I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
2
0
1
6
,
p
p
.
1
7
6
~
1
8
2
I
SS
N:
2252
-
8814
176
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AAS
H
y
brid
Flow
Archit
ect
ure
for Stab
le and Sca
la
ble
R
o
uting i
n
Na
m
ed
Data
N
et
w
o
rk
s
P.
Durg
a
pra
s
a
d
,
K.
K
ra
nthi
K
u
m
a
r
De
p
a
rtme
n
t
o
f
IT
,
S
NIST
,
Ya
m
n
a
m
p
e
t,
HYD
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
1
,
2
0
1
6
R
ev
i
s
ed
No
v
1
5
,
2
0
1
6
A
cc
ep
ted
No
v
2
4
,
2
0
1
6
T
h
e
n
a
m
e
d
d
a
ta
n
e
t
w
o
rk
is
a
n
e
w
te
c
h
n
o
lo
g
y
in
ro
u
ti
n
g
w
e
re
it
s
f
o
r
w
a
rd
in
g
p
lan
e
h
e
lp
s
u
s
to
re
c
o
v
e
r
th
e
d
a
ta
o
n
it
s
o
w
n
w
h
e
n
t
h
e
n
e
tw
o
rk
f
a
il
u
re
s
o
c
c
u
r.
i
n
th
is
ND
N
t
h
e
m
a
jo
r
issu
e
a
re
w
h
e
n
th
e
d
a
ta
is
se
n
t
f
ro
m
o
n
e
n
e
tw
o
rk
to
th
e
o
th
e
r
t
h
e
d
a
ta
f
lo
w
is
n
o
t
sta
b
le.
B
y
m
a
jo
r
su
rv
e
y
w
e
c
a
m
e
to
k
n
o
w
th
a
t
ro
u
ti
n
g
p
ro
t
o
c
o
ls
p
lay
s
a
m
a
jo
r
ro
le
f
o
r
th
e
sta
b
le
a
n
d
sc
a
lab
le
d
a
ta
f
lo
w
.
Th
is
ro
u
ti
n
g
p
ro
t
o
c
o
ls
a
n
d
b
e
c
las
sif
ied
b
y
f
o
r
w
a
rd
in
g
p
ro
c
e
ss
a
n
d
a
lso
n
e
tw
o
rk
to
p
o
lo
g
ies
w
e
r
e
th
e
p
r
o
to
c
o
ls
h
a
v
e
th
e
d
a
t
a
th
a
t
c
a
n
b
e
re
tri
e
v
e
d
b
a
c
k
w
h
e
n
e
v
e
r
th
e
n
e
tw
o
rk
fa
u
lt
s
o
c
c
u
r.
I
n
t
h
is p
a
p
e
r
w
e
p
ro
p
o
se
d
th
a
t
h
y
b
rid
f
lo
w
a
rc
h
it
e
c
tu
re
,
n
e
tw
o
rk
to
p
o
lo
g
ies
a
n
d
r
o
u
ti
n
g
p
ro
to
c
o
ls
a
re
i
m
p
ro
v
e
d
to
g
e
t
th
e
sta
b
le
a
n
d
sc
a
lab
le ro
u
ti
n
g
w
h
e
n
th
e
d
a
ta f
lo
w
is i
n
terru
p
ted
.
K
ey
w
o
r
d
:
F
o
r
w
ar
d
in
g
p
r
o
ce
s
s
NDN
R
o
u
ti
n
g
S
tab
ilit
y
a
n
d
s
ca
lab
ilit
y
Co
p
y
rig
h
t
©
201
6
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
P.
Du
r
g
ap
r
asad
,
Dep
ar
t
m
en
t o
f
I
T
,
Sre
en
id
h
i I
n
s
ti
tu
te
o
f
Scie
n
ce
an
d
T
ec
h
n
o
lo
g
y
,
Yan
a
m
p
et
o
f
Gh
a
tk
e
s
ar
Ma
n
d
al
in
R
a
n
g
ar
ed
d
y
d
is
tr
ict
o
f
T
elan
g
a
n
a,
I
n
d
ia
.
1.
I
NT
RO
D
UCT
I
O
N
Na
m
ed
d
ata
n
et
w
o
r
k
s
is
a
n
e
w
n
et
w
o
r
k
ar
ch
itec
tu
r
e
th
at
h
elp
s
u
s
to
ch
an
g
e
t
h
e
b
asic
n
et
w
o
r
k
s
er
v
ice
s
f
r
o
m
d
eli
v
er
i
n
g
p
ac
k
ets
to
t
h
e
g
iv
e
n
d
e
s
ti
n
atio
n
to
r
etr
iev
e
t
h
e
d
ata
b
ac
k
w
it
h
a
g
iv
en
n
a
m
e.
ND
N
co
m
m
u
n
icatio
n
i
s
lik
e
a
r
ec
eiv
er
d
r
iv
en
d
ata
co
n
s
u
m
er
s
e
n
d
s
in
ter
est
p
ac
k
et
s
ca
r
r
y
i
n
g
th
e
n
a
m
e
s
o
f
d
esire
d
d
ata
b
y
a
n
y
n
o
d
e
i
n
t
h
e
n
et
w
o
r
k
w
h
ich
ca
n
r
et
u
r
n
d
ata
p
ac
k
e
t
s
th
at
h
a
v
e
m
atc
h
in
g
n
a
m
es
to
s
atis
f
y
th
e
in
ter
ests
[
1
]
.
T
h
is
is
a
t
w
o
-
w
a
y
i
n
ter
est
d
ata
p
ac
k
et
t
h
at
e
x
c
h
an
g
e
in
o
p
p
o
s
ite
d
ir
ec
tio
n
s
o
n
s
a
m
e
n
et
w
o
r
k
p
ath
.
T
o
d
ay
’
s
I
P
n
et
w
o
r
k
s
p
u
t
all
i
n
tell
ig
e
n
c
e
in
to
r
o
u
ti
n
g
,
w
h
ic
h
d
is
s
e
m
i
n
ates
to
p
o
lo
g
y
a
n
d
p
o
lic
y
i
n
f
o
r
m
at
io
n
,
co
m
p
u
tes
r
o
u
tes
d
etec
ts
a
n
d
r
ec
o
v
er
s
f
r
o
m
f
ail
u
r
es
w
h
ile
th
e
d
ata
p
la
n
e
m
er
el
y
f
o
r
w
ar
d
s
p
ac
k
e
ts
a
cc
o
r
d
in
g
to
th
e
FIB
.
W
h
en
t
h
e
d
ata
p
la
n
e
h
as its
o
w
n
ad
ap
tab
ilit
y
,
ar
e
r
o
u
ti
n
g
p
r
o
to
co
ls
s
till
n
ee
d
ed
?
I
f
s
o
,
f
o
r
w
h
at
p
u
r
p
o
s
e
an
d
to
w
h
at
ex
ten
t?
I
f
s
o
m
e
o
f
r
o
u
ti
n
g
’
s
tas
k
s
ca
n
b
e
o
f
f
lo
ad
ed
to
f
o
r
w
ar
d
in
g
,
w
o
u
ld
t
h
at
b
r
in
g
p
o
s
itiv
e
i
m
p
ac
t
o
n
r
o
u
tin
g
p
r
o
to
co
ls
’
d
esig
n
an
d
o
p
er
atio
n
,
e.
g
.
,
m
a
k
i
n
g
r
o
u
t
in
g
m
o
r
e
s
ca
lab
le
an
d
s
tab
le
[
2
].
I
n
th
i
s
p
ap
er
w
e
ex
p
lai
n
t
h
e
r
o
le
o
f
r
o
u
tin
g
i
n
NDN
n
et
w
o
r
k
s
.
T
h
r
o
u
g
h
an
a
l
y
s
is
,
d
esi
g
n
,
an
d
ex
ten
s
i
v
e
s
i
m
u
lat
io
n
,
w
e
f
i
n
d
th
a
t
r
o
u
ti
n
g
is
i
m
p
o
r
tan
t
i
n
ip
n
et
w
o
r
k
s
an
d
th
e
f
o
r
w
ar
d
in
g
p
lan
e
f
o
r
d
ata
r
etr
iev
al,
as w
ell
as
f
o
r
ef
f
icie
n
tl
y
g
etti
n
g
th
e
n
e
w
l
in
k
s
.
Ho
w
ev
er
,
NDN
r
o
u
tin
g
d
o
es
n
o
t
n
ee
d
to
c
o
n
v
er
g
e
f
ast
f
o
llo
w
i
n
g
n
et
w
o
r
k
c
h
an
g
es,
w
h
ic
h
ca
n
b
e
h
an
d
led
b
y
ad
a
p
tiv
e
f
o
r
w
ar
d
in
g
m
o
r
e
p
r
o
m
p
tl
y
.
T
h
is
en
ab
les
o
n
e
to
s
i
g
n
if
ica
n
tl
y
i
m
p
r
o
v
e
t
h
e
s
ca
lab
ili
t
y
a
n
d
s
tab
ilit
y
o
f
t
h
e
r
o
u
ti
n
g
s
y
s
te
m
u
s
i
n
g
lar
g
er
k
ee
p
-
ali
v
e
ti
m
er
v
a
lu
e
s
th
at
i
g
n
o
r
e
s
h
o
r
t
-
ter
m
f
a
ilu
r
e
s
.
Fu
r
t
h
er
m
o
r
e,
r
o
u
ti
n
g
alg
o
r
it
h
m
s
t
h
at
w
o
u
ld
n
o
t
w
o
r
k
w
ell
i
n
c
u
r
r
en
t
n
et
wo
r
k
s
m
a
y
w
o
r
k
f
in
e
in
N
DN
d
u
e
to
it
s
r
ed
u
ce
d
r
o
le
o
f
b
o
o
ts
tr
ap
p
in
g
ad
ap
tiv
e
f
o
r
w
ar
d
i
n
g
.
I
n
r
o
u
ti
n
g
f
o
r
w
ar
d
in
g
p
lan
e
is
also
ca
lled
a
s
d
ata
p
lan
e
,
w
h
er
e
it
d
e
f
i
n
es
t
h
e
p
ar
t
o
f
th
e
r
o
u
t
e
r
ar
ch
itect
u
r
e
th
at
d
ec
id
es
w
h
a
t
to
d
o
w
it
h
p
ac
k
et
s
ar
r
iv
i
n
g
o
n
an
i
n
ter
f
ac
e.
