I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
6
,
No
.
4
,
Dec
em
b
er
2
0
1
7
,
p
p
.
3
1
9
~3
2
4
I
SS
N:
2252
-
8814
319
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
An
O
pen
So
urce
Co
ntact
-
Free
P
a
l
m
Vein
Recog
niti
o
n Sys
te
m
Ra
njit
h K
u
m
a
r
M
,
Dee
pik
a
G
,
M
ee
na
k
s
hi K
ri
s
hn
a
n,
K
a
rt
hi
k
ey
a
n B
Em
b
e
d
d
e
d
S
y
ste
m
s Div
isio
n
,
V
I
T
Un
iv
e
rsit
y
,
V
e
ll
o
re
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
1
7
,
2
0
1
7
R
ev
i
s
ed
No
v
1
5
,
2
0
1
7
A
cc
ep
ted
No
v
2
2
,
2
0
1
7
In
th
is
d
o
c
u
m
e
n
t,
w
e
p
ro
p
o
se
a
n
o
v
e
l
p
a
lm
v
e
in
re
c
o
g
n
it
io
n
sy
ste
m
u
sin
g
o
p
e
n
s
o
u
rc
e
h
a
r
d
w
a
re
a
n
d
so
f
tw
a
r
e
.
W
e
h
a
v
e
d
e
v
e
lo
p
e
d
a
n
a
lt
e
rn
a
ti
v
e
p
re
p
ro
c
e
ss
in
g
a
n
d
f
e
a
tu
re
e
x
trac
t
io
n
tec
h
n
iq
u
e
.
T
h
e
p
ro
p
o
se
d
sy
st
e
m
is
b
u
il
t
o
n
Ra
sp
b
e
rry
P
i
u
sin
g
Op
e
n
CV
2
.
1
2
.
T
h
e
p
a
lm
v
e
in
i
m
a
g
e
is
c
ro
p
p
e
d
t
o
Re
g
io
n
o
f
In
tere
st(ROI)
to
re
d
u
c
e
th
e
c
o
m
p
u
tatio
n
a
l
ti
m
e
in
re
a
l
ti
m
e
s
y
ste
m
s
a
n
d
th
e
n
p
re
p
r
o
c
e
ss
e
d
to
e
n
h
a
n
c
e
th
e
v
e
in
p
a
tt
e
rn
v
isib
i
li
ty
a
n
d
to
e
x
trac
t
m
o
re
n
u
m
b
e
r
o
f
k
e
y
p
o
i
n
ts
u
si
n
g
S
IF
T
a
lg
o
rit
h
m
.
T
h
e
n
th
e
d
e
sc
rip
to
rs
a
re
sto
re
d
in
a
d
icti
o
n
a
r
y
li
k
e
c
o
d
e
b
o
o
k
f
il
e
d
u
rin
g
trai
n
in
g
.
L
a
ter
th
e
d
e
sc
rip
to
rs
a
re
tes
ted
w
it
h
u
n
k
n
o
w
n
p
a
tt
e
rn
s.
T
h
e
c
lu
ste
rin
g
is
b
a
se
d
on
K
-
m
e
a
n
s al
g
o
rit
h
m
a
n
d
c
las
si
f
ic
a
ti
o
n
is
d
o
n
e
u
si
n
g
S
u
p
p
o
rt
V
e
c
to
r
M
a
c
h
in
e
s
(S
V
M
)
.
K
ey
w
o
r
d
:
B
ag
o
f
v
i
s
u
al
w
o
r
d
s
(
B
o
VW
)
K
-
m
ea
n
s
P
alm
v
ei
n
r
ec
o
g
n
i
tio
n
Scale
in
v
ar
ian
t f
ea
t
u
r
e
Su
p
p
o
r
t v
ec
to
r
m
ac
h
i
n
e
(
SV
M)
T
r
an
s
f
o
r
m
(
SIFT
)
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te
o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
R
an
j
ith
K
u
m
ar
M,
E
m
b
ed
d
ed
Sy
s
te
m
s
Di
v
i
s
io
n
,
Vello
r
e
I
n
s
tit
u
te
o
f
T
ec
h
n
o
lo
g
y
(
VI
T
)
Un
iv
er
s
it
y
,
Ve
llo
r
e,
I
n
d
ia.
E
m
ail:
r
an
j
it
h
k
u
m
ar
.
m
2
0
1
5
@
v
it.a
c.
in
1.
I
NT
RO
D
UCT
I
O
N
E
v
er
s
i
n
ce
P
eo
p
le
w
a
n
ted
t
h
eir
b
elo
n
g
i
n
g
s
to
b
e
s
ec
u
r
e,
m
o
d
er
n
ad
v
a
n
ce
m
e
n
t
s
i
n
s
c
ien
ce
a
n
d
tech
n
o
lo
g
y
h
a
v
e
g
r
o
w
n
u
p
b
it
b
y
b
it
i
n
t
h
e
f
ield
o
f
B
io
m
etr
ics.
An
d
th
e
h
i
s
to
r
y
o
f
b
io
m
et
r
ics
s
tar
ts
w
it
h
t
h
e
ch
ar
ac
ter
is
tic
s
o
f
f
in
g
er
p
r
in
t
a
n
d
later
f
o
llo
w
ed
b
y
o
th
er
ch
a
r
ac
t
er
is
tics
s
u
c
h
as
h
a
n
d
w
r
iti
n
g
,
f
ac
e,
r
eti
n
a,
ir
is
,
v
o
ice
a
n
d
v
e
in
.
A
ll
th
e
s
e
h
u
m
an
c
h
ar
ac
ter
is
tic
s
ar
e
p
atter
n
s
b
y
n
a
tu
r
e
a
n
d
i
n
m
o
s
t
ca
s
es
a
p
p
ea
r
to
b
e
u
n
iq
u
e.
Mo
s
t o
f
t
h
e
b
io
m
etr
ic
s
y
s
te
m
s
f
o
llo
w
th
e
co
n
v
e
n
tio
n
al
s
tep
s
o
f
p
r
o
ce
s
s
in
g
t
h
e
p
atter
n
s
.
I
n
t
h
is
p
ap
er
,
w
e
h
a
v
e
co
m
e
ac
r
o
s
s
th
e
tec
h
n
iq
u
es
u
s
ed
in
f
i
n
g
er
v
ei
n
,
h
a
n
d
v
ei
n
an
d
p
al
m
v
ei
n
(
d
o
r
s
al
an
d
v
e
n
tr
al)
p
atter
n
s
.
