I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
6
,
No
.
2
,
J
u
n
e
2
0
1
7
,
p
p
.
7
7
~8
8
I
SS
N:
2252
-
8814
77
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
Desig
n of Conv
er
ters f
o
r
P
V
Sys
te
m
under
P
a
rtial
S
ha
ding
Co
ndition
s
M.
K
o
w
s
a
ly
a
,
K.
B
a
ls
ub
ra
m
a
ny
a
m
S
c
h
o
o
l
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
ri
n
g
,
P
o
w
e
r
El
e
c
tro
n
ics
a
n
d
Driv
e
s Di
v
isio
n
,
V
IT
Un
iv
e
rsity
,
V
e
ll
o
re
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
A
p
r
5
,
2
0
1
7
R
ev
i
s
ed
Ma
y
1
2
,
2
0
1
7
A
cc
ep
ted
Ma
y
1
8
,
2
0
1
7
T
h
is
p
a
p
e
r
p
re
se
n
ts
a
m
a
x
i
m
u
m
p
o
w
e
r
g
e
n
e
ra
ti
o
n
w
it
h
th
e
in
terc
o
n
n
e
c
ti
o
n
o
f
p
h
o
to
v
o
lt
a
ic
m
o
d
u
les
u
n
d
e
r
p
a
rti
a
ll
y
sh
a
d
e
d
a
n
d
/o
r
m
is
m
a
t
c
h
in
g
c
o
n
d
i
ti
o
n
s.
T
h
e
p
a
rti
a
l
sh
a
d
in
g
c
o
n
d
it
io
n
re
d
u
c
e
s
p
o
w
e
r
l
e
v
e
l
o
f
e
a
c
h
m
o
d
u
le.
T
h
e
re
d
u
c
ti
o
n
in
p
o
w
e
r
d
u
e
to
th
e
p
a
rti
a
l
sh
a
d
in
g
w
il
l
b
e
c
o
m
p
e
n
sa
ted
b
y
th
e
b
id
irec
ti
o
n
a
l
c
o
n
v
e
rter.
T
h
e
p
ro
p
o
se
d
sy
ste
m
c
o
n
sistin
g
o
f
tw
o
a
n
d
th
re
e
P
V
m
o
d
u
les
c
o
n
n
e
c
ted
in
se
ries
u
n
d
e
r
p
a
rti
a
l
sh
a
d
in
g
c
o
n
d
it
io
n
s
w
h
ich
a
re
c
a
p
a
b
le
o
f
in
c
re
a
sin
g
th
e
p
o
w
e
r
lev
e
ls
u
p
to
5
0
%
c
o
m
p
a
re
d
to
c
o
n
v
e
n
ti
o
n
a
l
by
-
p
a
ss
d
io
d
e
stru
c
t
u
re
.
I
n
g
e
n
e
ra
l
‘n
’
n
u
m
b
e
r
o
f
m
o
d
u
les
c
o
n
n
e
c
ted
i
n
se
ries
so
th
a
t
th
e
m
a
x
i
m
u
m
p
o
w
e
r
g
a
in
w
il
l
b
e
e
x
p
e
c
te
d
to
(1
0
0
/n
)
%
.
T
h
is
i
s
a
c
h
iev
e
d
b
y
d
e
v
e
lo
p
in
g
th
e
n
e
w
c
o
n
tro
l
stra
teg
y
in
w
h
ich
th
e
c
o
rre
c
t
a
d
ju
stm
e
n
t
o
f
c
o
n
v
e
rter
d
u
ty
ra
t
io
u
n
d
e
r
p
a
rti
a
ll
y
sh
a
d
in
g
c
o
n
d
i
ti
o
n
s.
T
h
e
n
o
v
e
l
c
o
n
tr
o
l
sc
h
e
m
e
is
d
e
v
e
lo
p
e
d
b
y
u
sin
g
a
n
a
ly
sis
o
f
th
e
p
o
w
e
r
c
o
n
v
e
rters
.
T
h
e
p
ro
p
o
se
d
sc
h
e
m
e
w
a
s
v
e
ri
f
ie
d
in
M
A
TL
A
B/S
IM
UL
IN
K.
K
ey
w
o
r
d
:
Bi
-
d
ir
ec
tio
n
al
C
u
k
C
o
n
v
er
ter
MP
PT
P
ar
tial Sh
ad
in
g
P
V
Sy
s
te
m
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
K.
B
alasu
b
r
a
m
a
n
y
a
m
,
Sch
o
o
l o
f
E
lectr
ical
E
n
g
i
n
ee
r
i
n
g
,
VI
T
Un
iv
er
s
it
y
,
Ve
llo
r
e
,
T
am
ilNad
u
,
I
n
d
ia
E
m
ail:
m
k
o
w
s
al
y
a
@
v
it.a
c.
i
n
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
d
ep
letio
n
o
f
tr
ad
itio
n
al
en
er
g
ie
s
an
d
th
e
i
n
cr
ea
s
e
i
n
p
o
llu
tio
n
a
n
d
g
r
ee
n
h
o
u
s
e
g
a
s
e
s
e
m
i
s
s
io
n
,
r
en
e
w
ab
le
en
er
g
y
co
n
tr
ib
u
t
io
n
m
ak
e
s
v
ital
r
o
le
i
n
e
n
er
g
y
s
o
u
r
ce
s
[
1
,
2
]
.
So
m
e
o
f
t
h
e
r
en
e
w
ab
le
en
er
g
y
s
o
u
r
ce
s
ar
e
h
y
d
r
o
,
s
o
lar
an
d
w
i
n
d
.
Of
t
h
ese
s
o
u
r
ce
s
o
f
en
e
r
g
y
,
w
it
h
co
r
r
esp
o
n
d
in
g
i
n
cr
ea
s
e
in
co
s
t
o
f
s
o
lar
p
h
o
to
v
o
ltaic
en
er
g
y
o
f
f
er
s
a
p
r
o
m
i
n
en
t
alter
n
at
iv
e
r
e
n
e
w
a
b
le
en
er
g
y
s
o
u
r
ce
.
So
lar
en
er
g
y
i
s
f
r
ee
,
ab
u
n
d
an
t,
p
o
llu
tio
n
f
r
ee
an
d
also
d
is
tr
i
b
u
ted
th
r
o
u
g
h
o
u
t
t
h
e
ea
r
th
[
3
]
w
it
h
o
n
l
y
d
r
a
w
b
ac
k
o
f
i
n
it
i
al
in
s
tallatio
n
co
s
t.
P
h
o
to
v
o
ltaic
en
er
g
y
s
o
u
r
ce
s
h
a
v
e
b
ee
n
estab
li
s
h
ed
f
o
r
s
p
ac
e
ap
p
licatio
n
s
w
h
er
e
co
s
t
i
s
n
o
t
a
p
r
i
m
ar
y
co
n
s
id
er
atio
n
.
W
ith
t
h
e
p
r
es
en
t
tr
en
d
o
f
r
esear
c
h
,
co
s
t
o
f
p
h
o
to
v
o
ltaic
ce
ll
i
s
ex
p
e
cted
to
g
o
d
o
w
n
s
u
b
s
ta
n
tial
l
y
i
n
f
u
t
u
r
e.
B
ec
au
s
e
o
f
t
h
ese
tr
e
m
en
d
o
u
s
u
s
a
g
es
o
f
s
o
lar
en
er
g
y
,
p
h
o
to
v
o
ltaic
ce
lls
in
v
ad
e
g
en
er
atio
n
o
f
p
o
w
er
i
n
h
o
u
s
e
s
,
in
ter
m
ed
iate
-
s
ize
co
m
m
er
cia
l
in
s
tallatio
n
s
,
o
r
lar
g
e
ce
n
tr
al
p
o
w
er
s
tatio
n
s
.
I
n
h
o
u
s
e
h
o
ld
ap
p
licatio
n
s
p
h
o
to
v
o
ltaic
s
y
s
te
m
o
f
k
ilo
w
att
s
i
n
s
ize
is
m
o
u
n
ted
o
n
th
e
r
o
o
f
to
p
.
T
h
e
av
ailab
le
DC
p
o
w
er
,
w
h
ic
h
v
ar
ies
w
it
h
s
o
lar
in
s
o
latio
n
a
n
d
te
m
p
er
at
u
r
e
,
is
co
n
v
er
ter
to
s
in
g
le
p
h
ase
5
0
-
Hz
AC
f
ed
to
u
ti
lit
y
li
n
e
[
4
,
5
]
.
No
w
-
a
-
d
a
y
s
t
h
er
e
ar
e
s
o
m
a
n
y
r
esear
c
h
to
p
ics
r
ela
ted
to
t
h
e
p
h
o
to
v
o
ltaic
g
e
n
er
atio
n
.
As
th
e
s
o
lar
p
o
w
er
g
e
n
er
atio
n
is
ac
ce
p
ted
th
r
o
u
g
h
o
u
t
b
y
all,
t
h
e
th
e
m
es
o
f
P
V
s
y
s
te
m
is
to
co
n
tr
o
l
ap
p
r
o
ac
h
es
f
o
r
m
ax
i
m
u
m
p
o
w
er
p
o
in
t
tr
ac
k
i
n
g
,
th
is
to
p
ic
d
eter
m
i
n
ed
b
y
t
h
e
V
-
I
o
r
P
-
V
[
6
]
ch
ar
ac
ter
is
tic
cu
r
v
e
s
o
f
t
h
e
s
o
lar
p
an
el.
