I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
5
,
No
.
2
,
J
u
n
e
201
6
,
p
p
.
58
~
64
I
SS
N:
2252
-
8814
58
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
A P
hy
sio
lo
g
ic Mo
del f
o
r
the
Proble
m
of
Blo
o
d F
lo
w
t
hro
ug
h
Disea
sed Blo
o
d V
ess
els
Sa
pn
a
Ra
t
a
n Sha
h
,
S.
U.
Sid
diq
ui
De
p
a
rtme
n
t
o
f
M
a
th
e
m
a
ti
c
s
,
Ha
r
c
o
u
rt
B
u
tl
e
r
T
e
c
h
n
o
l
o
g
ica
l
In
stit
u
te,
Ka
n
p
u
r
,
In
d
ia
.
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Mar
1
0
,
2
0
1
6
R
ev
i
s
ed
Ma
y
12
,
2
0
1
6
A
cc
ep
ted
Ma
y
2
4
,
2
0
1
6
T
h
is
stu
d
y
f
o
c
u
se
s
o
n
th
e
b
e
h
a
v
io
r
o
f
b
lo
o
d
f
lo
w
th
ro
u
g
h
d
ise
a
se
d
a
rter
y
in
th
e
p
re
se
n
c
e
o
f
p
o
r
o
u
s
e
f
f
e
c
ts.
Th
e
lam
in
a
r,
in
c
o
m
p
re
ss
ib
le,
f
u
ll
y
d
e
v
e
lo
p
e
d
,
non
-
Ne
w
to
n
ian
in
a
n
a
rtery
h
a
v
in
g
a
x
iall
y
n
o
n
-
sy
m
m
e
tri
c
b
u
t
ra
d
ially
s
y
m
m
e
tri
c
ste
n
o
sis
is
n
u
m
e
rica
ll
y
stu
d
ied
.
He
re
b
lo
o
d
is
re
p
r
e
se
n
ted
a
s
He
rsc
h
e
l
-
Bu
lk
le
y
f
lu
id
m
o
d
e
l
a
n
d
f
lo
w
m
o
d
e
l
is
sh
o
w
n
b
y
th
e
Na
v
ier
-
S
to
k
e
s
a
n
d
th
e
c
o
n
ti
n
u
it
y
e
q
u
a
ti
o
n
s.
Us
in
g
a
p
p
ro
p
riate
b
o
u
n
d
a
ry
c
o
n
d
it
io
n
s
,
n
u
m
e
rica
l
e
x
p
re
s
sio
n
f
o
r
v
o
lu
m
e
tri
c
f
lo
w
ra
te,
p
re
ss
u
re
d
ro
p
a
n
d
w
a
ll
sh
e
a
r
stre
ss
h
a
v
e
b
e
e
n
d
e
riv
e
d
.
T
h
e
e
x
p
re
ss
io
n
s
a
re
c
o
m
p
u
ted
n
u
m
e
rica
ll
y
a
n
d
re
su
lt
s
a
re
p
re
se
n
ted
g
r
a
p
h
ica
ll
y
.
T
h
e
e
ffe
c
ts
o
f
p
o
ro
u
s
p
a
ra
m
e
ter
o
n
wa
ll
sh
e
a
r
stre
ss
,
ste
n
o
sis
len
g
th
,
ste
n
o
sis
siz
e
a
n
d
ste
n
o
sis
sh
a
p
e
p
a
ra
m
e
ter
a
r
e
d
isc
u
ss
e
d
.
T
h
e
w
a
ll
sh
e
a
r
stre
ss
in
c
re
a
se
s
a
s
th
e
p
o
r
o
u
s
p
a
ra
m
e
te
r,
ste
n
o
sis
siz
e
a
n
d
ste
n
o
sis
len
g
th
i
n
c
re
a
se
s,
b
u
t
a
s
th
e
ste
n
o
sis
sh
a
p
e
p
a
ra
m
e
ter
in
c
re
a
se
s,
th
e
w
a
ll
sh
e
a
r
stre
s
s
d
e
c
re
a
se
s.
T
h
e
w
o
rk
sh
o
w
s
th
a
t
th
e
re
su
lt
s
o
b
tai
n
e
d
f
ro
m
th
e
p
o
r
o
u
s
w
a
ll
m
o
d
e
l
a
re
sig
n
if
ic
a
n
tl
y
d
iffere
n
t
f
ro
m
th
o
se
o
b
tai
n
e
d
b
y
th
e
rig
id
w
a
ll
m
o
d
e
l.
K
ey
w
o
r
d
:
B
lo
o
d
f
lo
w
P
o
r
o
u
s
p
ar
a
m
eter
R
esi
s
tan
ce
to
f
lo
w
Sten
o
s
i
s
W
all
s
h
ea
r
s
tr
es
s
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sap
n
a
R
ata
n
S
h
ah
,
Dep
ar
t
m
en
t o
f
Ma
th
e
m
atic
s
,
Har
co
u
r
t B
u
tler
T
e
ch
n
o
lo
g
ical
I
n
s
tit
u
te
,
Kan
p
u
r
,
I
n
d
ia
.
E
m
ail:
s
ap
n
a1
9
8
0
j
an
@
r
ed
if
f
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
A
t
h
er
o
s
cler
o
s
is
i
s
a
s
lo
w
d
i
s
ea
s
e
in
w
h
ic
h
ar
ter
ies
b
ec
o
m
e
clo
g
g
ed
an
d
h
ar
d
en
ed
.
I
t
lead
s
to
ca
r
d
io
v
ascu
lar
d
is
ea
s
e,
w
h
ic
h
is
th
e
lead
in
g
ca
u
s
e
o
f
d
ea
th
in
all
o
v
er
th
e
w
o
r
ld
.
Ah
er
o
s
c
ler
o
tic
Fig
u
r
e
(
1
.
a)
ar
ter
y
is
v
er
y
i
m
p
o
r
ta
n
t
b
ec
au
s
e
o
f
t
h
e
f
ac
t
th
at
t
h
e
ca
u
s
e
a
n
d
d
ev
elo
p
m
e
n
t
o
f
m
an
y
ca
r
d
io
v
asc
u
lar
d
is
ea
s
e
s
ar
e
r
elate
d
t
o
th
e
n
atu
r
e
o
f
b
lo
o
d
m
o
v
e
m
en
t
an
d
th
e
m
ec
h
an
ica
l
b
eh
av
io
r
o
f
th
e
b
lo
o
d
v
ess
el
w
alls
.