T
h
e
alg
o
r
ith
m
is
i
m
p
le
m
e
n
ted
i
n
a
w
a
y
s
o
t
h
at
th
e
s
y
s
te
m
b
e
h
av
es
lik
e
a
s
tan
d
-
alo
n
e
r
ea
l
-
ti
m
e
ap
p
licatio
n
.
T
h
e
en
tire
s
y
s
te
m
is
b
u
ilt
u
s
i
n
g
lo
w
co
s
t
o
p
en
s
o
u
r
ce
d
is
cr
ete
ele
m
en
ts
.
T
h
is
s
y
s
te
m
is
b
u
ilt
u
s
in
g
R
a
s
p
b
er
r
y
P
i,
w
eb
ca
m
er
a,
I
R
L
E
D
s
an
d
Op
en
C
V.
T
h
e
r
ea
s
o
n
f
o
r
ch
o
o
s
in
g
ea
s
il
y
a
v
ailab
le
co
m
p
o
n
en
t
s
is
t
h
at
m
a
n
y
p
eo
p
le
ca
n
co
n
tr
ib
u
te
f
o
r
th
e
i
m
p
r
o
v
e
m
en
t
o
f
t
h
i
s
tec
h
n
o
l
o
g
y
a
n
d
to
p
r
o
v
id
e
n
e
w
w
a
y
s
o
f
i
m
p
r
o
v
i
n
g
th
e
s
ec
u
r
it
y
o
f
t
h
e
s
y
s
te
m
.
2.
CH
ARAC
T
E
R
I
ST
I
CS O
F
VE
I
N
P
A
T
T
E
RN
S
P
alm
Vein
p
r
o
v
id
es
h
i
g
h
ac
c
u
r
ac
y
,
h
ig
h
s
af
e
t
y
,
h
i
g
h
ac
ce
p
tan
ce
an
d
p
er
m
a
n
en
ce
.
I
t
i
s
i
m
m
u
n
e
to
d
ir
t,
d
u
s
t,
d
r
y
n
es
s
a
n
d
m
o
is
t
u
r
e.
T
h
is
tech
n
iq
u
e
is
h
y
g
ie
n
ic
a
n
d
h
as
les
s
w
e
ar
an
d
t
ea
r
b
ec
au
s
e
o
f
i
t
s
co
n
tactles
s
n
a
tu
r
e.
P
al
m
v
ei
n
p
atter
n
s
ar
e
co
m
p
le
x
as
i
t
h
a
s
m
o
r
e
th
a
n
5
m
illi
o
n
r
ef
er
e
n
c
e
p
o
in
ts
.
P
al
m
v
ei
n
is
u
n
iq
u
e
e
v
e
n
a
m
o
n
g
id
e
n
tica
l
t
w
in
s
.
P
al
m
co
n
tai
n
s
t
h
ic
k
er
v
ein
s
t
h
an
f
i
n
g
er
s
an
d
is
ea
s
ie
r
to
id
en
tify
.
P
al
m
v
ein
s
ar
e
in
s
en
s
iti
v
e
ag
a
in
s
t
an
en
v
ir
o
n
m
en
t
(
i.e
.
,
co
ld
,
te
m
p
er
atu
r
e,
cr
ea
m
y
h
a
n
d
s
,
s
k
i
n
s
cr
atc
h
es)
a
n
d
d
etec
tab
le
o
n
l
y
w
h
e
n
b
lo
o
d
is
f
lo
w
i
n
g
.
W
h
en
r
ad
iatin
g
a
p
er
s
o
n
’
s
p
a
l
m
w
it
h
n
ea
r
-
i
n
f
r
ar
ed
r
ay
s
,
p
al
m
v
ein
p
atter
n
i
m
ag
e
ca
n
b
e
ca
p
tu
r
ed
.
As
v
ei
n
s
ar
e
in
ter
n
al
i
n
t
h
e
b
o
d
y
a
n
d
h
a
v
e
u
n
iq
u
e
d
i
f
f
er
e
n
ti
atin
g
ch
ar
ac
ter
i
s
tics
,
atte
m
p
t
s
to
f
o
r
g
e
an
id
en
tit
y
ar
e
ex
tr
e
m
el
y
d
i
f
f
ic
u
lt,
t
h
er
eb
y
en
ab
li
n
g
a
h
i
g
h
le
v
el
o
f
s
ec
u
r
it
y
.
T
h
er
e
ar
e
t
w
o
m
o
d
els
o
f
o
b
tain
i
n
g
th
e
v
ei
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
3
1
9
–
3
2
4
320
p
atter
n
:
r
ef
lectio
n
an
d
tr
an
s
m
i
s
s
io
n
.
I
n
t
h
e
r
ef
lectio
n
m
o
d
el,
th
e
ca
m
er
a
an
d
t
h
e
I
R
s
o
u
r
ce
ar
e
p
lace
d
f
ac
in
g
th
e
s
a
m
e
d
ir
ec
tio
n
.
I
n
t
h
e
tr
an
s
m
i
s
s
io
n
m
o
d
el,
th
e
ca
m
er
a
an
d
th
e
I
R
s
o
u
r
ce
ar
e
p
lace
d
f
ac
i
n
g
t
h
e
o
p
p
o
s
ite
d
ir
ec
tio
n
.
T
h
e
d
ec
is
io
n
o
f
c
h
o
o
s
in
g
d
o
r
s
al
a
n
d
v
e
n
tr
al
v
ei
n
p
atter
n
s
d
ep
en
d
o
n
t
h
e
a
m
o
u
n
t
o
f
ill
u
m
i
n
atio
n
r
eq
u
ir
ed
.
Usu
all
y
d
o
r
s
al
v
ei
n
p
atter
n
s
ap
p
ea
r
ea
s
il
y
b
u
t
t
h
e
r
ef
er
en
ce
p
o
in
t
s
ar
e
co
m
p
a
r
ativ
el
y
lo
w
o
n
t
h
e
d
o
r
s
u
m
.
So
,
it is
p
r
ef
er
ab
le
to
ch
o
o
s
e
v
e
n
tr
al
s
id
e
o
f
p
al
m
.
3.
SYST
E
M
DE
SI
G
N
AN
D
SO
F
T
WAR
E
S
E
T
UP
R
asp
b
er
r
y
P
i
is
a
p
o
ck
et
s
ized
co
m
p
u
ter
t
h
at
ca
n
b
e
cu
s
to
m
ized
f
o
r
r
ap
id
p
r
o
to
ty
p
in
g
.
I
t
co
m
e
s
i
n
th
r
ee
d
if
f
er
en
t
m
o
d
els
w
it
h
eit
h
er
R
asp
b
ian
W
h
ee
z
y
o
r
R
asp
b
ian
J
ess
ie.