Un
i
f
o
r
m
s
o
lar
p
o
w
er
-
v
o
ltag
e
c
h
ar
ac
ter
is
tic
s
o
f
P
V
ar
r
ay
ar
e
m
a
x
i
m
ized
b
y
Ma
x
i
m
u
m
P
o
w
er
P
o
in
t
T
ec
h
n
iq
u
e
(
MP
P
T
)
[
7
]
.
Dif
f
er
en
t
MP
P
T
alg
o
r
ith
m
s
h
a
v
e
b
ee
n
p
r
o
p
o
s
ed
in
p
r
ev
io
u
s
liter
atu
r
es,
s
u
c
h
a
s
p
er
tu
r
b
atio
n
an
d
o
b
s
er
v
atio
n
[
8
,
9
]
,
h
ill cli
m
b
i
n
g
,
in
cr
e
m
en
t
al
in
d
u
cta
n
ce
[
1
0
,
1
1
]
(
I
NC
)
e
tc.
As
th
e
w
ea
th
er
co
n
d
itio
n
s
ar
e
in
ter
m
it
ten
t
a
n
d
u
n
ce
r
tai
n
u
s
in
g
MP
P
T
ca
n
s
et
an
d
s
y
s
te
m
w
o
r
k
in
g
p
o
in
t
to
th
e
o
p
ti
m
u
m
a
n
d
ex
tr
ac
t
av
ailab
le
m
a
x
i
m
u
m
p
o
w
er
f
r
o
m
P
V
[
1
2
]
.
T
y
p
ical
p
h
o
to
v
o
ltaic
in
s
tallat
io
n
s
,
P
V
ar
r
ay
s
ar
e
f
o
r
m
ed
b
y
co
n
n
ec
t
in
g
m
u
ltip
le
P
V
m
o
d
u
l
es
i
n
v
ar
io
u
s
co
n
f
i
g
u
r
atio
n
s
s
u
c
h
a
s
s
er
ie
s
[
1
3
]
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
77
–
88
78
p
ar
allel,
s
er
ies
-
p
ar
allel,
etc.
A
by
-
p
ass
d
io
d
e
o
r
b
y
-
p
ass
s
w
it
ch
is
co
n
n
ec
ted
in
p
ar
allel
w
it
h
ea
ch
P
V
m
o
d
u
le
f
o
r
th
e
p
r
o
tectio
n
o
f
s
o
lar
ce
ll
s
ag
ain
s
t
ef
f
icie
n
c
y
d
e
g
r
ad
atio
n
an
d
h
o
t
s
p
o
t
f
ailu
r
e
ef
f
ec
ts
.
I
n
th
e
ca
s
e
w
h
er
e
o
n
e
o
r
m
o
r
e
o
f
t
h
e
P
V
m
o
d
u
les
co
m
p
r
i
s
in
g
t
h
e
P
V
ar
r
ay
s
h
ad
ed
[
1
4
,
1
5
]
i.e
.
d
u
e
to
d
u
s
t,
s
h
ad
in
g
f
r
o
m
s
u
r
r
o
u
n
d
in
g
b
u
ild
i
n
g
s
,
tr
ee
s
o
r
p
o
les,
n
o
n
-
u
n
i
f
o
r
m
s
o
lar
ir
r
ad
iatio
n
th
e
n
th
e
P
V
ar
r
a
y
ex
h
i
b
its
m
u
ltip
le
lo
ca
l
m
ax
i
m
a
a
n
d
o
n
l
y
o
n
e
o
f
t
h
e
m
co
r
r
esp
o
n
d
s
to
th
e
g
lo
b
al
MPP
.
T
h
e
co
n
n
ec
tio
n
o
f
P
V
ce
lls
an
d
m
o
d
u
les
i
n
p
ar
alle
l,
i
n
o
r
d
er
to
av
o
id
t
h
e
e
f
f
ec
t
o
f
p
ar
tial
s
h
ad
in
g
i
s
ap
p
licab
le
o
n
l
y
i
n
lo
w
-
p
o
wer
P
V
s
y
s
te
m
s
.
U
n
d
er
p
ar
tial
s
h
ad
in
g
co
n
d
itio
n
s
,
th
e
c
o
n
v
e
n
tio
n
al
MP
PT
tech
n
iq
u
es
f
ail
to
g
u
ar
an
tee
s
u
cc
es
s
f
u
l
[
1
6
,
1
7
]
t
r
ac
k
in
g
o
f
th
e
g
lo
b
al
MP
P
,
r
esu
ltin
g
in
s
ig
n
if
ican
t
r
ed
u
ct
io
n
o
f
b
o
th
p
o
w
er
g
en
er
atio
n
an
d
th
e
P
V
en
er
g
y
p
r
o
d
u
ctio
n
s
y
s
te
m
r
eliab
ilit
y
.
I
n
t
h
is
p
ap
er
,
b
id
ir
ec
tio
n
al
co
n
v
er
ter
[
1
8
]
w
ith
t
w
o
o
r
th
r
ee
P
V
m
o
d
u
le
s
is
p
r
o
p
o
s
ed
in
s
tead
o
f
in
d
i
v
id
u
al
P
V
m
o
d
u
l
e
f
o
r
ea
ch
DC
-
D
C
co
n
v
er
ter
to
r
ed
u
ce
lo
s
s
e
s
d
u
e
to
co
n
v
er
ter
,
co
s
t,
an
d
s
iz
e.
T
h
e
in
teg
r
atio
n
o
f
P
V
m
o
d
u
le
-
co
n
v
er
ter
u
n
i
t
k
n
o
w
n
as a
Mo
d
u
le
-
I
n
te
g
r
ated
P
V
an
d
C
o
n
v
er
ter
(
MI
P
C
)
[
1
9
]
.
T
h
is
p
ap
er
p
r
esen
ts
a
n
e
w
co
n
tr
o
l
s
ch
e
m
e
o
f
b
id
ir
ec
tio
n
al
c
o
n
v
er
ter
s
co
n
n
ec
ted
to
th
e
t
w
o
an
d
th
r
ee
P
V
m
o
d
u
le
s
ca
n
b
e
r
aised
to
v
o
ltag
e
an
d
cu
r
r
en
t le
v
el
s
u
n
d
e
r
p
ar
tial sh
ad
in
g
co
n
d
itio
n
s
.
2.
DE
S
I
G
N
O
F
P
V
ARRA
Y
U
NDER P
AR
T
I
A
L
SH
AD
I
N
G
CO
NDI
T
I
O
NS
A
p
ar
tiall
y
s
h
ad
ed
m
o
d
u
le
ca
n
b
e
m
o
d
elled
b
y
t
w
o
o
r
th
r
e
e
g
r
o
u
p
s
o
f
P
V
ce
lls
co
n
n
ec
te
d
in
s
er
ie
s
in
s
id
e
a
m
o
d
u
le.
D
u
r
in
g
p
ar
ti
al
s
h
ad
in
g
co
n
d
itio
n
,
a
f
r
ac
ti
o
n
o
f
th
e
ea
c
h
P
V
ce
l
ls
w
h
ic
h
r
ec
ei
v
e
d
if
f
er
e
n
t
lev
el
o
f
ir
r
ad
ian
ce
s
t
ill
o
p
er
ate
at
th
e
n
o
r
m
al
e
f
f
icie
n
c
y
.
As
th
e
cu
r
r
e
n
t
f
lo
w
t
h
r
o
u
g
h
e
v
er
y
ce
ll
i
n
a
s
er
ies
co
n
f
i
g
u
r
atio
n
is
n
atu
r
all
y
co
n
s
tan
t,
t
h
e
s
h
ad
ed
s
h
ell
is
o
p
er
atin
g
w
it
h
a
r
ev
er
s
e
b
ias
v
o
lt
ag
e
to
p
r
o
v
id
e
th
e
s
a
m
e
c
u
r
r
en
ts
6
.
T
h
e
r
esu
ltin
g
r
ev
er
s
e
p
o
lar
it
y
lead
s
to
p
o
w
er
co
n
s
u
m
p
tio
n
a
n
d
a
r
ed
u
ctio
n
in
t
h
e
m
a
x
i
m
u
m
o
u
tp
u
t
p
o
w
er
o
f
t
h
e
p
ar
tiall
y
s
h
ad
ed
P
V
m
o
d
u
le.
T
h
e
Fig
u
r
e
1
S
h
o
w
s
a
n
eq
u
i
v
ale
n
t
cir
c
u
it
r
ep
r
esen
tatio
n
o
f
P
h
o
to
v
o
ltaic
ce
ll u
n
d
e
r
p
ar
tial sh
ad
in
g
co
n
d
itio
n
s
.
Fig
u
r
e
1
.
T
h
r
ee
P
V
Mo
d
u
les C
o
n
n
ec
ted
in
Ser
ie
s
T
h
e
m
at
h
e
m
atica
l e
x
p
r
ess
io
n
f
o
r
a
s
in
g
le
P
h
o
to
v
o
ltaic
ce
ll o
u
tp
u
t c
u
r
r
en
t i
s
g
i
v
e
n
b
y
eq
u
at
io
n
(
1
)
.
=
−
[
(
)
−
1
]
(
1
)
T
h
e
s
er
ies
co
n
f
i
g
u
r
atio
n
o
f
th
r
ee
P
V
m
o
d
u
le
s
in
a
n
ar
r
a
y
r
ec
eiv
i
n
g
ir
r
ad
ian
ce
le
v
el
s
o
f
G
1
,
G
2
an
d
G
3
r
esp
ec
tiv
el
y
.