Mo
s
t
co
m
m
o
n
l
y
,
it
r
ef
er
s
to
a
tab
le
in
w
h
ic
h
th
e
r
o
u
ter
lo
o
k
s
u
p
th
e
d
esti
n
a
tio
n
ad
d
r
ess
o
f
th
e
in
co
m
i
n
g
p
ac
k
et
a
n
d
r
etr
iev
es
th
e
in
f
o
r
m
at
io
n
n
ec
es
s
ar
y
to
d
eter
m
i
n
e
th
e
p
at
h
f
r
o
m
t
h
e
r
ec
eiv
i
n
g
ele
m
en
t,
th
r
o
u
g
h
th
e
i
n
ter
n
a
l
f
o
r
w
ar
d
i
n
g
f
ab
r
ic
o
f
th
e
r
o
u
ter
,
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Hyb
r
id
F
lo
w
A
r
ch
itectu
r
e
fo
r
S
ta
b
le
a
n
d
S
c
a
la
b
le
R
o
u
tin
g
i
n
N
a
med
Da
ta
N
etw
o
r
ks (
P
.
D
u
r
g
a
p
r
a
s
a
d
)
177
an
d
to
th
e
p
r
o
p
er
o
u
tg
o
in
g
i
n
te
r
f
ac
e(
s
)
[
3
,
4
]
.
T
h
e
I
P
Mu
lti
m
e
d
ia
Su
b
s
y
s
te
m
ar
c
h
itect
u
r
e
u
s
e
s
t
h
e
ter
m
tr
an
s
p
o
r
t
p
lan
e
to
d
escr
ib
e
a
f
u
n
ctio
n
r
o
u
g
h
l
y
eq
u
i
v
ale
n
t
to
t
h
e
r
o
u
tin
g
c
o
n
tr
o
l
p
lan
e.
F
ig
u
r
e
1
s
h
o
w
s
a
n
e
t
w
o
r
k
n
o
d
e
ex
a
m
p
le.
Fig
u
r
e
1
.
A
Net
w
o
r
k
No
d
e
E
x
a
m
p
le
2.
L
I
T
E
R
AT
U
RE
SU
RVE
Y
2
.
1
.
F
a
ilu
re
Rec
o
v
er
y
NDN’
s
t
w
o
-
w
a
y
s
y
m
m
etr
ic
tr
affic
fl
o
w
en
ab
le
s
f
a
s
t
f
au
lt
d
etec
tio
n
.
R
o
u
ter
s
ca
n
ca
lcu
la
t
e
R
T
T
f
o
r
ea
ch
I
n
ter
est
-
Data
e
x
ch
a
n
g
e,
w
h
ich
ca
n
b
e
u
s
ed
as
a
p
r
e
d
ictio
n
f
o
r
f
u
tu
r
e
I
n
ter
est
s
.
Af
ter
f
o
r
w
ar
d
in
g
a
n
I
n
ter
est,
a
r
o
u
ter
s
tar
t
s
a
ti
m
e
r
b
ased
o
n
th
e
a
v
er
ag
e
o
f
p
r
e
v
io
u
s
R
T
T
s
;
p
o
ten
tial
n
et
w
o
r
k
p
r
o
b
lem
s
ca
n
b
e
d
etec
ted
if
n
o
Data
is
r
ec
eiv
ed
b
ef
o
r
e
th
e
ti
m
er
e
x
p
ir
es.
W
it
h
I
n
ter
e
s
t N
AC
K
s
,
f
a
u
lt d
etec
t
io
n
an
d
n
o
ti
fi
ca
tio
n
is
ev
e
n
f
a
s
ter
.
W
h
en
n
et
w
o
r
k
p
r
o
b
lem
s
ar
e
d
etec
ted
,
r
o
u
ter
s
ca
n
ex
p
lo
r
e
alter
n
ati
v
e
p
ath
s
f
r
ee
l
y
w
i
th
o
u
t
w
o
r
r
y
i
n
g
ab
o
u
t
lo
o
p
s
,
s
in
ce
l
o
o
p
s
ca
n
b
e
d
etec
ted
b
y
ch
ec
k
in
g
t
h
e
n
o
n
ce
fi
eld
ca
r
r
ied
in
I
n
ter
ests
.
Fa
s
t
f
a
u
l
t
d
et
ec
tio
n
an
d
lo
o
p
-
f
r
ee
f
o
r
w
ar
d
in
g
ar
e
th
e
t
w
o
u
n
iq
u
e
f
ea
t
u
r
es
th
at
m
a
k
e
NDN
’
s
f
o
r
w
ar
d
i
n
g
p
lan
e
s
m
ar
t
an
d
ad
ap
tiv
e
–
r
o
u
ter
s
ar
e
ab
le
to
h
an
d
le
n
et
w
o
r
k
f
au
lts
s
u
c
h
as
p
r
efi
x
h
ij
ac
k
i
n
g
,
f
ail
u
r
es a
n
d
co
n
g
es
tio
n
lo
ca
ll
y
at
th
e
f
o
r
w
ar
d
i
n
g
p
la
n
e
[
5
]
.
W
e
u
s
e
t
h
e
s
i
m
p
le
ex
a
m
p
le
i
n
Fi
g
u
r
e
1
to
ill
u
s
tr
ate
h
o
w
NDN
r
o
u
ter
s
h
a
n
d
le
li
n
k
f
ail
u
r
es.
T
h
e
co
s
ts
o
f
lin
k
s
ar
e
m
ar
k
ed
in
t
h
e
fi
g
u
r
e2
;
r
o
u
te
r
s
r
an
k
t
h
e
in
ter
f
ac
es
u
s
i
n
g
t
h
e
co
s
t
o
f
th
eir
b
est
p
ath
s
to
w
ar
d
s
th
e
d
esti
n
atio
n
.
W
h
en
th
er
e
is
n
o
f
ail
u
r
e
in
t
h
e
n
et
w
o
r
k
,
A
u
s
es
B
as
its
p
r
i
m
ar
y
n
ex
t
h
o
p
f
o
r
co
n
ten
t
p
r
o
v
id
ed
b
y
D.
I
n
ter
f
ac
e
A
-
B
w
il
l
b
e
m
ar
k
ed
Gr
ee
n
as
lo
n
g
as
Data
co
n
ti
n
u
es
t
o
fl
o
w
f
r
o
m
B
to
A
.
W
h
en
li
n
k
B
-
D
f
ail
s
,
A
w
ill k
ee
p
s
en
d
in
g
I
n
ter
est
s
to
B
at
first.
Ho
w
e
v
er
,
B
ca
n
n
o
t satis
f
y
th
e
I
n
ter
est
s
d
u
e
to
th
e
f
ai
lu
r
e,
s
o
it
w
i
ll sen
d
N
AC
Ks b
ac
k
to
A
[
6
]
.
Up
o
n
r
ec
ei
v
in
g
a
N
A
C
K,
A
w
il
l
m
ar
k
A
-
B
Yello
w
an
d
r
etr
y
th
e
n
ex
t
b
est
in
ter
f
ac
e,
i
n
t
h
i
s
ca
s
e
A
-
C
.
Si
n
ce
t
h
er
e
is
n
o
f
ai
lu
r
e
o
n
th
is
p
at
h
,
Data
w
ill
fl
o
w
b
ac
k
t
h
r
o
u
g
h
p
ath
D
-
C
-
A
.
W
ill t
h
e
n
m
ar
k
s
i
n
ter
f
ac
e
A
-
C
Gr
ee
n
a
n
d
s
tar
t
u
s
i
n
g
C
as th
e
p
r
i
m
ar
y
n
e
x
t
h
o
p
.
2
.
2
.
Ro
uting
in I
P
I
P
’
s
r
o
u
tin
g
p
lan
e
is
in
tell
ig
e
n
t
an
d
ad
ap
tiv
e,
b
u
t
its
f
o
r
w
ar
d
in
g
p
la
n
e
is
s
tateles
s
an
d
s
tr
ict
l
y
f
o
llo
ws
r
o
u
tin
g
.
T
h
er
ef
o
r
e
th
e
r
o
u
tin
g
p
lan
e
is
also
r
eg
ar
d
ed
as
th
e
co
n
tr
o
l
p
lan
e.
R
o
u
ti
n
g
i
s
r
esp
o
n
s
ib
le
f
o
r
b
u
ild
i
n
g
th
e
r
o
u
t
in
g
tab
le
a
n
d
m
ai
n
tai
n
in
g
it
in
f
ac
e
o
f
n
et
w
o
r
k
ch
a
n
g
es,
i
n
cl
u
d
in
g
b
o
th
lo
n
g
-
ter
m
to
p
o
lo
g
y
an
d
p
o
lic
y
ch
an
g
es
a
s
w
ell
as sh
o
r
t
-
ter
m
ch
u
r
n
s
.
W
h
e
n
t
h
er
e
is
a
ch
a
n
g
e
in
th
e
n
et
w
o
r
k
,
r
o
u
ter
s
n
ee
d
to
ex
ch
a
n
g
e
r
o
u
t
in
g
u
p
d
ates
w
it
h
ea
c
h
o
th
er
i
n
o
r
d
er
to
r
ea
ch
n
e
w
g
lo
b
al
co
n
s
i
s
te
n
c
y
[
7
,
8
]
.
T
h
e
ti
m
e
p
er
io
d
af
t
er
a
ch
an
g
e
h
ap
p
en
s
an
d
b
ef
o
r
e
all
r
o
u
ter
s
a
g
r
ee
o
n
th
e
n
e
w
r
o
u
ti
n
g
s
tate
i
s
c
alled
th
e
r
o
u
tin
g
co
n
v
er
g
e
n
ce
p
er
io
d
.
I
P
r
o
u
tin
g
p
r
o
to
co
ls
n
ee
d
to
co
n
v
er
g
e
f
ast
i
n
o
r
d
er
to
r
ed
u
ce
p
a
ck
et
lo
s
s
a
n
d
r
es
u
m
e
p
ac
k
et
d
eliv
er
y
a
f
ter
n
et
w
o
r
k
c
h
an
g
es.