R
asp
b
ia
n
OS
w
a
s
d
esig
n
ed
w
i
th
h
i
g
h
f
le
x
ib
ilit
y
k
ee
p
in
g
elec
tr
o
n
ic
en
th
u
s
iast
s
in
m
in
d
.
T
o
o
ls
lik
e
f
s
w
eb
ca
m
,
g
u
v
cv
ie
w
,
g
s
tr
e
a
m
er
p
r
o
v
id
e
USB
ca
m
er
a
d
r
iv
er
s
u
p
p
o
r
t f
o
r
m
o
s
t o
f
th
e
d
ev
ice
s
.
T
h
e
p
alm
o
f
a
ca
n
d
id
ate
s
h
o
u
ld
b
e
illu
m
i
n
ated
u
s
i
n
g
I
n
f
r
ar
ed
lig
h
t.
T
h
is
s
o
u
r
ce
o
f
I
R
s
p
ec
tr
u
m
ca
n
b
e
p
r
o
d
u
ce
d
u
s
in
g
Galli
u
m
Ar
s
en
id
e
(
GaA
s
)
I
n
f
r
ar
ed
L
E
D
s
o
f
8
5
0
n
m
o
r
b
y
p
lacin
g
a
p
h
o
to
g
r
ap
h
ic
(
v
i
s
ib
le
lig
h
t)
f
ilter
o
v
er
th
e
to
r
ch
li
g
h
t
o
p
en
in
g
.
Se
v
er
al
R
esear
c
h
er
s
w
h
o
h
a
v
e
p
r
ev
io
u
s
l
y
w
o
r
k
e
d
o
n
th
e
an
al
y
s
is
o
f
s
k
i
n
p
e
n
etr
atio
n
d
ep
t
h
h
a
v
e
d
o
cu
m
e
n
ted
p
ap
er
s
m
e
n
tio
n
i
n
g
th
at
7
0
0
n
m
-
9
0
0
n
m
i
s
t
h
e
r
an
g
e
w
h
er
e
t
h
e
s
k
in
p
en
etr
atio
n
i
s
h
ig
h
.
B
u
t
p
r
ac
ticall
y
s
p
ea
k
i
n
g
,
a
n
y
n
ea
r
I
n
f
r
a
r
ed
L
E
D
w
ill
h
a
v
e
a
n
ac
ce
p
ta
b
le
s
k
i
n
p
e
n
etr
atio
n
d
ep
th
.
W
e
h
av
e
u
s
ed
Qu
a
n
tu
m
QHM
4
9
5
L
M
W
eb
ca
m
an
d
r
ep
lace
d
th
e
ex
is
ti
n
g
f
ilter
w
it
h
a
v
i
s
ib
le
lig
h
t
f
ilter
.
T
h
e
QHM
4
9
5
L
M
co
m
es
w
it
h
C
M
OS
s
e
n
s
o
r
o
f
2
5
Me
g
ap
ix
el
s
r
eso
l
u
tio
n
a
n
d
a
r
ef
r
es
h
r
ate
o
f
6
0
Hz
w
it
h
m
an
u
al
f
o
cu
s
.
T
h
e
r
ea
s
o
n
f
o
r
ch
o
o
s
in
g
t
h
is
ca
m
er
a
is
th
at
C
MO
S
s
e
n
s
o
r
s
ar
e
b
e
tter
u
n
d
er
lo
w
li
g
h
t
co
n
d
itio
n
s
t
h
an
C
C
D
s
en
s
o
r
s
.
T
h
e
QHM
4
9
5
L
M
h
as
USB
2
.
0
in
ter
f
ac
e
th
at
ca
n
b
e
co
n
n
ec
ted
to
th
e
R
asp
b
er
r
y
p
i.
4.
I
M
AG
E
AC
Q
UI
SI
T
I
O
N
T
h
e
v
ei
n
p
atter
n
o
f
a
h
u
m
a
n
ca
n
n
o
t
b
e
ca
p
tu
r
ed
u
s
i
n
g
a
n
o
r
d
in
ar
y
ca
m
er
a
b
ec
au
s
e
t
h
e
p
atter
n
s
ar
e
n
o
t
v
i
s
ib
le
in
t
h
e
v
is
ib
le
r
eg
io
n
.
T
h
er
ef
o
r
e,
w
e
u
s
e
an
I
n
f
r
ar
ed
ca
m
er
a
to
ca
p
tu
r
e
th
e
v
ein
p
atter
n
.
T
h
is
I
n
f
r
ar
ed
ca
m
er
a
h
a
s
to
o
p
er
ate
in
t
h
e
n
ea
r
i
n
f
r
ar
ed
r
e
g
io
n
o
f
th
e
f
r
eq
u
e
n
c
y
s
p
ec
tr
u
m
[
1
]
-
[
3
]
.
T
h
e
f
r
eq
u
e
n
c
y
i
n
w
h
ic
h
it
o
p
er
ates
h
as
to
b
e
ch
o
s
en
b
ased
o
n
th
e
s
k
i
n
p
en
etr
atio
n
d
ep
th
.
Fro
m
t
h
e
p
r
ev
io
u
s
w
o
r
k
s
ca
r
r
ied
o
u
t
b
y
v
ar
io
u
s
r
esear
c
h
er
s
,
it
h
as
b
ee
n
o
b
s
er
v
ed
th
at
th
e
i
m
ag
e
h
as
to
b
e
ca
p
t
u
r
ed
in
t
h
e
r
a
n
g
e
o
f
8
0
0
n
m
to
9
0
0
n
m
f
o
r
b
etter
d
etails
o
f
th
e
i
m
ag
e.
As
th
e
Nea
r
-
I
n
f
r
ar
ed
C
a
m
er
a
s
ar
e
ex
p
en
s
i
v
e,
w
e
m
o
d
i
f
y
an
o
r
d
in
ar
y
ca
m
er
a
i
n
to
a
Nea
r
-
I
n
f
r
ar
ed
C
a
m
er
a.
T
h
i
s
i
s
d
o
n
e
b
y
r
ep
lacin
g
t
h
e
e
x
i
s
ti
n
g
I
n
f
r
ar
ed
f
i
lter
in
a
n
o
r
d
in
ar
y
ca
m
er
a
b
y
a
v
is
ib
le
li
g
h
t
f
ilte
r
.
T
h
is
b
lo
ck
s
t
h
e
v
is
ib
le
li
g
h
t
s
p
ec
tr
u
m
an
d
allo
w
s
t
h
e
ca
m
er
a
to
ca
p
tu
r
e
th
e
i
m
a
g
e
in
Nea
r
-
In
f
r
ar
ed
s
p
ec
tr
u
m
[
1
7
]
-
[
1
8
]
.
