I
nte
rna
t
io
na
l J
o
urna
l o
f
E
v
a
lua
t
io
n a
nd
Resea
rc
h in E
du
ca
t
io
n (
I
J
E
RE
)
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
201
6
,
p
p
.
2
2
1
~
2
2
6
I
SS
N:
2252
-
8822
221
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
R
E
M
a
the
m
a
ti
ca
l Mo
del f
o
r Ma
pping
Studen
ts’
Co
g
niti
v
e
C
a
pa
bility
H
a
rdi Ta
m
bu
na
n
De
p
a
rtme
n
t
o
f
M
a
th
e
m
a
ti
c
s E
d
u
c
a
ti
o
n
,
F
KI
P
U
n
iv
e
rsity
H
KBP
No
m
m
e
n
se
n
,
M
e
d
a
n
,
I
n
d
o
n
e
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l 0
1
,
2
0
1
6
R
ev
i
s
ed
A
u
g
2
7
,
2
0
1
6
A
cc
ep
ted
A
u
g
2
9
,
2016
T
h
e
q
u
a
li
ty
m
a
p
p
in
g
o
f
e
d
u
c
a
ti
o
n
a
l
u
n
it
p
ro
g
ra
m
is
im
p
o
rtan
t
issu
e
i
n
e
d
u
c
a
ti
o
n
i
n
In
d
o
n
e
sia
to
d
a
y
in
a
n
e
f
f
o
rt
to
im
p
ro
v
e
th
e
q
u
a
li
ty
o
f
e
d
u
c
a
ti
o
n
.
T
h
e
o
b
jec
ti
v
e
o
f
th
is
st
u
d
y
is
to
m
a
k
e
a
m
a
th
e
m
a
ti
c
a
l
m
o
d
e
l
to
f
i
n
d
o
u
t
t
h
e
m
a
p
o
f
stu
d
e
n
ts’
c
a
p
a
b
il
it
y
in
m
a
th
e
m
a
ti
c
s.
It
h
a
s
b
e
e
n
m
a
d
e
a
m
a
th
e
m
a
ti
c
a
l
m
o
d
e
l
to
b
e
u
se
d
in
t
h
e
m
a
p
p
in
g
o
f
stu
d
e
n
ts’
c
a
p
a
b
il
it
y
.
De
m
o
n
stra
ti
o
n
o
f
th
e
u
se
o
f
m
o
d
e
ls
p
e
rf
o
r
m
e
d
in
a
c
c
o
rd
a
n
c
e
w
it
h
th
e
d
a
ta
o
f
th
e
re
su
lt
s
f
ro
m
th
e
m
a
th
tes
t
g
iv
e
n
to
1
4
7
stu
d
e
n
ts
in
g
ra
d
e
X
I
I
,
sta
te
se
n
io
r
h
ig
h
sc
h
o
o
l,
sc
ien
c
e
p
ro
g
ra
m
,
a
n
d
a
c
a
d
e
m
ic
y
e
a
r
2
0
1
5
-
2
0
1
6
.
T
h
e
m
a
p
o
f
stu
d
e
n
ts’
c
a
p
a
b
il
it
y
c
a
n
b
e
k
n
o
w
n
th
a
t
4
8
t
e
st
it
e
m
s
a
re
d
e
riv
e
d
f
ro
m
1
6
su
b
to
p
ics
o
f
th
r
e
e
c
o
g
n
it
iv
e
d
o
m
a
in
,
o
n
ly
1
9
tes
t
it
e
m
s
a
re
a
c
h
iev
e
d
.
T
h
e
a
c
h
iev
e
d
m
a
p
li
e
s
in
8
s
u
b
to
p
ics
f
o
r
k
n
o
w
led
g
e
d
o
m
a
in
a
n
d
6
su
b
to
p
ics
f
o
r
c
o
m
p
re
h
e
n
sio
n
d
o
m
a
in
a
n
d
a
p
p
li
c
a
ti
o
n
d
o
m
a
in
h
a
s
5
su
b
to
p
ics
.
S
o
th
a
t
su
b
to
p
ic
a
n
d
c
o
g
n
it
iv
e
d
o
m
a
in
w
h
ich
c
a
n
n
o
t
b
e
a
c
h
i
e
v
e
d
c
a
n
b
e
d
o
n
e
f
u
rth
e
r
c
o
rre
c
ti
v
e
a
c
ti
o
n
to
o
b
tain
t
h
e
m
a
x
i
m
u
m
re
su
lt
s.
T
h
is
p
a
p
e
r
d
e
m
o
n
stra
te
s
h
o
w
o
p
e
ra
ti
o
n
a
l
re
se
a
rc
h
tec
h
n
i
q
u
e
s
c
a
n
b
e
a
p
p
li
e
d
f
o
r
p
ro
b
lem
so
lv
in
g
in
e
d
u
c
a
ti
o
n
.
K
ey
w
o
r
d
:
Ma
p
p
in
g
o
f
C
ap
ab
ilit
y
Ma
th
e
m
atica
l
M
o
d
el
Stu
d
e
n
ts
’
C
o
q
n
i
tiv
e
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Har
d
i
T
am
b
u
n
a
n
,
Dep
ar
t
m
en
t o
f
Ma
th
e
m
at
ics E
d
u
ca
tio
n
,
FKI
P
,
Un
iv
er
s
i
t
y
H
KB
P
No
m
m
en
s
e
n
,
J
l.
Su
to
m
o
,
n
o
4
A
,
Me
d
an
2
0
2
3
4
-
I
n
d
o
n
esia.
E
m
ail:
ta
m
b
u
n
h
ar
d
i@
g
m
a
il.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
I
m
p
r
o
v
in
g
th
e
q
u
ali
t
y
o
f
ed
u
ca
tio
n
is
th
e
is
s
u
e
o
f
a
tr
en
d
th
at
p
r
o
m
o
ted
b
y
th
e
g
o
v
e
r
n
m
e
n
t
o
f
I
n
d
o
n
esia
i
n
o
r
d
er
to
f
o
llo
w
t
h
e
d
ev
elo
p
m
en
t
o
f
s
cie
n
ce
an
d
tech
n
o
lo
g
y
.
So
m
e
o
f
t
h
e
e
f
f
o
r
ts
alr
ea
d
y
m
ad
e
ar
e
to
i
m
p
r
o
v
e
th
e
q
u
alit
y
o
f
e
d
u
ca
to
r
s
[
1
]
,
cu
r
r
icu
lu
m
i
m
p
r
o
v
e
m
e
n
ts
[
2
]
.
I
t
ca
n
n
o
t
b
e
d
en
ied
th
at
I
n
d
o
n
e
s
ia
n
ed
u
ca
tio
n
al
o
u
tco
m
e
s
ar
e
n
o
t
w
ell
[
3
]
b
ec
au
s
e
it
i
s
s
t
ill
u
n
d
er
th
e
s
ate
r
a
n
k
in
g
p
ar
ticip
an
t
s
o
b
s
er
v
ed
[
4
]
,
[
5
]
.
I
n
clu
d
i
n
g
t
h
e
r
es
u
lt
o
f
m
at
h
e
m
a
tics
ed
u
ca
tio
n
is
n
o
t
s
atis
f
ac
to
r
y
v
ie
w
ed
f
r
o
m
th
e
r
an
k
co
m
p
ar
ed
to
p
ar
ticip
atin
g
co
u
n
tr
y
o
b
s
er
v
e
d
[
6
]
,
[
7
]
.
E
v
en
B
a
w
esd
a
n
[
8
]
s
aid
th
at
t
h
e
ed
u
ca
tio
n
i
n
I
n
d
o
n
esia
w
a
s
a
n
e
m
er
g
e
n
c
y
.