I
t
is
d
ef
in
ed
a
s
a
p
ar
tial
o
cc
lu
s
io
n
o
f
t
h
e
b
lo
o
d
v
e
s
s
el
s
d
u
e
to
t
h
e
ac
c
u
m
u
lat
io
n
o
f
c
h
o
lest
er
o
ls
an
d
f
at
s
a
n
d
th
e
ab
n
o
r
m
al
g
r
o
w
th
o
f
tis
s
u
e.
A
t
h
er
o
s
cler
o
s
is
is
o
n
e
o
f
t
h
e
m
o
s
t
f
r
eq
u
en
tl
y
a
n
o
m
al
y
i
n
b
lo
o
d
cir
cu
latio
n
.
O
n
ce
th
e
co
n
s
tr
ictio
n
is
f
o
r
m
ed
,
th
e
b
lo
o
d
f
lo
w
i
s
s
i
g
n
if
ica
n
tl
y
al
ter
ed
an
d
f
lu
id
d
y
n
a
m
ical
f
ac
t
o
r
s
p
lay
i
m
p
o
r
tan
t
r
o
les.
T
h
e
ex
ac
t
m
ec
h
a
n
is
m
f
o
r
th
e
d
ev
elo
p
m
e
n
t
o
f
th
i
s
v
ascu
lar
d
is
ea
s
e
i
s
u
n
clea
r
.
Va
r
io
u
s
in
v
es
tig
a
to
r
s
e
m
p
h
a
s
ized
th
at
t
h
e
f
o
r
m
atio
n
o
f
t
h
e
in
tr
a
v
asc
u
lar
p
laq
u
es
an
d
th
e
i
m
p
i
n
g
e
m
en
t
o
f
lig
a
m
en
ts
a
n
d
s
p
u
r
e
o
n
th
e
b
lo
o
d
v
es
s
el
w
all
ar
e
s
o
m
e
o
f
t
h
e
m
aj
o
r
f
ac
to
r
s
f
o
r
th
e
i
n
itia
ti
o
n
a
n
d
d
ev
e
lo
p
m
e
n
t
o
f
t
h
is
v
a
s
cu
lar
d
is
ea
s
e.
I
n
1
9
6
8
Yo
u
n
g
an
a
l
y
ze
d
th
e
e
f
f
ec
t
o
f
s
te
n
o
s
is
i
n
cir
cu
lar
t
u
b
e.
S
h
u
k
la
et
al.
(
1
9
8
0
)
u
s
ed
s
e
v
er
al
d
if
f
er
e
n
t n
o
n
-
Ne
w
to
n
ian
m
o
d
els f
o
r
s
i
m
u
latio
n
s
o
f
b
lo
o
d
f
l
o
w
i
n
lar
g
e
ar
ter
ies a
n
d
th
e
y
o
b
s
er
v
ed
th
at
t
h
er
e
is
no
ef
f
ec
t
o
f
t
h
e
y
ield
s
tr
ess
o
f
b
lo
o
d
o
n
eith
er
th
e
v
e
lo
cit
y
p
r
o
f
iles
o
r
th
e
w
all
s
h
ea
r
s
tr
es
s
.
C
av
alca
n
ti
(
1
9
9
5
)
h
as
d
is
c
u
s
s
ed
th
e
i
n
ad
eq
u
ac
ie
s
o
f
s
u
ch
s
tu
d
ie
s
f
o
r
th
e
d
eter
m
i
n
atio
n
o
f
th
e
m
o
d
el
f
o
r
p
laq
u
e
g
r
o
w
th
.
T
h
ese
o
b
s
er
v
atio
n
s
p
r
o
v
id
e
f
u
t
u
r
e
d
ir
ec
tio
n
f
o
r
r
esear
ch
.
Qu
ar
ter
o
n
i
et
al.
(
2
0
0
0
)
,
Ne
o
f
y
to
u
(
2
0
0
3
)
f
o
u
n
d
ed
th
e
i
m
p
o
r
tan
t
h
e
m
o
-
d
y
n
a
m
ical
c
h
ar
ac
ter
is
tic
s
li
k
e
th
e
w
all
s
h
e
ar
s
tr
ess
,
p
r
ess
u
r
e
d
r
o
p
an
d
f
r
i
ctio
n
al
r
es
is
ta
n
ce
i
n
ca
th
eter
ized
co
r
o
n
ar
y
ar
ter
ies
u
n
d
er
n
o
r
m
al
a
s
w
e
ll
as
t
h
e
p
ath
o
lo
g
ical
c
o
n
d
itio
n
s
d
u
e
to
s
ten
o
s
is
b
ei
n
g
p
r
esen
t.
L
e
u
p
r
ec
h
t
(
2
0
0
1
)
m
e
asu
r
ed
w
a
ll
s
h
ea
r
s
tr
ess
d
o
w
n
s
tr
ea
m
o
f
a
x
i
-
s
y
m
m
etr
ic
s
te
n
o
s
es
in
t
h
e
p
r
esen
c
e
o
f
h
e
m
o
-
d
y
n
a
m
ics
f
o
r
ce
s
ac
ti
n
g
o
n
th
e
p
laq
u
e,
w
h
ic
h
m
a
y
b
e
r
esp
o
n
s
ib
le
f
o
r
p
laq
u
e
r
u
p
tu
r
e.
D
wy
er
et
al.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
P
h
ysio
lo
g
ic
Mo
d
el
fo
r
th
e
P
r
o
b
lem
o
f B
lo
o
d
F
lo
w
th
r
o
u
g
h
Dis
ea
s
ed
B
lo
o
d
V
ess
els
(
S
a
p
n
a
R
a
ta
n
S
h
a
h
)
59
(
2
0
0
1
)
an
d
A
b
r
ah
a
m
et
al.
(
2
0
0
4
)
f
o
u
n
d
ed
t
h
e
i
n
f
lu
e
n
ce
o
f
s
te
n
o
s
i
s
m
o
r
p
h
o
lo
g
y
o
n
f
lo
w
f
ield
s
a
n
d
o
n
q
u
an
tit
ies
s
u
c
h
a
s
w
al
l
s
h
ea
r
s
tr
ess
a
m
o
n
g
s
te
n
o
tic
v
es
s
el
s
w
it
h
v
er
y
m
ild
s
te
n
o
s
i
s
.
S
h
ar
m
a
et
al.
(
2
0
0
1
)
,
Dar
ip
a
et
al.