Un
d
er
th
e
u
n
e
v
e
n
in
s
o
latio
n
G
1
,
G
2
a
n
d
G
3
ar
e
ass
u
m
ed
to
b
e
ir
r
ad
iatio
n
lev
el
s
li
k
e
(
1
0
0
0
w
/
m
2
,
6
0
0
w
/
m
2
,
an
d
2
0
0
w
/
m
2
)
etc.
T
h
e
p
r
esen
ce
o
f
tak
i
n
g
a
tak
i
n
g
s
in
g
le
b
y
p
as
s
d
io
d
e
f
o
r
ea
ch
P
V
m
o
d
u
le
i
n
to
co
n
s
id
er
atio
n
,
th
e
o
u
tp
u
t
cu
r
r
en
t
a
n
d
o
u
tp
u
t
v
o
ltag
e
at
th
e
ar
r
a
y
ter
m
in
al
c
an
b
e
o
b
tain
ed
b
y
s
o
lv
i
n
g
t
h
e
f
o
llo
w
in
g
eq
u
atio
n
s
(
2
)
:
=
{
1
>
1
2
+
1
>
2
3
+
2
+
1
>
3
(
2)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Desig
n
o
f Co
n
ve
r
ters
fo
r
P
V
S
ystem
u
n
d
er P
a
r
tia
l S
h
a
d
i
n
g
C
o
n
d
itio
n
s
(
M.K
o
w
s
a
lya
)
79
A
p
p
l
y
in
g
eq
u
a
tio
n
(
2
)
f
o
r
t
h
e
cu
r
r
en
t
a
n
d
v
o
ltag
e
f
o
r
t
h
e
e
n
tire
P
V
ar
r
a
y
t
h
e
r
es
u
lt
s
r
ep
r
esen
ted
i
n
f
i
g
u
r
e
2
(
a)
an
d
2
(
b
)
ar
e
o
b
tai
n
ed
.
T
h
e
Fig
u
r
e
2
(
a)
an
d
Fi
g
u
r
e
2
(
b
)
s
h
o
w
s
t
h
e
I
-
V
a
n
d
P
-
V
ch
ar
ac
ter
is
t
ics
o
f
th
e
th
r
ee
P
V
m
o
d
u
le
s
u
n
d
er
p
ar
tial s
h
ad
i
n
g
co
n
d
it
io
n
s
(
1
0
0
0
w
/
m
2
,
6
0
0
w
/
m
2
,
an
d
4
0
0
w
/
m
2
).
Fig
u
r
e
2
(
a)
.
I
-
V
C
h
ar
ac
ter
is
it
cs o
f
P
V
P
an
el
u
n
d
er
P
ar
tial Sh
ad
in
g
Fig
u
r
e
2
(
b
)
.
P
V
C
h
ar
ac
ter
is
tic
s
p
f
P
V
P
an
el
u
n
d
er
P
ar
tial Sh
ad
in
g
3.
P
RO
P
O
SE
D
CO
NV
E
RT
E
R
S F
O
R
M
O
DULE
I
N
T
E
G
R
AT
E
D
P
V
UNDE
R
P
ART
I
A
L
SH
ADI
NG
CO
NDIT
I
O
NS
Ma
n
y
s
ch
e
m
e
s
h
a
v
e
b
ee
n
d
ev
elo
p
ed
in
w
h
ich
ea
c
h
i
n
d
iv
id
u
al
P
V
m
o
d
u
le
i
s
p
r
o
v
id
ed
w
ith
a
DC
–
DC
co
n
v
er
ter
f
o
r
m
s
a
n
i
n
te
g
r
ated
P
V
m
o
d
u
le
-
co
n
v
er
ter
u
n
i
t
w
h
ich
is
k
n
o
w
n
as
a
m
o
d
u
le
-
i
n
teg
r
ated
P
V
a
n
d
co
n
v
er
te
r
[
1
8
]
(
MI
P
C
)
.
B
u
t,
th
e
k
e
y
p
r
o
b
lem
w
it
h
t
h
is
ca
s
ca
d
ed
MI
P
C
s
ch
e
m
e
is
,
i
t
m
a
y
n
o
t
en
ab
le
in
d
iv
id
u
al
P
V
m
o
d
u
le
s
to
ac
h
iev
e
m
a
x
i
m
u
m
p
o
w
er
p
o
in
t
(
MP
P
)
o
p
er
atio
n
in
t
h
e
p
ar
tial
s
h
ad
i
n
g
co
n
d
itio
n
s
.
T
h
e
Fig
u
r
e
3
s
h
o
w
s
an
alter
n
a
tiv
e
s
c
h
e
m
e
b
ased
o
n
b
y
p
as
s
i
n
g
MI
P
C
s
.
I
n
t
h
i
s
co
n
f
i
g
u
r
ati
o
n
t
h
e
MI
P
C
s
ar
e
co
n
n
ec
ted
i
n
s
er
ies
b
u
t
P
V
m
o
d
u
les
ar
e
g
r
o
u
p
ed
in
p
air
s
a
n
d
ea
ch
p
air
is
co
n
n
ec
ted
to
a
b
id
ir
ec
tio
n
al
DC
-
D
C
co
n
v
er
ter
s
s
u
c
h
C
u
k
a
n
d
b
u
ck
-
b
o
o
s
t c
o
n
v
er
ter
s
.
Fig
u
r
e
3
.
C
o
n
f
ig
u
r
atio
n
s
o
f
M
I
P
C
S
y
s
te
m
Us
in
g
B
y
p
as
s
A
p
p
r
o
ac
h
I
n
th
is
co
n
f
i
g
u
r
atio
n
th
e
MI
P
C
s
ar
e
co
n
n
ec
ted
in
s
er
ie
s
b
u
t
P
V
m
o
d
u
les
ar
e
g
r
o
u
p
ed
in
p
air
s
an
d
ea
ch
p
air
is
co
n
n
ec
ted
to
b
id
ir
ec
tio
n
al
D
C
-
D
C
co
n
v
er
ter
s
s
u
ch
as
C
u
k
a
n
d
b
u
c
k
-
b
o
o
s
t
co
n
v
er
ter
s
.
T
h
e
m
ai
n
ad
v
an
ta
g
e
o
f
t
h
is
s
ch
e
m
e
o
v
er
th
e
ca
s
ca
d
ed
a
p
p
r
o
ac
h
is
th
at
t
h
e
p
ass
es
p
o
w
er
f
lo
w
u
n
d
er
p
ar
tial
s
h
ad
in
g
co
n
d
itio
n
s
i.e
.
d
if
f
er
en
t
ill
u
m
in
atio
n
lev
e
ls
.
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
is
s
c
h
e
m
e
h
a
s
b
ee
n
s
h
o
w
n
to
b
e
m
u
c
h
b
etter
th
a
n
t
h
e
ca
s
ca
d
ed
s
y
s
te
m
.
T
h
e
MP
P
tr
ac
k
in
g
f
o
r
t
h
e
b
y
p
as
s
ed
MI
P
C
ca
n
s
t
ill
b
e
b
ased
o
n
t
h
e
s
ch
e
m
es
w
h
ic
h
h
a
v
e
b
ee
n
w
id
el
y
ap
p
li
ed
u
n
d
er
n
o
n
e
p
ar
tiall
y
s
h
ad
e
d
s
ch
e
m
es.
Mo
s
t o
f
t
h
ese
al
g
o
r
ith
m
s
ar
e
o
n
l
y
u
s
ed
f
o
r
o
n
e
p
ea
k
p
o
in
t.
Hen
ce
it
r
eq
u
ir
es
les
s
co
m
p
u
tatio
n
al
ef
f
o
r
t
an
d
ar
e
s
i
m
p
ler
to
i
m
p
le
m
en
t
co
m
p
ar
in
g
to
th
o
s
e
ap
p
lied
in
b
y
p
ass
d
io
d
e
an
d
ca
s
ca
d
ed
MI
P
C
s
y
s
te
m
s
.
3
.
1
.
T
WO
P
V
M
O
DULE
SYS
T
E
M
S
T
h
is
p
ap
er
p
r
esen
ts
a
n
o
v
el
m
o
d
el
b
ased
c
o
n
tr
o
l
s
ch
e
m
e
f
o
r
a
p
ar
ticu
lar
m
o
d
u
le
i
n
te
g
r
ate
d
P
V
an
d
co
n
v
er
ter
s
y
s
te
m
,
w
h
er
e
th
e
b
id
ir
ec
tio
n
al
D
C
-
DC
co
n
v
er
ter
s
ar
e
u
s
ed
as
th
e
b
y
p
as
s
co
n
v
er
ter
s
20
.
T
h
e
Fig
u
r
e
4
s
h
o
w
s
t
h
e
MI
P
C
s
y
s
te
m
u
s
i
n
g
b
y
p
ass
f
o
r
t
w
o
P
V
m
o
d
u
les
an
d
s
u
c
h
a
s
y
s
te
m
co
n
n
ec
ted
t
o
a
lo
ad
th
r
o
u
g
h
a
ter
m
i
n
al
b
o
o
s
t
co
n
v
er
ter
.
T
h
i
s
s
ch
e
m
e
co
n
s
is
ti
n
g
o
f
t
w
o
s
e
r
iall
y
co
n
n
ec
ted
P
V
m
o
d
u
le
s
an
d
a
b
id
ir
ec
tio
n
al
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
77
–
88
80
co
n
v
er
ter
h
av
i
n
g
o
n
e
e
n
d
co
n
n
ec
ted
to
P
V
1
an
d
o
t
h
er
en
d
i
s
co
n
n
ec
ted
to
P
V
2
an
d
s
tep
u
p
co
n
v
er
ter
is
u
s
ed
f
o
r
o
u
tp
u
t p
o
w
er
co
n
d
itio
n
i
n
g
.