Ho
w
e
v
er
,
f
ast
r
o
u
ti
n
g
co
n
v
er
g
en
ce
is
ch
a
llen
g
i
n
g
in
lar
g
e
o
p
er
atio
n
al
n
et
w
o
r
k
s
.
T
h
e
f
u
n
d
a
m
e
n
ta
l
r
ea
s
o
n
is
th
at
it
co
n
flicts
w
it
h
o
th
er
d
esig
n
g
o
als
f
o
r
r
o
u
tin
g
p
r
o
to
co
ls
,
i.e
.
,
r
o
u
tin
g
s
tab
i
lit
y
a
n
d
s
ca
lab
ilit
y
.
R
o
u
ti
n
g
s
tab
ilit
y
e
n
s
u
r
es
s
tab
le
r
o
u
tin
g
p
ath
s
w
it
h
i
n
th
e
n
e
t
w
o
r
k
.
I
t
is
i
m
p
o
r
tan
t
f
o
r
ap
p
l
icatio
n
s
th
a
t
s
u
ffe
r
f
r
o
m
R
T
T
fl
u
ct
u
atio
n
;
it
al
s
o
h
elp
s
r
o
u
ter
s
ac
h
ie
v
e
tr
affic
e
n
g
in
ee
r
in
g
g
o
als.
R
o
u
ti
n
g
s
ca
lab
ilit
y
i
s
es
s
en
t
ial
f
o
r
s
u
p
p
o
r
tin
g
a
lar
g
e
n
u
m
b
er
o
f
n
o
d
es,
lin
k
s
an
d
p
r
efix
es1
in
th
e
n
et
w
o
r
k
.
Fo
r
lin
k
-
s
tate
r
o
u
tin
g
,
ea
ch
r
o
u
ter
k
n
o
w
s
t
h
e
e
n
tire
to
p
o
lo
g
y
.
T
h
ese
p
r
o
to
co
ls
ca
n
co
n
v
er
g
e
f
ast,
b
u
t
at
th
e
co
s
t
o
f
p
o
o
r
s
tab
ilit
y
a
n
d
li
m
ite
d
s
ca
lab
ilit
y
.
Fo
r
d
is
tan
ce
/p
ath
-
v
ec
to
r
r
o
u
tin
g
,
r
o
u
ter
s
d
o
n
o
t
h
av
e
a
f
u
ll
k
n
o
w
led
g
e
o
f
t
h
e
to
p
o
lo
g
y
[
9
]
.
T
h
e
y
ar
e
ab
le
to
ac
h
iev
e
b
etter
s
ca
l
ab
ilit
y
,
b
u
t
th
e
co
n
v
er
g
e
n
ce
ti
m
e
m
a
y
b
e
as
lo
n
g
a
s
te
n
s
o
f
m
i
n
u
te
s
.
B
elo
w
w
e
u
s
e
l
in
k
-
s
tate
r
o
u
ti
n
g
a
s
a
n
e
x
a
m
p
le
to
ex
p
lai
n
t
h
e
i
s
s
u
es
w
i
th
to
d
a
y
’
s
I
P
r
o
u
ti
n
g
p
r
o
to
co
l
s
.
I
n
s
u
m
m
ar
y
,
it
is
h
ar
d
to
ac
h
ie
v
e
f
as
t
co
n
v
er
g
e
n
ce
,
s
tab
ili
t
y
an
d
s
ca
lab
ilit
y
s
i
m
u
ltan
eo
u
s
l
y
i
n
a
r
o
u
ti
n
g
p
r
o
to
co
l.
I
f
f
ail
u
r
es
ca
n
b
e
h
an
d
led
w
ith
o
u
t
g
lo
b
al
r
o
u
tin
g
co
n
v
er
g
e
n
ce
,
th
e
r
eq
u
ir
e
m
en
t
o
n
f
a
s
t
co
n
v
er
g
e
n
ce
ca
n
b
e
r
elax
ed
,
m
a
k
i
n
g
it p
o
s
s
ib
le
to
i
m
p
r
o
v
e
r
o
u
tin
g
s
tab
ilit
y
a
n
d
s
ca
lab
ilit
y
[
10
-
12
].
2
.
3
.
Ro
uting
in NDN
I
n
NDN,
t
h
e
f
o
r
w
ar
d
in
g
p
lan
e
is
th
e
ac
tu
al
co
n
tr
o
l
p
lan
e
s
in
c
e
th
e
f
o
r
w
ar
d
in
g
s
tr
ateg
y
m
o
d
u
le
m
ak
e
s
f
o
r
w
ar
d
i
n
g
d
ec
is
io
n
s
o
n
it
s
o
w
n
.
T
h
is
f
u
n
d
a
m
en
tal
ch
a
n
g
e
p
r
o
m
p
ts
u
s
to
r
eth
in
k
t
h
e
r
o
le
o
f
r
o
u
tin
g
i
n
NDN
[
3
]
.
T
h
e
fi
r
s
t
q
u
e
s
tio
n
is
w
h
e
th
er
NDN
s
ti
ll
n
ee
d
s
r
o
u
ti
n
g
p
r
o
to
co
ls
.
C
o
n
v
e
n
tio
n
all
y
,
r
o
u
ti
n
g
p
r
o
to
co
ls
ar
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8814
IJ
AA
S
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
20
1
6
:
1
7
6
–
1
8
2
178
r
esp
o
n
s
ib
le
f
o
r
d
is
s
e
m
in
at
in
g
to
p
o
lo
g
y
a
n
d
p
o
lic
y
i
n
f
o
r
m
a
tio
n
,
co
m
p
u
tin
g
r
o
u
te
s
an
d
h
an
d
lin
g
s
h
o
r
t
-
ter
m
n
et
w
o
r
k
ch
a
n
g
es.
Fo
r
NDN
t
o
w
o
r
k
w
it
h
o
u
t
r
o
u
ti
n
g
,
r
o
u
ter
s
n
ee
d
to
b
e
a
b
le
to
d
o
th
e
f
o
llo
w
i
n
g
t
h
i
n
g
s
efficien
tl
y
: 1
)
r
etr
iev
e
Data
w
h
en
t
h
e
n
e
t
w
o
r
k
is
s
tab
le;
2
)
h
an
d
le
lin
k
f
ail
u
r
es; an
d
3
)
h
an
d
le
lin
k
r
ec
o
v
er
y
.
3.
CL
AS
SI
F
I
CAT
I
O
N
O
F
E
XI
ST
I
NG
SYS
T
E
M
3
.
1
.
L
in
k
-
Sta
t
e
Ro
uting
L
i
n
k
-
s
tate
r
o
u
t
in
g
p
r
o
to
co
ls
s
t
o
r
e
th
e
en
t
ir
e
n
et
w
o
r
k
to
p
o
lo
g
y
i
n
t
h
e
li
n
k
-
s
tate
d
atab
ase
(
L
S
DB
)
,
m
a
k
i
n
g
it
p
o
s
s
ib
le
to
co
m
p
u
te
o
p
ti
m
al
in
ter
f
ac
e
r
an
k
in
g
.
Su
p
p
o
s
e
a
n
o
d
e
N
h
as
n
in
ter
f
ac
es
1
i
n
.
Fo
r
Data
p
r
o
v
id
ed
b
y
n
o
d
e
M,
w
e
r
an
k
t
h
ese
in
ter
f
ac
es
u
s
i
n
g
C
M
N,
k
,
w
h
ic
h
is
th
e
co
s
t
o
f
th
e
b
est
p
ath
f
r
o
m
N
to
M
th
r
o
u
g
h
in
ter
f
ac
e
I
k
.
On
e
s
i
m
p
le
m
et
h
o
d
to
c
o
m
p
u
t
e
C
N,
k
f
o
r
all
d
esti
n
atio
n
s
t
h
r
o
u
g
h
I
k
is
to
r
em
o
v
e
all
in
ter
f
ac
es
ex
ce
p
t
I
k
f
r
o
m
N
’
s
L
SDB
an
d
r
u
n
Dij
k
s
tr
a
’
s
al
g
o
r
ith
m
to
co
m
p
u
te
t
h
e
s
h
o
r
test
p
ath
s
.
T
h
is
m
a
y
n
o
t
b
e
th
e
b
est
m
et
h
o
d
s
in
ce
it
w
i
ll
e
n
d
u
p
ca
l
lin
g
D
i
j
k
s
tr
a’
s
alg
o
r
it
h
m
o
n
ce
f
o
r
e
v
er
y
i
n
ter
f
ac
e
[
1
3
]
.
I
t
is
j
u
s
t
u
s
ed
to
illu
s
tr
ate
h
o
w
in
ter
f
ac
e
r
a
n
k
in
g
ca
n
b
e
d
o
n
e
in
li
n
k
-
s
tate
r
o
u
ti
n
g
.
Op
ti
m
iz
atio
n
o
f
t
h
e
al
g
o
r
ith
m
is
p
o
s
s
ib
le
b
u
t
o
u
t
o
f
t
h
e
s
co
p
e
o
f
th
is
p
ap
er
as sh
o
w
n
i
n
Fi
g
u
r
e
2
.
Fig
u
r
e
2
.
T
h
e
E
x
ch
an
g
e
o
f
He
llo
M
ess
ag
e
3
.
2
.
Dis
t
a
nce/P
a
t
h
-
Vec
t
o
r
Ro
uting
I
n
d
is
tan
ce
-
v
ec
to
r
o
r
p
ath
-
v
ec
t
o
r
r
o
u
tin
g
,
r
o
u
ter
s
an
n
o
u
n
ce
co
s
t o
f
th
e
co
m
p
lete
r
o
u
tin
g
p
at
h
to
w
ar
d
s
ea
ch
d
esti
n
atio
n
to
th
eir
n
eig
h
b
o
r
s
.
W
h
en
r
o
u
ter
N
r
ec
eiv
es
a
r
o
u
tin
g
an
n
o
u
n
ce
m
en
t
f
o
r
Data
p
r
o
v
id
ed
b
y
M
f
r
o
m
i
n
ter
f
ac
e
I
k
,
it
s
i
m
p
l
y
ad
d
s
th
e
lin
k
co
s
t
o
f
I
k
to
th
e
r
e
ce
iv
ed
p
ath
co
s
t
to
o
b
tain
its
p
ath
co
s
t
C
M
N,
k
.
