I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
,
p
p
.
1
3
6
~
1
4
4
I
SS
N:
2252
-
8814
136
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
O
pti
m
u
m
Desig
n
o
f
G
A
-
BF
Algo
rit
h
m
Ba
sed
PID
Co
ntroller
for the
Sola
r
Sy
st
e
m
S.
M
a
llik
a
1
,
R.
Sa
ra
v
a
na
k
u
m
a
rf
2
1
De
p
a
rt
m
e
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
i
n
e
e
rin
g
,
S
ri
S
a
iram
En
g
in
e
e
rin
g
Co
ll
e
g
e
,
Ch
e
n
n
a
i,
I
n
d
ia
2
S
c
h
o
o
l
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
V
IT
Un
iv
e
rsity
,
V
e
ll
o
re
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
r
2
3
,
2
0
1
7
R
ev
i
s
ed
A
u
g
2
0
,
2
0
1
7
A
cc
ep
ted
A
u
g
2
6
,
2
0
1
7
T
h
is
p
a
p
e
r
p
re
se
n
ts
a
n
e
w
a
p
p
ro
a
c
h
b
a
se
d
o
n
t
h
e
g
e
n
e
ti
c
a
lg
o
rit
h
m
(GA
)
a
n
d
Ba
c
teria
l
F
o
ra
g
in
g
(BF
)
is
u
se
d
t
o
p
e
rf
o
rm
a
c
o
n
stra
in
e
d
tu
n
i
n
g
tec
h
n
iq
u
e
f
o
r
th
e
P
ID
p
a
ra
m
e
t
e
rs
to
o
p
ti
m
ize
th
e
p
o
w
e
r
o
u
tp
u
t
o
f
so
lar
p
a
n
e
l
.
A
s
m
a
ll
-
sig
n
a
l
m
o
d
e
l
is
u
se
d
to
d
e
sig
n
th
e
c
o
n
tr
o
ll
e
r
p
a
ra
m
e
ters
o
f
th
e
c
o
n
v
e
n
ti
o
n
a
l
P
ID
c
o
n
tro
ll
e
r.
T
h
e
d
y
n
a
m
i
c
s
o
f
th
e
c
o
n
v
e
rter
is
n
o
n
li
n
e
a
r,
th
e
re
f
o
re
,
it
is
h
a
rd
to
d
e
riv
e
d
e
sira
b
le p
e
rf
o
rm
a
n
c
e
.
S
o
h
y
b
rid
a
lg
o
rit
h
m
is
u
se
d
to
o
p
ti
m
ize
th
e
c
o
n
tr
o
l
p
a
ra
m
e
ters
o
f
b
o
o
st
c
o
n
v
e
rter.
In
o
rd
e
r
t
o
o
b
tain
th
e
f
it
n
e
ss
o
f
a
n
in
d
iv
id
u
a
l,
S
im
u
li
n
k
m
o
d
e
l
o
f
th
e
b
o
o
st
c
o
n
v
e
rter
is
d
e
sig
n
e
d
a
n
d
th
e
h
y
b
rid
a
lg
o
rit
h
m
is
p
ro
g
ra
m
m
e
d
to
d
e
sig
n
th
e
o
p
ti
m
a
l
c
o
n
tro
l
p
a
ra
m
e
ters
.
It
w
a
s
f
o
u
n
d
t
h
a
t
th
e
p
ro
p
o
se
d
o
p
ti
m
a
l
P
ID
c
o
n
tro
ll
e
r
p
a
ra
m
e
t
e
rs
a
d
ju
stm
e
n
t
b
y
th
e
GA
-
B
F
a
lg
o
rit
h
m
is
su
p
e
rio
r
to
t
h
e
c
o
n
v
e
n
ti
o
n
a
l
m
e
th
o
d
.
T
h
e
M
a
tl
a
b
/S
im
u
li
n
k
w
a
s
u
se
d
to
v
e
rify
th
e
e
ff
e
c
ti
v
e
n
e
ss
o
f
p
ro
p
o
se
d
c
o
n
tro
l
m
e
th
o
d
.
K
ey
w
o
r
d
:
B
ac
ter
ial
f
o
r
ag
in
g
al
g
o
r
ith
m
B
o
o
s
t c
o
n
v
er
ter
G
en
etic
s
alg
o
r
it
h
m
P
I
D
co
n
tr
o
ller
S
o
lar
ce
ll
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
S.
Ma
llik
a
,
Dep
ar
t
m
en
t
o
f
E
lectr
ical
an
d
E
lectr
o
n
cis
E
n
g
i
n
ee
r
in
g
,
Sri
Sair
a
m
E
n
g
i
n
ee
r
i
n
g
C
o
lle
g
e,
C
h
en
n
ai
,
I
n
d
ia.
E
m
ail:
m
alli
k
a
m
als
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
u
s
e
o
f
en
er
g
y
h
a
s
b
ec
o
m
e
a
n
in
te
g
r
al
p
ar
t
o
f
o
u
r
lif
e;
its
s
u
p
p
l
y
s
h
o
u
ld
b
e
s
ec
u
r
e
an
d
s
u
s
tai
n
ab
le.
A
t
t
h
e
s
a
m
e
ti
m
e,
it
s
h
o
u
ld
b
e
ec
o
n
o
m
ical,
e
n
v
i
r
o
n
m
e
n
tall
y
f
r
ien
d
l
y
a
n
d
s
o
ci
all
y
a
n
d
ac
ce
p
tab
le.
T
h
e
cu
r
r
en
t
tr
en
d
s
i
n
e
n
er
g
y
c
o
n
s
u
m
p
tio
n
a
r
e
n
eit
h
er
s
ec
u
r
e
n
o
r
s
u
s
tai
n
ab
le.
T
h
e
r
is
i
n
g
co
n
s
u
m
p
t
io
n
o
f
f
o
s
s
il
f
u
e
ls
,
to
g
et
h
er
w
it
h
i
n
cr
ea
s
i
n
g
g
r
ee
n
h
o
u
s
e
g
as
e
m
i
s
s
io
n
,
t
h
r
ea
ten
s
o
u
r
s
ec
u
r
e
en
er
g
y
s
u
p
p
l
y
.
T
h
e
lack
o
f
in
s
u
f
f
icien
t
en
er
g
y
ca
n
also
h
o
ld
b
ac
k
th
e
g
r
o
w
th
o
f
b
illi
o
n
s
o
f
p
eo
p
le
liv
i
n
g
in
t
h
e
d
e
v
elo
p
in
g
co
u
n
tr
ies,
th
er
ef
o
r
e,
d
ev
elo
p
m
e
n
t
o
f
cle
an
,
s
ec
u
r
e,
s
u
s
tai
n
ab
le
an
d
af
f
o
r
d
ab
le
en
er
g
y
s
o
u
r
ce
s
s
h
o
u
l
d
b
e
o
u
r
p
r
io
r
ity
i
n
th
is
ce
n
t
u
r
y
.
P
V
m
o
d
u
le
s
s
t
ill
h
av
e
r
elati
v
el
y
lo
w
co
n
v
er
s
io
n
e
f
f
icie
n
c
y
th
er
ef
o
r
e,
co
n
tr
o
lli
n
g
m
a
x
i
m
u
m
p
o
w
er
p
o
in
t
tr
ac
k
i
n
g
(
MP
PT
)
f
o
r
th
e
s
o
lar
ar
r
ay
is
ess
e
n
tia
l
in
a
P
V
s
y
s
te
m
.
T
h
e
a
m
o
u
n
t
o
f
p
o
w
er
g
e
n
er
ated
b
y
a
P
V
d
ep
en
d
s
o
n
t
h
e
o
p
er
atin
g
v
o
lta
g
e
o
f
th
e
ar
r
a
y
.
A
P
V
’
s
m
a
x
i
m
u
m
p
o
w
er
p
o
in
t
(
MP
P
)
v
ar
ies
w
it
h
s
o
lar
in
s
u
latio
n
an
d
te
m
p
er
at
u
r
e
[
1
]
,
[
2
]
.