W
h
en
b
o
th
th
e
p
h
o
to
v
o
ltaic
m
o
d
u
les
ar
e
u
n
i
f
o
r
m
l
y
ill
u
m
i
n
ated
th
e
b
id
ir
ec
tio
n
al
co
n
v
er
ter
p
r
o
d
u
ce
s
ze
r
o
p
o
w
er
.
A
t
th
is
t
i
m
e
b
o
th
s
w
itc
h
es
S
11
a
n
d
S
21
ar
e
t
u
r
n
e
d
o
f
f
a
n
d
c
u
r
r
en
t d
ir
ec
tio
n
is
p
ass
i
n
g
o
n
l
y
t
h
r
o
u
g
h
PV
2
as
w
ell
as P
V
1
to
th
e
lo
ad
.
Hen
ce
th
e
to
tal
p
o
w
er
i
s
s
u
p
p
lied
to
th
e
lo
ad
is
g
iv
e
n
in
eq
u
atio
n
(
3
)
.
=
=
(
1
+
2
)
=
1
1
+
2
(
3
)
A
nd
I
T
=
I
P1
=
I
P2
(
4)
W
h
er
e
V
T
is
th
e
ter
m
i
n
al
v
o
lt
ag
e,
I
T
is
th
e
ter
m
i
n
al
c
u
r
r
en
t,
V
P1
an
d
I
P1
ar
e
th
e
v
o
lta
g
e
an
d
cu
r
r
en
t
o
f
P
V
1
at
th
e
m
a
x
i
m
u
m
p
o
w
er
p
o
in
t
w
h
er
e
as V
P2
an
d
I
P2
ar
e
th
e
v
o
lta
g
e
an
d
cu
r
r
en
t o
f
P
V
2
.
Fig
u
r
e
4
.
MI
P
C
Sy
s
te
m
Usi
n
g
B
y
p
as
s
A
p
p
r
o
ac
h
T
w
o
P
V
Mo
d
u
les
I
f
t
h
e
ill
u
m
i
n
atio
n
lev
e
ls
o
f
t
wo
m
o
d
u
les
i.e
.
P
V
1
an
d
P
V
2
ar
e
d
if
f
er
en
t,
f
o
r
ex
a
m
p
le
th
e
m
o
d
u
le
P
V
2
is
s
h
ad
ed
(
i.e
.
lo
w
ill
u
m
i
n
atio
n
)
th
e
p
o
w
er
o
u
tp
u
t
f
r
o
m
m
o
d
u
le
P
V
1
is
m
o
r
e
th
a
n
t
h
e
m
o
d
u
le
P
V
2
.
B
y
m
ak
in
g
th
e
s
w
i
tch
p
air
S
11
an
d
D
21
i
s
in
ac
tiv
e
p
o
s
itio
n
i.
e.
s
w
itc
h
i
n
g
at
a
f
i
x
ed
f
r
eq
u
en
c
y
w
it
h
d
u
t
y
r
atio
K
11
,
th
e
co
n
v
er
ter
ca
n
m
i
x
t
h
e
p
o
w
er
f
r
o
m
P
V
1
a
w
a
y
f
r
o
m
p
ass
i
n
g
th
r
o
u
g
h
P
V
2
.
T
h
e
v
o
lta
g
e
ac
r
o
s
s
P
V2
r
elate
s
to
th
at
o
f
P
V
1
is
g
iv
e
n
b
y
:
2
=
1
(
5
)
An
d
th
e
c
u
r
r
en
t b
y
p
as
s
to
th
e
b
id
ir
ec
t
io
n
al
co
n
v
er
ter
is
g
iv
e
n
as:
11
=
(
−
2
)
(
11
1
−
11
)
(
6
)
T
h
e
ter
m
i
n
al
c
u
r
r
en
t is
g
i
v
en
as:
=
1
−
(
−
2
)
(
11
1
−
11
)
(
7
)
=
1
(
1
−
11
)
+
2
11
(
7
)
(
8
)
So
th
e
p
o
w
er
o
u
tp
u
t to
th
e
lo
a
d
w
it
h
o
u
t c
o
n
s
id
er
in
g
th
e
lo
s
s
es is
g
iv
e
n
as:
=
=
(
1
+
2
(
11
1
−
11
)
)
(
9
)
=
1
+
1
(
11
1
−
11
)
2
(
8
)
(
1
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Desig
n
o
f Co
n
ve
r
ters
fo
r
P
V
S
ystem
u
n
d
er P
a
r
tia
l S
h
a
d
i
n
g
C
o
n
d
itio
n
s
(
M.K
o
w
s
a
lya
)
81
T
h
e
ab
o
v
e
an
aly
s
is
s
h
o
w
s
t
h
a
t
b
y
v
ar
y
i
n
g
t
h
e
d
u
t
y
r
atio
K
11
in
eq
u
atio
n
(
8
)
,
th
e
m
a
x
i
m
u
m
p
o
w
er
ex
tr
ac
tio
n
ca
n
b
e
ac
h
iev
ed
b
y
s
h
ad
ed
m
o
d
u
le.
T
h
e
d
u
t
y
r
a
tio
K
11
=
0
(
i.e
.
D
21
i
s
co
n
t
in
u
o
u
s
l
y
f
o
r
w
ar
d
b
ia
s
ed
)
,
th
e
o
u
tp
u
t
p
o
w
er
o
f
t
h
e
s
y
s
te
m
is
P
T
=
V
P1
I
P1
,
s
o
th
e
s
h
ad
ed
m
o
d
u
le
i
s
to
tall
y
b
y
p
a
s
s
ed
an
d
p
r
o
d
u
cin
g
ze
r
o
p
o
w
er
.
T
h
e
d
u
t
y
r
atio
is
v
ar
y
i
n
g
b
et
w
ee
n
0
a
n
d
0
.
5
.
Si
m
ila
r
l
y
t
h
is
a
n
al
y
s
is
ca
n
b
e
ap
p
lie
d
to
th
e
ca
s
e
w
h
e
n
PV
1
is
s
h
ad
ed
an
d
s
w
itch
p
air
S
21
an
d
D
11
is
i
n
ac
ti
v
e
p
o
s
itio
n
,
t
h
e
d
u
t
y
r
atio
K
21
ca
n
b
e
ad
j
u
s
ted
in
th
e
r
a
n
g
e
b
et
w
ee
n
0
-
0
.
5
f
o
r
m
i
x
i
n
g
t
h
e
p
o
w
er
to
th
e
co
n
v
er
ter
.
T
h
e
T
ab
le
1
s
h
o
w
s
th
e
co
m
p
ar
i
s
o
n
o
f
m
a
x
i
m
u
m
p
o
w
er
ex
tr
ac
ted
b
y
u
s
in
g
b
y
p
as
s
d
io
d
e
an
d
th
at
u
s
in
g
MI
P
C
t
w
o
P
V
m
o
d
u
le
s
y
s
te
m
.
3
.
2
.
T
H
RE
E
P
V
M
O
DULE
SYS
T
E
M
S
T
h
e
Fig
u
r
e
5
s
h
o
w
s
t
h
e
MI
P
C
s
y
s
te
m
u
s
i
n
g
b
y
p
a
s
s
f
o
r
th
r
ee
P
V
m
o
d
u
le
s
a
n
d
s
u
c
h
a
s
y
s
te
m
co
n
n
ec
ted
to
a
lo
ad
th
r
o
u
g
h
a
ter
m
in
a
l
b
o
o
s
t
co
n
v
er
ter
.
T
h
is
s
ch
e
m
e
co
n
s
is
t
in
g
o
f
t
h
r
e
e
s
er
iall
y
co
n
n
ec
ted
P
V
m
o
d
u
le
s
an
d
t
w
o
b
id
ir
ec
ti
o
n
al
co
n
v
er
ter
s
19
h
a
v
i
n
g
o
n
ee
n
d
co
n
n
ec
ted
to
P
V
1
an
d
o
th
er
en
d
co
n
n
ec
ted
to
PV
3
an
d
s
tep
u
p
co
n
v
er
ter
is
u
s
ed
f
o
r
o
u
tp
u
t p
o
w
er
co
n
d
itio
n
in
g
.
Fig
u
r
e
5
.
MI
P
C
S
y
s
te
m
Us
in
g
B
y
p
as
s
A
p
p
r
o
ac
h
T
h
r
ee
P
V
Mo
d
u
les
As
ca
n
s
ee
Fi
g
u
r
e
5
,
th
er
e
ar
e
to
tal
f
o
u
r
d
e
v
ice
p
air
s
t
h
es
e
ar
e
S1
1
-
D
21,
S
12
-
D
11
f
o
r
b
id
ir
ec
tio
n
al
co
n
v
er
ter
1
,
an
d
S
21
-
D
22
,
S
22
–
D
21
f
o
r
b
id
ir
ec
tio
n
al
co
n
v
er
ter
2
.
T
h
e
s
y
s
te
m
ca
n
b
e
o
p
er
ated
in
f
o
u
r
m
o
d
es
a
s
lis
ted
s
h
o
w
n
i
n
b
elo
w
.
1.
11
−
12
ℎ
21
−
22
,
2.
11
−
12
ℎ
22
−
21
,
3.
12
−
11
ℎ
21
−
22
,
4.
12
−
11
ℎ
22
−
21
.