Fo
r
test
in
g
p
u
r
p
o
s
es,
w
e
h
av
e
u
s
ed
C
ASI
A
P
alm
p
r
in
t
d
atab
ase
as
s
h
o
w
n
i
n
Fi
g
u
r
e
1
.
Fig
u
r
e
1
.
A
cq
u
ir
ed
Im
a
g
e
T
h
e
ac
q
u
ir
ed
i
m
a
g
e
h
as
to
b
e
p
r
o
ce
s
s
ed
s
o
th
at
t
h
e
m
atch
in
g
h
as
to
b
e
in
v
ar
ia
n
t
to
p
ar
a
m
eter
s
s
u
ch
as
r
o
tatio
n
,
s
ca
le,
b
r
ig
h
t
n
es
s
an
d
co
n
tr
ast.
Fo
r
t
h
is
p
u
r
p
o
s
e,
w
e
w
ill
s
e
g
m
e
n
t
t
h
e
R
eg
io
n
o
f
I
n
ter
est
(
R
OI
)
[
4
]
-
[
6
]
o
f
th
e
i
m
a
g
e.
T
h
e
R
OI
ca
n
b
e
cr
o
p
p
ed
f
r
o
m
th
e
ac
q
u
ir
ed
i
m
a
g
e
b
y
s
ev
er
al
w
a
y
s
.
I
n
a
n
au
to
m
ated
s
y
s
te
m
,
t
h
e
al
g
o
r
it
h
m
h
a
s
to
b
e
ad
ap
ti
v
e
s
o
t
h
at
an
y
s
a
m
p
le
o
f
th
e
s
a
m
e
ca
n
d
i
d
ate
s
h
o
u
ld
h
a
v
e
t
h
e
s
a
m
e
R
OI
ev
er
y
t
i
m
e.
I
n
th
e
p
r
o
p
o
s
ed
m
eth
o
d
,
th
e
al
g
o
r
ith
m
w
o
r
k
s
as f
o
llo
w
s
:
P
r
o
p
o
s
ed
_
A
lg
o
r
ith
m
_
R
OI
:
a.
Fin
d
t
h
e
co
n
to
u
r
s
(
Ob
j
ec
t B
o
u
n
d
ar
y
)
in
t
h
e
ac
q
u
ir
ed
i
m
a
g
e.
b.
Fin
d
t
h
e
co
n
v
e
x
h
u
ll
f
o
r
th
e
h
an
d
co
n
to
u
r
.
c.
Fin
d
t
h
e
co
n
v
e
x
d
e
f
ec
ts
(
No
t
h
in
g
b
u
t
t
h
e
i
n
ter
es
t
p
o
in
t
s
to
cr
o
p
th
e
R
OI
)
o
f
t
h
e
i
m
a
g
e
f
r
o
m
th
e
p
al
m
co
n
to
u
r
an
d
th
e
co
n
v
e
x
h
u
ll
wh
o
s
e
d
ep
th
is
g
r
ea
ter
th
a
n
th
e
t
h
r
es
h
o
ld
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
n
Op
en
S
o
u
r
ce
C
o
n
ta
ct
-
F
r
ee
P
a
lm
V
ein
R
ec
o
g
n
itio
n
S
ystem
(
R
a
n
jith
K
u
ma
r
)
321
d.
C
r
o
p
th
e
i
m
a
g
e
(
R
OI
)
w
it
h
r
es
p
ec
t to
th
e
in
ter
est p
o
in
t
s
.
T
h
e
R
OI
r
eg
io
n
w
i
th
r
esp
ec
t
to
th
e
in
ter
est
p
o
in
t
s
is
s
h
o
w
n
in
Fig
u
r
e
2.
T
h
e
r
eso
lu
tio
n
o
f
th
e
R
OI
ca
n
b
e
ch
o
s
e
n
in
a
n
o
p
ti
m
al
wa
y
,
s
o
th
at
t
h
e
s
y
s
te
m
ca
n
h
av
e
tr
ad
eo
f
f
b
et
w
ee
n
co
m
p
u
tatio
n
(
p
r
o
ce
s
s
in
g
)
ti
m
e
an
d
R
ec
ei
v
er
Op
er
atin
g
C
h
ar
ac
ter
is
tic
(
R
O
C
)
c
u
r
v
e.
[7][8]
I
n
s
o
m
e
o
f
th
e
p
r
ev
io
u
s
r
esear
ch
es,
t
h
e
R
OI
is
n
o
t
ex
tr
ac
ted
f
r
o
m
t
h
e
ac
q
u
ir
ed
i
m
ag
e.
T
h
er
e
ar
e
v
ar
io
u
s
p
r
o
s
an
d
co
n
s
o
f
d
o
in
g
s
o
.
T
h
e
co
m
p
ar
i
s
o
n
o
f
t
h
e
t
w
o
w
a
y
s
o
f
p
r
o
ce
s
s
in
g
i.e
.
p
r
o
ce
s
s
i
n
g
w
i
th
o
u
t
R
OI
s
e
g
m
e
n
tati
o
n
an
d
p
r
o
ce
s
s
in
g
th
e
e
x
tr
ac
t
ed
R
OI
is
tab
u
lated
b
elo
w
.
T
h
e
s
eg
m
e
n
ted
R
OI
is
s
h
o
w
n
in
F
ig
u
r
e
3
.
I
n
o
u
r
i
m
p
le
m
e
n
tatio
n
,
th
e
R
OI
s
i
ze
is
ch
o
s
en
to
b
e
1
6
0
*
1
6
0
.
Fig
u
r
e
2.
R
eg
io
n
o
f
I
n
ter
est
with
R
e
s
p
ec
t to
th
e
I
n
ter
est P
o
in
ts
Fig
u
r
e
3
.
Seg
m
en
ted
R
OI
S
l
.
N
o
.
P
r
o
c
e
ssi
n
g
w
i
t
h
o
u
t
R
O
I
se
g
m
e
n
t
a
t
i
o
n
P
r
o
c
e
ssi
n
g
t
h
e
e
x
t
r
a
c
t
e
d
R
O
I
1.
S
u
sce
p
t
i
b
l
e
t
o
r
o
t
a
t
i
o
n
,
sc
a
l
i
n
g
,
e
t
c
.
,
S
c
a
l
i
n
g
a
n
d
r
o
t
a
t
i
o
n
t
o
l
e
r
a
n
t
2.