A
-
B
F
alg
o
r
it
h
m
h
as
e
m
e
r
g
e
d
as
a
p
o
w
er
f
u
l
tec
h
n
iq
u
e
f
o
r
th
e
s
o
lv
in
g
o
p
ti
m
izatio
n
p
r
o
b
lem
s
.
Gen
etic
Alg
o
r
it
h
m
s
(
G
As)
ar
e
a
s
to
ch
a
s
tic
g
lo
b
al
s
ea
r
c
h
m
et
h
o
d
th
at
m
i
m
ic
s
t
h
e
p
r
o
ce
s
s
o
f
n
at
u
r
al
ev
o
l
u
tio
n
.
T
h
e
B
ac
ter
ial
Fo
r
ag
in
g
Op
ti
m
izatio
n
A
l
g
o
r
ith
m
(
B
FO
A
)
,
as
it
is
ca
lled
n
o
w
,
i
s
c
u
r
r
e
n
tl
y
g
ain
in
g
p
o
p
u
lar
it
y
in
t
h
e
co
m
m
u
n
it
y
o
f
r
esear
c
h
er
s
,
f
o
r
its
e
f
f
ec
ti
v
e
n
ess
in
s
o
lv
i
n
g
ce
r
tain
d
if
f
ic
u
lt
r
ea
l
w
o
r
ld
o
p
ti
m
izat
io
n
p
r
o
b
lem
s
.
U
s
in
g
G
A
-
B
F
al
g
o
r
ith
m
s
to
p
er
f
o
r
m
t
h
e
tu
n
i
n
g
o
f
t
h
e
co
n
tr
o
ller
w
ill
r
e
s
u
lt
in
t
h
e
o
p
ti
m
u
m
co
n
tr
o
ller
b
ein
g
ev
a
lu
ated
f
o
r
th
e
s
y
s
te
m
e
v
er
y
ti
m
e.
T
h
e
r
esear
ch
w
o
r
k
co
n
n
ec
ts
w
i
th
th
e
i
m
p
le
m
e
n
tatio
n
o
f
DC
to
D
C
co
n
v
er
ter
w
it
h
v
o
ltag
e
lift
tech
n
iq
u
e.
T
h
e
g
r
ee
n
en
er
g
y
f
r
o
m
p
h
o
to
v
o
ltaic
ce
ll
w
as
f
ee
d
to
th
e
p
o
w
er
co
n
v
er
ter
w
it
h
s
u
i
tab
le
p
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Op
timu
m
Desig
n
o
f G
A
-
B
F
A
l
g
o
r
ith
m
B
a
s
ed
P
I
D
C
o
n
tr
o
ller
fo
r
th
e
S
o
la
r
S
ystem
(
S
.
Ma
llika
)
137
m
o
d
eled
P
V
ar
r
a
y
.
T
h
e
d
y
n
a
m
i
c
b
eh
a
v
io
u
r
al
ch
ar
ac
ter
is
ti
cs
o
f
p
o
w
er
elec
tr
o
n
ic
co
n
v
e
r
ter
s
ar
e
to
o
m
u
c
h
n
o
n
li
n
ea
r
d
u
e
to
th
e
n
at
u
r
e
o
f
s
w
itc
h
in
g
a
n
d
v
ar
y
i
n
g
n
at
u
r
e
o
f
ti
m
e.
A
G
A
-
B
F
b
ased
h
y
b
r
id
alg
o
r
ith
m
co
n
tr
o
lled
MP
PT
f
o
r
a
B
o
o
s
t
p
o
w
er
elec
tr
o
n
ic
s
co
n
v
er
ter
h
as
b
ee
n
d
esig
n
ed
.
T
h
e
co
n
tr
o
ller
p
ar
am
eter
s
h
a
v
e
b
ee
n
o
p
ti
m
ized
u
s
i
n
g
h
y
b
r
id
al
g
o
r
ith
m
s
.
C
o
n
tr
o
ller
d
esi
g
n
an
d
s
i
m
u
latio
n
s
in
Ma
tlab
Si
m
P
o
w
er
S
y
s
te
m
s
ar
e
ca
r
r
ied
o
u
t
i
n
th
is
p
ap
er
.
T
h
e
co
n
tr
o
l
s
y
s
te
m
p
er
f
o
r
m
s
p
o
o
r
in
ch
ar
ac
ter
is
tics
an
d
ev
e
n
it
b
ec
o
m
es
u
n
s
tab
le,
if
i
m
p
r
o
p
er
v
alu
es
o
f
t
h
e
co
n
tr
o
ller
tu
n
i
n
g
co
n
s
tan
t
s
ar
e
u
s
ed
.
So
it
b
ec
o
m
es
n
ec
ess
ar
y
to
tu
n
e
th
e
co
n
tr
o
ller
p
ar
am
e
t
er
s
to
ac
h
iev
e
g
o
o
d
co
n
tr
o
l
p
e
r
f
o
r
m
an
ce
w
i
th
t
h
e
p
r
o
p
er
ch
o
ice
o
f
tu
n
in
g
co
n
s
ta
n
ts
.
T
h
e
f
o
llo
w
i
n
g
s
ec
tio
n
2
f
o
r
m
u
lates
t
h
e
m
a
th
e
m
atica
l
m
o
d
el
in
g
o
f
a
s
o
la
r
s
y
s
te
m
a
n
d
b
o
o
s
t
co
n
v
er
ter
.
T
h
e
f
o
cu
s
o
f
s
ec
tio
n
3
is
o
n
co
n
v
en
tio
n
al
P
I
D
C
o
n
tr
o
ller
,
it’
s
tu
n
i
n
g
b
y
Z
ieg
l
er
Nich
o
ls
Me
th
o
d
an
d
h
o
w
it
ca
n
b
e
ap
p
lied
to
b
o
o
s
t
co
n
v
er
ter
an
d
also
a
b
r
i
ef
r
ev
ie
w
o
f
GA
-
B
F
b
ased
h
y
b
r
id
alg
o
r
ith
m
f
o
r
o
p
tim
izin
g
P
I
D
co
n
tr
o
ller
.
I
n
s
ec
tio
n
4
,
s
i
m
u
latio
n
r
es
u
lt
s
o
f
t
h
e
co
r
r
esp
o
n
d
i
n
g
s
y
s
te
m
ar
e
o
b
tain
ed
a
n
d
co
m
p
ar
ed
an
d
co
n
cl
u
s
io
n
s
ar
e
m
ad
e
in
s
ec
t
io
n
5
2.
M
AT
H
E
M
AT
I
CAL M
O
DE
L
I
N
G
O
F
T
H
E
SYS
T
E
M
Gen
etic
s
A
lg
o
r
it
h
m
an
d
B
ac
ter
ial
Fo
r
ag
in
g
A
l
g
o
r
ith
m
(
GA
-
B
F)
is
e
m
b
ed
d
ed
in
th
e
f
ee
d
b
ac
k
co
m
p
e
n
s
at
io
n
cir
cu
i
t
d
esig
n
a
n
d
it
is
p
er
f
o
r
m
ed
in
t
h
e
f
r
eq
u
en
c
y
d
o
m
ai
n
a
n
d
aid
ed
b
y
B
o
d
e
p
lo
ts
,
th
e
d
esig
n
ess
e
n
tiall
y
i
n
v
o
l
v
es
p
o
s
i
tio
n
i
n
g
o
f
p
o
les
a
n
d
ze
r
o
s
o
f
t
h
e
s
elec
ted
co
m
p
en
s
atio
n
cir
cu
it
to
co
m
p
en
s
ate
th
e
u
n
d
es
ir
ab
le
c
h
ar
ac
ter
is
tics
o
f
a
p
o
w
er
s
tag
e.
T
h
e
v
o
lta
g
e
r
ef
er
en
ce
Vr
ef
s
i
g
n
al
i
s
g
e
n
er
at
ed
f
r
o
m
th
e
MP
PT
co
n
tr
o
ller
.