Ot
h
er
f
ac
t
s
s
h
o
w
th
at
th
e
a
v
er
ag
e
m
at
h
e
m
a
tics
n
atio
n
al
e
x
a
m
in
a
tio
n
r
es
u
lts
t
h
e
d
ec
r
ea
s
e
o
f
th
e
l
ast 4
y
ea
r
s
(
2
0
1
2
-
2
0
1
5
)
[
9
]
,
[
1
0
]
.
Ma
n
y
f
ac
to
r
s
th
at
af
f
ec
t
s
t
u
d
en
ts
’
m
at
h
e
m
atica
l
ab
ilit
ies,
i
n
ter
n
al
f
ac
to
r
s
s
u
c
h
a
s
s
t
u
d
e
n
ts
’
b
elie
f
[
1
1
]
,
lack
o
f
m
o
ti
v
atio
n
an
d
p
o
o
r
attitu
d
es
b
y
s
t
u
d
en
t
s
[
1
2
]
,
s
elf
e
f
f
icac
y
,
ac
ad
e
m
ic
r
eso
u
r
ce
s
,
s
elf
r
eg
u
latio
n
,
an
d
le
ar
n
i
n
g
s
t
y
les
[
1
3
]
,
s
tu
d
en
ts
w
er
e
les
s
co
n
s
i
s
te
n
t
in
s
tu
d
y
in
g
m
ath
e
m
at
ics
[
1
4
]
,
s
tu
d
y
h
ab
it
s
,
ti
m
e
m
an
a
g
e
m
e
n
t
a
n
d
atti
tu
d
e
to
war
d
s
m
at
h
e
m
atics
[
1
5
]
,
th
e
m
a
th
e
m
atics
an
x
iet
ies
r
elate
d
to
n
u
m
er
ical
an
x
ietie
s
o
n
s
tu
d
e
n
ts
’
m
at
h
e
m
a
tics
ac
h
iev
e
m
en
t
[
1
6
]
.
E
x
ter
n
a
l
f
ac
to
r
s
,
s
u
c
h
as
m
o
d
i
f
y
in
g
t
h
e
li
n
g
u
i
s
tic
s
tr
u
ct
u
r
es
i
n
m
at
h
w
o
r
d
p
r
o
b
lem
s
[
1
7
]
,
tea
ch
in
g
p
r
ac
tices
an
d
teac
h
er
attr
ib
u
tio
n
[
1
8
]
,
less
ef
f
ec
ti
v
e
teac
h
er
in
ch
o
o
s
i
n
g
lear
n
in
g
s
tr
ate
g
ie
s
[
19
]
,
p
o
o
r
teac
h
in
g
m
eth
o
d
s
[
2
0
]
,
teac
h
er
s
an
d
s
t
u
d
en
t
s
’
s
el
f
m
o
ti
v
at
io
n
,
i
n
ter
ac
ti
v
e
m
et
h
o
d
o
f
teac
h
i
n
g
[
2
1
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8822
I
J
E
R
E
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
221
–
2
2
6
222
On
e
o
f
th
e
in
s
tr
u
m
e
n
t
s
to
k
n
o
w
t
h
e
q
u
alit
y
o
f
ed
u
ca
t
io
n
n
at
io
n
all
y
i
s
th
r
o
u
g
h
n
atio
n
al
ex
a
m
as
w
e
l
l
as
th
e
d
eter
m
i
n
a
n
t
o
f
g
r
ad
u
at
io
n
r
eq
u
ir
e
m
e
n
t
ed
u
ca
tio
n
al
u
n
i
t
lev
el
[
2
2
]
,
[
2
3
]
.
Ma
th
e
m
atics
is
o
n
e
o
f
t
h
e
less
o
n
s
test
ed
n
atio
n
all
y
a
n
d
tar
g
et
o
f
s
t
u
d
en
t
s
lear
n
i
n
g
o
u
tco
m
es
b
ased
o
n
B
lo
o
m
’
s
C
o
g
n
i
tiv
e
T
ax
o
n
o
m
y
[2
4
]
w
h
ich
in
cl
u
d
es
k
n
o
w
led
g
e,
co
m
p
r
eh
e
n
s
iv
e,
a
n
d
ap
p
licatio
n
[
2
5
]
.
I
n
ac
co
r
d
an
ce
w
it
h
t
h
e
d
ev
elo
p
m
e
n
t
o
f
f
u
tu
r
e,
n
atio
n
al
ex
a
m
i
n
atio
n
is
n
o
lo
n
g
er
as
t
h
e
m
ea
s
u
r
e
m
e
n
t
o
f
g
r
ad
u
at
io
n
r
eq
u
ir
e
m
e
n
t
s
at
th
e
u
n
i
t
lev
el
o
f
ed
u
ca
tio
n
i
n
2
0
1
6
b
u
t
as
th
e
q
u
alit
y
m
ap
p
in
g
o
f
ed
u
ca
tio
n
al
u
n
it
p
r
o
g
r
a
m
i
n
o
r
d
er
to
i
m
p
r
o
v
e
th
e
q
u
a
lit
y
o
f
ed
u
ca
tio
n
[
2
6
]
,
[
2
7
]
.
I
m
p
le
m
e
n
tatio
n
o
f
q
u
alit
y
m
ap
p
in
g
is
n
o
t
o
n
l
y
n
atio
n
a
ll
y
b
u
t
al
s
o
an
y
r
eg
io
n
.
T
h
er
ef
o
r
e,
ed
u
ca
to
r
co
n
f
r
o
n
ted
w
i
th
a
n
e
w
ca
s
e
w
h
ic
h
s
h
o
u
ld
h
a
v
e
t
h
e
co
m
p
ete
n
ce
to
p
er
f
o
r
m
t
h
e
m
a
p
p
in
g
ca
p
ab
ilit
y
o
f
s
tu
d
e
n
ts
to
w
ar
d
ed
u
ca
tio
n
a
l p
r
o
g
r
a
m
u
n
it o
r
i
n
s
tr
u
ctio
n
al
m
a
ter
ial
in
o
r
d
er
to
k
n
o
w
w
h
ic
h
m
ater
ial
h
a
s
o
r
h
a
s
n
o
t b
ee
n
m
a
s
ter
ed
b
y
s
t
u
d
en
ts
.
I
t c
an
b
e
tak
en
f
u
r
t
h
er
to
o
b
t
ain
o
p
ti
m
al
r
es
u
lt
s
.
T
h
is
r
esear
ch
ai
m
s
to
m
a
k
e
a
m
ath
e
m
at
ical
m
o
d
el
f
r
o
m
th
e
m
ap
p
i
n
g
p
r
o
b
le
m
o
f
t
h
e
ab
ilit
y
o
f
s
tu
d
e
n
ts
’
m
at
h
e
m
a
tical
co
g
n
it
iv
e
d
o
m
ai
n
.
T
h
e
r
esear
ch
ap
p
r
o
ac
h
u
s
ed
is
o
p
er
atio
n
al
r
e
s
ea
r
ch
(
OR
)
.
I
t
h
as
be
en
w
id
el
y
a
n
d
s
u
cc
ess
f
u
ll
y
u
s
ed
in
s
o
l
v
i
n
g
t
h
e
ca
s
e
in
ed
u
ca
tio
n
,
s
u
c
h
as:
s
t
u
d
en
t
p
r
o
ject
allo
ca
tio
n
[
2
8
]
,
s
o
lu
tio
n
o
f
th
e
u
n
i
v
er
s
it
y
t
i
m
e
tab
lin
g
p
r
o
b
le
m
[
2
9
]
,
[3
0
]
,
s
c
h
ed
u
li
n
g
o
f
r
o
o
m
[
3
1
]
,
allo
ca
t
e
th
e
o
p
ti
m
al
m
ar
k
s
f
o
r
ea
ch
c
h
ap
ter
o
f
en
g
i
n
ee
r
in
g
m
at
h
e
m
atic
s
[
3
2
]
,
ev
al
u
ate
t
h
e
e
x
a
m
in
a
tio
n
q
u
esti
o
n
in
en
g
i
n
ee
r
in
g
m
at
h
e
m
a
tics
co
u
r
s
e
[
3
3
]
.