T
h
e
in
ter
f
ac
e
s
ar
e
th
e
n
r
an
k
ed
b
y
th
e
p
at
h
co
s
t
s
to
M
t
h
r
o
u
g
h
t
h
e
m
.
No
te
th
at
a
r
o
u
ter
m
a
y
n
o
t
r
ec
eiv
e
r
o
u
t
in
g
an
n
o
u
n
ce
m
e
n
t
f
r
o
m
all
i
n
te
r
f
ac
es,
s
i
n
ce
th
ese
r
o
u
ti
n
g
p
r
o
to
co
ls
o
f
ten
in
co
r
p
o
r
at
e
s
p
lit
-
h
o
r
izo
n
r
o
u
te
an
n
o
u
n
ce
m
e
n
t
to
p
r
ev
e
n
t
r
o
u
t
in
g
lo
o
p
s
.
I
f
r
o
u
ter
N
lear
n
s
a
r
o
u
te
to
w
ar
d
s
M
t
h
r
o
u
g
h
in
te
r
f
ac
e
I
k
,
it
w
ill
n
o
t
ad
v
er
tis
e
its
r
o
u
te.
I
n
ter
f
ac
es
t
h
at
d
o
n
o
t
r
ec
eiv
e
r
o
u
tin
g
an
n
o
u
n
ce
m
en
t
ar
e
ass
ig
n
ed
in
fin
it
e
co
s
t
to
en
s
u
r
e
th
e
y
s
ta
y
at
t
h
e
en
d
o
f
t
h
e
r
an
k
ed
i
n
ter
f
ac
e
li
s
t
[
7
].
T
h
ey
w
i
ll
o
n
l
y
b
e
u
s
ed
as
t
h
e
last
r
eso
r
t
if
a
ll
h
ig
h
er
-
r
a
n
k
e
d
in
ter
f
ac
e
s
f
ai
l
to
r
etr
iev
e
D
ata.
T
h
ese
in
ter
f
ac
e
s
ar
e
u
s
e
f
u
l
i
n
m
an
y
s
itu
a
tio
n
s
.
Fo
r
ex
a
m
p
le,
i
n
B
GP
if
a
p
r
o
v
id
er
P
u
s
e
s
a
c
u
s
t
o
m
er
C
a
s
t
h
e
n
e
x
t
h
o
p
,
it
w
ill
n
o
t
m
a
k
e
r
o
u
tin
g
a
n
n
o
u
n
ce
m
e
n
t
to
C
.
I
f
C
’
s
b
est
p
ath
f
ails
,
it
w
i
ll
n
o
t
h
a
v
e
a
n
a
l
ter
n
ati
v
e
p
ath
u
n
til
r
o
u
tin
g
co
n
v
er
g
es,
i
n
w
h
ic
h
c
ase
P
w
i
ll
an
n
o
u
n
ce
its
alter
n
a
tiv
e
p
ath
to
C
.
R
B
GP
[
13
]
is
p
r
o
p
o
s
ed
t
o
ad
d
r
ess
th
is
i
s
s
u
e
b
y
allo
w
i
n
g
P
to
an
n
o
u
n
ce
it
s
alter
n
ati
v
e
p
ath
to
C
ev
en
w
i
th
o
u
t
f
ai
lu
r
es.
N
DN,
o
n
th
e
o
t
h
er
h
an
d
,
i
s
ab
le
to
ac
h
iev
e
th
e
s
a
m
e
e
ffect
w
it
h
o
u
t c
h
a
n
g
i
n
g
th
e
r
o
u
tin
g
p
r
o
to
co
l.
F
un
ct
io
ns
a.
P
r
ev
en
tio
n
o
f
lo
o
p
T
h
e
cr
ea
tio
n
o
f
lo
o
p
ca
n
b
e
a
v
o
id
ed
in
p
ath
v
ec
to
r
r
o
u
tin
g
.
A
r
o
u
ter
r
ec
eiv
es
a
m
e
s
s
a
g
e
it
ch
ec
k
s
to
s
ee
if
its
au
to
n
o
m
o
u
s
s
y
s
te
m
i
s
in
t
h
e
p
ath
lis
t
to
th
e
d
esti
n
atio
n
if
it
is
lo
o
p
in
g
i
s
in
v
o
l
v
ed
an
d
th
e
m
es
s
ag
e
i
s
ig
n
o
r
ed
.
b.
P
o
licy
r
o
u
ti
n
g
W
h
en
a
r
o
u
ter
r
ec
eiv
es
a
m
ess
ag
e,
it
ca
n
ch
ec
k
th
e
p
ath
,
if
o
n
e
o
f
th
e
au
to
n
o
m
o
u
s
s
y
s
te
m
l
is
ted
in
th
e
p
ath
ag
ain
s
t
its
p
o
lic
y
,
it
ca
n
i
g
n
o
r
e
its
p
ath
an
d
d
esti
n
a
tio
n
it
d
o
es
n
o
t
u
p
d
ate
its
r
o
u
tin
g
tab
le
w
ith
t
h
is
p
ath
o
r
it d
o
es n
o
t sen
d
th
e
m
e
s
s
a
g
es to
i
ts
n
ei
g
h
b
o
r
s
[
14
].
c.
Op
ti
m
u
m
p
at
h
A
p
ath
to
a
d
esti
n
atio
n
t
h
at
is
th
e
b
est
f
o
r
th
e
o
r
g
an
izatio
n
th
at
r
u
n
s
t
h
e
au
to
n
o
m
o
u
s
s
y
s
te
m
[
8
].
Fig
u
r
e
3
s
h
o
w
s
t
h
e
i
n
itial r
o
u
t
in
g
i
n
p
ath
v
ec
to
r
r
o
u
tin
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Hyb
r
id
F
lo
w
A
r
ch
itectu
r
e
fo
r
S
ta
b
le
a
n
d
S
c
a
la
b
le
R
o
u
tin
g
i
n
N
a
med
Da
ta
N
etw
o
r
ks (
P
.
D
u
r
g
a
p
r
a
s
a
d
)
179
Fig
u
r
e
3
.
I
n
itial R
o
u
ti
n
g
i
n
P
ath
Vec
to
r
R
o
u
ti
n
g
3
.
3
.
P
ro
bin
g
I
t
h
as
b
ee
n
s
h
o
w
n
th
at
N
DN
r
o
u
ter
s
ca
n
h
an
d
le
li
n
k
f
a
ilu
r
e
s
lo
ca
ll
y
at
th
e
f
o
r
w
ar
d
in
g
p
lan
e
[
1
5
,
1
6
]
.
I
n
th
is
s
u
b
s
ec
tio
n
w
e
an
s
w
er
t
h
e
q
u
e
s
tio
n
o
f
w
h
et
h
er
t
h
e
s
a
m
e
ap
p
lies
to
l
in
k
r
ec
o
v
er
y
.
R
o
u
ter
s
ca
n
d
etec
t
li
n
k
f
ail
u
r
es
q
u
ick
l
y
b
y
o
b
s
er
v
i
n
g
I
n
ter
est
-
Data
e
x
c
h
an
g
es
o
r
I
n
t
er
est
N
A
C
K.
Ho
w
ev
er
,
t
h
er
e
i
s
n
o
e
x
p
licit
s
i
g
n
al
f
o
r
lin
k
r
ec
o
v
er
y
f
r
o
m
t
h
e
f
o
r
w
ar
d
in
g
p
la
n
e.
Ag
ai
n
,
let
’
s
ta
k
e
Fi
g
u
r
e
1
as
a
n
e
x
a
m
p
le.
Af
ter
i
n
ter
f
ac
e
B
-
D
r
ec
o
v
er
s
f
r
o
m
a
f
ail
u
r
e,
in
ter
f
ac
e
A
-
B
b
ec
o
m
es
t
h
e
b
est
in
t
er
f
ac
e
f
o
r
A
to
r
etr
iev
e
d
ata
f
r
o
m
D.
Ho
w
ev
er
,
A
w
il
l
co
n
ti
n
u
e
u
s
i
n
g
in
ter
f
ac
e
A
-
C
b
ec
au
s
e
t
h
e
f
o
r
w
ar
d
in
g
s
t
r
ateg
y
p
r
ef
er
s
Gr
ee
n
in
ter
f
ac
e
s
o
v
er
Yello
w
o
n
e
s
.
I
n
th
i
s
ca
s
e,
a
n
ee
d
s
to
p
r
o
b
e
i
n
ter
f
ac
e
A
-
B
b
y
s
e
n
d
in
g
a
co
p
y
o
f
an
I
n
ter
est to
it.
I
f
th
e
p
r
o
b
in
g
I
n
ter
e
s
t
s
u
cc
es
s
f
u
ll
y
b
r
i
n
g
s
Data
b
ac
k
,
in
ter
f
ac
e
A
-
B
w
i
ll
b
e
m
ar
k
ed
Gr
ee
n
a
n
d
b
e
u
s
ed
to
f
o
r
w
ar
d
s
u
b
s
eq
u
en
t
I
n
ter
es
ts
to
D.
T
h
er
e
is
a
r
esear
ch
q
u
esti
o
n
o
f
w
h
en
to
p
er
f
o
r
m
p
r
o
b
in
g
.
An
I
n
ter
e
s
t
co
p
y
is
u
s
ed
f
o
r
p
r
o
b
in
g
s
o
th
at
r
eg
u
lar
Data
r
etr
iev
al
w
ill
n
o
t
b
e
affec
ted
if
p
r
o
b
in
g
is
u
n
s
u
c
ce
s
s
f
u
l.
Ho
w
ev
er
,
th
is
ca
u
s
es
e
x
tr
a
I
n
ter
est
an
d
Data
in
th
e
n
et
w
o
r
k
.
T
h
er
e
is
a
tr
a
d
e
-
o
ff
b
et
w
ee
n
h
o
w
f
ast
a
lin
k
r
ec
o
v
er
y
is
d
etec
ted
an
d
th
e
a
m
o
u
n
t
o
f
o
v
er
h
e
ad
ca
u
s
ed
b
y
p
r
o
b
in
g
.
I
n
C
C
N
x
[
1
7
]
,
a
p
r
o
to
ty
p
e
i
m
p
le
m
en
tatio
n
o
f
ND
N,
r
o
u
ter
s
p
r
o
b
e
alter
n
ativ
e
in
ter
f
ac
es
p
er
io
d
icall
y
in
o
r
d
er
to
d
etec
t
b
etter
p
ath
s
.