I
n
th
e
p
r
o
p
o
s
ed
m
eth
o
d
th
e
b
o
o
s
t
co
n
v
er
ter
s
er
v
es
t
h
e
p
u
r
p
o
s
e
o
f
tr
an
s
f
er
r
in
g
m
a
x
i
m
u
m
p
o
w
er
f
r
o
m
th
e
s
o
lar
P
V
m
o
d
u
le
to
th
e
lo
ad
.
A
d
c/d
c
co
n
v
er
ter
ac
ts
as
an
in
ter
f
ac
e
b
e
t
w
ee
n
t
h
e
lo
ad
an
d
th
e
P
V
ar
r
ay
[
3
]
-
[
4
]
.
T
h
e
en
tire
s
y
s
te
m
co
n
f
i
g
u
r
atio
n
is
s
h
o
w
n
in
f
i
g
u
r
e.
1
.
P
V
P
A
N
E
L
B
O
O
S
T
C
O
N
V
E
R
T
E
R
M
P
P
T
A
L
G
O
R
I
T
H
M
L
o
a
d
V
a
r
i
a
b
l
e
D
C
V
o
l
t
a
g
e
A
d
j
u
s
t
a
b
l
e
D
C
V
o
l
t
a
g
e
C
o
n
t
r
o
l
S
i
g
n
a
l
(
0
-
6
7
)
V
C
u
r
r
e
n
t
I
r
e
f
V
o
l
t
a
g
e
V
r
e
f
P
I
D
C
O
N
T
R
O
L
L
E
R
T
U
N
I
N
G
B
Y
G
A
-
B
F
P
W
M
S
i
g
n
a
l
Fig
u
r
e
1
.
P
o
w
er
C
ir
c
u
it Dia
g
r
a
m
2
.
1
.
So
la
r
Cell
M
o
delin
g
So
lar
ce
ll
o
f
a
g
iv
e
n
m
ater
ia
l
m
u
s
t
b
e
d
esig
n
ed
to
m
a
x
i
m
ize
t
h
e
lig
h
t
to
elec
tr
icit
y
co
n
v
er
s
io
n
ef
f
icien
c
y
.
An
id
ea
l so
lar
ce
ll
ca
n
b
e
co
n
s
id
er
ed
as a
c
u
r
r
en
t
s
o
u
r
ce
w
h
er
ein
t
h
e
c
u
r
r
en
t p
r
o
d
u
ce
d
b
y
th
e
s
o
lar
ce
ll
is
p
r
o
p
o
r
tio
n
al
to
th
e
s
o
la
r
ir
r
ad
iatio
n
f
allin
g
o
n
it.
A
n
e
lectr
ical
cir
cu
it
r
ep
r
esen
ti
n
g
a
s
o
lar
ce
ll
is
s
h
o
wn
in
f
i
g
u
r
e.
2
.
T
h
e
o
p
tical
lo
s
s
is
r
ep
r
esen
ted
b
y
th
e
c
u
r
r
en
t
s
o
u
r
ce
it
s
elf
,
w
h
er
e
t
h
e
g
en
er
ated
cu
r
r
en
t
I
i
s
p
r
o
p
o
r
tio
n
al
to
th
e
li
g
h
t
in
p
u
t
.
T
h
e
r
ec
o
m
b
in
atio
n
lo
s
s
e
s
ar
e
r
ep
r
esen
ted
b
y
t
h
e
d
io
d
e
co
n
n
ec
ted
p
ar
allel
to
th
e
c
u
r
r
en
t
s
o
u
r
c
e,
b
u
t
i
n
th
e
r
ev
er
s
e
d
ir
ec
tio
n
.
T
h
e
o
h
m
ic
l
o
s
s
es
in
th
e
ce
ll
o
cc
u
r
d
u
e
to
t
h
e
s
er
ies
a
n
d
s
h
u
n
t
r
esis
ta
n
ce
d
en
o
ted
b
y
R
s
a
n
d
R
sh
r
esp
ec
tiv
el
y
[
5
]
-
[
7
]
.
A
p
p
l
y
in
g
Kir
ch
o
f
f
’
s
la
w
to
th
e
n
o
d
e
w
h
er
e
I
L
,
d
io
d
e,
R
sh
an
d
R
s
m
ee
t,
w
e
g
et
I=
I
L
-
I
D
-
I
sh
(
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
1
,
J
u
n
e
201
7
:
136
–
1
4
4
138
Fig
u
r
e
2
.
Si
m
p
li
f
ied
-
eq
u
i
v
ale
n
t
C
ir
cu
it o
f
P
h
o
to
v
o
ltaic
C
el
l
I
=
I
-
I
e
x
p
1
p
h
o
V
I
R
V
I
R
ss
VR
Tp
(
2
)
W
h
er
e,
I
L
is
th
e
I
n
s
o
latio
n
c
u
r
r
en
t,
I
is
th
e
C
ell
c
u
r
r
en
t,
I
o
is
th
e
R
e
v
er
s
e
s
a
tu
r
atio
n
cu
r
r
e
n
t,
V
is
t
h
e
C
ell
v
o
lta
g
e,
R
s
i
s
th
e
Ser
ies
r
esis
ta
n
ce
,
R
sh
is
th
e
P
ar
allel
r
esis
ta
n
ce
,
V
T
is
th
e
T
h
er
m
al
v
o
ltag
e
(
k
t/q
)
,
K
is
th
e
B
o
ltz
m
a
n
co
n
s
ta
n
t,
T
is
th
e
T
em
p
er
atu
r
e
in
Kelv
in
a
n
d
q
is
th
e
C
h
ar
g
e
o
f
an
elec
tr
o
n
.
W
A
R
E
E
W
S
1
0
0
P
V
m
o
d
u
le
i
s
u
s
ed
in
t
h
is
s
y
s
t
e
m
an
d
it
s
s
p
ec
if
icatio
n
s
ar
e
s
h
o
w
n
i
n
T
ab
le.
1
.
T
ab
le.
1
P
V
Mo
d
u
le
Sp
ec
if
icat
io
n
s
o
f
W
ar
ee
W
s
1
0
0
P
a
r
a
me
t
e
r
s
V
a
l
u
e
s
M
a
x
i
m
u
m
P
o
w
e
r
(
P
max
)
1
0
W
V
o
l
t
a
g
e
a
t
max
i
m
u
m Po
w
e
r
(
V
mp
)
1
7
V
C
u
r
r
e
n
t
a
t
max
P
o
w
e
r
(
I
mp
)
0
.
5
9
A
O
p
e
n
C
i
r
c
u
i
t
V
o
l
t
a
g
e
2
1
V
S
h
o
r
t
C
i
r
c
u
i
t
C
u
r
r
e
n
t
0
.
6
2
A
T
o
l
e
r
a
n
c
e
5%
P
o
w
e
r
M
e
a
su
r
e
d
a
t
S
t
a
n
d
a
r
d
T
e
st
L
o
a
d
1
0
0
0
W
/
m2
,
2
5
c
,
A
M
1
.
5
T
e
mp
e
r
a
t
u
r
e
C
o
-
e
f
f
i
c
i
e
n
t
o
f
P
o
w
e
r
-
0
.
4
7
%I
K
T
e
mp
e
r
a
t
u
r
e
C
o
-
e
f
f
i
c
i
e
n
t
o
f
V
o
l
t
a
g
e
-
0
.
1
2
3
V
/
K
O
p
e
r
a
t
i
o
n
T
e
mp
e
r
a
t
u
r
e
-
4
0
C
t
o
8
5
C
N
o
mi
n
a
l
o
p
e
r
a
t
i
n
g
C
e
l
l
t
e
mp
48
o
C
M
a
x
i
m
u
m
S
y
st
e
m
V
o
l
t
a
g
e
1
0
0
0
V
D
C
2
.
2
M
o
delin
g
o
f
B
o
o
s
t
Co
nv
e
rt
er
A
s
m
all
-
s
i
g
n
al
m
o
d
el
i
s
u
s
ed
t
o
d
esig
n
th
e
co
n
tr
o
ller
p
ar
a
m
e
ter
s
o
f
t
h
e
co
n
v
en
tio
n
al
P
I
D
c
o
n
tr
o
ller
.