Fo
llo
w
i
n
g
t
h
e
s
a
m
e
ap
p
r
o
ac
h
as
in
th
e
p
r
ev
io
u
s
s
ec
t
io
n
f
o
r
a
t
w
o
P
V
m
o
d
u
le
s
y
s
te
m
,
th
e
to
ta
l
o
u
tp
u
t p
o
w
er
eq
u
at
io
n
f
o
r
a
th
r
ee
P
V
m
o
d
u
le
s
y
s
te
m
i
s
g
i
v
e
n
as:
=
1
+
2
+
3
=
(
1
+
2
+
3
)
(
1
1
)
=
1
1
+
2
2
+
3
3
(
1
2
)
W
h
en
th
e
ill
u
m
in
a
tio
n
lev
el
s
f
o
r
modul
e
s
PV
1
a
n
d
P
V
2
ar
e
d
if
f
er
en
t,
th
e
p
o
w
er
is
b
y
p
ass
ed
to
o
r
f
r
o
m
co
n
v
er
ter
1
.
T
h
e
cu
r
r
en
t I
L1
is
n
o
n
-
ze
r
o
an
d
w
h
e
n
it is
p
o
s
itiv
e.
I
L
1
=
I
P1
−
I
T
>
0
(
13)
T
h
e
eq
u
atio
n
(
1
0
)
ca
n
b
e
ex
p
r
ess
ed
in
ter
m
s
o
f
p
o
w
er
an
d
v
o
ltag
es a
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
77
–
88
82
T
ab
le
1
.
C
o
m
p
ar
is
o
n
o
f
Ma
x
i
m
u
m
P
o
w
er
E
x
tr
ac
ted
Usi
n
g
B
y
p
as
s
Dio
d
e
an
d
T
h
at
Usi
n
g
MI
P
C
S
y
s
te
m
S
.
N
O
S
o
l
a
r
i
r
r
a
d
i
a
t
i
o
n
f
o
r
P
V
1
(
%)
S
o
l
a
r
i
r
r
a
d
i
a
t
i
o
n
f
o
r
P
V
2
(
%)
T
o
t
a
l
O
u
t
p
u
t
p
o
w
e
r
e
x
t
r
a
c
t
e
d
P
T
(
W
)
P
o
w
e
r
e
x
t
r
a
c
t
e
d
u
si
n
g
b
y
p
a
ss d
i
o
d
e
P
D
(W)
Ga
i
n
∆
P
=
P
T
−
P
d
(
W
)
Pe
r
c
e
n
t
a
ge
ga
i
n
(
∆
P
P
d
∗
100%
)
1
1
0
0
0
1
0
0
0
5
9
.
5
5
9
.
5
0
0
2
1
0
0
0
8
0
0
5
7
.
7
5
2
5
.
2
3
2
.
5
5
1
2
9
.
1
6
3
1
0
0
0
6
0
0
5
4
.
4
5
1
9
.
8
3
4
.
6
5
1
7
5
4
1
0
0
0
4
0
0
4
6
.
7
5
1
0
.
8
3
5
.
9
5
3
3
2
5
1
0
0
0
2
0
0
3
9
.
7
1
3
.
6
3
6
.
1
1
1
0
0
3
.
0
5
T
ab
le
2
.
C
o
m
p
ar
is
o
n
b
et
w
ee
n
t
h
e
Am
o
u
n
ts
o
f
P
o
w
er
s
E
x
tr
ac
t
ed
Usi
n
g
PV
-
I
n
teg
r
ated
C
o
n
v
er
te
r
an
d
T
h
o
s
e
Usi
n
g
B
y
p
a
s
s
Dio
d
es
S
.
N
O
S
o
l
a
r
i
r
r
a
d
i
a
t
i
o
n
f
o
r
P
V
1
(
%)
S
o
l
a
r
i
r
r
a
d
i
a
t
i
o
n
f
o
r
P
V
2
(
%)
S
o
l
a
r
i
r
r
a
d
i
a
t
i
o
n
f
o
r
P
V
3
(
%)
T
o
t
a
l
O
u
t
p
u
t
p
o
w
e
r
e
x
t
r
a
c
t
e
d
P
T
(
W
)
P
o
w
e
r
e
x
t
r
a
c
t
e
d
u
si
n
g
b
y
p
a
ss
d
i
o
d
e
P
D
(W)
Ga
i
n
∆
P
=
P
T
−
P
d
(
W
)
Pe
r
c
e
n
t
a
ge
ga
i
n
(
∆
P
P
d
∗
100%
)
1
2
0
0
6
0
0
1
0
0
0
6
3
.
7
2
3
.
7
36
1
2
9
.
9
6
2
4
0
0
6
0
0
1
0
0
0
7
1
.
7
3
5
.
7
36
1
0
0
3
7
0
0
6
0
0
1
0
0
0
8
1
.
8
4
5
.
8
36
7
8
.
6
4
1
0
0
0
6
0
0
1
0
0
0
9
3
.
2
9
3
.
2
36
6
2
.
9
3
5
2
0
0
3
0
0
1
0
0
0
5
1
.
9
5
1
.
9
36
2
2
6
6
4
0
0
3
0
0
1
0
0
0
5
9
.
9
5
9
.
9
36
1
5
0
.
6
7
7
0
0
3
0
0
1
0
0
0
70
70
36
9
4
.
4
8
1
0
0
0
3
0
0
1
0
0
0
8
1
.
4
8
1
.
4
36
7
9
.
2
1
+
2
+
3
1
>
1
+
2
+
3
1
(
1
4
)
T
h
e
eq
u
atio
n
(
1
1
)
ca
n
b
e
ex
p
r
ess
ed
as:
1
+
2
+
3
<
3
1
(
1
5
)
T
h
e
eq
u
atio
n
(
1
2
)
ca
n
b
e
ex
p
r
ess
ed
in
ter
m
s
o
f
ir
r
ad
iatio
n
s
G
1
, G
2
, G
3
as:
1
+
2
+
3
<
3
1
(
16)
T
h
e
eq
u
atio
n
(
1
3
)
ca
n
b
e
w
r
itt
en
as:
2
+
3
2
<
1
(
1
7
)
T
h
u
s
f
o
r
s
p
ec
if
ic
s
et
o
f
t
h
e
li
g
h
t
le
v
els,
i
f
th
e
y
s
ati
s
f
y
th
e
eq
u
atio
n
(
1
4
)
,
s
w
itch
p
air
S
11
-
D
21
s
h
o
u
ld
b
e
ac
tiv
e
to
en
s
u
r
e
p
o
s
itiv
e
d
ir
ec
tio
n
o
f
I
L1
,
o
th
er
w
i
s
e
t
h
e
s
w
itc
h
p
air
S
21
-
D
21
i
s
ac
ti
v
ated
.
T
h
e
s
i
m
ilar
an
al
y
s
is
ca
n
b
e
ap
p
lied
to
co
n
v
er
ter
2
b
u
t
n
o
w
it
i
s
b
ased
o
n
t
h
e
c
u
r
r
en
t
d
ir
ec
tio
n
o
f
I
L
22,
s
o
s
w
itc
h
p
air
S
22
-
D
21
is
ac
ti
v
e
if
t
h
e
li
g
h
t c
o
n
d
it
io
n
is
g
iv
e
n
as:
1
+
2
2
<
3
(
18)
T
h
e
co
m
b
in
at
io
n
o
f
li
g
h
t
lev
e
ls
an
d
th
eir
r
esp
ec
ti
v
e
s
w
itc
h
i
n
g
s
tatu
s
f
o
r
th
e
t
w
o
i
n
n
er
co
n
v
er
ter
s
1
an
d
2
ar
e
ex
p
lain
ed
i
n
T
ab
le
3
.
T
ab
le
3
.
L
ig
h
t
C
o
n
d
itio
n
s
to
Dete
r
m
i
n
e
th
e
A
c
tiv
e
P
air
s
M
o
d
e
L
i
g
h
t
c
o
n
d
i
t
i
o
n
s
A
c
t
i
v
e
d
e
v
i
c
e
p
a
i
r
s
1
2
+
3
2
<
1
1
+
2
2
<
3
S
11
-
D
21
a
n
d
S
22
-
D
12
2
2
+
3
2
>
1
1
+
2
2
>
3
S
21
-
D
11
a
n
d
S
12
-
D
22
3
2
+
3
2
<
1
1
+
2
2
>
3
S
11
-
D
21
a
n
d
S
12
-
D
22
4
2
+
3
2
>
1
1
+
2
2
<
3
S
21
-
D
11
a
n
d
S
22
-
D
12
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Desig
n
o
f Co
n
ve
r
ters
fo
r
P
V
S
ystem
u
n
d
er P
a
r
tia
l S
h
a
d
i
n
g
C
o
n
d
itio
n
s
(
M.K
o
w
s
a
lya
)
83
T
h
e
Fig
u
r
e
6
(
a,
b
,
c,
d
)
s
h
o
w
s
th
e
f
o
u
r
m
o
d
es o
f
s
w
i
tch
in
g
o
p
er
atio
n
s
.
Fig
u
r
e
6
(
a)
.
Mo
d
e
-
1
: S
11
-
D
21
an
d
S
22
-
D
12
A
r
e
A
cti
v
e
Fig
u
r
e
6
(
b
)
.
Mo
d
e
-
2
: S
21
-
D
11
an
d
S
12
-
D
22
A
r
e
A
cti
v
e
Fig
u
r
e
6
(
c)
.
Mo
d
e
-
3
: S
11
-
D
21
an
d
S
12
-
D
22
A
r
e
A
cti
v
e
Fig
u
r
e
6
(
d
)
.