F
i
n
d
i
n
g
r
o
b
u
st
f
e
a
t
u
r
e
p
o
i
n
t
s
i
s
d
i
f
f
i
c
u
l
t
F
e
a
t
u
r
e
p
o
i
n
t
e
x
t
r
a
c
t
i
o
n
i
s s
i
m
p
l
e
3.
P
r
e
se
n
c
e
o
f
e
n
v
i
r
o
n
me
n
t
a
l
d
i
st
u
r
b
a
n
c
e
s
i
n
t
h
e
b
a
c
k
g
r
o
u
n
d
c
o
u
l
d
c
a
u
se
a
n
u
n
d
e
si
r
e
d
b
e
h
a
v
i
o
r
i
n
t
h
e
sy
st
e
m
S
y
st
e
m
i
s
st
a
b
l
e
b
e
c
a
u
se
i
t
a
v
o
i
d
s
t
h
e
e
n
v
i
r
o
n
me
n
t
a
l
d
i
s
t
u
r
b
a
n
c
e
s
i
n
t
h
e
b
a
c
k
g
r
o
u
n
d
4.
M
o
r
e
n
u
m
b
e
r
o
f
f
e
a
t
u
r
e
p
o
i
n
t
s
L
e
ss n
u
mb
e
r
o
f
f
e
a
t
u
r
e
p
o
i
n
t
s
5.
C
o
mp
u
t
a
t
i
o
n
o
v
e
r
h
e
a
d
may
e
x
i
st
i
n
r
e
a
l
t
i
me
e
n
v
i
r
o
n
me
n
t
C
o
mp
u
t
a
t
i
o
n
o
v
e
r
h
e
a
d
i
s re
d
u
c
e
d
5.
I
M
AG
E
P
RE
-
P
RO
C
E
SS
I
N
G
T
h
e
R
OI
i
m
ag
e
i
s
p
r
e
-
p
r
o
ce
s
s
ed
to
o
b
tain
a
clea
r
p
atter
n
f
o
r
th
e
f
ea
t
u
r
e
ex
tr
ac
tio
n
.
5
.
1
.
H
is
t
o
g
ra
m
E
q
ua
liza
t
io
n
His
to
g
r
a
m
eq
u
aliza
tio
n
i
s
tech
n
iq
u
e
w
h
er
ei
n
th
e
co
n
tr
ast
o
f
th
e
is
e
n
h
an
ce
d
b
y
alter
i
n
g
th
e
in
te
n
s
it
y
lev
els o
f
th
e
p
i
x
els.
T
h
e
h
i
s
to
g
r
a
m
eq
u
aliza
tio
n
f
o
r
m
u
la
f
o
r
R
OI
i
m
a
g
e
is
W
h
er
e
L
i
s
t
h
e
in
ten
s
it
y
v
a
l
u
e
o
f
t
h
e
i
m
a
g
e
an
d
C
DF
m
i
n
is
th
e
m
i
n
i
m
u
m
n
o
n
-
ze
r
o
v
alu
e
o
f
c
u
m
u
lat
iv
e
d
is
tr
ib
u
tio
n
f
u
n
ctio
n
w
h
ic
h
is
al
s
o
an
i
m
a
g
e
ac
c
u
m
u
lat
ed
n
o
r
m
alize
d
h
i
s
to
g
r
a
m
.
T
h
er
ef
o
r
e,
ap
p
l
y
i
n
g
h
is
to
g
r
a
m
eq
u
al
izatio
n
o
n
th
e
R
OI
i
m
a
g
e
w
ill
lo
w
er
t
h
e
co
n
t
r
ast
o
f
th
e
v
ei
n
p
atter
n
s
an
d
in
cr
ea
s
e
th
e
co
n
tr
ast
o
f
th
e
b
ac
k
g
r
o
u
n
d
.
T
h
e
h
is
to
g
r
a
m
eq
u
alize
d
i
m
a
g
e
i
s
s
h
o
w
n
in
Fi
g
u
r
e
4
.
Fig
u
r
e
4
.
His
to
g
r
a
m
eq
u
alize
d
i
m
ag
e
Fig
u
r
e
5
.
I
m
a
g
e
n
e
g
ati
v
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
3
1
9
–
3
2
4
322
5
.
2
.
I
m
a
g
e
Neg
a
t
iv
e
Neg
ati
v
e
o
f
a
n
i
m
a
g
e
i
s
n
o
th
in
g
b
u
t
m
ak
i
n
g
al
l
d
ar
k
ar
ea
s
to
ap
p
ea
r
lig
h
t
a
n
d
li
g
h
t
ar
e
as
ap
p
ea
r
d
ar
k
.
I
t
is
b
asically
i
n
v
er
s
io
n
o
f
an
i
m
a
g
e.
T
h
is
in
v
er
s
io
n
o
f
a
g
r
a
y
s
ca
le
i
m
ag
e
ca
n
b
e
ea
s
il
y
ac
co
m
p
li
s
h
e
d
b
y
s
u
b
tr
ac
tin
g
ea
c
h
p
i
x
el
in
te
n
s
it
y
v
al
u
e
f
r
o
m
t
h
e
h
ig
h
es
t
i
n
ten
s
it
y
v
al
u
e
i
n
t
h
e
i
m
a
g
e.
T
h
u
s
b
y
s
u
b
tr
ac
tin
g
ea
ch
p
ix
el
i
n
te
n
s
it
y
v
alu
e
f
r
o
m
2
5
5
,
w
e
ca
n
g
en
er
ate
t
h
e
n
e
g
ati
v
e
o
f
an
i
m
a
g
e.
I
m
ag
e
Ne
g
ati
v
e=
(
L
–
1)
–
HE
W
h
er
e
L
is
th
e
in
ten
s
it
y
v
al
u
e
o
f
th
e
i
m
a
g
e.
T
ak
in
g
n
e
g
ati
v
e
o
f
th
e
h
is
to
g
r
a
m
eq
u
alize
d
i
m
ag
e
w
i
ll
th
er
ef
o
r
e
m
ak
e
t
h
e
lo
w
co
n
tr
ast
v
ein
p
atter
n
s
ap
p
ea
r
ar
e
d
ar
k
li
n
es
a
n
d
t
h
e
r
e
m
ain
in
g
r
eg
io
n
ap
p
ea
r
s
l
ig
h
t.
T
h
e
I
m
a
g
e
n
e
g
ati
v
e
o
u
tp
u
t is
s
h
o
w
n
in
F
ig
u
r
e
5
.
5
.
3
.