T
h
e
d
y
n
a
m
ic
s
o
f
t
h
e
co
n
v
er
t
er
is
n
o
n
li
n
ea
r
,
th
er
e
f
o
r
e,
it
is
h
ar
d
to
d
er
iv
e
d
esira
b
le
p
er
f
o
r
m
an
ce
.
I
n
th
i
s
p
ap
er
,
GA
-
B
F o
p
ti
m
ized
al
g
o
r
ith
m
is
u
s
ed
to
co
n
tr
o
l p
ar
am
e
ter
s
o
f
b
o
o
s
t c
o
n
v
er
ter
[
8
]
-
[
1
1
]
.
B
o
o
s
t
co
n
v
er
ter
s
ar
e
a
k
in
d
o
f
h
i
g
h
f
r
eq
u
e
n
c
y
co
n
v
er
ter
s
w
h
ic
h
co
n
v
er
t
u
n
r
eg
u
lated
D
C
p
o
w
er
to
r
eg
u
lated
DC
p
o
w
er
.
Sin
ce
t
h
e
o
u
tp
u
t
v
o
ltag
e
o
f
r
en
e
w
a
b
le
en
er
g
y
s
y
s
te
m
s
i
s
b
asical
l
y
u
n
r
eg
u
lated
DC
v
o
ltag
e,
as
s
h
o
w
n
in
Fi
g
u
r
e
3
,
b
o
o
s
t
co
n
v
er
ter
s
ar
e
n
ec
ess
ar
y
to
ad
j
u
s
t
th
e
D
C
v
o
l
tag
e
f
o
r
d
if
f
er
en
t
ap
p
licatio
n
s
an
d
its
d
es
ig
n
ed
v
alu
es a
r
e
g
i
v
e
n
in
T
ab
le.
2
.
Fig
u
r
e
3
.
B
o
o
s
t
C
o
n
v
er
ter
C
ir
cu
it Dia
g
r
a
m
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Op
timu
m
Desig
n
o
f G
A
-
B
F
A
l
g
o
r
ith
m
B
a
s
ed
P
I
D
C
o
n
tr
o
ller
fo
r
th
e
S
o
la
r
S
ystem
(
S
.
Ma
llika
)
139
=
(
3
)
Ass
u
m
in
g
I
o
to
b
e
0
.
4
A
.
=
1
−
(
4
)
T
h
e
d
esire
d
C
ap
ac
itan
ce
v
alu
e
is
=
×
×
∆
(
5
)
T
h
e
I
n
d
u
ctan
ce
v
al
u
e
i
s
ch
o
o
s
en
b
y
t
h
e
f
o
r
m
u
la
=
×
×
∆
(
6
)
T
h
e
d
io
d
e
lo
s
s
is
ca
lcu
lated
b
y
=
×
(
1
−
)
(
7
)
T
h
e
S
w
itc
h
i
n
g
L
o
s
s
is
ca
lc
u
lat
ed
b
y
=
(
1
+
2
)
2
(
8
)
T
h
e
co
n
v
er
s
io
n
r
atio
is
g
iv
e
n
b
y
t
h
e
f
o
llo
w
in
g
ex
p
r
es
s
io
n
:
1
1
os
so
VI
V
I
d
(
9
)
d
=
T
on
/
T
w
h
er
e
I
s
is
t
h
e
in
p
u
t c
u
r
r
en
t o
f
t
h
e
co
n
v
er
ter
a
n
d
T
=
T
on
+
T
off
,
w
i
th
it
s
r
an
g
e
1
≥
d
≥
0
.
Kn
o
w
in
g
th
e
V
s
an
d
I
s
,
w
e
ca
n
f
in
d
t
h
e
i
n
p
u
t r
esi
s
ta
n
ce
R
in
o
f
t
h
e
co
n
v
er
ter
.
T
h
is
is
g
iv
e
n
b
y
2
(
1
)
s
i
n
o
s
V
R
R
d
I
(
1
0
)
Her
e,
R
in
v
ar
ies
f
r
o
m
R
o
to
0
an
d
d
v
ar
ies f
r
o
m
0
to
1
.
(
(
)
=
(
−
+
+
(
×
(
+
)
+
−
(
+
)
(
+
)
−
1
(
+
)
)
(
)
+
(
1
0
)
×
)
(
1
1
)
=
(
×
+
+
)
(
)
(
1
2
)
T
ab
le
2
.
C
ir
cu
it P
ar
am
eter
s
o
f
th
e
B
o
o
s
t Co
n
v
er
ter
P
ar
am
eter
Valu
e
C
ap
ac
ito
r
1
0
5
6
u
f
I
n
d
u
cto
r
2
5
0
u
f
L
o
ad
25ohm
E
SR
o
f
ca
p
ac
ito
r
3
0
m
o
h
m
E
SR
o
f
in
d
u
cto
r
1
0
m
o
h
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
1
,
J
u
n
e
201
7
:
136
–
1
4
4
140
3.
O
P
T
I
M
I
Z
AT
I
O
N
T
E
CH
NI
Q
U
E
S
3
.
1
.
T
un
ing
O
f
P
I
D
Co
ntr
o
ller
Usi
ng
Co
nv
ent
io
na
l A
pp
r
o
a
ch
T
h
e
Z
ieg
ler
–
Nic
h
o
ls
tu
n
i
n
g
m
eth
o
d
is
a
h
eu
r
i
s
tic
m
et
h
o
d
o
f
tu
n
in
g
a
P
I
D
co
n
tr
o
ller
.
I
t
is
p
er
f
o
r
m
ed
b
y
s
e
tti
n
g
t
h
e
I
(
in
te
g
r
al)
an
d
D(
d
er
iv
ativ
e)
g
ai
n
s
to
ze
r
o
.
T
ab
le.
3
p
r
escr
ib
es
th
e
t
y
p
e
o
f
co
n
tr
o
ller
u
s
ed
f
o
r
th
e
Z
ieg
ler
an
d
Nich
o
l
s
m
et
h
o
d
an
d
it is
b
ased
o
n
th
e
v
al
u
e
s
o
f
P
u
an
d
K
u
.
T
ab
le
3
.
C
o
n
tr
o
ller
Settin
g
s
T
h
e
tr
an
s
f
er
f
u
n
ctio
n
o
f
th
e
P
I
D
co
n
tr
o
ller
is
r
ep
r
esen
ted
b
y
(
1
3
)
T
h
e
P
I
D
p
ar
am
eter
s
ca
n
b
e
ca
lcu
lated
as K
p
=
0
.
0
5
,
K
i
=
5
3
an
d
K
d
=
0
.
0
0
4
6
7
5
.
T
h
e
to
tal
r
esp
o
n
s
e
o
f
th
e
s
y
s
te
m
ca
n
b
e
ca
lcu
lated
as f
o
llo
w
(
1
4
)
Usi
n
g
th
e
v
alu
e
s
o
f
t
h
e
u
lt
i
m
ate
g
ai
n
,
K
u
,
a
n
d
t
h
e
u
lti
m
ate
p
er
io
d
,
P
u
,
Z
ie
g
ler
a
n
d
Nich
o
l
s
p
r
escr
ib
es th
e
f
o
llo
w
i
n
g
v
al
u
e
s
f
o
r
Kc,
tI
an
d
tD,
d
ep
en
d
in
g
o
n
w
h
ic
h
t
y
p
e
o
f
co
n
tr
o
ller
is
d
esire
d
.
3
.
2
T
un
ing
O
f
P
I
D
Co
ntr
o
ller
Usi
ng
GA
-
B
F
Alg
o
rit
h
m
A
pp
ro
a
ch
3
.
2
.
1
C
o
ntinuo
us
G
enet
ics A
lg
o
rit
h
m
T
h
e
g
en
etic
alg
o
r
it
h
m
(
G
A
)
is
an
o
p
ti
m
izatio
n
a
n
d
s
ea
r
c
h
tec
h
n
iq
u
e
b
ased
o
n
th
e
p
r
i
n
cip
les
o
f
g
en
et
ics
a
n
d
n
at
u
r
al
s
elec
tio
n
.