Mo
d
elin
g
ca
r
r
ied
o
u
t
b
y
s
u
b
to
p
ic
o
f
teac
h
in
g
m
ater
ial
a
n
d
co
g
n
i
tiv
e
d
o
m
ai
n
s
w
i
ll
b
e
ac
h
iev
ed
a
n
d
th
e
d
ata
f
r
o
m
t
h
e
r
es
u
lt
s
.
B
ased
o
n
s
o
l
v
i
n
g
m
o
d
el
ca
n
b
e
k
n
o
w
n
th
e
m
ap
o
f
t
h
e
ab
ilit
y
o
f
s
tu
d
e
n
ts
,
s
o
it c
a
n
b
e
tak
e
f
u
r
t
h
er
ac
tio
n
to
ac
h
ie
v
e
th
e
b
ette
r
q
u
alit
y
o
f
t
h
e
ed
u
ca
tio
n
al
u
n
it p
r
o
g
r
am
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
R
esear
ch
m
eth
o
d
i
s
co
n
s
is
ted
o
f
t
h
r
ee
s
ta
g
es.
T
h
e
f
ir
s
t
i
s
to
m
ak
e
m
ath
e
m
at
ical
m
o
d
el
b
as
ed
o
n
s
u
b
to
p
ic
an
d
d
o
m
a
in
ac
h
ie
v
ed
in
m
at
h
e
m
a
tics
n
atio
n
al
e
x
a
m
i
n
a
tio
n
at
h
i
g
h
s
ch
o
o
l.
T
h
e
s
ec
o
n
d
is
d
ata
co
llectio
n
an
d
th
e
las
t o
n
e
is
s
o
l
v
i
n
g
t
h
e
m
o
d
el
b
y
u
s
in
g
L
I
NDO
6
.
1
p
a
ck
ag
e.
2
.
1
.
M
a
t
he
m
a
t
ica
l M
o
del
Mo
d
elin
g
i
s
i
m
p
o
r
tan
t
i
n
O
R
.
I
f
a
p
r
o
b
le
m
ca
n
b
e
tr
an
s
la
te
d
in
to
th
e
lan
g
u
ag
e
o
f
m
at
h
e
m
atic
s
,
it
i
s
ca
lled
a
m
at
h
e
m
atica
l
m
o
d
el
f
r
o
m
th
e
i
s
s
u
e.
T
h
e
m
a
th
e
m
atica
l
m
o
d
el
a
s
y
s
te
m
is
th
e
co
llectio
n
o
f
m
at
h
e
m
a
tical
r
elatio
n
s
h
ip
w
h
ich
i
s
f
o
r
th
e
p
u
r
p
o
s
e
o
f
d
ev
elo
p
in
g
a
d
esig
n
o
r
p
la
n
;
c
h
a
r
ac
ter
ize
th
e
s
et
o
f
f
ea
s
ib
le
s
o
lu
tio
n
s
o
f
t
h
e
s
y
s
te
m
[
3
4
]
.
B
ased
o
n
r
ec
ap
itu
lati
o
n
o
f
t
h
e
n
atio
n
al
e
x
a
m
i
n
atio
n
at
h
i
g
h
s
ch
o
o
l,
it
ca
n
b
e
ca
teg
o
r
ized
in
to
p
s
u
b
to
p
ic
an
d
q
co
g
n
iti
v
e
d
o
m
ai
n
,
s
o
th
e
m
ath
e
m
atica
l
m
o
d
elin
g
o
f
th
e
p
r
o
b
lem
i
s
d
escr
ib
ed
as f
o
llo
w
s
No
tatio
n
u
s
e
ar
e
d
ef
in
e
as
f
o
ll
o
w
s
Set
:
: M
ain
v
ar
iab
le
te
s
t
ite
m
s
to
i
, i
= 1
,
p
: C
o
g
n
iti
v
e
to
j,
j= 1
, q
: V
ar
iab
le
test
ite
m
s
to
i
in
d
o
m
ai
n
: T
h
e
n
u
m
b
er
o
f
s
tu
d
e
n
ts
w
h
o
an
s
w
er
co
r
r
ec
tl
y
o
n
ea
c
h
test
i
te
m
s
to
i
f
o
r
all
d
o
m
ai
n
: T
h
e
m
a
x
i
m
u
m
n
u
m
b
er
i
f
all
th
e
s
t
u
d
en
t
s
an
s
w
er
co
r
r
ec
tl
y
o
n
ea
ch
test
i
te
m
s
to
i
f
o
r
all
d
o
m
a
in
: T
h
e
n
u
m
b
er
o
f
te
s
t
ite
m
s
t
o
i
f
o
r
all
d
o
m
ai
n
s
: T
h
e
n
u
m
b
er
o
f
all
te
s
t
ite
m
s
t
o
i
f
o
r
ea
ch
d
o
m
ai
n
: T
h
e
n
u
m
b
er
o
f
s
tu
d
e
n
ts
w
h
o
a
n
s
w
er
co
r
r
ec
tl
y
tet
s
ite
m
s
t
o
i
f
o
r
all
d
o
m
ai
n
s
: T
h
e
n
u
m
b
er
o
f
s
tu
d
e
n
ts
w
h
o
an
s
w
er
co
r
r
ec
tl
y
tet
s
ite
m
s
to
i
f
o
r
ea
ch
d
o
m
a
in
: T
h
e
m
a
x
i
m
u
m
n
u
m
b
er
i
f
all
s
tu
d
e
n
ts
a
n
s
w
er
co
r
r
ec
tl
y
tes
t
ite
m
s
t
o
i
f
o
r
all
d
o
m
ai
n
: T
h
e
m
a
x
i
m
u
m
n
u
m
b
er
i
f
all
s
tu
d
e
n
ts
a
n
s
w
er
co
r
r
ec
tl
y
tes
t
ite
m
s
t
o
i
f
o
r
ea
ch
d
o
m
ai
n
T
h
e
m
ap
p
i
n
g
p
r
o
b
le
m
ca
n
b
e
p
r
esen
ted
m
o
d
el
as
f
o
llo
w
s
.
T
h
e
o
b
j
ec
tiv
e
f
u
n
c
tio
n
(
1
)
is
to
m
ax
i
m
ize
ite
m
test
in
ac
co
r
d
an
ce
w
it
h
s
tu
d
e
n
ts
’
ca
p
ab
ilit
y
.
C
o
n
s
tr
ai
n
t
eq
u
a
tio
n
(
2
)
-
(
1
0
)
co
n
s
tr
ai
n
t
ar
e
to
s
ea
r
ch
t
h
e
m
ap
o
f
s
t
u
d
en
ts
’
ca
p
ab
ilit
y
.
W
h
er
ea
s
th
e
r
o
le
o
f
ea
c
h
co
n
s
tr
ain
t,
eq
u
atio
n
(
2
)
s
tates
t
h
at
th
e
n
u
m
b
er
o
f
test
i
s
as
m
a
n
y
as
I
ite
m
s
.
C
o
n
s
tr
ain
t
eq
u
atio
n
o
f
(
3
)
,
(
5
)
,
an
d
(
7
)
a
r
e
to
en
s
u
r
e
ite
m
te
s
t,
t
h
e
n
u
m
b
er
o
f
s
tu
d
e
n
ts
w
h
o
an
s
w
er
th
e
ite
m
s
co
r
r
ec
tl
y
a
n
d
t
h
e
m
ax
i
m
u
m
n
u
m
b
er
if
s
t
u
d
en
t
s
a
n
s
w
er
a
ll
t
h
e
ite
m
co
r
r
ec
tl
y
f
o
r
all
co
g
n
iti
v
e
d
o
m
ai
n
s
.