(
2
0
0
2
)
co
n
s
id
er
e
d
a
m
a
th
e
m
atica
l
an
al
y
s
is
o
f
b
lo
o
d
f
lo
w
th
r
o
u
g
h
ar
ter
ies
u
s
in
g
f
in
ite
ele
m
en
t
Gale
r
k
i
n
ap
p
r
o
ac
h
es.
P
o
n
tr
elli
(
2
0
0
0
,
2
0
0
1
)
an
d
Sh
ar
an
a
n
d
P
o
p
el
(
2
0
0
1
)
u
tili
ze
d
th
e
B
r
in
k
m
a
n
m
o
d
el
to
in
v
e
s
ti
g
ate
t
h
e
t
w
o
-
d
i
m
e
n
s
io
n
al
in
ter
s
t
itial
f
lo
w
th
r
o
u
g
h
t
h
e
tu
n
ica
m
ed
ia
o
f
a
n
ar
ter
y
w
al
l
in
t
h
e
p
r
esen
ce
o
f
an
in
ter
n
al
elas
tic
la
m
in
a.
Fig
u
r
e
1
a
.
A
t
h
er
o
s
cler
o
s
is
Yak
h
o
t
(
2
0
0
4
)
s
tu
d
ied
th
e
p
u
ls
atile
f
lo
w
o
f
b
lo
o
d
u
n
d
er
th
e
in
f
lu
e
n
ce
o
f
b
o
d
y
ac
ce
ler
atio
n
tr
ea
tin
g
b
lo
o
d
as
a
th
ir
d
g
r
ad
e
f
l
u
id
.
Sar
o
j
an
i
an
d
Nag
ar
an
i
(
2
0
0
8
)
s
tu
d
ied
th
e
f
lo
w
o
f
a
ca
s
s
o
n
f
lu
id
i
n
a
tu
b
e
f
i
lled
w
it
h
a
p
o
r
o
u
s
m
ed
i
u
m
u
n
d
er
p
er
io
d
ic
b
o
d
y
ac
ce
ler
atio
n
w
ith
ap
p
licatio
n
o
n
ar
tif
icial
o
r
g
a
n
s
.
J
o
h
n
s
to
n
(
2
0
0
4
)
,
Gr
ig
io
n
i
et
al.
(
2
0
0
2
)
s
tu
d
ied
th
e
ef
f
ec
t
o
f
b
o
d
y
ac
ce
ler
atio
n
o
n
p
u
ls
a
tile
f
lo
w
o
f
n
o
n
-
Ne
w
to
n
ia
n
f
l
u
id
th
r
o
u
g
h
a
s
te
n
o
s
ed
ar
ter
y
a
n
d
o
b
s
er
v
ed
th
at
a
ll
t
h
e
i
n
s
tan
tan
eo
u
s
f
lo
w
c
h
ar
ac
ter
is
tic
s
ar
e
af
f
ec
ted
b
y
th
e
ap
p
licatio
n
o
f
b
o
d
y
ac
ce
ler
ati
o
n
.
San
j
ee
v
et
al.
(
2
0
0
9
)
w
o
r
k
ed
o
n
th
e
P
u
ls
atile
f
lo
w
o
f
b
lo
o
d
in
a
co
n
s
tr
icted
ar
ter
y
w
it
h
b
o
d
y
ac
ce
ler
atio
n
an
d
o
b
s
er
v
ed
th
at
th
e
v
elo
cit
y
an
d
f
lo
w
r
ate
i
n
cr
ea
s
es
b
u
t
ef
f
ec
ti
v
e
v
i
s
co
s
it
y
d
ec
r
ea
s
es,
d
u
e
to
a
s
lip
w
all.
T
h
e
ai
m
o
f
t
h
e
p
r
ese
n
t
i
n
v
e
s
tig
a
tio
n
h
a
s
b
ee
n
to
s
tu
d
y
t
h
e
e
f
f
ec
t
o
f
p
o
r
o
u
s
p
ar
am
eter
o
n
f
lo
w
o
f
b
lo
o
d
c
o
n
s
id
er
ed
as
b
lo
o
d
as
a
Her
s
ch
el
-
B
u
l
k
le
y
f
l
u
id
m
o
d
el.
I
n
th
is
m
o
d
el
p
r
o
b
le
m
h
as
b
ee
n
s
o
r
ted
o
u
t
n
u
m
er
ic
all
y
.
Nu
m
er
ical
ex
p
r
es
s
io
n
s
ar
e
s
h
o
w
s
th
e
v
ar
iat
io
n
o
f
t
h
e
v
elo
cit
y
p
r
o
f
ile
v
o
lu
m
etr
ic
f
lo
w
r
ate,
w
al
l sh
e
ar
s
tr
ess
.
2.
F
O
RM
UL
AT
I
O
N
O
F
T
H
E
P
RO
B
L
E
M
:
C
o
n
s
id
er
th
e
ax
is
y
m
m
e
tr
ic
f
lo
w
o
f
b
lo
o
d
in
a
u
n
if
o
r
m
cir
c
u
l
ar
ar
ter
y
w
ith
a
n
ax
iall
y
n
o
n
-
s
y
m
m
etr
ic
b
u
t
r
ad
iall
y
s
y
m
m
etr
ic
m
ild
s
t
en
o
s
is
.
T
h
e
g
eo
m
etr
y
o
f
th
e
s
t
en
o
s
is
as
s
h
o
w
n
in
[
Fi
g
u
r
e
.
(
1
.
b
)
]
Is
ass
u
m
ed
to
b
e
m
a
n
i
f
ested
as
:
R
(
z
)
(
m
1
)
m
1
A
[
L
(
z
d
)
(
z
d
)
]
,
d
z
d
L
00
R
0
1
,
o
th
e
r
w
is
e
,
(
1
)
m
/(
m
-
1
)
δm
A=
m
R
L
(
m
-
1
)
00
,
Fig
u
r
e
1
b
.
Sten
o
tic
A
r
ter
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
5
,
No
.