T
h
e
co
n
tin
u
o
u
s
G
A
al
s
o
h
a
s
th
e
ad
v
a
n
ta
g
e
o
f
r
eq
u
ir
in
g
le
s
s
s
to
r
ag
e
t
h
an
t
h
e
b
in
ar
y
G
A
b
ec
au
s
e
a
s
in
g
le
f
lo
ati
n
g
-
p
o
in
t
n
u
m
b
er
r
ep
r
es
en
ts
th
e
v
ar
iab
le
i
n
s
tead
o
f
Nb
its
i
n
teg
er
s
.
T
h
e
co
n
tin
u
o
u
s
G
A
is
in
h
er
en
tl
y
f
aster
th
an
t
h
e
b
in
ar
y
G
A
,
b
ec
au
s
e
t
h
e
ch
r
o
m
o
s
o
m
es
d
o
n
o
t
h
av
e
to
b
e
d
ec
o
d
e
d
p
r
io
r
to
th
e
ev
al
u
atio
n
o
f
th
e
c
o
s
t f
u
n
ctio
n
[
1
2
]
-
[
1
5
]
.
I
f
t
h
e
ch
r
o
m
o
s
o
m
e
h
a
s
N
v
ar
v
ar
iab
les
(
an
N
-
d
i
m
en
s
io
n
al
o
p
ti
m
izat
io
n
p
r
o
b
le
m
)
g
iv
e
n
b
y
p
1
,
p
2
,
.
.
.
,
th
e
n
th
e
ch
r
o
m
o
s
o
m
e
i
s
w
r
itte
n
a
s
a
n
ar
r
a
y
w
it
h
1
*
N
v
ar
ele
m
en
ts
s
o
t
h
at
C
h
r
o
m
o
s
o
m
e
=
[
P
1
,
P
2
,
P3
….
P
Nv
ar
]
,
C
o
s
t f
u
n
c
tio
n
f
at
t
h
e
v
ar
iab
le
s
p
1
,
p
2
,
p
3
…p
Nv
ar
.
C
o
s
t =
f
(
c
h
r
o
m
o
s
o
m
e)
=f
(
P
1
,
P2
,
P
3
….
P
N
v
ar
)
Sin
ce
f
is
a
f
u
n
ctio
n
o
f
x
a
n
d
y
o
n
l
y
,
th
e
clea
r
c
h
o
ice
f
o
r
th
e
v
ar
iab
le
is
C
h
r
o
m
o
s
o
m
e
=[
x
,
y
]
.
T
h
e
n
o
r
m
al
ized
in
itia
l p
o
p
u
latio
n
is
(
1
5
)
Var
iatio
n
s
o
n
t
h
i
s
t
h
e
m
e
i
n
c
lu
d
e
c
h
o
o
s
in
g
a
n
y
n
u
m
b
er
o
f
v
ar
iab
les
to
m
o
d
if
y
a
n
d
g
en
er
ati
n
g
d
if
f
er
e
n
t b
f
o
r
ea
ch
v
ar
iab
le.
3
.
2
.
2
B
a
ct
er
ia
l F
o
ra
g
ing
Alg
o
rit
h
m
R
ec
en
t
l
y
,
b
ac
ter
ial
f
o
r
ag
i
n
g
alg
o
r
ith
m
(
B
F
A
)
h
as
e
m
er
g
ed
as
a
p
o
w
er
f
u
l
tech
n
iq
u
e
f
o
r
th
e
s
o
lv
i
n
g
o
p
tim
izatio
n
p
r
o
b
le
m
s
.
B
FA
m
i
m
ics
t
h
e
f
o
r
ag
i
n
g
s
tr
ateg
y
o
f
E
.
c
o
li
b
ac
te
r
ia
w
h
ic
h
tr
y
to
m
a
x
i
m
ize
th
e
en
er
g
y
i
n
ta
k
e
p
er
u
n
it
ti
m
e.
Fro
m
th
e
v
er
y
ea
r
l
y
d
a
y
s
i
t
h
as
d
r
a
w
n
atten
tio
n
o
f
r
esear
ch
er
s
d
u
e
to
its
ef
f
ec
tiv
e
n
e
s
s
i
n
t
h
e
o
p
ti
m
izati
o
n
d
o
m
ain
.
So
as
to
i
m
p
r
o
v
e
i
ts
p
er
f
o
r
m
a
n
ce
,
a
lar
g
e
n
u
m
b
er
o
f
m
o
d
if
icatio
n
s
h
av
e
alr
ea
d
y
b
e
en
u
n
d
er
ta
k
en
.
T
h
e
b
ac
ter
ial
f
o
r
ag
in
g
s
y
s
te
m
co
n
s
i
s
ts
o
f
f
o
u
r
p
r
in
cip
al
m
ec
h
a
n
i
s
m
s
,
n
a
m
el
y
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Op
timu
m
Desig
n
o
f G
A
-
B
F
A
l
g
o
r
ith
m
B
a
s
ed
P
I
D
C
o
n
tr
o
ller
fo
r
th
e
S
o
la
r
S
ystem
(
S
.
Ma
llika
)
141
ch
e
m
o
ta
x
i
s
,
s
w
ar
m
i
n
g
,
r
ep
r
o
d
u
ctio
n
a
n
d
eli
m
i
n
atio
n
-
d
i
s
p
er
s
al.
A
b
r
ief
d
escr
ip
tio
n
o
f
ea
ch
o
f
th
ese
p
r
o
ce
s
s
es
alo
n
g
w
i
th
th
e
p
s
e
u
d
o
-
co
d
e
o
f
th
e
co
m
p
lete
al
g
o
r
ith
m
is
d
escr
ib
ed
b
elo
w
.
C
h
e
m
o
tax
is
:
T
h
is
p
r
o
ce
s
s
s
i
m
u
late
s
t
h
e
m
o
v
e
m
e
n
t
o
f
a
n
E
.
co
li
ce
ll
t
h
r
o
u
g
h
s
w
i
m
m
i
n
g
an
d
t
u
m
b
lin
g
v
ia
f
lag
el
la.
B
i
o
lo
g
icall
y
an
E
.
co
li
b
ac
ter
iu
m
ca
n
m
o
v
e
i
n
t
w
o
d
i
f
f
er
en
t
w
a
y
s
.
I
t
ca
n
s
w
i
m
f
o
r
a
p
er
io
d
o
f
ti
m
e
i
n
t
h
e
s
a
m
e
d
ir
ec
tio
n
o
r
it
m
a
y
tu
m
b
le,
a
n
d
alter
n
ate
b
et
w
ee
n
th
ese
t
w
o
m
o
d
e
s
o
f
o
p
er
atio
n
f
o
r
th
e
en
t
ir
e
lif
et
i
m
e
[
1
6
]
.
3
.
2
.
3
I
m
ple
m
ent
a
t
io
n o
f
G
A
-
B
F
B
a
s
ed
P
I
D
Co
ntr
o
ller
H
y
b
r
id
alg
o
r
ith
m
ca
n
b
e
ap
p
lied
to
th
e
tu
n
i
n
g
o
f
P
I
D
co
n
tr
o
ller
g
ai
n
s
to
en
s
u
r
e
o
p
tim
al
co
n
tr
o
l
p
er
f
o
r
m
a
n
ce
at
n
o
m
i
n
al
o
p
er
atin
g
co
n
d
itio
n
s
.
G
A
-
B
F
A
l
g
o
r
i
t
h
m
I
n
p
u
t
P
I
D
C
o
n
t
r
o
l
l
e
r
B
o
o
s
t
C
o
n
v
e
r
t
e
r
O
u
t
p
u
t
F
e
e
d
b
a
c
k
Fig
u
r
e
4
.
B
lo
ck
Diag
r
a
m
o
f
T
h
e
E
n
tire
S
y
s
te
m
T
h
e
b
lo
ck
d
iag
r
am
o
f
th
e
e
n
ti
r
e
s
y
s
te
m
i
s
s
h
o
w
n
i
n
Fi
g
u
r
e
4.