C
o
n
s
tr
ai
n
t
eq
u
atio
n
(
4
)
,
(
6
)
an
d
(
8
)
ar
e
to
en
s
u
r
e
th
e
n
u
m
b
er
o
f
ite
m
s
,
t
h
e
n
u
m
b
er
o
f
s
tu
d
e
n
ts
a
n
s
w
er
in
g
t
h
e
i
te
m
te
s
t
a
n
d
m
a
x
i
m
u
m
n
u
m
b
er
if
s
t
u
d
en
t
s
a
n
s
w
er
co
r
r
ec
tl
y
all
t
h
e
ite
m
test
f
o
r
ea
c
h
co
g
n
iti
v
e
d
o
m
ai
n
.
C
o
n
s
tr
ai
n
eq
u
atio
n
(
9
)
an
d
(
1
0
)
ar
e
th
e
d
if
f
er
e
n
ce
b
et
w
ee
n
t
h
e
m
ax
i
m
u
m
n
u
m
b
er
s
i
f
all
s
tu
d
e
n
ts
a
n
s
w
er
co
r
r
ec
tl
y
a
n
d
th
e
n
u
m
b
er
o
f
s
tu
d
e
n
ts
wh
o
an
s
w
er
co
r
r
ec
tl
y
f
o
r
ea
ch
an
d
all
co
g
n
iti
v
e
d
o
m
ai
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
R
E
I
SS
N:
2252
-
8822
Ma
th
ema
tica
l Mo
d
el
fo
r
Ma
p
p
in
g
S
t
u
d
en
ts
'
C
o
g
n
itive
C
a
p
a
b
ilit
y
(
Ha
r
d
i Ta
mb
u
n
a
n
)
223
T
h
er
ef
o
r
e
th
e
m
at
h
e
m
a
ticall
y
m
o
d
el
ca
n
b
e
ex
p
r
ess
ed
as
f
o
ll
o
w
s
.
(
1
)
Su
b
j
ec
t to
(
2
)
(
3
)
(
4
)
(
5
)
(
6
)
(
7
)
(
8
)
(
9
)
(
1
0
)
W
h
er
e
X
ij
=
in
teg
er
.
2
.
2
.
Da
t
a
co
llect
io
n
Data
co
llectio
n
i
n
s
tr
u
m
en
ts
u
s
e
o
b
j
ec
tiv
e
test
ta
k
en
f
r
o
m
t
h
e
n
a
tio
n
al
e
x
a
m
tes
t
d
o
m
ai
n
,
ass
u
m
i
n
g
th
at
t
h
e
test
th
a
t
m
ee
ts
th
e
r
eq
u
ir
e
m
e
n
t
s
o
f
t
h
e
a
n
al
y
s
is
o
f
it
e
m
s
n
at
io
n
all
y
.
C
r
iter
ia
f
o
r
s
e
lectio
n
o
f
tes
t
ite
m
p
er
f
o
r
m
ed
b
ased
o
n
r
ec
ap
itu
l
atio
n
o
f
d
is
tr
i
b
u
tio
n
o
f
teac
h
in
g
m
ater
ial
s
s
o
it
is
tak
e
n
1
6
s
u
b
to
p
ics
o
f
3
co
g
n
iti
v
e
d
o
m
a
in
s
n
a
m
el
y
:
k
n
o
w
led
g
e
(
C
1
)
,
co
m
p
r
eh
e
n
s
i
o
n
(
C
2
)
,
an
d
ap
p
licatio
n
(
C
3
)
.
Data
co
llectio
n
is
ca
r
r
ied
o
u
t
b
y
p
u
tti
n
g
4
8
test
i
te
m
s
f
o
r
1
4
7
s
tu
d
e
n
ts
,
g
r
ad
e
X
I
I
,
s
cie
n
ce
p
r
o
g
r
a
m
,
s
tate
s
e
n
i
o
r
h
ig
h
s
c
h
o
o
l,
an
d
ac
ad
em
ic
y
ea
r
2
0
1
4
/2
0
1
5
.
T
h
e
o
b
tain
ed
test
r
esu
lt
i
s
th
e
n
u
m
b
er
o
f
s
tu
d
e
n
ts
w
h
o
a
n
s
w
e
r
co
r
r
ec
tly
f
o
r
ea
ch
test
ite
m
an
d
co
g
n
iti
v
e
d
o
m
ai
n
,
as th
e
f
o
llo
w
i
n
g
T
ab
le
1
.
11
pq
ij
ij
M
a
k
s
X
11
pq
ij
ij
XI
1
,
1
,
.
.
.
,
q
i
j
i
j
X
b
i
p
1
,
1
,
.
.
.
,
p
i
j
j
i
X
b
j
q
1
,
1
,
.
.
.
,
q
i
j
i
j
i
j
a
X
S
i
p
1
,
1
,
.
.
.
,
p
i
j
i
j
j
i
a
X
S
j
q
1
,
1
,
.
.
.
,
q
i
j
i
j
i
j
n
X
T
i
p
1
,
1
,
.
.
.
,
p
i
j
i
i
j
i
n
X
T
j
q
11
,
1
,
.
.
.
,
qq
i
j
i
j
i
j
i
j
i
jj
n
X
a
X
T
i
p
11
,
1
,
.
.
.
,
pp
i
j
i
i
i
j
i
j
j
ii
n
X
a
X
T
j
q
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8822
I
J
E
R
E
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
221
–
2
2
6
224
T
ab
le
1
.
T
est R
esu
lt
S
u
b
T
o
p
i
c
M
a
i
n
V
a
r
i
a
b
l
e
C
o
g
n
i
t
i
v
e
D
o
mai
n
T
o
t
a
l
K
n
o
w
l
e
d
g
e
C
o
mp
r
e
h
e
n
si
o
n
A
p
p
l
i
c
a
t
i
o
n
Ex
p
o
n
e
n
t
i
a
t
i
o
n
a
n
d
L
o
g
a
r
i
t
h
m
X
1
1
0
8
98
75
2
8
1
Eq
u
a
t
i
o
n
a
n
d
i
n
e
q
u
a
l
i
t
i
e
s
X
2
1
0
4
81
87
2
7
2
L
i
n
e
a
r
p
r
o
g
r
a
mm
i
n
g
X
3
1
0
4
60
1
0
7
2
7
1
Eq
u
a
t
i
o
n
a
n
d
q
u
a
d
r
a
t
i
c
f
u
n
c
t
i
o
n
X
4
96
78
1
0
0
2
7
4
T
r
i
g
o
n
o
me
t
r
y
X
5
1
1
5
67
39
2
2
1
M
a
t
h
e
ma
t
i
c
s l
o
g
i
c
X
6
92
1
1
5
70
2
7
7
S
t
a
t
i
st
i
c
s
a
n
d
p
r
o
b
a
b
i
l
i
t
y
X
7
96
95
55
2
4
6
P
o
l
y
n
o
m
X
8
94
81
69
2
4
4
I
n
v
e
r
se
a
n
d
c
o
mp
o
si
t
i
o
n
f
u
n
c
t
i
o
n
X
9
1
1
2
1
0
6
80
2
9
8
S
e
q
u
e
n
c
e
a
n
d
se
r
i
e
s
X
10
1
1
8
83
88
2
8
9
M
a
t
r
i
x
X
11
1
0
7
1
2
1
76
3
0
4
V
e
c
t
o
r
X
12
1
0
2
77
93
2
7
2
T
r
a
n
sf
o
r
mat
i
o
n
X
13
1
0
7
71
1
0
2
2
8
0
T
h
r
e
e
d
i
me
n
si
o
n
s
X
14
54
81
77
2
1
2
L
i
mi
t
X
15
82
86
65
2
3
3
D
i
f
f
e
r
e
n
t
i
a
l
a
n
d
I
n
t
e
g
r
a
l
X
16
99
75
65
2
3
9
∑
1
5
9
0
1
3
7
5
1
2
4
8
4
2
1
3
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
B
ased
o
n
th
e
test
d
ata
a
n
d
s
u
b
s
eq
u
en
tl
y
r
ep
lace
d
to
all
th
e
p
ar
am
eter
s
o
n
t
h
e
co
n
s
tr
ai
n
t
s
eq
u
atio
n
s
(
2
)
-
(
1
0
)
.