E
ro
s
io
n
E
r
o
s
io
n
is
a
b
asic
m
o
r
p
h
o
lo
g
i
ca
l
o
p
er
atio
n
u
s
ed
f
o
r
r
e
m
o
v
a
l
o
f
p
i
x
els
f
r
o
m
o
b
j
ec
t
b
o
u
n
d
a
r
ies.
T
h
u
s
er
o
s
io
n
ca
n
b
e
u
s
ed
to
s
h
r
i
n
k
th
e
s
ize
o
f
a
n
o
b
j
ec
t
in
an
i
m
ag
e
a
n
d
to
r
e
m
o
v
e
t
h
e
u
n
n
e
ce
s
s
ar
y
d
etails.
W
e
ap
p
ly
er
o
s
io
n
p
r
o
ce
s
s
o
n
t
h
e
in
v
er
ted
R
OI
i
m
ag
e
to
r
e
m
o
v
e
th
e
u
n
n
ec
es
s
ar
y
d
etai
ls
a
n
d
to
f
u
r
t
h
er
e
n
h
a
n
c
e
th
e
ap
p
ea
r
an
ce
o
f
th
e
v
ei
n
p
atter
n
s
.
T
h
e
er
o
d
ed
im
a
g
e
i
s
s
h
o
w
n
i
n
Fi
g
u
r
e
6
.
5
.
4
.
Sk
elet
o
niza
t
io
n
Sk
eleto
n
izatio
n
i
s
a
p
r
o
ce
s
s
u
s
ed
to
r
ed
u
ce
th
e
th
ic
k
n
e
s
s
o
f
t
h
e
f
o
r
eg
r
o
u
n
d
r
eg
io
n
to
ap
p
ea
r
as
a
th
i
n
lin
e.
W
e
s
k
eleto
n
ize
t
h
e
er
o
d
ed
i
m
ag
e
to
o
b
tain
t
h
i
n
li
n
es
f
o
r
v
ei
n
p
atter
n
s
s
o
t
h
at
th
e
f
ea
t
u
r
e
ex
tr
ac
tio
n
p
r
o
ce
s
s
b
ec
o
m
es e
a
s
ier
.
T
h
e
s
k
eleto
n
ized
i
m
a
g
e
is
s
h
o
w
n
i
n
Fig
u
r
e
7
.
Fig
u
r
e
6
.
E
r
o
d
e
d
Im
ag
e
Fig
u
r
e
7
.
Sk
eleto
n
ized
I
m
a
ge
6.
F
E
AT
U
RE
E
XT
RAC
T
I
O
N
6
.
1
.
SI
F
T
F
ea
t
ure
Descript
o
r
T
h
e
SIF
T
f
ea
tu
r
e
d
escr
ip
to
r
a
lg
o
r
ith
m
is
ap
p
lied
to
th
e
p
r
e
p
r
o
ce
s
s
ed
R
OI
im
a
g
e
to
f
in
d
th
e
r
o
b
u
s
t
f
ea
t
u
r
e
p
o
in
ts
.
T
h
er
e
ar
e
d
if
f
er
en
t
v
ar
ian
ts
o
f
SIFT
p
r
o
p
o
s
ed
b
y
v
ar
io
u
s
r
esear
c
h
er
s
[
9
]
-
[
1
1
]
.
I
t
is
a
r
o
b
u
s
t
m
et
h
o
d
th
an
O
R
B
an
d
SU
R
F
f
ea
tu
r
e
d
escr
ip
to
r
an
d
m
ai
n
l
y
u
s
ed
f
o
r
o
b
j
ec
t
r
ec
o
g
n
itio
n
.
W
e
h
av
e
i
m
p
le
m
en
ted
R
o
b
er
t L
o
w
e
’
s
i
m
p
le
m
e
n
tat
io
n
o
f
SIFT
.
T
h
e
SIFT
k
ey
p
o
in
t
s
ar
e
s
h
o
w
n
in
F
ig
u
r
e
8
.
Fig
u
r
e
8
.
Ke
y
p
o
in
ts
e
x
tr
ac
ted
f
r
o
m
SIFT
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
A
n
Op
en
S
o
u
r
ce
C
o
n
ta
ct
-
F
r
ee
P
a
lm
V
ein
R
ec
o
g
n
itio
n
S
ystem
(
R
a
n
jith
K
u
ma
r
)
323
7.
M
AT
CH
I
NG
7
.
1
.
B
a
g
o
f
F
e
a
t
ures
B
ag
o
f
f
ea
t
u
r
es
m
o
d
el
also
ca
lled
as
B
a
g
o
f
v
is
u
al
w
o
r
d
s
m
o
d
el
i
s
b
as
icall
y
u
s
ed
f
o
r
i
m
a
g
e
class
i
f
icatio
n
w
h
er
e
t
h
e
i
m
a
g
e
f
ea
t
u
r
es
ar
e
co
n
s
id
er
ed
as
w
o
r
d
s
.
T
o
r
e
p
r
esen
t
an
i
m
ag
e
u
s
i
n
g
th
e
B
o
F
m
o
d
el,
3
s
tep
s
ar
e
to
b
e
f
o
llo
w
ed
-
f
ea
tu
r
e
ex
tr
ac
tio
n
,
f
ea
tu
r
e
d
es
cr
ip
tio
n
an
d
co
d
eb
o
o
k
g
en
er
a
tio
n
.
B
o
VW
m
o
d
el
u
s
e
s
K
-
m
ea
n
s
cl
u
s
ter
i
n
g
to
g
e
n
er
ate
th
e
co
d
eb
o
o
k
[
1
2
]
-
[
1
3
]
.
7
.
2
.
Su
pp
o
rt
Vec
t
o
r
M
a
chines
(
SVM
)
SVM
is
a
s
tatis
t
ical
p
r
o
p
er
ty
b
ased
s
u
p
er
v
is
ed
lear
n
i
n
g
al
g
o
r
ith
m
u
s
ed
f
o
r
i
m
a
g
e
cl
ass
i
f
icatio
n
b
y
p
lo
ttin
g
p
o
in
ts
o
n
a
h
y
p
er
p
l
an
e.
[14][15][16]
I
t
p
er
f
o
r
m
s
co
m
p
lex
d
ata
tr
a
n
s
f
o
r
m
atio
n
s
b
ased
o
n
s
o
m
et
h
i
n
g
ca
lled
as th
e
k
er
n
el
tr
ick
.
I
t t
h
en
d
eter
m
i
n
es a
n
o
p
ti
m
al
b
o
u
n
d
ar
y
b
ased
o
n
th
e
s
e
tr
an
s
f
o
r
m
ed
d
ata
8.