Mo
d
e
-
4
: S
21
-
D
11
an
d
S
22
-
D
12
A
r
e
A
cti
v
e
4.
CL
O
S
E
D
L
O
O
P
CO
NT
RO
L
O
F
T
H
RE
E
P
V
M
O
DULE
SYS
T
E
M
S UN
DE
R
P
AR
T
I
A
L
SH
ADIN
G
CO
ND
I
T
I
O
N
T
h
e
r
eg
u
latio
n
o
f
t
h
e
co
n
v
er
te
r
o
p
er
atio
n
in
Sectio
n
3
w
as
ac
h
iev
ed
th
r
o
u
g
h
o
p
en
-
lo
o
p
co
n
tr
o
ller
s
,
it
is
h
i
g
h
l
y
d
esira
b
le
to
h
a
v
e
a
co
m
p
lete
c
lo
s
ed
-
lo
o
p
co
n
tr
o
l
in
a
p
r
ac
tical
s
y
s
te
m
w
h
ic
h
h
as
th
e
p
o
ten
tial
t
o
eli
m
i
n
ate
a
n
y
s
tead
y
-
s
ta
te
er
r
o
r
s
d
u
e
to
p
o
w
er
lo
s
s
e
s
in
co
n
v
er
ter
an
d
al
s
o
p
r
ev
en
ts
a
n
y
f
lu
c
tu
at
io
n
o
f
P
V
v
o
ltag
e
a
n
d
cu
r
r
en
t
d
u
e
to
s
u
d
d
en
o
r
r
ap
id
ch
an
g
e
i
n
w
ea
t
h
er
co
n
d
itio
n
s
.
I
n
ad
d
itio
n
,
th
e
co
n
tr
o
l
s
ch
e
m
e
f
o
r
th
is
s
y
s
te
m
s
h
o
u
ld
also
e
n
ab
le
all
th
r
ee
P
V
m
o
d
u
les
to
o
p
er
a
te
at
th
eir
p
ea
k
p
o
w
er
p
o
in
t
s
f
o
r
an
y
ill
u
m
i
n
atio
n
co
n
d
itio
n
s
.
A
ll
th
e
s
e
r
eq
u
ir
e
co
o
r
d
in
ated
co
n
tr
o
l
f
o
r
th
e
t
w
o
i
n
n
er
b
id
ir
ec
tio
n
al
co
n
v
er
ter
s
a
n
d
t
h
e
ter
m
i
n
al
b
o
o
s
t
co
n
v
er
ter
.
A
t
w
o
lo
o
p
s
ch
e
m
e
is
t
h
u
s
p
r
o
p
o
s
ed
,
w
h
i
ch
co
n
s
i
s
ts
o
f
a
co
n
tr
o
l
alg
o
r
ith
m
f
o
r
th
e
in
n
e
r
co
n
v
er
ter
s
ad
j
u
s
ti
n
g
t
h
e
ter
m
i
n
al
v
o
ltag
e
s
o
f
i
n
d
iv
id
u
al
P
V
m
o
d
u
les
a
n
d
a
f
ee
d
b
ac
k
co
n
tr
o
l
s
c
h
e
m
e
to
r
eg
u
late
th
e
en
tire
s
y
s
te
m
o
u
tp
u
t
v
o
lta
g
e
b
y
t
h
e
ter
m
in
al
b
o
o
s
t
co
n
v
er
ter
.
T
h
e
w
h
o
le
s
y
s
te
m
i
s
s
h
o
w
n
i
n
Fig
u
r
e
7
.
Fig
u
r
e
7
.
C
o
n
f
ig
u
r
atio
n
o
f
th
e
Ov
er
all
S
y
s
te
m
f
o
r
A
T
h
r
ee
PV
-
m
o
d
u
le
s
y
s
te
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
77
–
88
84
4.1.
C
O
N
T
R
O
L
A
L
G
O
R
ITH
M
F
O
R
INN
E
R
C
O
N
V
E
R
T
E
R
S
A
cc
o
r
d
in
g
to
t
h
e
m
ea
s
u
r
ed
lev
els
o
f
s
u
n
li
g
h
t
a
n
d
s
h
ad
in
g
c
o
n
d
itio
n
s
w
ith
in
ea
c
h
u
n
it,
th
e
s
w
itc
h
in
g
m
o
d
e
s
f
o
r
th
e
t
w
o
in
n
er
c
o
n
v
er
ter
s
ca
n
b
e
s
e
lecte
d
b
ased
o
n
t
h
e
s
c
h
e
m
e
d
escr
ib
ed
in
Sect
io
n
2
.
1
.
Su
b
s
eq
u
e
n
tl
y
th
e
d
u
t
y
r
atio
s
o
f
t
h
e
co
n
v
er
ter
s
ar
e
ad
j
u
s
ted
ac
co
r
d
in
g
to
a
s
p
ec
iall
y
d
esig
n
ed
co
n
tr
o
l
alg
o
r
ith
m
.
Fo
r
a
t
y
p
ica
l
d
c
–
d
c
co
n
v
er
ter
t
h
e
v
o
lta
g
e
o
n
o
n
e
s
id
e,
eit
h
er
t
h
e
in
p
u
t
o
r
o
u
tp
u
t
s
id
e,
is
h
e
ld
co
n
s
ta
n
t
b
y
a
v
o
ltag
e
s
o
u
r
ce
an
d
th
e
o
t
h
er
s
id
e
is
co
n
tr
o
llab
le.
Ho
w
ev
er
,
i
n
t
h
is
s
y
s
te
m
t
h
e
v
o
lta
g
es
a
t
b
o
th
s
id
es
o
f
t
h
e
i
n
n
er
co
n
v
er
ter
ar
e
d
eter
m
in
ed
b
y
t
h
eir
r
esp
ec
ti
v
e
P
V
m
o
d
u
les
w
h
ic
h
ar
e
v
ar
y
in
g
s
i
m
u
ltan
eo
u
s
l
y
w
h
e
n
ch
a
n
g
in
g
t
h
e
d
u
t
y
r
at
io
f
o
r
ea
ch
MI
P
C
u
n
it
s
h
o
w
n
i
n
Fi
g
u
r
e
6
(
a,
b
,
c,
d
)
.
A
b
lo
ck
d
iag
r
a
m
o
f
th
e
co
n
tr
o
l
s
ch
e
m
e
is
a
s
s
h
o
w
n
i
n
Fig
u
r
e
8
.
Her
e
V
upper
is
t
h
e
m
ain
co
n
tr
o
lled
v
o
lta
g
e
to
d
eter
m
i
n
e
th
e
d
u
t
y
r
atio
k
1
a
n
d
t
h
e
co
n
tr
o
ller
H
1
(
s
)
is
s
et
as
a
lead
co
m
p
en
s
ato
r
.
T
h
e
s
i
g
n
a
l
f
r
o
m
th
e
‘
Detu
n
i
n
g
L
o
o
p
’
is
tr
ea
ted
a
s
a
d
is
tu
r
b
an
ce
to
ad
j
u
s
t
K
upper
.
I
n
th
is
w
a
y
,
tig
h
t
co
n
tr
o
l
o
f
V
upper
ca
n
b
e
ac
h
iev
ed
t
h
r
o
u
g
h
th
e
‘
Ma
in
L
o
o
p
’
i
n
Fig
u
r
e
8
.
W
h
ils
t
v
ar
iatio
n
o
f
V
lower
m
a
y
b
e
co
n
ta
in
ed
t
h
r
o
u
g
h
t
h
e
‘
Det
u
n
in
g
L
o
o
p
’
i
n
Fig
u
r
e
8
.
Si
m
ilar
an
al
y
s
is
as
ab
o
v
e
ca
n
b
e
d
o
n
e
f
o
r
th
e
r
e
g
u
la
tio
n
s
ch
e
m
e
o
f
K
lower
,
w
h
ic
h
i
s
t
h
e
co
n
tr
o
l
v
ar
iab
le
f
o
r
t
h
e
d
u
t
y
r
atio
o
f
t
h
e
MI
P
C
’
s
lo
w
er
s
w
itc
h
b
u
t
n
o
w
V
lower
is
tak
e
n
a
s
t
h
e
m
ai
n
co
n
tr
o
lled
v
o
l
tag
e
w
h
ile
V
upper
a
s
d
is
tu
r
b
an
ce
.
Ne
v
er
t
h
eles
s
f
o
r
s
tab
ilit
y
,
eith
er
th
e
r
e
g
u
latio
n
o
f
K
lower
o
r
K
upper
(
b
u
t
n
o
t
b
o
th
)
ca
n
b
e
d
o
n
e
at
a
ti
m
e;
t
h
is
co
n
d
itio
n
is
s
till
v
ali
d
as
f
r
o
m
Sectio
n
2
,
it
is
k
n
o
w
n
th
a
t
o
n
e
d
ev
ice
p
air
in
ea
c
h
MI
P
C
ca
n
o
n
l
y
b
e
ac
tiv
e.
T
h
e
o
v
er
all
d
esi
g
n
s
c
h
e
m
e
ca
n
th
e
n
b
e
ap
p
lied
to
b
o
th
MI
P
C
u
n
it
s
in
Fi
g
u
r
e
6
(
a,
b
,
c,
d
)
.
T
u
n
in
g
o
f
th
e
lead
co
m
p
en
s
ato
r
is
b
as
ed
o
n
th
e
tr
an
s
f
er
f
u
n
ctio
n
s
i
n
(
1
6
)
an
d
(
2
4
)
.