2
,
J
u
n
e
2
0
1
6
:
58
–
64
60
w
h
er
e
R
0
: Rad
iu
s
o
f
n
o
r
m
al
t
u
b
e
R
(
z
)
: Rad
iu
s
o
f
s
te
n
o
tic
r
eg
io
n
L
: T
h
e
len
g
t
h
o
f
th
e
ar
ter
y
L
0
: T
h
e
len
g
t
h
o
f
th
e
s
te
n
o
s
is
d
: D
is
tan
ce
b
et
w
ee
n
eq
u
i
s
p
ac
ed
p
o
in
ts
δ
: M
ax
i
m
u
m
h
eig
h
t o
f
s
te
n
o
s
is
(
δ <
<
R
0
)
m
: P
ar
am
eter
d
eter
m
i
n
in
g
t
h
e
s
h
ap
e
o
f
s
te
n
o
s
is
(
m
≥
2
)
H
er
s
chel
-
B
ul
k
ley
f
lu
id
m
o
d
el:
Fo
r
Her
s
ch
e
l
-
B
u
lk
le
y
f
l
u
id
m
o
d
el,
t
h
e
r
elatio
n
s
h
ip
b
et
w
e
en
s
tr
ess
an
d
s
tr
ain
is
g
i
v
e
n
b
y
:
,
R
dz
dp
τ
,
r
dz
dp
τ
w
h
e
re
τ
τ
,
dr
du
)
τ
(
f
τ
τ
,
τ
τ
μ
dr
du
)
τ
(
f
c
n
(
2
)
du
e
=
-
dr
w
h
er
e,
0
=
Me
asu
r
e
o
f
y
ield
s
tr
es
s
=
Stre
s
s
te
n
s
o
r
e
=
Stra
in
r
ate
(
-
d
u
/d
r
)
u
=
Velo
cit
y
o
f
f
lu
id
µ
=
Vis
co
s
it
y
o
f
b
lo
o
d
(
C
ass
o
n
’
s
v
i
s
co
s
it
y
co
e
f
f
icie
n
t)
r
=
r
ad
iu
s
o
f
th
e
ar
ter
y
Da
rc
y
f
lo
w
m
o
de
l:
T
h
e
Dar
c
y
m
o
d
el
o
f
f
lo
w
th
r
o
u
g
h
a
p
o
r
o
u
s
m
ed
ia
i
s
,
kp
U
=
-
μ
(
3
)
w
h
er
e
k
=
P
o
r
o
u
s
p
ar
am
e
ter
µ
=
Vis
co
s
it
y
o
f
b
lo
o
d
p
=
P
r
ess
u
r
e
g
r
ad
ien
t
Co
ns
er
v
a
t
io
n
equa
t
io
ns
:
I
n
th
e
p
r
esen
t
i
n
v
e
s
ti
g
atio
n
t
h
e
f
l
o
w
f
o
r
m
u
la
tio
n
f
o
r
Nav
ier
-
St
o
k
es
eq
u
atio
n
s
f
o
r
in
co
m
p
r
es
s
ib
le
n
o
n
-
Ne
w
to
n
ia
n
f
l
u
id
s
in
t
h
e
p
o
r
o
u
s
e
f
f
ec
t
h
a
s
b
ee
n
co
n
s
id
er
ed
.
T
h
e
b
asic
eq
u
atio
n
s
o
f
m
o
tio
n
i
n
c
y
l
in
d
r
ical
p
o
lar
co
o
r
d
in
ates a
r
e:
22
22
u
u
v
1
p
μ
u
1
u
u
+
u
v
tt
ρ
z
ρ
r
r
r
r
z
(
4
)
22
2
2
2
u
u
v
1
p
μ
v
1
v
v
v
+
u
v
tr
ρ
z
ρ
r
r
r
r
r
z
(
5
)
u
1
(
v
r
)
+0
z
r
r
(
6
)
B
o
un
da
ry
co
nd
it
io
ns
:
T
h
e
n
o
s
lip
co
n
d
itio
n
o
n
th
e
s
ten
o
s
i
s
s
u
r
f
ac
e
g
iv
e
s
th
e
f
o
llo
w
in
g
b
o
u
n
d
ar
y
co
n
d
itio
n
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
P
h
ysio
lo
g
ic
Mo
d
el
fo
r
th
e
P
r
o
b
lem
o
f B
lo
o
d
F
lo
w
th
r
o
u
g
h
Dis
ea
s
ed
B
lo
o
d
V
ess
els
(
S
a
p
n
a
R
a
ta
n
S
h
a
h
)
61
0
u
=
0
a
t
r
=
R
u
=
0
a
t
r
=
R
(
z
)
(
7
)
3.
SO
L
U
T
I
O
N
O
F
T
H
E
P
RO
B
L
E
M
:
So
lv
i
n
g
t
h
ese
eq
u
atio
n
,
t
h
e
v
e
lo
cit
y
o
f
b
lo
o
d
,
r
ate
o
f
f
lo
w
a
n
d
p
r
ess
u
r
e
in
(
7
,
8
,
9
)
,
1
/n
1
/n
c
up
=
-
(
)
[
r
-
R
]
r
2
m
(
8
)
.
n
o
w
to
tal
f
lo
w
f
lu
x
RR
00
du
Q2
π
u
r
d
r
π
r
d
r
,
dr
(
9
)
b
y
u
s
i
n
g
eq
u
atio
n
(
8
)
an
d
eq
u
atio
n
(
9
)
,
w
e
h
a
v
e,
1
/n
(
3
+
(
1
/n
)
)
π
P
R
Q
=
f
(
y
)
22
μ
(
1
+
(
1
/n
)
)
(
1
0
)
w
h
e
r
e
f
y
R
R
n
R
R
n
n
R
R
R
R
c
n
c
n
c
n
n
c
(
)
[
(
)
((
/
)
)
(
)
((
/
)
)((
/
)
)
((
)
((
)
(
)))],
((
/
)
)
((
/
)
)
((
/
)
)
((
/
)
)
2
1
4
1
2
1
4
1
2
1
3
1
1
1
1
1
2
1
3
1
3
c
R
y
=
1
.
R
Usi
n
g
eq
u
at
io
n
(
8
)
w
e
h
a
v
e,
n
(
1
+
3
n
)
d
p
2
μ
2
Q
1
P
=
-
=
(
1
+
)
n
dz
π
f
(y
)
R
(
1
1
)
to
d
eter
m
i
n
e
λ
,
w
e
in
teg
r
at
e
eq
u
atio
n
(
1
1
)
f
o
r
t
h
e
p
r
ess
u
r
e
P
L
a
n
d
P
o
ar
e
t
h
e
p
r
ess
u
r
e
at
z
=
0
a
n
d
z
=
L
,
r
esp
ec
tiv
el
y
,
w
h
er
e
L
is
th
e
len
g
t
h
o
f
th
e
t
u
b
e.