T
h
e
s
y
s
te
m
o
u
tp
u
t
i
s
d
en
o
te
d
b
y
R
(
s
)
,
its
in
p
u
t
is
d
en
o
ted
b
y
C
(
s
)
,
an
d
th
e
r
ef
er
e
n
ce
in
p
u
t
to
th
e
P
I
D
c
o
n
tr
o
ller
is
d
en
o
ted
b
y
C
(
s
)
.
G
A
ca
n
b
e
ap
p
lied
to
th
e
tu
n
i
n
g
o
f
P
I
D
co
n
tr
o
ller
g
ain
s
to
en
s
u
r
e
o
p
ti
m
al
co
n
tr
o
l
p
er
f
o
r
m
a
n
ce
at
n
o
m
i
n
al
o
p
er
atin
g
co
n
d
itio
n
s
.
Af
ter
g
i
v
i
n
g
t
h
e
a
b
o
v
e
p
ar
am
e
ter
s
to
G
A
-
BF
t
h
e
P
I
D
co
n
tr
o
ller
s
ca
n
b
e
ea
s
il
y
tu
n
ed
a
n
d
th
u
s
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
ca
n
b
e
i
m
p
r
o
v
ed
.
T
h
e
s
y
s
te
m
p
er
f
o
r
m
an
ce
ca
n
b
e
r
ep
r
esen
ted
b
y
th
e
f
lo
w
c
h
ar
t
s
h
o
w
n
in
Fi
g
u
r
e
5.
Fo
r
in
itia
lizatio
n
,
th
e
u
s
er
s
elec
t
s
n
,
S,
Sr
,
N
s
,
Nc,
Nr
e,
Ned
,
P
ed
,
C
1
,
C
2
,
R
1
,
R
2
an
d
c(
i)
,
i=1
,
2
,
3
….
S.
A
ls
o
in
it
ialize
t
h
e
p
o
s
itio
n
P
in
,
1
,
1
,
1
,
i=
1
,
2
,
3
,
….
S a
n
d
v
elo
cit
y
r
an
d
o
m
l
y
i
n
itia
lized
.
W
h
er
e
n
is
d
i
m
e
n
s
io
n
o
f
s
ea
r
ch
s
p
ac
e
S is
th
e
n
u
m
b
er
o
f
b
ac
ter
ia
in
th
e
p
o
p
u
latio
n
Sr
is
th
e
h
alf
o
f
th
e
to
tal
b
ac
te
r
ia
Ns is
t
h
e
m
a
x
i
m
u
m
n
u
m
b
er
o
f
s
w
i
m
le
n
g
t
h
Nc
is
t
h
e
n
u
m
b
er
o
f
ch
e
m
o
tac
tic
s
tep
s
Nr
e
is
t
h
e
n
u
m
b
er
o
f
r
ep
r
o
d
u
ctio
n
s
tep
s
Ned
is
th
e
n
u
m
b
er
o
f
eli
m
in
a
ti
o
n
an
d
d
is
p
er
s
al
s
tep
s
P
ed
is
th
e
eli
m
i
n
atio
n
an
d
d
is
p
er
s
al
w
it
h
p
r
o
b
ab
ilit
y
c(
i)
is
th
e
s
tep
s
ize
ta
k
e
n
in
t
h
e
r
an
d
o
m
d
ir
ec
tio
n
C
1
,
C
2
ar
e
th
e
P
SO r
an
d
o
m
p
ar
a
m
eter
s
an
d
R
1
,
R
2
ar
e
th
e
P
SO r
an
d
o
m
p
ar
a
m
eter
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
1
,
J
u
n
e
201
7
:
136
–
1
4
4
142
Fig
u
r
e
5
.
H
y
b
r
id
A
l
g
o
r
ith
m
Ar
ch
itect
u
r
e
T
h
e
tu
n
i
n
g
p
ar
a
m
eter
f
o
r
t
h
e
h
y
b
r
id
alg
o
r
it
h
m
is
g
i
v
en
i
n
T
ab
le.
4
.
T
h
e
o
v
er
all
tr
an
s
f
er
f
u
n
ctio
n
o
f
th
e
en
t
ir
e
s
y
s
te
m
is
(
1
6
)
T
h
e
o
p
tim
al
h
y
b
r
id
alg
o
r
it
h
m
tu
n
ed
P
I
D
p
ar
am
e
ter
s
ca
n
b
e
ca
lcu
lated
as
K
p
=
0
.
0
2
3
3
,
K
i
=
2
4
.
6
3
8
6
an
d
K
d
=
0
.
0
0
2
.
A
f
ter
ap
p
l
y
i
n
g
t
h
e
tu
n
i
n
g
p
ar
a
m
eter
s
to
th
e
alg
o
r
ith
m
t
h
e
P
I
D
co
n
tr
o
ller
s
ca
n
b
e
ea
s
il
y
t
u
n
ed
an
d
th
u
s
s
y
s
te
m
p
er
f
o
r
m
an
ce
ca
n
b
e
i
m
p
r
o
v
ed
.
(
1
7
)
T
ab
le
4
.
T
u
n
in
g
P
ar
am
e
ter
s
GA
-
B
F
P
r
o
p
e
r
t
y
V
a
l
u
e
/
M
e
t
h
o
d
P
o
p
u
l
a
t
i
o
n
S
i
z
e
20
M
a
x
i
m
u
m
N
u
m
b
e
r
o
f
G
e
n
e
r
a
t
i
o
n
s
30
B
a
c
t
e
r
i
a
T
y
p
e
E.
c
o
l
i
b
a
c
t
e
r
i
a
P
e
r
f
o
r
man
c
e
I
n
d
e
x
/
F
i
t
n
e
ss
F
u
n
c
t
i
o
n
M
e
a
n
S
q
u
a
r
e
Er
r
o
r
S
e
l
e
c
t
i
o
n
M
e
t
h
o
d
R
o
u
l
e
t
t
e
se
l
e
c
t
i
o
n
C
r
o
sso
v
e
r
M
e
t
h
o
d
A
r
i
t
h
me
t
i
c
C
r
o
sso
v
e
r
C
r
o
sso
v
e
r
P
r
o
b
a
b
i
l
i
t
y
7
5
%
M
u
t
a
t
i
o
n
M
e
t
h
o
d
A
d
d
/
S
u
b
M
u
t
a
t
i
o
n
M
u
t
a
t
i
o
n
P
r
o
b
a
b
i
l
i
t
y
0
.
1
%
4.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
R
ec
en
t
l
y
m
a
n
y
v
ar
ian
t
s
o
f
h
y
b
r
id
alg
o
r
ith
m
s
h
a
v
e
b
ee
n
i
n
v
esti
g
a
ted
f
o
r
i
m
p
r
o
v
i
n
g
th
e
le
ar
n
in
g
a
n
d
s
p
ee
d
o
f
co
n
v
er
g
en
ce
.
T
h
e
co
n
v
er
g
en
ce
c
h
ar
ac
ter
is
tics
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
6
an
d
7
.
T
h
e
d
if
f
er
en
t
b
ac
ter
ia
co
n
s
tr
u
ct
io
n
is
s
h
o
w
n
i
n
Fi
g
u
r
e
8
an
d
9
.
T
h
e
s
tep
r
esp
o
n
s
e
o
f
th
e
h
y
b
r
id
alg
o
r
it
h
m
i
s
s
h
o
w
n
in
Fi
g
u
r
e
1
0
.
T
h
e
T
ab
le.
5
s
h
o
w
s
t
h
e
co
m
p
ar
is
o
n
o
f
d
if
f
er
e
n
t o
p
ti
m
iza
tio
n
al
g
o
r
it
h
m
tech
n
iq
u
e
s
.
Fig
u
r
e
6
.
C
o
n
v
er
g
en
ce
C
h
ar
ac
ter
is
tics
G
A
-
BF
Fig
u
r
e
7
.
C
o
n
v
er
g
en
ce
C
h
ar
ac
ter
is
tics
G
A
-
BF
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Op
timu
m
Desig
n
o
f G
A
-
B
F
A
l
g
o
r
ith
m
B
a
s
ed
P
I
D
C
o
n
tr
o
ller
fo
r
th
e
S
o
la
r
S
ystem
(
S
.