T
h
e
s
y
s
te
m
i
s
s
tab
le,
h
av
i
n
g
f
o
u
r
p
o
les
an
d
t
w
o
ze
r
o
s
in
t
h
e
lef
t
-
h
an
d
-
s
id
e
o
f
s
-
p
la
n
e.
T
h
e
ter
m
in
a
l
v
o
lta
g
e
is
v
ar
y
i
n
g
i
n
v
e
r
s
el
y
w
it
h
t
h
e
d
u
t
y
r
atio
as
in
d
icate
d
b
y
t
h
e
n
e
g
at
iv
e
s
i
g
n
.
T
h
e
co
n
tr
o
ller
is
d
esig
n
ed
to
in
cr
ea
s
e
t
h
e
p
h
a
s
e
m
a
r
g
in
t
h
r
o
u
g
h
p
h
a
s
e
lead
co
m
p
en
s
a
tio
n
a
n
d
to
r
ea
l
is
e
ze
r
o
s
tead
y
s
tate
er
r
o
r
u
s
i
n
g
t
h
e
la
g
ter
m
.
T
h
is
ca
n
b
e
a
n
al
y
s
ed
t
h
r
o
u
g
h
its
t
w
o
d
er
iv
ed
tr
an
s
f
er
f
u
n
ctio
n
s
is
s
h
o
w
n
i
n
Fi
g
u
r
e
8
.
Fig
u
r
e
8
.
C
lo
s
ed
L
o
o
p
C
o
n
tr
o
l Sch
e
m
e
f
o
r
C
o
n
tr
o
llin
g
t
h
e
P
V
T
er
m
in
al
Vo
lta
g
e
s
T
h
e
f
ir
s
t
i
s
b
et
w
ee
n
t
h
e
P
V
v
o
ltag
e
at
it
s
u
p
p
er
ter
m
i
n
al
(
wh
ich
is
d
e
n
o
ted
as
V
upper
)
a
n
d
th
e
co
n
tr
o
l
v
ar
iab
le
w
h
ich
co
n
ti
n
u
o
u
s
l
y
a
d
j
u
s
ts
t
h
e
d
u
t
y
r
atio
f
o
r
th
e
u
p
p
er
s
w
itc
h
(
w
h
ich
is
d
e
n
o
ted
as
K
upper
)
;
th
i
s
is
g
i
v
e
n
as
19
:
G
1
(
S
)
=
V
u
p
p
r
(
S
)
K
u
p
p
e
r
(
s
)
(1
6
)
=
−
β
1
S
+
β
0
α
3
S
3
+
α
2
S
2
+
α
1
S
+
α
0
V
T
(1
7
)
W
h
er
e
1
,
0
,
3
,
2
,
0
ar
e
th
e
p
ar
am
eter
s
o
f
cir
cu
it
ele
m
e
n
ts
i
n
d
u
cto
r
an
d
ca
p
ac
ito
r
.
T
h
e
ab
o
v
e
p
ar
am
eter
s
ca
n
e
x
p
r
ess
in
ter
m
s
o
f
ca
p
ac
itan
ce
an
d
i
n
d
u
cta
n
ce
s
.
β
1
=
C
n
+
CK
+
L
(
1
−
K
)
R
P2
(
(
1
−
K
)
R
P1
−
K
R
P2
)
(18)
0
=
(
1
−
)
2
1
+
2
2
(
19)
α
3
=
c
n
L
(
2C
+
L
R
P1
R
P2
)
+
c
2
L
(
K
2
+
(
1
−
K
2
)
)
(
20)
α
2
=
L
(
C
n
+
C
K
2
+
C
(
1
−
K
2
)
)
(
1
R
P1
+
1
R
P2
)
(
21)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Desig
n
o
f Co
n
ve
r
ters
fo
r
P
V
S
ystem
u
n
d
er P
a
r
tia
l S
h
a
d
i
n
g
C
o
n
d
itio
n
s
(
M.K
o
w
s
a
lya
)
85
α
1
=
C
n
+
(
K
2
+
(
1
−
K
2
)
)
(
C
+
L
R
P1
R
P2
)
(
22)
α
0
=
(
(
1
−
K
)
2
)
R
P1
+
K
2
R
P2
(
23)
T
h
e
s
ec
o
n
d
tr
an
s
f
er
f
u
n
ctio
n
i.e
.
eq
u
atio
n
(
4
.
8
)
g
iv
e
s
lo
w
er
ter
m
i
n
al
v
o
ltag
e
a
n
d
lo
w
er
s
w
itc
h
d
u
t
y
r
atio
.
G
2
(
S
)
=
V
l
o
wer
(
S
)
K
l
o
wer
(
s
)
(
24)
=
γ
1
S
+
γ
0
α
3
S
3
+
α
2
S
2
+
α
1
S
+
α
0
V
T
(
25)
W
h
er
e
1
an
d
0
ar
e
th
e
p
ar
a
m
eter
s
o
f
cir
c
u
it
ele
m
en
ts
i
n
d
u
cto
r
an
d
ca
p
ac
ito
r
.
T
h
e
ab
o
v
e
p
ar
am
eter
s
ca
n
e
x
p
r
ess
in
ter
m
s
o
f
ca
p
ac
itan
ce
an
d
i
n
d
u
cta
n
ce
s
.
γ
1
=
C
n
+
C
(
1
−
K
)
+
LK
R
P1
(
K
R
P2
−
(
1
−
K
)
R
P1
)
(
26)
γ
0
=
(
1
−
K
)
2
R
P1
+
K
2
R
P2
(
27)
No
te
th
at
t
h
e
t
w
o
tr
an
s
f
er
f
u
n
c
tio
n
s
al
s
o
v
ar
y
ac
co
r
d
in
g
to
PV
m
o
d
u
le
’
s
i
n
ter
n
al
i
m
p
ed
a
n
c
es,
s
tead
y
-
s
tate
d
u
t
y
r
at
io
v
al
u
es,
as
w
ella
s
ter
m
i
n
al
v
o
ltag
e
V
T
,
w
h
ic
h
all
tak
e
d
if
f
er
en
t
v
al
u
esacc
o
r
d
in
g
to
t
h
e
o
p
er
atin
g
p
o
in
t.
T
h
u
s
t
h
e
y
b
o
th
ar
e
n
o
n
l
in
ea
r
p
r
o
ce
s
s
es.T
ak
in
g
i
n
to
ac
co
u
n
t
t
h
e
ef
f
ec
t
o
f
d
u
t
y
r
a
tio
ch
a
n
g
e
o
n
th
e
t
w
o
ter
m
in
al
v
o
lta
g
es,
t
h
e
clo
s
ed
-
lo
o
p
co
n
tr
o
l
s
ch
e
m
e
f
o
r
th
e
in
n
er
co
n
v
er
ter
is
s
o
d
esig
n
ed
th
at
co
n
tr
o
l
o
f
o
n
eter
m
i
n
al
v
o
lta
g
e
ta
k
es
p
r
ec
ed
en
ce
in
d
eter
m
i
n
i
n
g
t
h
e
co
n
v
er
ter
d
u
t
y
r
atio
.
T
h
e
o
th
er
,
h
o
w
e
v
er
,
i
s
tr
ea
ted
as a
d
is
tu
r
b
an
ce
s
i
g
n
al
t
o
d
etu
n
e
th
e
co
n
tr
o
l sig
n
al.
5.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
P
V
-
co
n
v
er
ter
in
teg
r
ated
s
y
s
te
m
h
as
b
ee
n
e
v
al
u
ated
t
h
r
o
u
g
h
co
m
p
u
ter
s
i
m
u
lat
io
n
.
T
h
e
m
o
d
el
f
o
r
th
e
t
w
o
an
d
th
r
ee
P
V
m
o
d
u
le
s
y
s
te
m
s
h
a
v
e
b
ee
n
d
ev
elo
p
ed
u
s
in
g
M
A
T
L
A
B
-
SIM
UL
I
NK
s
o
f
t
w
ar
e
p
ac
k
a
g
e
in
clu
d
i
n
g
SIM
P
OW
E
R
to
o
l
b
o
x
es.
T
h
e
lead
c
o
m
p
e
n
s
ato
r
co
n
tr
o
ller
f
o
r
b
o
th
in
n
er
an
d
o
u
ter
co
n
v
er
ter
s
is
m
o
d
elled
b
y
u
s
in
g
co
n
tr
o
l
to
o
l
b
o
x
M
A
T
L
A
B
.
A
M
A
T
L
A
B
alg
o
r
it
h
m
f
o
r
MP
P
tr
ac
k
in
g
is
al
s
o
in
co
r
p
o
r
ated
in
to
th
e
m
o
d
el
t
h
r
o
u
g
h
a
n
u
n
d
e
r
-
d
ef
i
n
ed
s
-
f
u
n
ctio
n
b
lo
ck
.
T
h
e
o
p
en
lo
o
p
s
y
s
te
m
ca
n
b
e
o
p
er
ated
in
t
w
o
w
a
y
s
o
n
e
i
s
t
w
o
P
V
m
o
d
u
le
s
y
s
te
m
s
a
n
d
o
th
er
is
th
r
ee
P
V
m
o
d
u
le
s
y
s
te
m
s
.
T
h
e
o
u
t
p
u
t
o
f
t
w
o
an
d
th
r
ee
P
V
m
o
d
u
les
ca
n
b
e
co
n
n
ec
ted
to
d
c
l
o
ad
w
it
h
t
h
e
h
elp
o
f
b
o
o
s
t
co
n
v
er
ter
.