T
h
e
r
esu
lt
o
f
t
h
e
m
o
d
el
s
o
lu
tio
n
b
y
ap
p
l
y
i
n
g
L
I
NDO
6
.
1
p
ac
k
a
g
e
i
s
s
u
m
m
ar
i
ze
d
in
th
e
f
o
llo
w
i
n
g
T
ab
le
2
.
T
ab
le
2
.
T
h
e
Ma
p
o
f
Stu
d
en
ts
’
C
ap
ab
ili
t
y
C
o
g
n
iti
v
e
Do
m
ai
n
S
u
b
T
o
p
i
c
M
a
i
n
V
a
r
i
a
b
l
e
C
o
g
n
i
t
i
v
e
D
o
mai
n
K
n
o
w
l
e
d
g
e
C
o
mp
r
e
h
e
n
si
o
n
A
p
p
l
i
c
a
t
i
o
n
Ex
p
o
n
e
n
t
i
a
t
i
o
n
a
n
d
L
o
g
a
r
i
t
h
m
X
1
1
0
1
Eq
u
a
t
i
o
n
a
n
d
i
n
e
q
u
a
l
i
t
i
e
s
X
2
0
0
0
L
i
n
e
a
r
p
r
o
g
r
a
mm
i
n
g
X
3
1
1
0
Eq
u
a
t
i
o
n
a
n
d
q
u
a
d
r
a
t
i
c
f
u
n
c
t
i
o
n
X
4
1
0
0
T
r
i
g
o
n
o
me
t
r
y
X
5
0
1
0
M
a
t
h
e
ma
t
i
c
s l
o
g
i
c
X
6
0
1
0
S
t
a
t
i
st
i
c
s
a
n
d
p
r
o
b
a
b
i
l
i
t
y
X
7
0
1
0
P
o
l
y
n
o
m
X
8
0
0
1
I
n
v
e
r
se
a
n
d
c
o
mp
o
si
t
i
o
n
f
u
n
c
t
i
o
n
X
9
0
0
1
S
e
q
u
e
n
c
e
a
n
d
se
r
i
e
s
X
10
1
0
0
M
a
t
r
i
x
X
11
1
0
1
V
e
c
t
o
r
X
12
1
0
0
T
r
a
n
sf
o
r
mat
i
o
n
X
13
0
1
0
T
h
r
e
e
d
i
me
n
si
o
n
s
X
14
1
1
0
L
i
mi
t
X
15
0
0
1
D
i
f
f
e
r
e
n
t
i
a
l
a
n
d
I
n
t
e
g
r
a
l
X
16
1
0
0
Fro
m
4
8
test
item
s
in
cl
u
d
es
1
6
s
u
b
to
p
ics
an
d
3
co
g
n
itiv
e
d
o
m
a
in
o
n
T
ab
le
2
ar
e
o
n
l
y
1
9
v
ar
iab
le
s
v
alu
ed
i.
I
t
m
ea
n
s
t
h
at
te
s
t
ite
m
s
in
s
u
b
to
p
ic
an
d
co
g
n
it
iv
e
d
o
m
ai
n
i
s
ac
co
r
d
an
ce
w
it
h
s
t
u
d
en
ts
’
ab
ilit
y
.
T
h
u
s
,
it
ca
n
b
e
s
tated
t
h
at
t
h
e
m
ap
o
f
s
t
u
d
en
t
s
’
m
at
h
e
m
atic
s
ca
p
ab
ilit
y
f
o
r
d
o
m
ai
n
k
n
o
w
led
g
e
l
ies
o
n
8
s
u
b
to
p
ics
an
d
6
s
u
b
to
p
ics
i
n
d
o
m
ai
n
c
o
m
p
r
e
h
en
s
io
n
a
n
d
5
s
u
b
to
p
i
cs
i
n
d
o
m
ai
n
ap
p
licatio
n
.
W
h
ile
v
ar
iab
le
v
al
u
ed
ze
r
o
is
3
9
,
it
m
ea
n
s
th
at
th
e
s
t
u
d
en
t
s
’
ca
p
ab
ilit
y
i
n
s
u
b
to
p
ic
an
d
co
g
n
iti
v
e
d
o
m
ai
n
h
a
s
s
til
l
p
r
o
b
lem
.
T
h
u
s
,
i
t
ca
n
b
e
k
n
o
w
n
th
at
th
e
m
ap
o
f
s
t
u
d
en
ts
’
m
at
h
e
m
at
ics
ca
p
a
b
ilit
y
i
s
i
n
ac
co
r
d
an
ce
w
it
h
d
e
m
an
d
s
o
f
m
ap
p
in
g
p
r
o
g
r
am
q
u
alit
y
[
2
6
]
,
[2
7
]
,
s
o
t
h
e
p
r
o
b
lem
ca
n
b
e
p
er
f
o
r
m
ed
f
u
r
t
h
er
ac
tio
n
to
o
b
tain
t
h
e
m
a
x
i
m
al
r
esu
lt.
4.
CO
NCLU
SI
O
N
Ma
p
p
in
g
o
f
ed
u
ca
tio
n
al
u
n
it
p
r
o
g
r
am
i
s
i
m
p
o
r
tan
t
i
s
s
u
e
in
ed
u
ca
tio
n
in
I
n
d
o
n
esia
to
d
a
y
in
o
r
d
er
to
i
m
p
r
o
v
e
t
h
e
q
u
al
it
y
o
f
ed
u
ca
t
io
n
.
Sp
ec
if
icall
y
,
th
e
r
ea
l
i
m
p
le
m
e
n
tatio
n
o
f
m
ap
p
in
g
i
n
cl
u
d
es
th
e
m
ap
p
in
g
o
f
s
tu
d
e
n
ts
’
ca
p
ab
ilit
y
f
o
r
ea
ch
s
u
b
j
ec
t
an
d
to
p
ic
in
ed
u
ca
ti
o
n
al
u
n
it
p
r
o
g
r
a
m
.
T
h
er
ef
o
r
e,
th
e
ed
u
ca
to
r
s
ar
e
co
n
f
r
o
n
ted
to
n
e
w
tas
k
i
n
o
r
d
er
to
b
e
ab
le
to
m
ap
s
t
u
d
en
ts
’
c
ap
ab
ilit
y
f
o
r
all
s
u
b
j
ec
ts
a
n
d
to
p
ics
b
ein
g
ta
u
g
h
t
.
I
n
th
i
s
r
esear
ch
,
it
h
as b
ee
n
m
ad
e
m
at
h
e
m
atica
l
m
o
d
el
f
o
r
m
ap
p
in
g
o
f
s
tu
d
e
n
ts
’
co
g
n
iti
v
e
d
o
m
ai
n
ca
p
ab
ilit
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
R
E
I
SS
N:
2252
-
8822
Ma
th
ema
tica
l Mo
d
el
fo
r
Ma
p
p
in
g
S
t
u
d
en
ts
'
C
o
g
n
itive
C
a
p
a
b
ilit
y
(
Ha
r
d
i Ta
mb
u
n
a
n
)
225
De
m
o
n
s
tr
atio
n
o
f
m
o
d
el
test
i
n
g
is
b
ased
o
n
s
t
u
d
en
t
s
’
test
r
es
u
lt
s
h
o
w
s
t
h
at
4
8
ite
m
s
b
ased
o
n
1
6
s
u
b
to
p
ics
an
d
3
co
g
n
iti
v
e
d
o
m
ain
s
ca
n
b
e
k
n
o
w
n
t
h
e
m
ap
o
f
s
tu
d
en
ts
’
ca
p
ab
ilit
y
,
n
a
m
el
y
:
1
9
ite
m
s
ar
e
ac
h
iev
ed
,
9
s
u
b
to
p
ics
in
k
n
o
w
led
g
e
d
o
m
ai
n
,
6
s
u
b
to
p
ics
i
n
co
m
p
r
eh
en
s
io
n
d
o
m
ai
n
,
5
s
u
b
t
o
p
ics
in
ap
p
licatio
n
d
o
m
ai
n
.