T
h
is
en
ab
les
r
o
u
ter
s
to
d
etec
t
lin
k
r
ec
o
v
er
y
at
th
e
f
o
r
w
ar
d
in
g
p
la
n
e.
Fas
t
r
ec
o
v
er
y
d
ete
ctio
n
is
ac
h
ie
v
ab
le
th
r
o
u
g
h
a
g
g
r
e
s
s
i
v
e
p
r
o
b
in
g
.
Ho
w
e
v
er
,
it
w
ill i
n
cu
r
s
i
g
n
i
fi
c
an
t o
v
er
h
ea
d
.
3
.
4
.
Ro
uting
Sta
bil
it
y
a
nd
Sca
la
bil
it
y
L
i
n
k
-
s
tate
r
o
u
ti
n
g
p
r
o
to
co
ls
ex
h
ib
it
p
o
o
r
s
tab
ilit
y
a
n
d
s
c
alab
ilit
y
i
n
I
P
d
u
e
to
th
e
f
a
s
t
r
o
u
ti
n
g
co
n
v
er
g
e
n
ce
r
eq
u
ir
e
m
e
n
t.
Ho
w
e
v
er
,
th
er
e
is
a
s
i
m
p
le
m
et
h
o
d
to
ad
d
r
ess
th
ese
is
s
u
e
s
in
NDN.
Sin
ce
ND
N
r
o
u
ter
s
ca
n
h
an
d
le
n
et
w
o
r
k
f
ail
u
r
es
at
t
h
e
f
o
r
w
ar
d
in
g
p
la
n
e,
s
h
o
r
t
-
li
v
ed
f
a
ilu
r
e
s
ca
n
b
e
m
as
k
ed
f
r
o
m
th
e
r
o
u
ti
n
g
p
r
o
to
co
ls
.
R
esear
ch
s
h
o
w
s
t
h
at
th
e
d
u
r
atio
n
o
f
n
et
w
o
r
k
f
ai
lu
r
es
f
o
llo
w
s
a
lo
n
g
-
tailed
d
is
tr
ib
u
tio
n
,
an
d
o
v
er
5
0
%
o
f
f
ail
u
r
es
last
less
th
a
n
o
n
e
m
in
u
te
[
2
,
9
]
.
T
h
er
ef
o
r
e,
th
e
n
u
m
b
er
o
f
r
o
u
tin
g
ev
en
t
s
ca
n
b
e
s
ig
n
i
fi
ca
n
tl
y
r
ed
u
ce
d
if
r
o
u
tin
g
p
r
o
to
co
ls
d
o
n
o
t n
ee
d
to
r
ea
ct
to
th
e
s
h
o
r
t
f
ail
u
r
es.
As
a
r
es
u
lt,
th
e
b
a
n
d
w
id
th
an
d
C
P
U
c
y
cle
s
co
n
s
u
m
ed
b
y
r
o
u
tin
g
u
p
d
ates
ca
n
b
e
r
ed
u
ce
d
,
an
d
th
er
e
w
il
l
b
e
less
r
o
u
tin
g
flu
ctu
a
tio
n
.
I
n
ad
d
itio
n
,
s
in
ce
th
er
e
is
n
o
f
ast
r
o
u
tin
g
co
n
v
er
g
e
n
ce
r
eq
u
ir
e
m
e
n
t,
lar
g
er
n
et
w
o
r
k
s
an
d
m
o
r
e
n
a
m
e
p
r
e
fix
es
b
ec
o
m
e
affo
r
d
ab
le.
I
n
s
u
m
m
ar
y
,
b
o
th
r
o
u
ti
n
g
s
tab
ili
t
y
a
n
d
s
ca
lab
ilit
y
ca
n
b
e
s
ig
n
i
fi
ca
n
tl
y
i
m
p
r
o
v
ed
.
Fo
r
li
n
k
-
s
tate
r
o
u
ti
n
g
,
w
e
ca
n
i
m
p
le
m
en
t
t
h
e
id
ea
b
y
i
n
cr
ea
s
i
n
g
t
h
e
H
E
L
L
O
a
n
d
DE
AD
in
ter
v
a
l.
Fo
r
ex
a
m
p
le,
i
f
w
e
s
et
th
e
DE
AD
i
n
ter
v
al
to
b
e
o
n
e
m
in
u
te,
o
v
er
5
0
%
o
f
t
h
e
li
n
k
f
ai
lu
r
es
w
ill
b
e
ig
n
o
r
ed
b
y
t
h
e
r
o
u
ti
n
g
p
r
o
to
co
l.
A
lter
n
ati
v
el
y
,
w
e
ca
n
in
cr
ea
s
e
th
e
s
u
p
p
r
ess
io
n
ti
m
er
f
o
r
r
o
u
tin
g
u
p
d
ate
g
en
er
atio
n
an
d
SP
F c
o
m
p
u
ta
ti
o
n
to
ac
h
iev
e
t
h
e
s
a
m
e
effec
t.
A
lt
h
o
u
g
h
th
is
id
ea
lo
o
k
s
s
i
m
p
l
e,
it c
an
b
e
ap
p
lie
d
to
an
y
e
x
is
t
in
g
I
P
r
o
u
tin
g
p
r
o
to
co
l
to
im
p
r
o
v
e
it
s
s
tab
ilit
y
a
n
d
s
ca
lab
ilit
y
as
s
h
o
w
n
i
n
T
ab
le
1
.
W
e
w
il
l
ev
al
u
ate
th
e
effec
ti
v
e
n
ess
o
f
th
is
m
eth
o
d
in
th
e
n
e
x
t
s
ec
tio
n
[
1
8
,
19
].
T
ab
le
1
.
T
o
p
o
lo
g
ies Used
in
t
h
e
Si
m
u
latio
n
T
o
p
o
l
o
g
y
B
e
f
o
r
e
P
r
o
c
e
ssi
n
g
A
f
t
e
r
P
r
o
c
e
ssi
n
g
A
b
i
l
i
e
n
c
e
1
4
9
12
10
11
A
s 1
2
9
-
p
o
p
52
1
6
8
36
84
A
s 1
2
3
9
-
R
o
u
t
e
r
2
8
4
1
2
3
2
N
/
A
N
/
A
4.
P
ro
po
s
ed
s
y
s
t
e
m
I
n
t
h
is
s
ec
tio
n
w
e
u
s
e
ex
ten
s
iv
e
s
i
m
u
latio
n
s
to
s
h
o
w
t
h
at
ND
N’
s
p
ac
k
et
f
o
r
w
ar
d
in
g
p
er
f
o
r
m
an
ce
u
n
d
er
n
et
w
o
r
k
f
ail
u
r
es
is
h
ar
d
l
y
a
ffe
cted
b
y
r
o
u
ti
n
g
co
n
v
er
g
e
n
ce
ti
m
e;
b
y
m
as
k
i
n
g
s
h
o
r
t
-
li
v
ed
f
a
ilu
r
es
f
r
o
m
r
o
u
ti
n
g
p
r
o
to
co
ls
,
o
n
e
ca
n
ef
f
ec
ti
v
el
y
r
ed
u
ce
r
o
u
tin
g
o
v
er
h
ea
d
w
h
ile
m
ai
n
tai
n
i
n
g
h
i
g
h
p
ac
k
et
d
eliv
er
y
p
er
f
o
r
m
a
n
ce
i
n
ND
N
n
et
w
o
r
k
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8814
IJ
AA
S
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
20
1
6
:
1
7
6
–
1
8
2
180
S
i
m
ula
t
io
n Set
u
p
Un
les
s
o
th
er
w
i
s
e
s
p
ec
i
fi
ed
,
w
e
r
u
n
e
x
p
er
i
m
e
n
ts
i
n
th
e
Qu
alNe
t
s
i
m
u
la
to
r
[
2
0
]
w
h
ic
h
p
r
o
v
id
e
s
co
m
p
lete
i
m
p
le
m
en
tatio
n
s
o
f
OSP
F
an
d
R
I
P
r
o
u
tin
g
p
r
o
to
co
ls
.
W
e
im
p
le
m
en
t
b
asic
NDN
o
p
er
atio
n
s
an
d
th
e
f
o
r
w
ar
d
i
n
g
s
tr
ateg
y
p
r
ese
n
ted
in
[9
]
in
t
h
e
s
i
m
u
lato
r
.
W
e
als
o
m
a
k
e
n
ec
es
s
ar
y
c
h
an
g
es
to
th
e
r
o
u
ti
n
g
p
r
o
to
co
ls
as
d
escr
ib
ed
in
Sectio
n
4
.
1
.
W
e
u
s
e
th
e
A
b
ile
n
e
to
p
o
lo
g
y
[
7
]
an
d
s
el
ec
ted
R
o
ck
et
f
u
el
t
o
p
o
lo
g
ies
[
2
1
]
in
th
e
ex
p
er
i
m
e
n
ts
.
A
s
u
m
m
ar
y
o
f
t
h
e
to
p
o
lo
g
ies
i
s
p
r
esen
ted
i
n
T
ab
le
1
.
W
e
p
r
o
ce
s
s
th
e
fi
r
s
t
th
r
ee
to
p
o
lo
g
ies
to
r
e
m
o
v
e
all
s
i
n
g
le
-
h
o
m
ed
n
o
d
es,
b
ec
au
s
e
i
f
th
e
li
n
k
o
f
a
s
i
n
g
l
e
-
h
o
m
ed
n
o
d
e
f
ail
s
,
th
e
n
o
d
e
w
il
l
b
e
d
is
co
n
n
ec
ted
f
r
o
m
th
e
n
et
w
o
r
k
an
d
th
u
s
ca
n
n
o
t
p
r
o
v
id
e
an
y
in
s
ig
h
t
f
u
l
r
esu
lt.
Fo
r
OSP
F,
w
e
u
s
e
p
r
o
p
a
g
atio
n
d
ela
y
as
th
e
co
s
t o
f
th
e
li
n
k
s
.
U
n
les
s
o
th
er
w
i
s
e
s
p
ec
i
fi
ed
,
w
e
r
ep
o
r
t r
esu
lt
s
f
r
o
m
t
h
e
A
S1
2
3
9
-
P
o
P
to
p
o
l
o
g
y
.