n
1
+
3
n
(
1
+
3
n
)
L
0
0
0
n
0
2
μ
d
z
1
Δ
P
=
P
-
P
=
2
Q
+
1
n
πR
R(
z
)
f
(y
)
R
L
(
1
2
)
o
n
u
s
i
n
g
eq
u
atio
n
(
1
2
)
an
d
(
1
0
)
g
iv
es,
n
L
0
1
+
3
n
0
d
p
2
μ
=
P
-
P
=
2
Q
+
1
φ
(
z
)
dz
πR
1
n
(
1
3
)
T
h
e
p
r
ess
u
r
e
d
r
o
p
,
p
(
=
p
at
z
=
0
a
n
d
–
p
at
z
=
L
)
ac
r
o
s
s
th
e
s
te
n
o
s
is
i
n
t
h
e
tu
b
e
o
f
le
n
g
th
,
L
is
ca
lc
u
lated
f
r
o
m
eq
u
atio
n
(
9
)
as
L
0
ψ
nn
1
+
3
n
1
+
3
n
00
2
μ
2
μ
Δ
p
=
2
Q
+
1
φ
(
z
)
d
z
2
Q
+
1
π
R
π
R
11
nn
(
1
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
5
,
No
.
2
,
J
u
n
e
2
0
1
6
:
58
–
64
62
W
h
er
e
0
00
0
d
+
L
L
d
L
R
/
R
=
1
R
/
R
=
1
0
0
d
d
+
L
ψ
=
φ
(
z
)
d
z
=
φ
(
z
)
d
z
+
φ
(
z
)
d
z
+
φ
(
z
)
d
z
T
h
e
f
ir
s
t
an
d
t
h
ir
d
i
n
te
g
r
als
i
n
t
h
e
e
x
p
r
ess
io
n
f
o
r
o
b
tain
ed
ab
o
v
e
ar
e
s
tr
ai
g
h
t
f
o
r
w
ar
d
w
h
er
ea
s
ev
al
u
atio
n
o
f
th
e
s
ec
o
n
d
i
n
te
g
r
al
is
a
f
o
r
m
id
ab
le
task
an
d
t
h
er
ef
o
r
e
w
ill b
e
ev
alu
ated
n
u
m
er
icall
y
.
L
0
0
n
1
+
3
n
(
3
+
(
1
/n
)
)
(
1
/n
)
(
1
+
(
1
/n
)
)
0
2
μ
d
z
p
=
2
Q
+
1
πR
R
1
6
r
4
r
1
r
1
-
+
-
R
7
R
3
R
2
1
R
1
n
(
1
5
)
Usi
n
g
eq
u
at
io
n
(
1
)
an
d
eq
u
ati
o
n
(
3
)
w
e
h
a
v
e,
m
/(
m
-
1)
(
m
-
1)
m
m
0
00
(
1/n)
(
3+
(
1/n)
)
m
/(
m
-
1)
(
m
1
)
m
0
m
0
00
(
1+
(
m
/(
m
-
1)
(
m
1
)
m
m
0
00
16
(
3+
(
1/n)
)
7
4
3
1
21
δm
1-
[
L
(
z
-
d)
-
(
z
-
d)
]
R
L
(
m
-
1)
U
μR
δm
τ
=
[
L
(
z
d)
(
z
d)
]
2k
R
L
(
m
-
1)
δm
[
L
(
z
d)
(
z
d)
]
R
L
(
m
-
1)
()
0
1/n)
)
dL
d
(
1
6
)
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
NS
T
h
e
m
o
ti
v
atio
n
b
eh
i
n
d
d
ev
elo
p
in
g
t
h
is
m
at
h
e
m
atica
l
m
o
d
el
h
as
b
ee
n
to
s
tu
d
y
s
o
m
e
a
s
p
ec
t
s
o
f
b
lo
o
d
f
lo
w
t
h
r
o
u
g
h
a
s
ten
o
s
ed
ar
ter
y
i
n
t
h
e
p
r
ese
n
ce
o
f
p
o
r
o
u
s
p
ar
am
eter
h
a
v
i
n
g
an
ax
iall
y
n
o
n
-
s
y
m
m
etr
ic
b
u
t
r
ad
iall
y
s
y
m
m
etr
ic
m
ild
s
ten
o
s
is
.
Mo
s
t
o
f
th
eo
r
etica
l
r
es
u
lt
s
u
c
h
a
s
v
elo
cit
y
,
v
o
l
u
m
e
tr
ic
f
l
o
w
r
ate,
w
a
ll
s
h
ea
r
s
tr
ess
a
n
d
p
r
ess
u
r
e
g
r
ad
ien
t
ar
e
o
b
tain
ed
in
th
is
a
n
al
y
s
i
s
.
Ou
t
o
f
t
h
ese
r
es
u
lts
o
n
l
y
t
h
e
n
u
m
er
ical
s
o
l
u
tio
n
o
f
w
all
s
h
ea
r
s
tr
es
s
ar
e
s
h
o
w
n
.
W
all
s
h
ea
r
s
tr
ess
is
a
n
i
m
p
o
r
tan
t
f
ac
to
r
in
th
e
s
t
u
d
y
o
f
b
l
o
o
d
f
lo
w
.
A
cc
u
r
ate
p
r
ed
ictio
n
s
o
f
th
e
d
is
tr
ib
u
tio
n
o
f
w
a
ll
s
h
ea
r
s
tr
ess
ar
e
p
ar
ticu
lar
l
y
u
s
ef
u
l
f
o
r
th
e
u
n
d
er
s
ta
n
d
in
g
o
f
th
e
e
f
f
ec
t
o
f
b
lo
o
d
f
lo
w
t
h
r
o
u
g
h
s
te
n
o
s
ed
ar
ter
y
in
th
e
p
r
ese
n
ce
o
f
p
o
r
o
u
s
e
f
f
ec
ts
.
I
n
o
r
d
er
to
esti
m
ate
th
e
q
u
an
t
itati
v
e
e
f
f
ec
ts
o
f
p
o
r
o
u
s
p
ar
a
m
eter
,
s
ten
o
s
i
s
s
ize,
s
te
n
o
s
is
le
n
g
t
h
an
d
s
ten
o
s
is
s
h
ap
e
p
ar
a
m
eter
o
n
w
all
s
h
ea
r
s
tr
es
s
,
co
m
p
u
ter
co
d
es
w
er
e
d
ev
elo
p
ed
an
d
to
ev
alu
ate
th
e
n
u
m
er
ical
r
esu
lt
s
f
o
r
w
al
l
s
h
ea
r
s
tr
ess
f
o
r
d
is
ea
s
ed
s
y
s
te
m
a
s
s
o
ciate
d
w
it
h
s
te
n
o
s
i
s
d
u
e
to
th
e
lo
ca
l d
ep
o
s
itio
n
o
f
lip
id
s
h
av
e
b
ee
n
d
eter
m
in
e.