So
th
e
s
t
u
d
en
ts
’
ca
p
ab
ilit
y
in
s
u
b
to
p
ics
an
d
co
g
n
i
ti
v
e
d
o
m
a
in
w
h
ich
i
s
n
o
t
ac
h
ie
v
ed
,
it
n
ee
d
s
f
u
r
th
er
i
m
p
r
o
v
e
m
en
t to
o
b
tain
m
ax
i
m
al
r
esu
lt
RE
F
E
R
E
NC
E
S
[1
]
L
a
w
o
f
In
d
o
n
e
sia
G
o
v
e
rn
m
e
n
t,
“
Nu
m
b
e
r
4
,
2
0
1
5
:
Na
ti
o
n
a
l
E
d
u
c
a
t
io
n
S
tan
d
a
rd
s
,
”
p
p
.
1
-
3
6
,
2
0
1
5
.
[2
]
T
h
e
Re
g
u
latio
n
o
f
In
d
o
n
e
sia
g
o
v
e
rn
m
e
n
t,
“N
u
m
b
e
r
3
2
,
2
0
1
3
:
Na
ti
o
n
a
l
Ed
u
c
a
ti
o
n
S
tan
d
a
rd
s
,
”
p
p
.
1
-
3
6
,
2
0
1
3
.
[3
]
T
h
e
Re
g
u
a
lt
io
n
o
f
M
i
n
ister
o
f
Ed
u
c
a
ti
o
n
a
n
d
Cu
lt
u
re
o
f
In
d
o
n
e
sia
,
“
T
h
e
Qu
a
li
ty
o
f
L
e
a
rn
in
g
P
r
o
c
e
ss
in
I
n
d
o
n
e
sia
is
S
ti
ll
U
n
f
a
v
o
ra
b
le
,
”
S
tra
teg
ic P
l
a
n
o
f
t
h
e
M
in
ister
o
f
Ed
u
c
a
ti
o
n
a
n
d
C
u
lt
u
re
2
0
1
5
-
2
0
1
9
,
p
p.
18
-
2
0
,
2
0
1
5
.
[4
]
UN
ES
CO,
“
Ed
u
c
a
ti
o
n
f
o
r
A
ll
,
”
UNES
CO P
u
b
li
s
h
in
g
,
p
p
.
2
3
1
-
2
3
3
,
2
0
1
5
.
[5
]
UN
DP
,
“
I
n
d
o
n
e
sia
’s HDI V
a
l
u
e
a
n
d
Ra
n
k
,
”
Hu
m
a
n
De
v
e
lo
p
me
n
t
R
e
p
o
rt
,
pp.
1
-
7
,
2
0
1
5
.
[6
]
P
I
S
A
.
“
S
n
a
p
sh
o
t
o
f
P
e
rf
o
rm
a
n
c
e
in
M
a
t
h
e
m
a
ti
c
s,
Re
a
d
in
g
a
n
d
S
c
ien
c
e
,
”
OECD
,
p
p
.
1
-
5
,
2
0
1
4
.
[7
]
W
u
lan
d
a
ri
N.
F
.
a
n
d
Ja
il
a
n
i,
“
I
n
d
o
n
e
sia
n
S
t
u
d
e
n
ts’
M
a
th
e
ma
t
ics
Pro
b
lem
S
o
lvin
g
S
k
il
l
i
n
PI
S
A
a
n
d
T
IM
S
,
”
P
r
o
c
e
e
d
i
n
g
o
f
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Re
se
a
r
c
h
,
Im
p
le
m
e
n
tatio
n
a
n
d
Ed
u
c
a
ti
o
n
o
f
M
a
th
e
m
a
ti
c
s
a
n
d
S
c
ien
c
e
s
2
0
1
5
,
Y
o
g
y
a
k
a
rta S
ta
te Un
iv
e
rsit
y
,
1
7
-
19
M
a
y
,
p
p
.
1
9
1
-
1
9
8
,
2
0
1
5
.
[8
]
A
.
B
a
w
e
sd
a
n
,
“
A
Crit
ica
l
E
m
e
rg
e
n
c
y
Ed
u
c
a
ti
o
n
in
In
d
o
n
e
sia
,
”
Av
a
il
a
b
le:
h
tt
p
:/
/
d
ik
d
a
s.b
a
n
t
u
lk
a
b
.
g
o
.
id
/
f
il
e
sto
ra
g
e
/b
e
rk
a
s/2
0
1
4
/1
2
/
P
a
p
a
ra
n
%
2
0
M
e
n
teri.
0
.
p
d
f
(Ju
n
e
3
rd
,
2
0
1
5
)
.
[9
]
M.
Nu
h
,
“
T
h
e
V
a
lu
e
A
v
e
ra
g
e
o
f
Na
ti
o
n
a
l
Ex
a
m
in
a
ti
o
n
a
t
S
e
n
io
r
Hig
h
S
c
h
o
o
l
D
e
c
re
a
se
d
,
”
Av
a
il
a
b
le
:
T
e
mp
o
.
c
o
m
(2
3
rd
Ju
n
e
2
0
1
4
)
[1
0
]
A
.
Ba
w
e
sd
a
n
,
“
T
h
e
Av
e
ra
g
e
o
f
N
a
ti
o
n
a
l
Ex
a
m
in
a
ti
o
n
,
”
A
v
a
il
a
b
le:
h
tt
p
:/
/A
n
tara
n
e
w
s.co
m
/b
e
rit
a
/4
9
6
3
2
1
/m
e
n
d
ik
b
u
d
-
ra
ta
-
ra
ta
-
n
il
a
i
-
u
ji
a
n
-
n
a
sio
n
a
l
(Ju
n
e
3
rd
,
2
0
1
5
)
.
[1
1
]
I.
M
.
T
a
h
ir
a
n
d
Ba
k
a
r
N.
M.
A
.
,
“
In
f
lu
e
n
c
e
o
f
De
m
o
g
r
a
p
h
ic
F
a
c
to
rs
o
n
S
t
u
d
e
n
ts’
Be
li
e
f
s
in
L
e
a
rn
in
g
M
a
th
e
m
a
ti
c
s
,
”
In
ter
n
a
ti
o
n
a
l
E
d
u
c
a
ti
o
n
S
t
u
d
ies
,
v
o
l
/i
ss
u
e
:
2
(
3
),
p
p
.
1
2
0
-
1
2
6
,
2
0
0
9
.
[1
2
]
M
b
u
g
u
a
Z
.
,
e
t
a
l
.,
“
F
a
c
to
rs
Co
n
tri
b
u
t
in
g
t
o
S
t
u
d
e
n
ts’
P
o
o
r
P
e
rf
o
rm
a
n
c
e
in
M
a
th
e
m
a
ti
c
s
a
t
K
e
n
y
a
Ce
rti
f
i
c
a
te
o
f
S
e
c
o
n
d
a
ry
Ed
u
c
a
ti
o
n
i
n
Ke
n
y
a
:
A
Ca
se
o
f
Ba
rin
g
o
Co
u
n
ty
,
Ke
n
y
a
,”
Ame
ri
c
a
n
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
n
tem
p
o
ra
ry
Res
e
a
rc
h
,
v
ol
/
issu
e
:
2
(
6
),
p
p
.
8
7
-
9
1
,
2
0
1
2
.