RE
SU
L
T
S
T
h
e
i
m
a
g
es
w
er
e
tr
ain
ed
u
s
in
g
r
an
d
o
m
d
ataset
s
a
n
d
tes
ted
w
it
h
u
n
k
n
o
w
n
in
p
u
ts
.
T
h
er
e
w
er
e
1
0
0
class
es
to
b
e
class
i
f
ied
.
T
h
e
class
i
n
d
ices
s
tar
t
f
r
o
m
0
to
9
9
i.e
I
f
a
p
er
s
o
n
o
f
9
th
clas
s
is
r
ec
o
g
n
ized
,
th
e
alg
o
r
ith
m
w
il
l r
etu
r
n
“
8
”
w
h
ic
h
d
en
o
tes t
h
e
clas
s
n
u
m
b
er
.
T
h
e
r
esu
l
t is s
h
o
w
n
in
F
ig
u
r
e
9
.
Fig
u
r
e
9
.
R
ec
o
g
n
i
tio
n
R
es
u
lt
RE
F
E
R
E
NC
E
S
[1
]
A
li
M
o
h
sin
A
l
-
ju
b
o
o
ri,
W
e
i
Bu
,
X
ian
g
q
ia
n
W
u
a
n
d
Qiu
sh
i
Zh
a
,
“
P
a
lm
V
e
in
V
e
rif
ica
ti
o
n
Us
in
g
M
u
lt
ip
le
F
e
a
tu
re
s
a
n
d
L
o
c
a
li
ty
P
re
se
rv
in
g
P
r
o
jec
ti
o
n
s,”
T
h
e
S
c
ien
ti
fi
c
W
o
rl
d
J
o
u
rn
a
l
,
A
rti
c
le ID
2
4
6
0
8
3
,
V
o
lu
m
e
2
0
1
4
.
[2
]
S
a
k
th
iv
e
l
G
,
“
Ha
n
d
V
e
in
De
tec
ti
o
n
u
si
n
g
In
f
ra
re
d
L
i
g
h
t
f
o
r
W
e
b
b
a
se
d
A
c
c
o
u
n
t,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
mp
u
ter
A
p
p
li
c
a
ti
o
n
s
(
0
9
7
5
–
8
8
8
7
)
V
o
l
u
m
e
1
1
2
–
No
1
0
,
F
e
b
r
u
a
r
y
2
0
1
5
[3
]
W
e
n
x
io
n
g
Ka
n
g
,
“
V
e
in
p
a
tt
e
rn
e
x
trac
ti
o
n
b
a
se
d
o
n
v
e
c
to
rg
ra
m
s
o
f
m
a
x
i
m
a
l
in
tra
-
n
e
ig
h
b
o
r
d
if
f
e
re
n
c
e
,
”
Pa
tt
e
rn
Rec
o
g
n
it
io
n
L
e
tt
e
rs
3
3
(2
0
1
2
)
1
9
1
6
–
1
9
2
3
El
se
v
ier ,
1
0
M
a
rc
h
2
0
1
2
.
.
[4
]
O
m
id
io
ra
El
ij
a
h
Ol
u
sa
y
o
,
Ola
d
o
su
Jo
h
n
Ba
b
a
l
o
la,
Ism
a
il
a
W
a
siu
Ola
d
im
e
ji
,
“
P
a
lm
V
e
in
Re
c
o
g
n
it
io
n
S
y
ste
m
Us
in
g
H
y
b
rid
P
rin
c
i
p
a
l
Co
m
p
o
n
e
n
t
A
n
a
l
y
sis
a
n
d
A
rti
f
ici
a
l
Ne
u
ra
l
Ne
t
w
o
rk
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
A
d
v
a
n
c
e
d
Res
e
a
rc
h
in
C
o
mp
u
ter
S
c
ien
c
e
a
n
d
S
o
ft
w
a
re
En
g
in
e
e
rin
g
,
V
o
lu
m
e
3
,
Iss
u
e
7
,
Ju
ly
2
0
1
3
.
[5
]
W
e
n
x
io
n
g
Ka
n
g
1
,
Ya
n
g
L
iu
,
Qiu
x
ia
W
u
,
X
ish
u
n
Yu
e
,
“
Co
n
tac
t
-
F
re
e
P
a
lm
-
V
e
in
Re
c
o
g
n
it
i
o
n
B
a
se
d
o
n
L
o
c
a
l
In
v
a
rian
t
F
e
a
tu
re
s,”
PL
o
S
ONE
9
(5
):
e
9
7
5
4
8
.
d
o
i:
1
0
.
1
3
7
1
/
jo
u
rn
a
l,
M
a
y
2
7
,
2
0
1
4
.
[6
]
F
a
rit
h
a
Na
sre
e
n
,
A
ru
l
Dh
a
n
a
S
a
a
m
P
ra
k
a
sh
,
A
p
a
rrn
a
a
R
a
g
h
u
ra
m
a
n
,
“
V
e
rsa
ti
le
a
n
d
Eco
n
o
m
ica
l
A
c
q
u
isit
i
o
n
S
e
t
u
p
f
o
r
Do
rsa
P
a
lm
V
e
in
A
u
th
e
n
ti
c
a
ti
o
n
,
”
P
u
b
li
sh
e
d
b
y
El
se
v
ier
B.
V
,
2
0
1
5
.
[7
]
Zah
ra
Ho
n
a
rp
is
h
e
h
,
Ka
rim
F
a
e
z
,
“
A
n
Eff
icie
n
t
Do
rsa
l
Ha
n
d
Ve
in
Re
c
o
g
n
it
io
n
Ba
se
d
o
n
F
iref
ly
A
l
g
o
rit
h
m
,
”
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
(
IJ
ECE
)
Vo
l
3
,
No
1
:
F
e
b
r
u
a
ry
2
0
1
3
,
p
p
.
3
0
~
4
1
.
[8
]
Yin
g
b
o
Z
h
o
u
,
A
jay
Ku
m
a
r,
“
Co
n
tac
tl
e
ss
P
a
lm
V
e
in
I
d
e
n
ti
f
ica
ti
o
n
u
sin
g
M
u
lt
ip
le Re
p
re
se
n
tatio
n
s”
,
IEE
E
2
0
1
0
.
[9
]
De
e
p
a
k
P
ra
sa
n
n
a
.
R,
Ne
e
la
m
e
g
a
m
.
P
,
S
riram
.