Ma
llika
)
143
Fig
u
r
e.
8
No
o
f
B
ac
ter
ia
co
n
s
id
er
ed
-
20
Fig
u
r
e
9
.
No
o
f
B
ac
ter
ia
co
n
s
id
er
ed
-
30
T
ab
le.
5
C
o
m
p
ar
is
o
n
o
f
Op
ti
m
izatio
n
T
ec
h
n
iq
u
e
s
T
u
n
i
n
g
P
a
r
a
me
t
e
r
s
Z
N
M
e
t
h
o
d
G
e
n
e
t
i
c
A
l
g
o
r
i
t
h
m
B
a
c
t
e
r
i
a
l
F
o
r
a
g
i
n
g
A
l
g
o
r
i
t
h
m
GA
-
B
F
A
l
g
o
r
i
t
h
m
Kp
0
.
0
5
0
.
0
2
3
3
0
.
0
2
1
1
0
.
0
1
0
1
Ki
5
3
.
1
2
2
4
.
6
3
8
6
2
3
.
5
4
2
2
.
5
6
Kd
0
.
0
0
4
6
7
5
0
.
0
0
2
0
0
.
0
0
1
9
0
.
0
0
1
M
a
x
i
m
u
m
o
v
e
r
sh
o
o
t
0
.
5
0
9
0
.
5
0
1
0
.
4
0
2
0
.
3
2
1
R
i
se
t
i
me
(
se
c
)
0
.
0
7
8
6
0
.
0
2
5
5
0
.
0
2
1
1
0
.
0
0
5
S
e
t
t
l
i
n
g
t
i
me
(
S
e
c
)
0
.
0
9
6
3
0
.
0
3
7
8
0
.
0
2
2
0
.
0
0
9
Fig
u
r
e
1
0
.
Hy
b
r
id
A
lg
o
r
it
h
m
Step
R
esp
o
n
s
e
.
5.
CO
NCLU
SI
O
NS
Si
m
u
latio
n
r
esu
l
ts
e
m
p
h
asi
s
th
at
th
e
d
esig
n
ed
GA
-
B
F
tu
n
i
n
g
P
I
D
co
n
tr
o
ller
is
r
o
b
u
s
t
in
its
o
p
er
atio
n
f
o
r
its
ef
f
ec
ti
v
en
e
s
s
in
s
o
lv
i
n
g
ce
r
tain
d
if
f
ic
u
lt
r
ea
l
w
o
r
ld
o
p
ti
m
izat
io
n
p
r
o
b
lem
s
.
I
n
th
i
s
w
o
r
k
w
e
w
ill
p
r
esen
t
th
e
Gen
etic
s
A
lg
o
r
it
h
m
a
n
d
B
ac
ter
ia
Fo
r
ag
i
n
g
Op
ti
m
izatio
n
A
l
g
o
r
ith
m
a
s
a
n
o
v
el
alg
o
r
it
h
m
u
s
in
g
th
e
s
o
cial
f
o
r
ag
i
n
g
b
eh
a
v
io
r
f
o
r
E
s
ch
er
i
ch
ia
co
li
b
ac
ter
ia
to
m
ak
e
t
u
n
in
g
f
o
r
P
I
D
p
ar
am
eter
s
f
o
r
an
ex
p
er
i
m
e
n
tal
p
lan
t
s
y
s
te
m
.
C
o
m
p
ar
i
n
g
w
i
th
C
o
n
v
en
t
io
n
al
A
l
g
o
r
ith
m
,
t
h
is
p
r
o
p
o
s
ed
alg
o
r
ith
m
w
a
s
m
o
r
e
e
f
f
icien
t
in
i
m
p
r
o
v
in
g
th
e
s
tep
r
esp
o
n
s
e
c
h
ar
ac
ter
is
t
ic
f
o
r
th
is
s
y
s
te
m
.
A
ls
o
,
t
h
es
e
co
n
tr
o
ller
s
h
a
v
e
a
s
i
m
p
le
a
r
ch
itect
u
r
e
an
d
t
h
e
p
o
te
n
tialit
y
o
f
i
m
p
le
m
e
n
tatio
n
in
r
ea
l ti
m
e
e
n
v
ir
o
n
m
en
t.
ACK
NO
WL
E
D
G
M
E
NT
Au
t
h
o
r
s
ac
k
n
o
w
led
g
e
t
h
e
s
u
p
p
o
r
t,
en
co
u
r
ag
e
m
e
n
t
a
n
d
f
ac
ili
ties
p
r
o
v
id
ed
b
y
t
h
e
Sc
h
o
o
l
o
f
E
lectr
ical
E
n
g
i
n
ee
r
i
n
g
a
n
d
m
a
n
a
g
e
m
en
t
o
f
VI
T
Un
iv
er
s
i
t
y
,
Vel
lo
r
e,
T
am
il
n
ad
u
,
I
n
d
ia
i
n
ca
r
r
y
o
u
t
t
h
e
p
r
ese
n
ted
r
esear
ch
w
o
r
k
.
An
d
al
s
o
th
a
n
k
th
e
I
I
T
B
o
m
b
a
y
,
Dep
ar
t
m
e
n
t
o
f
E
n
er
g
y
Scie
n
ce
a
n
d
E
n
g
i
n
e
er
in
g
f
o
r
p
r
o
v
id
ed
th
e
s
o
lar
k
it.
RE
F
E
R
E
NC
E
S
[1
]
Ch
e
tan
S
i
n
g
h
S
o
lan
k
i
“
S
o
lar
P
h
o
t
o
v
o
lt
a
ics
-
F
u
n
d
a
m
e
n
tals,
T
e
c
h
n
o
l
o
g
ies
a
n
d
A
p
p
li
c
a
ti
o
n
s”
,
S
e
c
o
n
d
Ed
i
ti
o
n
@2
0
1
1
b
y
PHI
L
e
a
r
n
in
g
Priv
a
te
L
imit
e
d
,
Ne
w
De
lh
i.
[2
]
S
o
b
h
a
n
Do
ra
h
a
k
i
,
“
A
S
u
rv
e
y
o
n
M
a
x
im
u
m
P
o
w
e
r
P
o
i
n
t
T
ra
c
k
in
g
M
e
th
o
d
s
in
P
h
o
to
v
o
l
taic
P
o
w
e
r
S
y
ste
m
s”
,
Bu
ll
e
ti
n
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
a
n
d
I
n
f
o
rm
a
ti
c
s V
o
l.
4
,
No
.
3
,
S
e
p
tem
b
e
r
2
0
1
5
,
p
p
.
1
6
9
~
1
7
5
IS
S
N
:
2
0
8
9
-
3
1
9
1
.
[3
]
M
e
l
a
n
ie
M
it
c
h
e
ll
“
A
n
In
tr
o
d
u
c
ti
o
n
t
o
G
e
n
e
ti
c
A
l
g
o
rit
h
m
s”
,
F
if
th
p
rin
ti
n
g
,
1
9
9
9
,
M
a
ss
a
c
h
u
se
tt
s
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
.
[4
]
Ra
n
d
y
L
.
Ha
u
p
t,
S
u
e
El
len
Ha
u
p
t
“
P
ra
c
ti
c
a
l
G
e
n
e
ti
c
A
lg
o
rit
h
m
s”
,
S
e
c
o
n
d
Ed
it
io
n
A
J
o
h
n
W
il
e
y
&
S
o
n
s,
In
c
.
,
P
u
b
l
ica
ti
o
n
,
2
0
0
4
.
[5
]
F
il
h
o
.
E.
R
G
a
z
o
li
a
n
d
.
J
a
n
d
V
il
lal
v
a
.
M
.
G
,
“
Co
m
p
re
h
e
n
siv
e
a
p
p
ro
a
c
h
to
m
o
d
e
li
n
g
a
n
d
sim
u
latio
n
o
f
p
h
o
to
v
o
lt
a
ic
a
rra
y
s
”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r E
lec
tro
n
ics
,
Vo
l
2
4
,
M
a
y
2
0
0
9
.
[6
]
M
.