T
h
e
Fig
u
r
e
9
d
is
p
lay
s
th
e
s
i
m
u
la
ted
r
esp
o
n
s
e
f
o
r
th
e
t
w
o
P
V
m
o
d
u
le
s
w
it
h
t
w
o
d
if
f
er
en
t
p
ar
tial
s
h
ad
in
g
co
n
d
itio
n
s
.
A
l
l
P
V
m
o
d
u
les
ar
e
o
p
er
atin
g
u
n
d
er
th
e
s
a
m
e
te
m
p
er
atu
r
e
o
f
2
5
0
C
an
d
in
itiall
y
,
th
e
y
ar
e
u
n
i
f
o
r
m
l
y
ir
r
ad
iated
w
it
h
G1
=
G2
=
1
0
0
0
W
/m
2
.
T
h
e
ef
f
ec
ts
o
n
t
h
e
P
V
v
o
ltag
es
a
n
d
p
o
w
er
s
r
esu
lti
n
g
f
r
o
m
t
h
e
c
h
a
n
g
e
s
o
f
lig
h
t
le
v
el
s
G1
=
1
0
0
0
W
/
m
2
an
d
G2
=
4
0
0
W
/
m
2
.
A
t
t
=
0
.
5
1
s
,
th
e
v
o
lta
g
e
lev
els
ar
e
s
h
ar
i
n
g
b
et
w
ee
n
t
w
o
m
o
d
u
le
s
an
d
g
i
v
es
m
ax
i
m
u
m
v
o
ltag
e
le
v
el.
Du
e
to
ch
an
g
es
i
n
ir
r
ad
iatio
n
lev
els t
h
e
v
o
ltag
e
le
v
els ar
e
d
ec
r
ea
s
in
g
u
p
to
4
0
V
an
d
m
ain
ta
in
co
n
s
tan
t le
v
el
s
tar
ts
at
ti
m
e
t
=
1
s
.
Fig
u
r
e
9
.
Si
m
u
latio
n
Ou
tp
u
t V
o
ltag
e,
C
u
r
r
en
t,
P
o
w
er
o
f
MI
P
C
S
y
s
te
m
U
s
i
n
g
B
y
p
as
s
A
p
p
r
o
ac
h
f
o
r
T
w
o
P
V
Mo
d
u
les
Fig
u
r
e
1
0
.
Si
m
u
latio
n
O
u
tp
u
t V
o
ltag
e,
C
u
r
r
en
t,
P
o
w
er
o
f
MI
P
C
S
y
s
te
m
U
s
in
g
B
y
p
a
s
s
A
p
p
r
o
ac
h
f
o
r
T
h
r
ee
P
V
Mo
d
u
le
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
77
–
88
86
Fig
u
r
e
1
0
d
is
p
lay
s
th
e
s
i
m
u
l
ated
r
esp
o
n
s
e
f
o
r
th
e
th
r
ee
P
V
m
o
d
u
les
w
i
th
t
h
r
ee
d
if
f
er
e
n
t
p
ar
tial
s
h
ad
i
n
g
co
n
d
itio
n
s
i.e
.
(
1
0
0
0
W
/
m
2
,
5
0
0
W
/m
2
,
a
n
d
8
0
0
W
/m
2
)
.
T
h
e
ef
f
ec
ts
o
n
t
h
e
P
V
v
o
ltag
es
a
n
d
p
o
w
er
s
r
esu
lti
n
g
f
r
o
m
t
h
e
ch
a
n
g
e
s
o
f
lig
h
t
lev
el
s
G
1
=
1
0
0
0
W
/m
2
,
G
2
=
5
0
0
W
/m
2
an
d
G
3
=
8
0
0
W
/
m
2
.
A
t
t
=
0
.
8
s
,
th
e
v
o
ltag
e
lev
el
s
ar
e
s
tar
t
s
r
is
i
n
g
an
d
in
cr
ea
s
ed
to
m
a
x
i
m
u
m
v
o
ltag
e
le
v
el
6
8
.
9
V
at
t =
0
.
9
5
s
.
Du
e
to
t
h
e
ch
a
n
g
es
in
ir
r
ad
iatio
n
lev
el
s
t
h
e
v
o
lt
ag
e
le
v
els
ar
e
d
ec
r
ea
s
in
g
u
p
to
6
0
V
an
d
m
ain
tain
co
n
s
t
an
t
le
v
el
s
tar
ts
at
ti
m
e
t =
1
s.
T
h
e
p
r
o
p
o
s
ed
co
n
tr
o
l
s
y
s
te
m
i
s
co
n
s
id
er
ed
r
o
b
u
s
t
in
r
esp
o
n
d
in
g
to
lar
g
e
v
ar
iatio
n
o
f
w
ea
th
e
r
co
n
d
itio
n
s
.
T
h
e
s
i
m
u
latio
n
h
a
s
b
ee
n
r
ep
ea
ted
f
o
r
th
e
P
er
tu
r
b
atio
n
-
a
n
d
-
Ob
s
er
v
atio
n
(
P
&
O
)
tr
ac
k
in
g
m
e
th
o
d
an
d
th
e
a
m
o
u
n
t
o
f
p
o
w
er
ex
t
r
ac
ted
is
f
o
u
n
d
to
b
e
co
n
s
is
t
e
n
t
w
it
h
t
h
at
f
o
r
th
e
m
o
d
el
-
b
ased
ap
p
r
o
ac
h
.
T
h
e
o
u
tp
u
t
v
o
lta
g
e
o
f
th
e
th
r
ee
P
V
m
o
d
u
le
s
y
s
te
m
is
co
n
n
ec
te
d
to
MP
PT
is
s
h
o
w
n
i
n
Fi
g
u
r
e
1
1
.
T
h
e
Ou
tp
u
t
v
o
ltag
e
co
n
tain
s
s
m
all
o
s
c
illatio
n
s
,
th
ese
ca
n
b
e
r
ed
u
ce
d
b
y
u
s
i
n
g
co
m
p
en
s
ato
r
,
an
d
h
er
e
lead
co
m
p
e
n
s
ato
r
i
s
u
s
ed
.
T
h
e
s
tep
r
esp
o
n
s
e
o
f
th
e
ab
o
v
e
tr
an
s
f
er
f
u
n
ctio
n
is
s
h
o
w
n
in
Fi
g
u
r
e
1
2
.
I
n
Fig
u
r
e
1
2
w
it
h
an
d
w
it
h
o
u
t c
o
m
p
en
s
ato
r
r
esp
o
n
s
e
s
ar
e
co
m
p
ar
ed
.
Fig
u
r
e
1
1
.
Ou
tp
u
t V
o
lta
g
e
o
f
MP
PT
c
o
n
n
ec
ted
to
MI
P
C
s
y
s
te
m
U
s
in
g
b
y
p
as
s
ap
p
r
o
ac
h
f
o
r
th
r
ee
P
V
m
o
d
u
les
Fig
u
r
e
1
2
.
Step
R
esp
o
n
s
e
o
f
W
ith
an
d
W
it
h
o
u
t
C
o
m
p
en
s
ato
r
No
w
th
e
th
r
ee
P
V
m
o
d
u
le
s
y
s
te
m
s
,
MP
P
T
an
d
co
m
p
e
n
s
at
o
r
r
esp
o
n
s
es
ar
e
co
n
n
ec
ted
to
DC
lo
ad
w
it
h
t
h
e
h
elp
o
f
b
o
o
s
t c
o
n
v
er
t
er
.
T
h
e
to
tal
o
u
tp
u
t
v
o
ltag
e
o
f
t
h
e
co
n
f
i
g
u
r
atio
n
o
f
o
v
er
all
s
y
s
te
m
f
o
r
a
t
h
r
ee
P
V
-
m
o
d
u
le
s
y
s
te
m
a
s
s
h
o
w
n
in
F
ig
u
r
e
1
3
.
T
h
e
o
u
tp
u
t v
o
lta
g
e
is
5
9
.
5
V.
Fig
u
r
e
1
3
.
Ou
tp
u
t V
o
lta
g
e
o
f
t
h
e
C
o
n
f
i
g
u
r
atio
n
o
f
O
v
er
all
S
y
s
te
m
f
o
r
a
T
h
r
ee
PV
-
Mo
d
u
le
S
y
s
te
m
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
i
s
s
y
s
t
e
m
i
s
co
m
p
ar
ed
to
th
e
co
n
v
e
n
tio
n
al
s
y
s
te
m
u
s
i
n
g
o
n
l
y
b
y
p
ass
-
d
io
d
e
co
n
n
ec
tio
n
.
T
o
i
m
p
le
m
e
n
t
t
h
e
later
,
t
h
e
MP
P
co
n
tr
o
l
a
lg
o
r
ith
m
p
r
o
p
o
s
ed
ca
n
b
e
ap
p
lied
.
T
h
is
m
et
h
o
d
s
ea
r
ch
es
iter
ati
v
el
y
th
e
m
ax
i
m
u
m
p
o
w
er
p
o
in
t
a
m
o
n
g
t
h
e
m
u
ltip
le
p
o
w
er
p
ea
k
s
.
T
h
e
s
i
m
u
lated
r
esp
o
n
s
es
ar
e
s
h
o
w
n
i
n
Fig
u
r
e
1
3
.
I
t
ca
n
b
e
o
b
s
er
v
ed
th
a
t
t
h
e
m
aj
o
r
d
o
w
n
s
id
e
f
o
r
t
h
e
co
n
v
e
n
tio
n
a
l
s
y
s
te
m
is
t
h
e
ter
m
i
n
a
l
Evaluation Warning : The document was created with Spire.PDF for Python.