R
es
u
lts
f
o
r
o
th
er
to
p
o
lo
g
ies
ar
e
s
i
m
ilar
an
d
lead
to
th
e
s
a
m
e
co
n
cl
u
s
io
n
s
.
T
h
e
A
S1
2
3
9
-
R
o
u
te
r
to
p
o
lo
g
y
i
s
o
n
l
y
u
s
ed
to
s
h
o
w
th
e
i
m
p
r
o
v
e
m
e
n
t
o
f
r
o
u
tin
g
s
c
alab
ilit
y
3
.
W
e
in
j
ec
t
r
an
d
o
m
l
in
k
f
ail
u
r
es
i
n
to
t
h
e
to
p
o
lo
g
ies.
A
s
h
if
ted
P
ar
eto
d
i
s
tr
ib
u
tio
n
is
u
s
ed
to
g
en
er
ate
t
i
m
e
-
to
-
f
ail
u
r
e
an
d
ti
m
e
-
to
-
r
ec
o
v
er
v
al
u
es
f
o
r
ea
ch
lin
k
in
d
ep
en
d
e
n
tl
y
.
W
e
u
s
e
1
2
0
s
ec
o
n
d
s
as
th
e
m
ea
n
-
ti
m
e
-
to
-
r
ec
o
v
er
,
an
d
1
0
0
0
s
ec
o
n
d
s
as
th
e
m
ea
n
-
ti
m
e
-
to
-
f
ail; t
h
e
s
ca
le
p
ar
a
m
eter
o
f
th
e
P
ar
eto
d
is
tr
ib
u
tio
n
is
s
et
to
b
e
2
0
8
s
o
th
at
5
0
% o
f
t
h
e
f
ai
lu
r
e
s
last
le
s
s
th
a
n
o
n
e
m
i
n
u
te
[
3
,
9
]
.
W
h
en
a
li
n
k
f
ai
ls
,
b
o
th
d
ir
ec
tio
n
s
o
f
t
h
e
li
n
k
s
to
p
w
o
r
k
in
g
.
W
it
h
t
h
i
s
m
o
d
e
l,
m
u
ltip
le
n
et
w
o
r
k
ev
en
t
s
(
f
ai
lu
r
es a
n
d
r
ec
o
v
er
y
)
ca
n
h
ap
p
en
co
n
c
u
r
r
en
tl
y
.
4
.
1
.
H
y
brid
F
lo
w
Arc
hite
ct
ure
I
n
h
y
b
r
id
f
lo
w
n
et
w
o
r
k
s
,
f
lo
w
s
o
cc
u
p
y
an
en
t
ir
e
w
a
v
ele
n
g
th
a
n
d
u
s
er
s
f
lo
w
d
ata
at
th
e
o
p
tical
lin
e
r
ate
w
it
h
o
u
t
w
i
n
d
o
w
i
n
g
.
Ses
s
io
n
s
ar
e
o
f
f
i
x
ed
d
u
r
atio
n
.
T
h
u
s
,
i
f
a
s
e
s
s
io
n
ex
p
ir
es
a
n
d
t
h
e
r
ec
e
iv
er
h
as
n
o
t
ac
k
n
o
w
led
g
ed
all
f
r
a
m
e
s
w
it
h
o
u
t
er
r
o
r
,
a
r
ef
lo
w
is
r
eq
u
ir
ed
.
T
h
e
h
y
b
r
id
f
lo
w
d
ata
ce
n
ter
ar
ch
itect
u
r
e
d
if
f
er
s
f
r
o
m
a
tr
ad
itio
n
al
d
ata
ce
n
ter
n
et
w
o
r
k
i
n
t
w
o
m
ai
n
r
esp
o
n
s
e
.
First,
t
h
e
h
y
b
r
id
f
lo
w
ar
c
h
itect
u
r
e
in
cl
u
d
es
a
co
n
tr
o
l
p
lan
e
t
h
at
allo
w
s
f
o
r
d
y
n
a
m
ic
p
at
h
s
et
u
p
,
n
et
w
o
r
k
m
o
n
ito
r
i
n
g
,
a
n
d
r
eso
u
r
ce
allo
ca
tio
n
.
Seco
n
d
,
in
t
h
e
h
y
b
r
id
f
l
o
w
ar
ch
itec
tu
r
e,
elep
h
a
n
t
f
lo
ws
ar
e
f
o
r
w
ar
d
ed
o
n
all
-
o
p
tical
s
w
i
tch
e
s
an
d
d
o
n
o
t
leav
e
th
e
o
p
tical
d
o
m
ai
n
o
n
in
ter
m
ed
iar
y
s
w
itc
h
es.
T
h
e
ap
p
licatio
n
la
y
er
in
f
o
r
m
s
th
e
tr
an
s
p
o
r
t
lay
er
o
f
th
e
s
ize
o
f
a
f
lo
w
.
T
h
e
tr
an
s
p
o
r
t
lay
er
is
r
esp
o
n
s
ib
le
f
o
r
s
ess
i
o
n
in
itiatio
n
w
it
h
a
co
n
tr
o
l
p
lan
e
s
ch
ed
u
ler
.
I
t
is
also
r
esp
o
n
s
ib
le
f
o
r
k
ee
p
in
g
tr
ac
k
o
f
m
u
ltip
le
s
e
s
s
io
n
s
i
n
th
e
e
v
en
t
t
h
at
all
f
r
a
m
e
s
ar
e
n
o
t
r
ec
eiv
ed
d
u
r
in
g
a
s
i
n
g
l
e
s
ess
io
n
an
d
m
o
r
e
s
e
s
s
io
n
r
eq
u
est
s
ar
e
r
eq
u
ir
ed
.
B
ased
o
n
th
e
f
lo
w
s
ize
a
n
d
th
e
n
et
w
o
r
k
lo
ad
in
g
,
th
e
tr
an
s
p
o
r
t
la
y
er
d
ec
id
es
w
h
e
th
er
th
e
f
lo
w
s
h
o
u
ld
b
e
s
en
t
o
v
er
a
tr
ad
itio
n
al
E
P
S
ar
ch
itectu
r
e
o
r
o
v
er
th
e
o
p
tical
f
lo
w
ar
ch
it
ec
tu
r
e
as s
h
o
w
n
i
n
Fi
g
u
r
e
4
[
2
]
.
Fig
u
r
e
4
.
H
y
b
r
id
Flo
w
A
r
ch
ite
ctu
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
AA
S
I
SS
N:
2252
-
8814
Hyb
r
id
F
lo
w
A
r
ch
itectu
r
e
fo
r
S
ta
b
le
a
n
d
S
c
a
la
b
le
R
o
u
tin
g
i
n
N
a
med
Da
ta
N
etw
o
r
ks (
P
.
D
u
r
g
a
p
r
a
s
a
d
)
181
Resul
t
s
T
h
e
r
esu
lts
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
5
,
Fig
u
r
e
6
,
an
d
Fig
u
r
e
7
.
Fig
u
r
e
5
s
h
o
w
s
th
e
p
r
o
b
ab
ilit
y
o
f
li
n
k
f
ail
u
r
e,
Fig
u
r
e
6
s
h
o
w
s
t
h
e
co
u
n
td
o
w
n
if
h
o
p
s
f
o
r
p
ath
,
an
d
Fig
u
r
e
7
s
h
o
w
s
t
h
e
p
ac
k
et
d
eli
v
er
y
p
er
f
o
r
m
a
n
ce
in
I
P
u
n
d
er
d
if
f
er
en
t H
E
L
L
O
I
n
ter
v
al.
Fig
u
r
e
5
. P
r
o
b
ab
ilit
y
o
f
L
i
n
k
F
ailu
r
e
Fig
u
r
e
6
. C
o
u
n
td
o
w
n
o
f
Ho
p
s
f
o
r
P
ath
Fig
u
r
e
7
.
P
ac
k
et
Deliv
er
y
P
er
f
o
r
m
a
n
ce
i
n
I
P
u
n
d
er
Differ
en
t
HE
L
L
O
I
n
ter
v
al
5.
O
B
SE
RVAT
I
O
N
R
o
u
ti
n
g
is
a
n
ec
es
s
ar
y
s
u
b
s
y
s
te
m
f
o
r
an
y
lar
g
e
-
s
ca
le
n
et
w
o
r
k
.
L
i
k
e
I
P
,
NDN
its
elf
d
o
es
n
o
t
d
ictate
w
h
at
k
in
d
s
o
f
r
o
u
ti
n
g
al
g
o
r
ith
m
s
o
r
p
r
o
to
co
ls
to
u
s
e.
Ho
w
e
v
er
,
o
n
e
ca
n
tak
e
ad
v
an
ta
g
e
o
f
NDN
’
s
ad
ap
tiv
e
f
o
r
w
ar
d
i
n
g
p
la
n
e
to
i
m
p
r
o
v
e
t
h
e
s
tab
ili
t
y
a
n
d
s
ca
lab
il
it
y
o
f
e
x
is
t
in
g
r
o
u
ti
n
g
p
r
o
to
co
ls
,
as
we
ll
as
e
n
ab
le
r
o
u
ti
n
g
p
r
o
to
co
ls
th
at
ar
e
d
ee
m
ed
d
i
ffi
cu
l
t
to
ad
o
p
t
in
I
P
n
et
w
o
r
k
s
.
T
r
ad
itio
n
al
R
o
u
ti
n
g
P
r
o
to
c
o
ls
:
W
ith
ad
ap
ti
v
e
f
o
r
w
ar
d
i
n
g
,
r
o
u
ti
n
g
in
NDN
o
n
l
y
ass
u
m
es
a
s
u
p
p
o
r
tin
g
r
o
le.
I
t
p
r
o
v
id
es
a
r
ea
s
o
n
ab
l
e
s
tar
tin
g
p
o
in
t
f
o
r
f
o
r
w
ar
d
i
n
g
w
h
ic
h
ca
n
t
h
en
eff
ec
tiv
el
y
e
x
p
lo
r
e
d
iffer
en
t
ch
o
i
ce
s
[
2
1
,
22
]
.
