f
t
h
e
p
u
ls
e
t
u
b
e
r
ef
r
ig
er
ato
r
.
So
ap
p
ly
i
n
g
p
r
o
p
er
UDSs
to
th
e
p
o
r
o
u
s
m
ed
iu
m
th
r
o
u
g
h
F
L
UE
NT
it
co
m
e
s
as
a
s
u
cc
es
s
m
o
d
el.
T
h
is
m
o
d
el
h
elp
s
to
g
et
a
p
r
o
p
er
co
o
li
n
g
te
m
p
er
atu
r
e
w
h
ic
h
clo
s
e
r
to
r
ea
l
ex
p
er
im
e
n
tal
d
ata.
Fro
m
th
e
ab
o
v
e
in
v
e
s
ti
g
atio
n
it
s
h
o
w
s
t
h
at
t
h
e
in
let
f
lu
id
a
n
d
s
o
lid
m
at
r
ix
te
m
p
er
at
u
r
e
ar
e
s
a
m
e
wh
er
e
at
ex
it
o
f
t
h
e
r
eg
en
er
ato
r
th
e
f
lu
id
te
m
p
er
a
tu
r
e
is
ab
o
u
t
1
3
0
K
w
h
er
e
th
e
s
o
lid
te
m
p
er
at
u
r
e
is
m
o
r
e
th
an
1
5
0
K.
T
h
is
co
n
clu
d
e
t
h
at
th
e
r
eg
e
n
er
ato
r
w
o
r
k
s
p
r
o
p
er
ly
w
it
h
t
h
i
s
n
o
n
-
t
h
er
m
al
l
y
eq
u
ilib
r
i
u
m
m
o
d
e
l,
w
h
ic
h
w
a
s
o
u
r
m
ai
n
ai
m
o
f
t
h
is
w
o
r
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
T
h
erma
lly
N
o
n
-
eq
u
lib
ir
iu
m
A
p
p
r
o
ch
fo
r
C
F
D
S
imu
la
t
io
n
o
f a
P
u
ls
e
Tu
b
e…
(
S
a
ch
i
n
d
r
a
K
u
ma
r
R
o
u
t
)
69
RE
F
E
R
E
NC
E
S
[1
]
G
i
ff
o
rd
W
.
,
e
t
a
l.
,
“
P
u
lse
-
t
u
b
e
re
f
rig
e
ra
ti
o
n
,
”
T
ra
n
s A
S
M
E,
J
En
g
I
n
d
(
se
rie
s B
)
,
1
9
6
4
,
V
o
l.
8
6
,
p
p
.
2
6
4
-
26
8
.
[2
]
M
ik
u
li
n
E
.
,
e
t
a
l
.
,
“
L
o
w
-
te
m
p
e
ra
tu
re
e
x
p
a
n
sio
n
p
u
lse
tu
b
e
s
,
”
Ad
v
a
n
c
e
s
in
Cry
o
g
e
n
ics
E
n
g
i
n
e
e
rin
g
,
1
9
8
4
,
Vo
l.
2
9
,
p
p
.
6
2
9
-
6
3
7
.
[3
]
Zh
u
S
.
,
e
t
a
l
.
,
“
Do
u
b
le
i
n
let
p
u
l
se
tu
b
e
re
f
ri
g
e
ra
to
r:
a
n
i
m
p
o
rtan
t
im
p
ro
v
e
m
e
n
t,
”
Cry
o
g
e
n
ics
,
1
9
9
0
,
V
o
l.
3
0
,
p
p
.
514
-
5
2
0
.
[4
]
E.
D.
M
a
rq
u
a
rd
t
,
e
t
a
l
.
,
“
P
u
lse
t
u
b
e
o
x
y
g
e
n
li
q
u
e
f
ier,
”
Ad
v
a
n
c
e
s
in
Cry
o
g
e
n
ics
En
g
in
e
e
rin
g
,
2
0
0
0
,
V
o
l
.
45
,
p
p
.
457
-
4
6
4
.
[5
]
d
e
Bo
e
r
P
.
C
.
T
.
,
“
T
h
e
r
m
o
d
y
n
a
m
ic
a
n
a
l
y
si
s
o
f
th
e
b
a
sic
p
u
lse
-
t
u
b
e
re
f
rig
e
ra
to
r,
”
Cry
o
g
e
n
ics
,
1
9
9
4
,
V
o
l
.
34
,
p
p
.
699
-
7
1
1
.
[6
]
Kitt
e
l
P
., “
I
d
e
a
l
o
rif
ice
p
u
lse
t
u
b
e
re
f
rig
e
ra
to
r
p
e
rf
o
r
m
a
n
c
e
,”
Cry
o
g
e
n
ics
,
1
9
9
2
,
V
o
l
.
32
,
p
p
.
8
4
3
-
8
4
4
.
[7
]
Z
hu
S
.
W
.,
e
t
a
l.
,
“
Iso
th
e
rm
a
l
m
o
d
e
l
o
f
p
u
lse
tu
b
e
re
f
rig
e
ra
to
r
,”
Cry
o
g
e
n
ics
,
1
9
9
4
,
3
4
,
p
p
.
5
9
1
-
5
9
5
.
[8
]
Hu
a
n
g
B
.
J
.,
e
t
a
l.
,
“
S
y
ste
m
d
e
sig
n
o
f
o
rif
ice
p
u
lse
-
tu
b
e
re
f
rig
e
ra
to
r
u
sin
g
li
n
e
a
r
f
lo
w
n
e
t
w
o
rk
a
n
a
l
y
sis
,”
Cry
o
g
e
n
ics
,
1
9
9
6
,
Vo
l.
36
,
p
p
.