I
n
o
r
d
er
to
u
n
d
er
s
tan
d
t
h
e
co
m
p
lete
n
a
tu
r
e
o
f
b
lo
o
d
f
lo
w
i
n
t
h
e
p
r
esen
ce
o
f
p
o
r
o
u
s
p
ar
am
eter
,
th
e
co
m
p
u
ted
n
u
m
er
ical
r
es
u
lt
s
b
y
u
s
i
n
g
t
h
e
v
a
lu
e
s
o
f
p
ar
a
m
et
er
b
ased
o
n
ex
p
er
i
m
en
tal
d
ata
in
s
te
n
o
s
ed
ar
ter
y
(
U
=
5
0
c
m
/s
ec
,
R
0
=
1
.
2
c
m
a
n
d
μ
=
0
.
0
4
d
y
n
e/c
m
2
)
ar
e
p
lo
tted
in
Fi
g
2
-
4
.
I
n
o
r
d
er
to
an
a
l
y
ze
t
h
e
w
a
ll
s
h
ea
r
s
tr
ess
alo
n
g
th
e
s
te
n
o
s
ed
ar
ter
ial
s
eg
m
en
t
u
n
d
er
s
t
u
d
y
,
Fig
.
2
ex
h
ib
its
th
e
v
ar
iatio
n
o
f
w
a
ll
s
h
ea
r
s
tr
ess
w
it
h
p
o
r
o
u
s
p
ar
a
m
eter
f
o
r
d
if
f
er
en
t
v
al
u
e
o
f
s
ten
o
s
is
s
h
ap
e
p
ar
a
m
eter
.
I
t is o
b
s
er
v
ed
t
h
at
i
n
th
e
s
ten
o
s
ed
p
o
r
tio
n
o
f
th
e
ar
ter
y
,
t
h
e
w
all
s
h
ea
r
s
tr
ess
i
n
cr
ea
s
es
w
i
th
th
e
i
n
cr
ea
s
e
in
p
o
r
o
u
s
p
ar
a
m
eter
w
h
ile
d
ec
r
ea
s
es
as
s
ten
o
s
i
s
s
h
ap
e
p
ar
a
m
eter
in
cr
ea
s
es.
T
h
e
r
esu
lt is
co
n
s
i
s
ti
n
g
w
i
th
t
h
e
r
esu
lt o
f
S
h
u
k
la
et
al.
(
1
9
8
0
)
.
Fig
u
r
e
3
.
P
o
r
o
u
s
P
ar
am
eter
,
V
ar
iatio
n
o
f
W
ar
Sh
ea
r
Stre
s
s
with
P
o
r
o
u
s
P
ar
am
eter
f
o
r
Dif
f
e
r
en
t M
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
P
h
ysio
lo
g
ic
Mo
d
el
fo
r
th
e
P
r
o
b
lem
o
f B
lo
o
d
F
lo
w
th
r
o
u
g
h
Dis
ea
s
ed
B
lo
o
d
V
ess
els
(
S
a
p
n
a
R
a
ta
n
S
h
a
h
)
63
Fig
u
r
e
4
.
Sten
o
s
i
s
Sh
ap
e
P
ar
am
eter
,
Var
iatio
n
o
f
W
all
S
h
ea
r
Stre
s
s
w
it
h
Ste
n
o
s
is
Sh
ap
e
P
ar
a
m
eter
T
h
e
g
r
ap
h
f
o
r
v
ar
iatio
n
s
o
f
wall
s
h
ea
r
s
tr
e
s
s
w
it
h
s
te
n
o
s
i
s
s
ize
f
o
r
d
if
f
er
e
n
t
v
a
lu
e
o
f
s
te
n
o
s
is
s
h
ap
e
p
ar
am
eter
is
s
h
o
w
n
i
n
f
i
g
u
r
e
3
.
I
t
is
ev
id
en
t
th
at
w
all
s
h
ea
r
s
tr
ess
in
cr
ea
s
e
s
as
s
te
n
o
s
is
s
ize
in
cr
ea
s
es
an
d
w
all
s
h
ea
r
s
tr
es
s
d
ec
r
ea
s
es
as
s
te
n
o
s
is
s
h
ap
e
p
ar
am
e
ter
in
cr
ea
s
e
s
.
As
t
h
e
s
te
n
o
s
is
g
r
o
w
s
,
th
e
w
all
s
h
ea
r
i
n
g
s
tr
es
s
in
cr
ea
s
es
in
th
e
s
te
n
o
tic
r
eg
io
n
.
Ou
r
r
e
s
u
l
ts
ar
e
s
i
m
i
lar
to
t
h
o
s
e
o
b
tain
ed
b
y
San
j
ee
v
(
2
0
0
9
)
.
Fig
.
4
g
iv
e
s
a
co
m
p
ar
is
o
n
o
f
o
u
r
r
es
u
lt
s
w
it
h
th
o
s
e
r
ep
o
r
ted
b
y
J
o
h
n
s
to
n
et
al.
(
2
0
0
4
)
.
I
t
is
s
h
o
w
n
th
a
t
th
e
w
all
s
h
ea
r
s
t
r
e
s
s
d
ec
r
ea
s
es
w
i
th
i
n
cr
ea
s
i
n
g
v
al
u
e
o
f
s
ten
o
s
is
s
h
ap
e
p
ar
a
m
eter
an
d
w
a
ll
s
h
ea
r
s
tr
es
s
in
cr
ea
s
e
s
as
s
ten
o
s
is
le
n
g
th
in
cr
ea
s
es.
I
n
Fi
g
.
5
th
e
v
ar
iatio
n
o
f
w
all
s
h
ea
r
s
tr
e
s
s
w
it
h
s
te
n
o
s
is
s
h
ap
e
p
ar
a
m
eter
h
as
b
ee
n
s
h
o
w
n
.
T
h
e
w
a
ll
s
h
ea
r
s
tr
ess
g
i
v
e
s
t
h
e
r
ev
er
s
e
tr
en
d
o
f
s
te
n
o
s
is
s
ize
an
d
s
te
n
o
s
is
len
g
t
h
f
o
r
in
cr
ea
s
i
n
g
v
al
u
e
o
f
s
h
ap
e
p
ar
am
eter
.