[1
3
]
M
u
rra
y
J.,
“
T
h
e
F
a
c
to
rs
th
a
t
I
n
f
lu
e
n
c
e
M
a
th
e
m
a
ti
c
s
A
c
h
ie
v
e
m
e
n
t
a
t
th
e
Be
rb
ice
Ca
m
p
u
s
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Bu
sin
e
ss
a
n
d
S
o
c
i
a
l
S
c
ien
c
e
,
v
ol
/i
ss
u
e
:
4
(
10
),
p
p
.
1
5
0
-
1
6
4
,
2
0
1
3
.
[1
4
]
Ou
n
d
o
M
.
B.
,
“
F
a
c
to
rs
Aff
e
c
ti
n
g
M
a
th
e
m
a
ti
c
s
A
c
a
d
e
m
ic
C
o
u
n
se
ll
i
n
g
S
e
rv
ice
s:
T
h
e
S
e
c
o
n
d
a
ry
S
c
h
o
o
l
Co
u
n
se
ll
o
rs’
P
e
rsp
e
c
ti
v
e
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Ed
u
c
a
ti
o
n
a
n
d
Res
e
a
rc
h
,
v
o
l
/i
ss
u
e
:
1
(
12
),
p
p
.
1
-
8
,
2
0
1
3
.
[1
5
]
S
u
a
n
J.
S
.
,
“
Fa
c
t
o
rs
Af
fec
ti
n
g
Un
d
e
ra
c
h
iev
e
me
n
t
in
M
a
t
h
e
ma
ti
c
s
,
”
P
r
o
c
e
e
d
in
g
o
f
th
e
G
lo
b
a
l
S
u
m
m
i
t
o
n
E
d
u
c
a
ti
o
n
G
S
E
2
0
1
4
(E
-
I
S
BN 9
7
8
-
9
6
7
-
1
1
7
6
8
-
5
-
6
)
4
-
5
M
a
r
c
h
2
0
1
4
,
Ku
a
la L
u
m
p
u
r,
M
A
LA
YSI
A
,
p
p
.
1
3
-
2
0
,
2
0
1
4
.
[1
6
]
S
e
n
g
E.
L.
K.,
“
T
h
e
In
f
lu
e
n
c
e
o
f
P
re
-
Un
iv
e
rsit
y
S
tu
d
e
n
ts’
M
a
th
e
m
a
ti
c
s
T
e
st
A
n
x
iet
y
,
”
In
ter
n
a
ti
o
n
a
l
Ed
u
c
a
ti
o
n
S
tu
d
ies
,
v
o
l
/i
ss
u
e
:
8
(
11
),
p
p
.
1
6
2
-
1
6
8
,
2
0
1
5
.
[1
7
]
J.
A
b
e
d
i
a
n
d
L
o
rd
C.
,
“
T
h
e
L
a
n
g
u
a
g
e
F
a
c
to
r
in
M
a
th
e
m
a
ti
c
s
T
e
sts
,
”
Ap
p
li
e
d
M
e
a
su
re
me
n
t
Ed
u
c
a
ti
o
n
,
v
o
l
/i
ss
u
e
:
1
4
(
3
)
,
p
p
.
2
1
9
-
2
3
4
,
2
0
1
0
.
[1
8
]
Al
-
Ag
il
i
M
.
Z.
G
,
e
t
a
l
.,
“
T
h
e
F
a
c
to
rs
In
f
lu
e
n
c
e
S
tu
d
e
n
ts’
A
c
h
iev
e
m
e
n
t
in
M
a
t
h
e
m
a
ti
c
s:
A
C
a
se
f
o
r
L
ib
y
a
n
'
s
S
tu
d
e
n
ts
,
”
W
o
rld
Ap
p
li
e
d
S
c
ien
c
e
s Jo
u
rn
a
l
,
v
o
l
/i
ss
u
e
:
1
7
(9
)
,
p
p
.
1
2
2
4
-
1
2
3
0
,
2
0
1
2
.
[1
9
]
M
a
rg
a
re
t
P
.
,
“
T
h
e
Ca
u
se
o
f
th
e
L
o
w
M
a
th
e
m
a
ti
c
s
S
c
o
re
in
I
n
d
o
n
e
sia
,
”
A
v
a
il
a
b
le:
h
tt
p
:/
/n
e
w
s.o
k
e
z
o
n
e
.
c
o
m
/
re
a
d
/2
0
1
4
/
0
9
/
0
9
/3
v
3
/
1
0
3
6
5
0
6
/i
n
i
-
p
e
n
y
e
b
a
b
-
n
il
a
i
-
m
a
te
m
a
ti
k
a
-
in
d
o
n
e
si
a
-
re
n
d
a
h
.
(Ju
n
e
8
th
,
2
0
1
5
)
.
[2
0
]
S
a
’a
d
T
.
U,
e
t
a
l
.
,
“
T
h
e
Ca
u
se
s
o
f
P
o
o
r
P
e
rf
o
rm
a
n
c
e
in
M
a
th
e
m
a
ti
c
s
Am
o
n
g
P
u
b
li
c
S
e
n
io
r
S
e
c
o
n
d
a
ry
S
c
h
o
o
l
S
tu
d
e
n
ts
i
n
A
z
a
re
M
e
tro
p
o
li
s
o
f
Ba
u
c
h
i
S
tate
,
Nig
e
ria
,
”
IOS
R
J
o
u
rn
a
l
o
f
Res
e
a
rc
h
&
M
e
th
o
d
in
Ed
u
c
a
ti
o
n
,
v
o
l
/i
ss
u
e
:
4
(
6
),
p
p
.
32
-
4
0
,
2
0
1
4
.
[2
1
]
Ju
stice
E
.
,
Ag
y
m
a
n
O
.
K
.,
N
k
u
m
D.,
“
F
a
c
to
rs
In
f
lu
e
n
c
in
g
S
tu
d
e
n
ts
M
a
th
e
m
a
ti
c
s
P
e
rf
o
r
m
a
n
c
e
i
n
S
o
m
e
S
e
lec
t
e
d
Co
ll
e
g
e
s
o
f
Ed
u
c
a
ti
o
n
i
n
G
h
a
n
a
,
”
In
ter
n
a
t
io
n
a
l
J
o
u
r
n
a
l
o
f
Ed
u
c
a
ti
o
n
L
e
a
rn
in
g
a
n
d
De
v
e
lo
p
me
n
t
,
v
o
l
/i
ss
u
e
:
3
(
3
),
p
p
.
6
8
-
7
4
,
2
0
1
5
.
[2
2
]
T
h
e
R
e
g
u
latio
n
o
f
In
d
o
n
e
sia
G
o
v
e
rn
m
e
n
t,
“N
u
m
b
e
r
1
9
,
2
0
0
5
:
Na
ti
o
n
a
l
E
d
u
c
a
ti
o
n
S
tan
d
a
r
d
,
”
p
p
.
1
-
5
7
,
2
0
0
5
.
[2
3
]
T
h
e
Re
g
u
latio
n
o
f
In
d
o
n
e
sia
G
o
v
e
rn
m
e
n
t,
“N
u
m
b
e
r
3
2
,
2
0
1
3
:
Na
ti
o
n
a
l
E
d
u
c
a
ti
o
n
S
tan
d
a
r
d
,”
p
p
.
1
-
5
2
,
2
0
1
3
.
[2
4
]
A
n
d
e
rso
n
L
.
a
n
d
S
o
s
n
iak
L
.
,
“
Blo
o
m
’s
T
a
x
o
n
o
m
i:
a
F
o
rty
Ye
a
r
Re
sto
sp
e
c
ti
v
e
,”
Un
ive
rs
it
y
o
f
Ch
ica
g
o
Pre
ss
,
Ch
ica
g
o
,
1
9
9
4
.