8
8
9
-
9
0
2
.
[9
]
Ku
riy
a
m
a
,
e
t
a
l
.
,
“
A
n
a
l
y
sis
o
f
m
a
ss
a
n
d
e
n
e
rg
y
f
lo
w
ra
tes
in
a
n
o
rif
ice
p
u
lse
-
tu
b
e
re
f
ri
g
e
ra
to
r
,”
Cr
y
o
g
e
n
ics
,
1
9
9
9
,
V
o
l
.
3
9
,
p
p
.
85
-
9
2
.
[1
0
]
Ho
ffm
a
n
n
A
.
,
e
t
a
l.
,
“
P
h
a
se
sh
if
ti
n
g
in
p
u
lse
t
u
b
e
re
f
rig
e
ra
to
rs
,”
Cry
o
g
e
n
ics
,
1
9
9
9
,
Vo
l.
39
,
p
p
.
5
2
9
-
5
3
7
.
[1
1
]
Ch
a
J
.
S
.
,
e
t
a
l
.
,
“
M
u
lt
i
-
d
im
e
n
sio
n
a
l
f
lo
w
e
ff
e
c
ts
in
p
u
lse
tu
b
e
re
f
rig
e
ra
to
rs
,”
Cry
o
g
e
n
ics
,
2
0
0
6
,
Vo
l.
4
6
,
p
p
.
6
5
8
-
6
6
5
.
[1
2
]
A
sh
w
in
T
.
R
.
,
e
t
a
l.
,
“
CF
D
a
n
a
ly
sis
o
f
h
ig
h
f
re
q
u
e
n
c
y
m
in
iatu
re
p
u
lse
tu
b
e
re
f
rig
e
r
a
to
rs
f
o
r
sp
a
c
e
a
p
p
li
c
a
ti
o
n
s
w
it
h
th
e
rm
a
l
n
o
n
-
e
q
u
il
ib
r
iu
m
m
o
d
e
l,
”
Cry
o
g
e
n
ics
,
2
0
1
0
,
Vo
l.
30
,
p
p
.
1
5
2
-
1
6
6
.
[1
3
]
Ch
e
n
L
.
,
e
t
a
l.
,
“
CF
D
a
n
a
ly
sis
o
f
th
e
r
m
o
d
y
n
a
m
i
c
c
y
c
les
in
a
p
u
l
se
tu
b
e
re
f
rig
e
r
a
to
r,
”
Cry
o
g
e
n
ics
,
2
0
1
0
,
Vo
l.
5
0
,
p
p
.
7
4
3
-
7
4
9
.
[1
4
]
F
lu
e
n
t
6
.
3
Us
e
r’s G
u
id
e
,
F
l
u
e
n
t
I
n
c
.
,
h
tt
p
:
//
ww
w
.
f
lu
e
n
tu
se
rs.co
m
.
[1
5
]
A
n
tao
D.
S.
,
e
t
a
l.
,
“
Nu
m
e
ric
a
l
sim
u
latio
n
s
o
f
tran
sp
o
rt
p
r
o
c
e
ss
e
s
in
a
p
u
lse
tu
b
e
c
ry
o
c
o
o
ler:
Eff
e
c
ts
o
f
tap
e
r
a
n
g
le
,”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
He
a
t
a
n
d
M
a
ss
T
r
a
n
sfe
r
,
2
0
1
1
,
Vo
l.
54
,
p
p
.
4
6
1
1
-
4
6
2
0
.
[1
6
]
Ro
u
t
S
.
K.
,
e
t
a
l
.
,
“
Nu
m
e
rica
l
A
n
a
l
y
si
s
o
f
M
ix
e
d
Co
n
v
e
c
ti
o
n
t
h
ro
u
g
h
a
n
I
n
tern
a
l
ly
F
in
n
e
d
T
u
b
e
,
”
Ad
v
a
n
c
e
s
i
n
M
e
c
h
a
n
ica
l
E
n
g
in
e
e
rin
g
,
2
0
1
2
,
Vo
l.
2
0
1
2
.
[1
7
]
Ro
u
t
S.
K.,
e
t
a
l
.
,
“
CF
D
S
im
u
lat
io
n
t
o
Op
ti
m
ise
S
in
g
le
S
tag
e
P
u
l
se
T
u
b
e
Re
f
rig
e
ra
to
r
Te
m
p
e
ra
tu
re
Be
lo
w
6
o
K
,”
Pro
c
e
d
ia
E
n
g
in
e
e
rin
g
,
2
0
1
2
,
Vo
l.
38
,
p
p
.
1
5
2
4
-
1
5
3
0
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
S
a
c
h
in
d
ra
Ku
m
a
r
Ro
u
t
,
R
e
a
se
a
rc
h
S
c
h
o
lar
o
f
De
p
a
rtem
e
n
t
o
f
M
e
c
h
a
n
ica
l
E
n
g
in
e
e
rin
g
,
Na
ti
o
n
a
l
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
,
Ro
u
rk
e
la
-
7
6
9
0
0
8
,
Od
ish
a
,
In
d
ia
.
Ba
laji
Ku
m
a
r
Ch
o
u
d
h
u
ri
is
a
Re
a
se
a
rc
h
S
c
h
o
lar
f
ro
m
D
e
p
a
rte
m
e
n
t
o
f
M
e
c
h
a
n
ica
l
E
n
g
in
e
e
rin
g
,
Na
ti
o
n
a
l
In
st
it
u
te
o
f
T
e
c
h
n
o
lo
g
y
,
Ro
u
rk
e
la
-
7
6
9
0
0
8
,
Od
ish
a
,
In
d
ia
.
Evaluation Warning : The document was created with Spire.PDF for Python.