T
h
is
f
ig
u
r
e
ill
u
s
tr
ates
th
at
w
all
s
h
ea
r
s
tr
es
s
d
ec
r
ea
s
es
as
s
te
n
o
s
i
s
s
h
ap
e
p
ar
a
m
eter
in
cr
ea
s
e
s
,
m
ax
i
m
u
m
w
all
s
h
ea
r
s
tr
es
s
o
cc
u
r
s
at
(
m
=
2
)
,
i.
e.
in
ca
s
e
o
f
s
y
m
m
etr
ic
s
te
n
o
s
is
.
T
h
ese
r
esu
lts
ar
e
s
i
m
ilar
w
it
h
t
h
e
r
esu
lts
o
f
P
o
n
tr
elli (
2
0
0
0
)
.
5.
CO
NCLU
SI
O
N
I
n
th
is
p
ap
er
w
e
u
s
ed
th
e
la
m
i
n
ar
,
in
co
m
p
r
ess
ib
le,
f
u
l
l
y
d
ev
elo
p
ed
,
n
o
n
-
Ne
w
to
n
ian
f
l
o
w
h
a
v
i
n
g
ax
iall
y
n
o
n
-
s
y
m
m
etr
ic
b
u
t
r
a
d
iall
y
s
y
m
m
e
tr
ic
s
ten
o
s
is
i
n
t
h
e
p
r
esen
ce
o
f
p
o
r
o
u
s
ef
f
ec
t
s
.
Her
e
th
e
b
lo
o
d
is
r
ep
r
esen
ted
as
Her
s
c
h
el
-
B
u
l
k
le
y
f
l
u
id
m
o
d
el
a
n
d
f
lo
w
m
o
d
el
i
s
s
h
o
w
n
b
y
t
h
e
Na
v
ier
-
Sto
k
e
s
an
d
t
h
e
co
n
tin
u
it
y
eq
u
atio
n
s
.
T
h
e
ad
v
an
tag
e
o
f
t
h
is
s
t
u
d
y
i
s
th
at
h
er
e
w
e
ca
lcu
lated
th
e
e
f
f
ec
t
o
f
p
o
r
o
u
s
p
ar
am
eter
o
n
w
all
s
h
ea
r
s
tr
ess
,
s
te
n
o
s
i
s
s
h
a
p
e
p
ar
am
eter
,
s
te
n
o
s
is
s
ize,
s
t
en
o
s
is
le
n
g
th
i
n
a
n
s
te
n
o
s
ed
ar
ter
y
.
I
t
h
a
s
b
ee
n
co
n
clu
d
ed
th
at
t
h
e
w
all
s
h
ea
r
s
tr
ess
i
n
cr
ea
s
es
as
p
o
r
o
u
s
p
ar
am
eter
,
s
te
n
o
s
is
s
ize
an
d
s
te
n
o
s
is
le
n
g
t
h
i
n
cr
ea
s
e
s
b
u
t
d
ec
r
ea
s
es
as
s
te
n
o
s
is
s
h
ap
e
p
ar
am
eter
i
n
cr
ea
s
e
s
.
I
t
h
a
s
s
h
o
w
n
t
h
at
t
h
e
r
es
u
lt
s
w
er
e
g
r
ea
tl
y
i
n
f
lu
e
n
ce
d
b
y
th
e
ch
a
n
g
e
o
f
p
o
r
o
u
s
p
ar
am
eter
an
d
s
ten
o
s
i
s
s
h
ap
e
p
ar
am
eter
.
T
h
is
m
o
d
el
is
ab
le
to
p
r
e
d
ict
th
e
m
ai
n
ch
ar
ac
ter
is
tic
s
o
f
th
e
p
h
y
s
io
l
o
g
ical
f
lo
w
s
a
n
d
w
o
u
ld
b
e
h
elp
f
u
l
f
o
r
th
e
p
eo
p
le
w
o
r
k
i
n
g
i
n
th
e
f
ie
ld
o
f
b
io
m
ed
ical
s
cien
ce
a
s
w
ell
as
to
th
e
m
ed
ical
p
r
ac
titi
o
n
er
s
.
ACK
NO
WL
E
D
G
M
E
NT
Au
t
h
o
r
s
g
r
ate
f
u
l
l
y
ac
k
n
o
w
le
d
g
e
th
e
f
in
a
n
cial
a
s
s
i
s
tan
ce
f
r
o
m
t
h
e
UGC
m
aj
o
r
r
esear
ch
p
r
o
j
ec
t
No
.
3
7
-
4
9
3
/2
0
0
9
(
SR
)
f
o
r
th
is
w
o
r
k
.
RE
F
E
R
E
NC
E
S
[1
]
A
b
ra
h
a
m
F
.
,
M
a
re
k
B.
a
n
d
M
a
t
th
ias
H,
S
h
a
p
e
o
p
ti
m
iza
ti
o
n
in
ste
a
d
y
b
lo
o
d
f
lo
w
:
A
n
u
m
e
rica
l
stu
d
y
o
f
non
-
Ne
w
to
n
ian
e
f
f
e
c
t.
No
v
e
m
b
e
r
2
0
0
4
:
1
-
17
.
[2
]
Da
rip
a
P
.
,
Ra
n
jan
K.
,
A
n
u
m
e
ri
c
a
l
stu
d
y
o
f
p
u
lsa
ti
le
b
lo
o
d
f
lo
w
in
a
n
e
c
c
e
n
tri
c
c
a
th
e
teriz
e
d
a
rte
ry
u
sin
g
a
fa
st
a
lg
o
rit
h
m
:
J.
En
g
.
M
a
th
e
.
2
0
0
2
:
4
2
:
1
-
2
.
[3
]
Dw
y
e
r
H.
A
.
,
Ch
e
e
r
A
.
Y.,
Ru
tag
in
ire
T
.
a
n
d
S
h
a
h
c
h
e
ra
g
in
,
Ca
lcu
l
a
ti
o
n
o
f
u
n
ste
a
d
y
f
lo
w
s
in
c
u
rv
e
d
p
ip
e
s:
A
S
M
E
J.
F
lu
i
d
s E
n
g
.
2
0
0
1
:
1
2
3
:
8
6
9
-
8
7
3
.
[4
]
G
rig
io
n
i
M
.
,
Da
n
iele
C.
,
a
n
d
Da
v
e
n
io
G
.
,
T
h
e
ro
le
o
f
w
a
ll
sh
e
a
r
stre
ss
in
u
n
ste
a
d
y
v
a
sc
u
lar
d
y
n
a
m
i
c
s:
P
r
o
g
re
ss
in
Bio
m
e
d
.