[2
5
]
T
h
e
Re
g
u
latio
n
o
f
A
g
e
n
c
y
Na
t
io
n
a
l
E
d
u
c
a
ti
o
n
S
tan
d
a
r,
n
u
m
b
e
r
0
0
2
7
/
P
/
BS
N
P
/I
X
/2
0
1
4
,
“
T
h
e
Blu
e
P
r
in
t
o
f
Na
ti
o
n
a
l
Ex
a
m
in
a
ti
o
n
o
f
m
a
th
e
m
a
ti
c
s f
o
r
Ed
u
c
a
ti
o
n
Un
it
o
f
P
rim
a
r
y
a
n
d
S
e
c
o
n
d
a
ry
,
”
p
p
.
2
7
-
2
8
,
2
0
1
4
.
[2
6
]
T
h
e
Re
g
u
latio
n
o
f
In
d
o
n
e
sia
G
o
v
e
rn
m
e
n
t,
“N
u
m
b
e
r
1
3
,
2
0
1
5
:
Na
ti
o
n
a
l
E
d
u
c
a
ti
o
n
S
tan
d
a
r
d
,
”
p
p
.
1
-
2
3
,
2
0
1
5
.
[2
7
]
T
h
e
Re
g
u
latio
n
o
f
M
in
ister
Ed
u
c
a
ti
o
n
a
n
d
Cu
lt
u
re
o
f
In
d
o
n
e
sia
,
“N
u
m
b
e
r
5
,
2
0
1
5
:
T
h
e
Org
a
n
iz
e
r
o
f
N
a
ti
o
n
a
l
Ex
a
m
in
a
ti
o
n
,
a
n
d
t
h
e
Org
a
n
ize
r
o
f
Ju
n
io
r
Hig
h
S
c
h
o
o
l
Ex
a
m
in
a
ti
o
n
o
r
S
e
n
i
o
r
Hig
h
S
c
h
o
o
l,
2
0
1
5
,”
p
p
.
1
-
1
1
,
2
0
1
5
.
[2
8
]
A
n
w
a
r
A
.
A
.
a
n
d
Ba
h
a
j
A
.
S.,
“
S
tu
d
e
n
t
P
ro
jec
t
A
ll
o
c
a
ti
o
n
Us
in
g
In
teg
e
r
P
ro
g
ra
m
m
in
g
,
”
IEE
E
T
r
a
n
sa
c
ti
o
n
s
o
n
Ed
u
c
a
ti
o
n
,
v
o
l
/i
ss
u
e
:
46
(
3
)
,
p
p
.
5
3
-
5
9
,
2
0
0
3
.
[2
9
]
Da
sk
a
l
a
k
i
S
.
,
Birb
a
s
T
.,
Ho
u
so
s
E
.
,
“
A
n
In
teg
e
r
P
ro
g
ra
m
m
in
g
F
o
rm
u
latio
n
f
o
r
a
Ca
se
S
tu
d
y
in
U
n
iv
e
rsity
T
i
m
e
tab
li
n
g
,
”
Eu
ro
p
e
a
n
J
o
u
rn
a
l
o
f
Op
e
ra
t
io
n
a
l
Res
e
a
rc
h
1
5
3
,
p
p
.
1
1
7
-
1
3
5
,
2
0
0
4
.
[3
0
]
Rib
i
S
.
Ko
n
ji
c
ij
a
S
.
A
,
“
T
wo
Ph
a
se
In
teg
e
r
L
in
e
a
r
Pro
g
ra
m
min
g
Ap
p
ro
a
c
h
to
S
o
lvin
g
th
e
S
c
h
o
o
l
T
ime
ta
b
le
Pro
b
lem
,
”
Pro
c
e
e
d
in
g
s
o
f
t
h
e
IT
I
2
0
1
0
3
2
nd
In
t
.
Co
n
f
.
o
n
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
l
o
g
y
In
ter
f
a
c
e
s
,
Ju
n
e
21
-
2
4
,
2
0
1
0
,
Ca
v
tat,
Cro
a
ti
a
,
p
p
.
6
5
2
-
6
5
6
,
2
0
1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8822
I
J
E
R
E
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
221
–
2
2
6
226
[3
1
]
Hu
to
m
o
A
.
R
.
,
e
t
a
l
.,
“
Im
p
lem
e
n
tatio
n
o
f
In
teg
e
r
L
in
e
a
r
P
ro
g
ra
m
m
in
g
A
lg
o
rit
h
m
f
o
r
In
f
o
r
m
a
ti
o
n
S
y
ste
m
o
f
th
e
S
c
h
e
d
u
l
in
g
o
f
Ro
o
m
a
t
F
a
c
u
lt
y
Co
m
p
u
ters
o
f
Un
iv
e
rsit
y
In
d
o
n
e
sia
,
”
J
o
u
rn
a
l
o
f
I
n
fo
rm
a
ti
o
n
S
y
st
e
ms
,
v
o
l
/i
ss
u
e
:
7
(1
),
p
p
,
2
6
-
3
3
,
2
0
1
1
.
[3
2
]
A
.
K.
Ju
n
o
h
,
e
t
a
l.
,
“
A
ll
o
c
a
ti
o
n
M
a
rk
s
M
o
d
e
l
f
o
r
Ex
a
m
in
a
ti
o
n
Ba
se
d
o
n
Bl
o
o
m
’s
T
a
x
o
n
o
m
y
,
”
IACS
IT
Pre
ss
,
S
in
g
a
p
o
re
,
I
PCS
IT
,
v
o
l.
1
0
,
p
p.
53
-
5
9
,
2
0
1
1
.
[3
3
]
A
.
K.
Ju
n
o
h
,
e
t
a
l.
,
“
Clas
sif
ica
t
io
n
o
f
Ex
a
m
in
a
t
io
n
M
a
rk
s
Ac
c
o
rd
in
g
t
o
Bl
o
o
m
’s
T
a
x
o
n
o
m
y
b
y
Us
in
g
Bin
a
ry
L
in
e
a
r
P
ro
g
ra
m
m
in
g
,
”
IACS
IT
Pre
ss
,
S
in
g
a
p
o
re
,
IPC
S
IT
,
v
o
l.
3
6
,
p
p
.
2
0
-
2
5
,
2
0
1
2
.
[3
4
]
G
.
B.
Da
n
z
in
g
a
n
d
M
.
N.
T
h
a
p
a
,
“
L
in
e
a
r
P
ro
g
ra
m
m
in
g
,
”
S
p
in
g
e
r
,
1
9
9
7
.
BI
O
G
RAP
H
Y
O
F
AUTHO
R
Ha
rd
i
T
a
m
b
u
n
a
n
is
a
lec
tu
re
r
i
n
d
e
p
a
rtme
n
t
o
f
m
a
th
e
m
a
ti
c
s ed
u
c
a
ti
o
n
,
F
KI
P
Un
iv
e
rsit
y
HK
BP
No
m
m
e
n
se
n
,
M
e
d
a
n
.
He
c
o
m
p
le
ted
Ba
c
h
e
lo
r
o
f
e
d
u
c
a
ti
o
n
(m
a
th
e
m
a
ti
c
s
e
d
u
c
a
ti
o
n
)
a
t
S
tate
Un
iv
e
rsit
y
o
f
M
e
d
a
n
in
1
9
8
2
,
M
a
ste
r
o
f
e
d
u
c
a
ti
o
n
(m
a
th
e
m
a
ti
c
s
e
d
u
c
a
ti
o
n
)
a
t
S
tate
Un
iv
e
rsity
o
f
S
u
ra
b
a
y
a
in
1
9
9
9
,
a
n
d
Do
c
to
r
o
f
m
a
th
e
m
a
ti
c
s
a
t
No
rth
S
u
m
a
ter
a
Un
iv
e
rsit
y
in
2
0
1
5
.
He
is
in
tere
ste
d
in
a
p
p
l
ica
ti
o
n
o
f
o
p
e
ra
t
io
n
a
l
re
se
a
rc
h
(OR) i
n
so
lv
in
g
e
d
u
c
a
ti
o
n
p
ro
b
lem
s.
Evaluation Warning : The document was created with Spire.PDF for Python.