T
h
e
j
o
b
o
f
r
o
u
tin
g
b
ec
o
m
es
m
o
r
e
o
f
d
is
s
e
m
in
at
in
g
to
p
o
lo
g
y
an
d
p
o
lic
y
in
f
o
r
m
atio
n
th
a
n
d
is
tr
ib
u
ted
co
m
p
u
tatio
n
o
f
b
est
p
ath
s
.
T
h
is
n
e
w
d
i
v
is
io
n
o
f
lab
o
r
b
et
w
ee
n
r
o
u
ti
n
g
an
d
f
o
r
w
ar
d
in
g
m
a
k
es
r
o
u
ti
n
g
p
r
o
to
co
ls
s
im
p
l
er
an
d
m
o
r
e
s
ca
lab
le.
T
r
ad
itio
n
al
r
o
u
tin
g
p
r
o
to
co
ls
s
u
c
h
as
O
S
P
F,
R
I
P
,
an
d
B
GP
ca
n
b
en
efit
g
r
ea
tl
y
f
r
o
m
NDN
’
s
ad
ap
ti
v
e
f
o
r
w
ar
d
i
n
g
p
la
n
e.
T
h
ey
ca
n
b
e
t
u
n
ed
f
o
r
s
y
n
c
h
r
o
n
izi
n
g
a
m
o
n
g
r
o
u
ter
s
lo
n
g
-
ter
m
to
p
o
lo
g
y
an
d
p
o
lic
y
i
n
f
o
r
m
atio
n
w
it
h
o
u
t
h
an
d
li
n
g
s
h
o
r
t
-
ter
m
c
h
u
r
n
s
.
6.
CO
NCLU
SI
O
N
I
n
th
is
p
ap
er
w
e
s
t
u
d
y
th
e
r
o
le
o
f
r
o
u
tin
g
in
NDN.
NDN’
s
ad
ap
tiv
e
f
o
r
w
ar
d
in
g
p
lan
e
lead
s
to
a
n
e
w
d
iv
is
io
n
o
f
lab
o
r
b
etw
ee
n
r
o
u
tin
g
an
d
f
o
r
w
ar
d
i
n
g
p
lan
e
s
.
W
h
ile
th
e
latter
ca
n
d
etec
t
an
d
r
ec
o
v
er
f
r
o
m
lin
k
f
ail
u
r
es
q
u
ic
k
l
y
i
n
d
ep
en
d
en
t
f
r
o
m
t
h
e
f
o
r
m
er
,
t
h
e
f
o
r
m
er
h
e
l
p
s
b
o
o
ts
tr
ap
a
d
ap
tiv
e
f
o
r
w
ar
d
i
n
g
a
n
d
h
an
d
le
li
n
k
r
ec
o
v
er
y
.
W
e
s
p
ec
if
y
h
o
w
N
DN
r
o
u
ti
n
g
co
o
r
d
in
ates
w
it
h
f
o
r
w
ar
d
i
n
g
th
r
o
u
g
h
i
n
ter
f
ac
e
r
an
k
i
n
g
an
d
p
r
o
b
in
g
m
ec
h
a
n
i
s
m
s
.
Ou
r
an
a
l
y
s
is
a
n
d
s
i
m
u
latio
n
s
s
h
o
w
t
h
at
NDN
r
o
u
tin
g
p
r
o
to
co
ls
c
an
b
en
efit
f
r
o
m
t
h
e
f
o
r
w
ar
d
in
g
p
lan
e
d
u
e
to
th
e
r
elax
ed
r
eq
u
ir
e
m
en
t
o
n
ti
m
el
y
d
etec
tio
n
o
f
f
ai
lu
r
es
a
n
d
co
n
v
er
g
e
n
ce
d
ela
y
.
C
o
n
s
eq
u
e
n
tl
y
,
NDN
r
o
u
ti
n
g
s
tab
ili
t
y
a
n
d
s
ca
lab
ilit
y
ca
n
b
e
g
r
ea
tl
y
i
m
p
r
o
v
ed
.
Mo
r
eo
v
er
,
th
e
ad
ap
tiv
e
f
o
r
w
ar
d
in
g
p
la
n
e
al
s
o
en
ab
les n
e
w
r
o
u
tin
g
s
c
h
e
m
es t
h
at
m
a
y
n
o
t
w
o
r
k
w
ell
i
n
I
P
to
b
e
u
s
ed
in
an
ND
N
n
et
w
o
r
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8814
IJ
AA
S
Vo
l.
5
,
No
.
4
,
Dec
em
b
er
20
1
6
:
1
7
6
–
1
8
2
182
7.
F
UT
UR
E
WO
RK
A
m
a
s
s
i
v
e
a
m
o
u
n
t
o
f
r
e
s
ea
r
ch
h
as
b
ee
n
co
n
d
u
cted
o
n
h
o
w
to
g
r
ac
ef
u
ll
y
ac
co
m
m
o
d
ate
r
o
u
t
i
n
g
ch
a
n
g
es
w
it
h
m
in
i
m
u
m
i
m
p
ac
t
o
n
p
ac
k
et
d
eliv
er
y
in
I
P
n
et
w
o
r
k
s
.
On
e
ca
teg
o
r
y
o
f
s
o
l
u
tio
n
s
r
elies
o
n
r
o
u
tin
g
p
r
o
to
co
ls
to
ad
ap
t
to
th
e
ch
an
g
e
s
.
Fra
n
co
is
et
al.
s
h
o
w
th
a
t
s
u
b
-
s
ec
o
n
d
lin
k
-
s
tate
r
o
u
ti
n
g
co
n
v
er
g
en
ce
in
lar
g
e
i
n
tr
a
-
d
o
m
ai
n
n
et
w
o
r
k
s
is
ac
h
ie
v
a
b
l
e
b
y
t
u
n
i
n
g
v
ar
io
u
s
ti
m
er
s
[
2
3
]
.
B
u
t
th
is
m
e
th
o
d
i
n
cu
r
s
ex
t
r
a
r
o
u
tin
g
o
v
er
h
ea
d
an
d
m
a
y
also
ca
u
s
e
r
o
u
t
in
g
i
n
s
tab
ilit
y
.
Fas
t
r
er
o
u
te
(
F
R
R
)
m
ec
h
a
n
i
s
m
s
h
an
d
le
li
n
k
f
ail
u
r
es
b
y
p
r
e
-
co
m
p
u
ti
n
g
alter
n
ati
v
e
p
ath
s
.
MP
L
S
F
R
R
m
ec
h
a
n
i
s
m
s
p
r
o
v
id
e
b
ac
k
u
p
p
ath
s
i
n
MP
L
S
-
en
ab
led
n
et
w
o
r
k
s
to
p
r
o
tec
t
s
p
ec
ifi
c
lin
k
s
f
r
o
m
f
ail
u
r
es
[
2
4
]
.
Sim
i
l
ar
l
y
,
I
P
FR
R
m
ec
h
an
i
s
m
s
(
e.
g
.
,
[
1
4
]
)
p
r
o
v
id
e
tem
p
o
r
ar
y
alter
n
ati
v
e
p
ath
s
b
ef
o
r
e
r
o
u
tin
g
co
n
v
er
g
en
ce
i
n
p
u
r
e
I
P
n
et
w
o
r
k
s
.
Ho
w
e
v
er
,
it
is
h
a
r
d
f
o
r
th
e
FR
R
m
ec
h
a
n
is
m
s
t
o
co
v
er
all
p
o
s
s
ib
le
f
ail
u
r
e
s
ce
n
ar
io
s
; n
o
r
ca
n
t
h
e
y
h
an
d
le
m
u
l
tip
le
lin
k
f
ail
u
r
es
w
ell.
RE
F
E
R
E
NC
E
S
[1
]
M.
M
o
ti
w
a
la,
M
.
El
m
o
re
,
N.
F
e
a
m
ste
r,
a
n
d
S
.
V
e
m
p
a
la,
“
P
a
th
S
p
li
c
in
g
,
”
i
n
P
r
o
c
e
e
d
in
g
s
o
f
A
CM
S
I
G
COMM
,
2
0
0
8
.
[2
]
J.
M
o
y
,
RF
C
2
3
2
8
:
OS
P
F
V
e
rsio
n
2
,
1
9
9
8
.
[
O
n
li
n
e
]
.
A
v
a
il
a
b
le:
h
tt
p
:/
/w
ww
.
iet
f
.
o
rg
/r
f
c
/r
f
c
2
3
2
8
.
tx
t
.
[3
]
S
.
L
e
e
,
Y.
Yu
,
S
.
Ne
lak
u
d
it
i,
Z.
L
i
Zh
a
n
g
,
a
n
d
C.
Ne
e
Ch
u
a
h
,
“
P
ro
a
c
ti
v
e
v
s
Re
a
c
ti
v
e
A
p
p
ro
a
c
h
e
s
to
F
a
il
u
re
Re
sili
e
n
t
Ro
u
ti
n
g
,
”
i
n
P
ro
c
e
e
d
in
g
s
o
f
IEE
E
INFOCOM,
2
0
0
4
.
[4
]
J.
L
iu
,
A
.
P
a
n
d
a
,
A
.
S
in
g
la,
B.
G
o
d
f
re
y
,
M
.
S
c
h
a
p
ira,
a
n
d
S
.
S
h
a
n
k
a
r,
“
En
su
ri
n
g
Co
n
n
e
c
ti
v
i
ty
v
ia
Da
ta
P
lan
e
M
e
c
h
a
n
ism
s,”
i
n
P
r
o
c
e
e
d
in
g
s o
f
USE
NIX
NSDI,
2
0
1
3
.
[5
]
C.
A
lae
tt
in
o
g
lu
,
V.
Ja
c
o
b
so
n
,
a
n
d
H.
Yu
,
T
o
w
a
rd
s
M
il
li
-
S
e
c
o
n
d
IG
P
C
o
n
v
e
rg
e
n
c
e
.
In
tern
e
t
Dra
f
t
d
ra
f
t
-
a
la
e
tt
in
o
g
lu
-
isis
-
c
o
n
v
e
rg
e
n
c
e
-
0
0
.
tx
t,
No
v
.
2
0
0
0
.
[6
]
R.
A
h
m
e
d
,
M
.
Ba
ri,
S
.
C
h
o
w
d
h
u
ry
,
M
.
Ra
b
b
a
n
i
,
R.
Bo
u
tab
a
,
a
n
d
B.