Re
se
a
.
2
0
0
2
:
7
.
[5
]
Jo
h
n
st
o
n
B.
,
Jo
h
n
st
o
n
P
.
R.
,
Co
r
n
e
y
S
.
,
a
n
d
Kilp
a
tri
c
k
D.,
No
n
-
Ne
w
to
n
ian
b
l
o
o
d
f
lo
w
in
h
u
m
a
n
rig
h
t
c
o
ro
n
a
ry
a
rterie
s: S
te
a
d
y
sta
t
e
si
m
u
latio
n
:
J.
Bio
m
e
.
2
0
0
4
:
37
:
7
0
9
-
7
2
0
.
[6
]
L
e
u
p
re
c
h
t
A
.
a
n
d
P
e
rk
to
l
d
K.,
Co
m
p
u
ter
sim
u
latio
n
o
f
n
o
n
-
Ne
w
to
n
ian
e
ff
e
c
ts
o
n
b
lo
o
d
f
lo
w
i
n
larg
e
a
rterie
s:
Co
m
.
M
e
th
.
Bio
m
e
c
.
&
Bio
m
e
d
.
En
g
.
2
0
0
1
:
4
:
1
4
9
-
1
6
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
5
,
No
.
2
,
J
u
n
e
2
0
1
6
:
58
–
64
64
[7
]
Na
g
a
r
a
n
i
P
.
a
n
d
S
a
ro
jam
m
a
G
.
Eff
e
c
t
o
f
b
o
d
y
a
c
c
e
ler
a
ti
o
n
o
n
p
u
lsa
ti
le
f
lo
w
o
f
c
a
ss
o
n
f
lu
id
th
ro
u
g
h
a
m
il
d
ste
n
o
se
d
a
rtery
.
Jo
u
rn
a
l
o
f
Ko
re
a
-
A
u
stra
li
a
Re
o
lo
g
y
.
2
0
0
8
:
20
:
1
8
9
-
1
9
6
.
[8
]
Ne
o
fy
to
u
P
.
a
n
d
Drik
a
k
is
D.,
No
n
-
Ne
w
to
n
ian
f
lo
w
in
sta
b
il
it
y
in
a
c
h
a
n
n
e
l
w
it
h
a
su
d
d
e
n
e
x
p
a
n
s
i
o
n
:
J.
No
n
-
Ne
w
to
.
F
lu
i
d
M
e
c
h
.
2
0
0
3
:
1
1
1
:
1
2
7
-
1
5
0
.
[9
]
P
o
n
trell
i
G
.
,
Bl
o
o
d
f
lo
w
th
ro
u
g
h
a
c
ir
c
u
lar
p
i
p
e
w
it
h
a
n
im
p
u
lsiv
e
p
re
ss
u
re
g
ra
d
ien
t.
M
a
th
.
M
o
d
.
M
e
th
.
A
p
p
l.
S
c
i
.
2
0
0
0
:
1
0
:
1
8
7
-
2
0
2
.
[1
0
]
P
o
n
trell
i
G
.
,
Blo
o
d
f
lo
w
th
ro
u
g
h
a
n
a
x
is
y
m
m
e
tri
c
ste
n
o
sis.
P
r
o
c
.
I
n
st
M
e
c
h
.
En
g
,
P
a
rt
H,
En
g
M
e
d
.
2
0
0
1
:
2
1
5
:
1
-
10
.
[1
1
]
Qu
a
rtero
n
i
A
,
T
u
v
e
ri
M
.
a
n
d
V
e
n
e
z
ian
i
A
.
,
C
o
m
p
u
tatio
n
a
l
v
a
sc
u
lar
f
lu
id
d
y
n
a
m
ic
s;
P
r
o
b
le
m
s,
m
o
d
e
ls
a
n
d
m
e
th
o
d
s: C
o
m
p
u
.
V
isu
a
li
z
a
ti
o
n
i
n
S
c
ien
c
e
.
2
0
0
0
:
2
:
1
6
3
-
1
9
7
.
[1
2
]
S
a
n
jee
v
K.
A
m
a
th
e
m
a
ti
c
a
l
m
o
d
e
l
f
o
r
N
e
w
to
n
ian
a
n
d
n
o
n
-
Ne
w
to
n
ian
f
lo
w
th
ro
u
g
h
tap
e
re
d
tu
b
e
s.
In
t.
Re
v
ie
w
o
f
P
u
re
a
n
d
A
p
p
li
e
d
M
a
th
e
m
a
ti
c
s
.
2
0
1
0:
5
.
[1
3
]
S
h
a
ra
n
M
.
a
n
d
P
o
p
e
l
A
.
S
.
,
A
t
wo
-
p
h
a
se
m
o
d
e
l
f
o
r
f
lo
w
o
f
b
lo
o
d
in
n
a
rro
w
tu
b
e
s w
it
h
in
c
re
a
se
d
e
ffe
c
ti
v
e
v
isc
o
sit
y
n
e
a
r
th
e
w
a
ll
,
Bio
rh
e
.
2
0
0
1
:
3
8
:
4
1
5
-
4
2
8
.
[1
4
]
S
h
u
k
la
J.
B.
,
P
a
rih
a
r
R.
S
.
a
n
d
R
a
o
B.
R.
P
.
,
Ef
f
e
c
t
o
f
ste
n
o
sis
o
n
n
o
n
-
Ne
w
to
n
ian
f
lo
w
o
f
th
e
b
lo
o
d
i
n
a
n
a
rtery
,
Bu
ll
.
M
a
th
.
B
io
l.
1
9
8
0
:
4
2
:
2
8
3
-
2
9
4
.
[1
5
]
Ya
k
h
o
t
A
.
,
G
rin
b
e
rg
L
.
a
n
d
Nik
i
ti
n
N.,
M
o
d
e
li
n
g
ro
u
g
h
ste
n
o
se
s
b
y
a
n
i
m
m
e
rs
e
d
-
b
o
u
n
d
a
ry
m
e
th
o
d
:
J.
Bio
m
e
c
h
.
2
0
0
4
.
[1
6
]
Yo
u
n
g
,
D.
F
.
Ef
fe
c
ts
o
f
a
ti
m
e
-
d
e
p
e
n
d
e
n
t
ste
n
o
sis
o
f
f
lo
w
th
ro
u
g
h
a
tu
b
e
,
J
o
u
r
n
a
l
o
f
En
g
.
I
n
d
.
1
9
6
8
:
90
:
2
4
8
-
2
5
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.