F
o
rt
u
n
a
t
o
,
A
.
G
iu
stin
ian
i,
G
.
P
e
tr
o
n
e
,
G
.
S
p
a
g
n
u
o
l
o
,
a
n
d
M
.
Vitelli
,
“
M
a
x
im
u
m
p
o
we
r
p
o
in
t
z
ra
c
k
in
g
in
a
o
n
e
-
c
y
c
le
-
c
o
n
tro
ll
e
d
sin
g
le
-
sta
g
e
p
h
o
t
o
v
o
lt
a
ic
in
v
e
rter
,
”
IEE
E
T
ra
n
s
.
I
n
d
.
E
lec
tro
n
,
v
o
l
.
5
5
,
n
o
.
7
,
p
p
.
2
6
8
4
–
2
6
9
3
,
J
u
l.
2
0
0
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
1
,
J
u
n
e
201
7
:
136
–
1
4
4
144
[7
]
S
.
Yu
v
a
ra
jan
,
Da
c
h
u
n
Yu
,
S
h
a
n
g
u
a
n
g
X
u
,
“
A
n
o
v
e
l
p
o
w
e
r
c
o
n
v
e
rter
f
o
r
p
h
o
to
v
o
lt
a
ic
a
p
p
li
c
a
ti
o
n
s”
,
J
o
u
rn
a
l
o
f
Po
we
r S
o
u
rc
e
s,
El
se
v
ier
S
c
ien
c
e
,
V
o
l
.
1
3
5
,
p
p
.
3
2
7
-
3
3
1
,
2
0
0
4
.
p
p
.
4
4
0
–
4
4
9
,
M
a
r.
2
0
0
6
.
[8
]
G
o
m
a
th
i
C,
Na
v
y
a
N
a
g
a
th
,
V
e
e
ra
k
u
m
a
r,
“
S
a
m
p
led
Re
f
e
r
e
n
c
e
F
ra
m
e
A
lg
o
rit
h
m
Ba
s
e
d
o
n
S
p
a
c
e
V
e
c
to
r
P
u
lse
W
id
th
M
o
d
u
lati
o
n
f
o
r
F
iv
e
L
e
v
e
l
Ca
sc
a
d
e
d
H
-
Brid
g
e
In
v
e
rter”
,
Bu
let
in
T
e
k
n
ik
El
e
k
tro
d
a
n
In
f
o
r
m
a
ti
k
a
(Bu
ll
e
ti
n
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
a
n
d
I
n
f
o
rm
a
ti
c
s) V
o
l.
3
,
No
.
2
,
Ju
n
e
2
0
1
4
,
p
p
.
1
2
7
~
1
4
0
IS
S
N:
2
0
8
9
-
3
1
9
1
.
[9
]
S
.
M
a
ll
ik
a
,
R.
S
a
ra
v
a
n
a
k
u
m
a
r,
“
De
sig
n
a
n
d
I
m
p
e
m
e
n
tatio
n
o
f
a
Bu
c
k
-
Bo
o
st
Co
n
v
e
rter
u
sin
g
L
a
g
L
e
a
d
Co
m
p
e
n
sa
to
r”
,
-
In
ter
n
a
t
io
n
a
l
Co
n
fer
e
n
c
e
o
n
Ren
e
wa
b
le
En
e
r
g
y
T
e
c
h
n
o
lo
g
ies
-
Ic
o
re
t
2
0
1
1
,
P
S
G
Co
ll
e
g
e
o
f
T
e
c
h
n
o
lo
g
y
,
Co
im
b
a
to
re
.
[1
0
]
S
.
M
a
ll
ik
a
,
R.
S
a
ra
v
a
n
a
k
u
m
a
r,
“
R
e
v
ie
w
o
n
Ultrac
a
p
a
c
it
o
r
-
Ba
tt
e
r
y
In
terf
a
c
e
f
o
r
En
e
rg
y
M
a
n
a
g
e
m
e
n
t
S
y
st
e
m
”
,
-
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
E
n
g
i
n
e
e
rin
g
&
T
e
c
h
n
o
lo
g
y
,
IS
S
N:
0
9
7
5
-
4
0
2
4
,
V
o
l
.
3
(
1
),
2
0
1
1
,
3
7
–
4
3
.
[1
1
]
M
.
F
o
r
tu
n
a
to
,
A
.
G
iu
stin
ian
i,
G
.
P
e
tr
o
n
e
,
G
.
S
p
a
g
n
u
o
lo
,
a
n
d
M
.
Vitelli
,
“
M
a
x
im
u
m
p
o
we
r
p
o
in
t
t
ra
c
k
in
g
in
a
o
n
e
-
c
y
c
le
-
c
o
n
tro
ll
e
d
sin
g
le
-
sta
g
e
p
h
o
t
o
v
o
lt
a
ic
in
v
e
rter,”
IEE
E
T
ra
n
s.
I
n
d
.
El
e
c
tro
n
,
v
o
l.
5
5
,
n
o
.
7
,
p
p
.
2
6
8
4
–
2
6
9
3
,
Ju
l
.
2
0
0
8
.
[1
2
]
Do
n
g
Hw
a
Ki
m
,
A
ji
th
A
b
ra
h
a
m
,
Ja
e
Ho
o
n
C
h
o
“
A
h
y
b
rid
g
e
n
e
ti
c
a
lg
o
rit
h
m
a
n
d
b
a
c
teria
l
f
o
ra
g
in
g
a
p
p
ro
a
c
h
f
o
r
g
lo
b
a
l
o
p
ti
m
iza
ti
o
n
”
-
S
c
ien
c
e
Dir
e
c
t
In
fo
rm
a
ti
o
n
S
c
ien
c
e
s
1
7
7
(
2
0
0
7
)
3
9
1
8
–
3
9
3
7
.
[1
3
]
A
.
V
a
rse
k
,
T
.
Urb
a
c
ic
a
n
d
B.
F
il
i
p
ic,
G
e
n
e
ti
c
A
lg
o
rit
h
m
s
in
Co
n
tr
o
ll
e
r
De
sig
n
a
n
d
T
u
n
in
g
,
IEE
E
T
ra
n
s.
S
y
s.M
a
n
a
n
d
Cy
b
e
r
,
V
o
l
.
2
3
,
N
o
.
5
,
p
p
1
3
3
0
-
1
3
3
9
,
1
9
9
3
.
[1
4
]
G
re
fe
n
ste
tt
e
,
Op
ti
m
iza
ti
o
n
o
f
c
o
n
tro
l
p
a
ra
m
e
ters
f
o
r
g
e
n
e
ti
c
a
lg
o
rit
h
m
s.
IEE
E
T
ra
n
s
o
n
S
M
C
,
1
9
8
6
,
1
6
(
1
):1
2
2
-
1
2
8
.
[1
5
]
V
a
rse
k
A
,
Urb
a
n
c
ic
T
,
F
il
ip
ic
B
.
G
e
n
e
ti
c
a
lg
o
rit
h
m
s
in
c
o
n
tro
l
ler
d
e
sig
n
a
n
d
t
u
n
in
g
.
IE
EE
T
r
a
n
s
S
y
s
tem
s,
M
a
n
a
n
d
C
y
b
e
rn
e
ti
c
s
,
1
9
9
3
,
2
3
(5
):
1
3
3
0
-
1
3
3
9
.
[1
6
]
Do
n
g
Hw
a
Ki
m
,
a
n
d
Ja
e
Ho
o
n
C
h
o
“
Ro
b
u
st
T
u
n
i
n
g
o
f
P
ID
Co
n
tr
o
ll
e
r
Us
in
g
Ba
c
teria
l
-
F
o
ra
g
in
g
-
Ba
s
e
d
Op
ti
m
iza
ti
o
n
”
-
J
o
u
rn
a
l
o
f
A
d
v
a
n
c
e
d
Co
mp
u
ta
ti
o
n
a
l
I
n
telli
g
e
n
c
e
a
n
d
I
n
telli
g
e
n
t
I
n
fo
rm
a
ti
c
s
,
V
o
l
.
9
No
.
6
,
2
0
0
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.