M
a
th
ieu
,
“
Α
Ro
u
te:
A
n
a
m
e
b
a
se
d
ro
u
ti
n
g
sc
h
e
m
e
f
o
r
In
f
o
rm
a
ti
o
n
Ce
n
tri
c
Ne
tw
o
rk
s,
”
in
P
ro
c
e
e
d
i
n
g
s o
f
IEE
E
INFOCOM,
2
0
1
3
.
[7
]
A
b
il
e
n
e
,
T
M
.
[
On
li
n
e
]
.
A
v
a
il
a
b
le:
h
tt
p
:/
/w
ww
.
c
s.u
tex
a
s.e
d
u
/~
y
z
h
a
n
g
/
re
se
a
rc
h
/A
b
il
e
n
e
/.
[8
]
A
.
Af
a
n
a
s
y
e
v
,
C.
Yi,
L
.
Wan
g
,
B.
Zh
a
n
g
,
a
n
d
L
.
Zh
a
n
g
,
“
S
c
a
li
n
g
n
d
n
ro
u
ti
n
g
:
Old
t
a
le,
n
e
w
d
e
sig
n
,
”
T
e
c
h
n
ica
l
Re
p
o
rt
ND
N
-
0
0
0
4
,
ND
N,
Ju
ly
2
0
1
3
.
[9
]
A
.
M
a
rk
o
p
o
u
l
o
u
,
G
.
Ia
n
n
a
c
c
o
n
e
,
S
.
B
h
a
tt
a
c
h
a
ry
y
a
,
C.
-
N.
Ch
u
a
h
,
Y.
G
a
n
jali,
a
n
d
C.
Di
o
t,
“
Ch
a
r
a
c
teriz
a
ti
o
n
o
f
F
a
il
u
re
s
i
n
a
n
Op
e
ra
ti
o
n
a
l
I
P
Ba
c
k
b
o
n
e
Ne
tw
o
rk
,
”
IEE
E/
ACM
T
r
a
n
sa
c
ti
o
n
s
o
n
Ne
two
rk
in
g
,
v
o
l.
1
6
(
4
),
p
p
.
7
4
9
–
7
6
2
,
A
u
g
u
st 2
0
0
8
.
[1
0
]
D.
Ku
tsc
h
e
r,
S
.
E
u
m
,
K.
P
e
n
ti
k
o
u
sis,
I.
P
sa
ra
s,
D.
C
o
ru
j
o
,
D.
S
a
u
c
e
z
,
T
.
C.
S
c
h
m
id
t,
a
n
d
M
.
a
h
li
sc
h
.
ICN
Re
se
a
rc
h
Ch
a
ll
e
n
g
e
s.
In
tern
e
t
d
ra
f
t,
2
0
1
4
.
[1
1
]
A
.
Kv
a
lb
e
in
,
A
.
Ha
n
se
n
,
T
.
Cicic
,
S
.
G
jes
sin
g
,
a
n
d
O.
L
y
sn
e
,
“
F
a
s
t
I
P
N
e
tw
o
rk
Re
c
o
v
e
r
y
Us
in
g
M
u
lt
ip
le
Ro
u
ti
n
g
Co
n
fi
g
u
ra
ti
o
n
s,”
i
n
P
ro
c
e
e
d
in
g
s o
f
INFOCOM,
2
0
0
6
.
[1
2
]
K.
L
a
k
sh
m
in
a
ra
y
a
n
a
n
,
M
.
Ca
e
sa
r,
M
.
Ra
n
g
a
n
,
T
.
A
n
d
e
rso
n
,
S
.
S
h
a
n
k
a
r,
a
n
d
I.
S
to
ics
,
“
A
c
h
iev
in
g
Co
n
v
e
rg
e
n
c
e
-
F
re
e
Ro
u
ti
n
g
u
s
in
g
F
a
il
u
re
-
Ca
rry
in
g
P
a
c
k
e
ts,” i
n
P
r
o
c
e
e
d
in
g
s o
f
A
CM
S
IG
COMM
,
2
0
0
7
.
[1
3
]
N.
Ku
sh
m
a
n
,
S
.
D
.
Ka
tab
i,
a
n
d
B.
M
a
g
g
s,
“
R
-
BG
P
:
S
tay
in
g
Co
n
n
e
c
ted
in
a
Co
n
n
e
c
ted
W
o
rl
d
,
”
i
n
P
ro
c
e
e
d
in
g
s
o
f
USE
NIX
NSDI,
2
0
0
7
.
[1
4
]
A
.
A
tl
a
s a
n
d
A
.
Zi
n
in
.
RF
C
5
2
8
6
:
Ba
sic
S
p
e
c
ifi
c
a
ti
o
n
f
o
r
I
P
F
a
st R
e
ro
u
te:
L
o
o
p
-
F
re
e
A
lt
e
rn
a
tes
,
2
0
0
8
.
[1
5
]
F
.
P
a
p
a
d
o
p
o
u
l
o
s,
D.
Krio
u
k
o
v
,
M
.
Bo
g
u
a
,
a
n
d
A
.
V
a
h
d
a
t
,
“
G
re
e
d
y
F
o
r
w
a
rd
in
g
in
D
y
n
a
m
ic
S
c
a
l
e
-
F
re
e
Ne
t
w
o
rk
s
Em
b
e
d
d
e
d
in
Hy
p
e
rb
o
li
c
M
e
tri
c
S
p
a
c
e
s,”
i
n
P
r
o
c
e
e
d
in
g
s o
f
IEE
E
INFOCOM,
2
0
1
0
.
[1
6
]
L
.
S
a
in
o
,
I.
P
sa
ra
s,
a
n
d
G
.
P
a
v
lo
u
,
“
Ha
sh
-
ro
u
ti
n
g
sc
h
e
m
e
s
f
o
r
in
fo
rm
a
ti
o
n
c
e
n
tri
c
n
e
tw
o
rk
in
g
,
”
i
n
P
r
o
c
e
e
d
in
g
s
o
f
A
CM
S
IGCO
M
M
ICN W
o
rk
sh
o
p
,
2
0
1
3
.
[1
7
]
CCNx
.
[
On
li
n
e
]
.
A
v
a
il
a
b
le:
h
tt
p
:
/
/www
.
c
c
n
x
.
o
rg
/
.
[1
8
]
A
.
Ca
rz
a
n
ig
a
,
K.
Kh
a
z
a
e
i,
M
.
P
a
p
a
li
n
i,
a
n
d
A
.
L
.
W
o
lf
,
“
Is
in
f
o
rm
a
ti
o
n
-
c
e
n
tri
c
m
u
lt
i
-
tree
ro
u
ti
n
g
f
e
a
sib
le?
”
in
P
r
o
c
e
e
d
in
g
s o
f
A
CM
S
IG
COMM
ICN
W
o
rk
sh
o
p
,
2
0
1
3
.
[1
9
]
R.
Ch
io
c
c
h
e
tt
i
,
D.
P
e
rin
o
,
G
.
Ca
ro
fi
g
li
o
,
D.
Ro
ss
i,
a
n
d
G
.
Ro
ss
in
i,
“
In
f
o
rm
:
A
d
y
n
a
m
i
c
in
tere
st
f
o
rwa
rd
in
g
m
e
c
h
a
n
is
m
f
o
r
in
f
o
r
m
a
ti
o
n
c
e
n
tri
c
n
e
tw
o
rk
in
g
,
”
i
n
P
ro
c
e
e
d
i
n
g
s o
f
A
CM
S
IGCO
M
M
ICN W
o
rk
sh
o
p
,
2
0
1
3
.
[2
0
]
Qu
a
lNe
t.
[
O
n
li
n
e
].
A
v
a
il
a
b
le:
h
tt
p
:
/
/w
e
b
.
sc
a
lab
le
-
n
e
tw
o
rk
s.c
o
m
/c
o
n
ten
t/
q
u
a
ln
e
t/
.
[2
1
]
V
.
a
c
o
b
so
n
,
D.
K
.
S
m
e
tt
e
rs,
J.
D.
T
h
o
rn
t
o
n
,
M
.
F
.
P
las
s,
N.
H.
B
rig
g
s,
a
n
d
R.
L
.
Bra
y
n
a
r
d
,
“
Ne
t
w
o
rk
in
g
Na
m
e
d
Co
n
ten
t
,
”
i
n
P
ro
c
e
e
d
i
n
g
s o
f
A
CM
Co
n
e
x
,
2
0
0
9
.
[2
2
]
A
.
K.
M
.
M
.
Ho
q
u
e
,
S
.
O.
A
m
in
,
A
.
A
l
y
y
a
n
,
B.
Z
h
a
n
g
,
L
.
Z
h
a
n
g
,
a
n
d
L
.
W
a
n
g
,
“
Nlsr:
Na
m
e
d
-
d
a
ta
li
n
k
sta
te
ro
u
ti
n
g
p
ro
t
o
c
o
l,
”
I
n
P
r
o
c
e
e
d
in
g
s o
f
A
C
M
S
IG
COMM
ICN W
o
rk
sh
o
p
,
2
0
1
3
.
[2
3
]
P
.
F
ra
n
c
o
is,
C.
F
il
sfi
ls,
J.
Ev
a
n
s,
a
n
d
O.
Bo
n
a
v
e
n
tu
re
,
“
A
c
h
iev
in
g
S
u
b
-
S
e
c
o
n
d
IG
P
Co
n
v
e
rg
e
n
c
e
in
L
a
r
g
e
IP
Ne
tw
o
rk
s,”
A
CM
S
IG
COMM
CCR,
v
o
l.
3
5
(
3
),
Ju
ly
2
0
0
5
.
[2
4
]
M
P
L
S
traf
f
i
c
e
n
g
in
e
e
rin
g
f
a
st
re
ro
u
te
li
n
k
p
ro
tec
ti
o
n
.
[
On
l
in
e
]
.
Av
a
il
a
b
le:
h
tt
p
:/
/w
ww
.
c
isc
o
.
c
o
m
/
e
n
/US
/d
o
c
s/io
s/
1
2
_
0
st/
1
2
_
0
st
1
0
/f
e
a
tu
re
/g
u
id
e
/f
a
s
tro
u
t
.
h
tm
l.
Evaluation Warning : The document was created with Spire.PDF for Python.