S
,
Na
g
a
ra
j
a
n
Ra
ju
,
“
En
h
a
n
c
e
m
e
n
t
o
f
v
e
in
p
a
tt
e
rn
s
in
h
a
n
d
im
a
g
e
f
o
r
b
io
m
e
tri
c
a
n
d
b
io
m
e
d
ica
l
a
p
p
li
c
a
ti
o
n
u
si
n
g
v
a
rio
u
s
im
a
g
e
e
n
h
a
n
c
e
m
e
n
t
tec
h
n
iq
u
e
s,”
In
ter
n
a
ti
o
n
a
l
c
o
n
fer
e
n
c
e
o
n
mo
d
e
li
n
g
o
p
ti
miz
a
ti
o
n
a
n
d
c
o
m
p
u
ti
n
g
,
2
0
1
2
.
[1
0
]
Ja
so
n
F
o
rté,
“
De
v
e
lo
p
m
e
n
t
o
f
a
Ne
a
r
In
f
ra
re
d
Ha
n
d
V
e
in
Im
a
g
in
g
De
v
ice
w
it
h
S
o
f
t
w
a
r
e
En
h
a
n
c
e
m
e
n
t,
”
No
v
e
m
b
e
r
2
0
1
4
.
[1
1
]
Je
n
-
Ch
u
n
L
e
e
,
“
A
n
o
v
e
l
b
io
m
e
tri
c
s
y
ste
m
b
a
se
d
o
n
p
a
lm
v
e
in
ima
g
e
,
”
P
a
tt
e
rn
Re
c
o
g
n
it
io
n
L
e
tt
e
rs
3
3
(2
0
1
2
)
1
5
2
0
–
1
5
2
8
,
El
se
v
ier
,
2
5
A
p
ril
2
0
1
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8814
IJ
AA
S
Vo
l.
6
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
3
1
9
–
3
2
4
324
[1
2
]
M
o
n
a
A
.
A
h
m
e
d
,
Ha
la
M
.
Eb
ied
,
El
-
S
a
y
e
d
M
.
El
-
Ho
rb
a
ty
,
A
b
d
e
lBad
e
e
h
M
.
S
a
lem
,
“
A
n
a
l
y
sis
o
f
P
a
l
m
V
e
in
P
a
tt
e
r
n
Re
c
o
g
n
it
io
n
A
lg
o
rit
h
m
s
a
n
d
S
y
ste
m
s,”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Bi
o
-
M
e
d
ica
l
In
fo
rm
a
t
ics
a
n
d
e
-
He
a
lt
h
,
V
o
l
u
m
e
1
,
No
.
1
,
Ju
n
e
–
Ju
ly
2
0
1
3
.
[1
3
]
Ce
n
tre
d
u
P
a
rc
,
Ru
e
M
a
rc
o
n
i
1
9
,
CH
-
1
9
2
0
M
a
rti
g
n
y
,
“
P
a
lm
V
e
in
Da
tab
a
se
a
n
d
Ex
p
e
rim
e
n
tal
F
ra
m
e
w
o
rk
f
o
r
Re
p
ro
d
u
c
ib
le Re
se
a
rc
h
,
”
2
0
1
5
.
[1
4
]
A
n
ik
a
P
f
lu
g
,
Da
n
iel
Ha
rtu
n
g
,
Ch
risto
p
h
B
u
sc
h
,
“
F
e
a
tu
re
e
x
trac
ti
o
n
f
ro
m
v
e
in
im
a
g
e
s
u
sin
g
sp
a
ti
a
l
in
f
o
rm
a
ti
o
n
a
n
d
c
h
a
in
c
o
d
e
s,” El
se
v
ier,
2
0
1
2.
[1
5
]
M
r.
V
is
h
a
l
U.
Bh
o
sa
le,
M
r.
On
k
a
r
S
.
Ka
le,
M
r.
M
a
h
e
sh
W
.
P
a
wa
r,
M
r.
Ro
sh
a
n
R.
P
a
ti
l
,
M
r.
P
rit
a
m
S
.
P
a
ti
l,
P
r
o
f
M
rs.
S
o
n
a
li
M
a
d
a
n
k
a
r,
“
P
a
lm
V
e
in
Ex
trac
ti
o
n
a
n
d
M
a
tch
i
n
g
f
o
r
P
e
rso
n
a
l
I
d
e
n
ti
f
ica
ti
o
n
,
”
IO
S
R
J
o
u
r
n
a
l
o
f
Co
mp
u
ter
En
g
in
e
e
rin
g
(IOSR
-
JCE)
e
-
IS
S
N:
2
2
7
8
-
0
6
6
1
,
p
IS
S
N:
2
2
7
8
-
8
7
2
7
Vo
l
u
m
e
1
6
,
Iss
u
e
2
,
V
e
r.
I
X
(M
a
r
-
A
p
r.
2
0
1
4
).
[1
6
]
G
it
a
n
jali
S
ik
k
a
,
Er.
V
ik
a
s
W
a
ss
o
n
,
“
P
a
lm
V
e
in
A
u
th
e
n
ti
c
a
ti
o
n
Re
v
ie
w
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
S
c
ien
c
e
a
n
d
Res
e
a
rc
h
(
IJ
S
R)
,
V
o
lu
m
e
3
Iss
u
e
9
,
S
e
p
tem
b
e
r
2
0
1
4
.
[1
7
]
Ku
a
n
g
-
S
h
y
r
W
u
a
,
Je
n
-
Ch
u
n
L
e
e
,
T
su
n
g
-
M
in
g
L
o
,
Ko
-
C
h
i
n
Ch
a
n
g
,
Ch
ien
-
P
in
g
C
h
a
n
g
a
,
“
A
se
c
u
re
p
a
lm
v
e
in
re
c
o
g
n
it
io
n
sy
ste
m
,
”
T
h
e
J
o
u
rn
a
l
o
f
S
y
ste
ms
a
n
d
S
o
ft
wa
re
8
6
(
2
0
1
3
)
2
8
7
0
–
2
8
7
6
,
El
se
v
ier,
2
0
1
3
.
[1
8
]
G
a
y
a
th
ri
S
,
K
G
e
ra
rd
Jo
e
Nig
e
l,
S
P
ra
b
a
k
a
r,
“
L
o
w
Co
st
Ha
n
d
Ve
in
A
u
th
e
n
ti
c
a
ti
o
n
S
y
ste
m
o
n
E
m
b
e
d
d
e
d
L
in
u
x
P
latf
o
rm
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
In
n
o
v
a
ti
v
e
T
e
c
h
n
o
l
o
g
y
a
n
d
Exp
lo
ri
n
g
E
n
g
i
n
e
e
rin
g
(IJIT
EE
),
IS
S
N:
2
2
7
8
-
3
0
7
5
,
V
o
l
u
m
e
-
2
,
Iss
u
e
-
4
,
M
a
rc
h
2
0
1
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.