Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 1
,
Febr
u
a
r
y
201
5,
pp
. 15
0
~
15
7
I
S
SN
: 208
8-8
7
0
8
1
50
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Software Development of Automa
tic
Da
ta
Co
lle
c
t
or
fo
r Bus
Route Planning System
Ad
am H
e
ndr
a
B
r
at
a
*
,
*
*
,
De
ron L
i
an
g*
, S
h
ol
eh
Ha
di
Pr
am
ono
*
*
* Department of
Computer Scien
ce
and Information Engin
eering
,
Na
tiona
l Cen
t
ra
l
Universit
y
,
Tai
w
an
** Departement
of Electr
i
cal
Eng
i
neer
ing,
Univer
sity
of Br
awijaya, Indon
esia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 3, 2014
Rev
i
sed
No
v
23
, 20
14
Accepted Dec 12, 2014
Public transpor
tation
is im
portant
i
ssue
i
n
T
a
i
w
a
n
.
Re
ce
ntly
,
mobi
le
application named Bus Rout
e Planning was dev
e
loped to h
e
lp
the user to get
inform
ation abo
u
t public t
r
anspo
r
tation us
ing bus
. But, th
is application often
gave th
e user
inaccurate bus
inform
ation and
this appli
c
a
tio
n has less
attr
active GUI. To overcome those 2
problems, it need
ed
2 kinds of
solutions. First,
a m
o
re a
ccur
a
te t
i
m
e
prediction algorithm is need
ed to
predict the arr
i
v
a
l time of
bus. Second, augmen
ted r
eality
techno
log
y
can be
used to make a
GUI improve
ment. In th
is resear
ch, Autom
a
tic D
a
ta Coll
ec
tor
s
y
stem was pro
posed to g
i
ve s
upport
for
those 2 solutions at
once. Th
is
proposed sy
stem has 3 main fun
c
tion
a
litie
s. First, data
collector f
unction to
provide some data sets that can be
furth
e
r an
al
yz
ed as
an b
a
s
e
of tim
e
prediction algor
ithm. Second, d
a
ta upd
ater
fun
c
tions to prov
id
e the most
updated bus inf
o
rmation for used in a
ugmented reality
s
y
s
t
em. Third
,
data
management fu
nction
to g
a
ve the s
y
st
em better functiona
lity
to
supported
those 2 related s
y
stems. Th
is proposed
Automatic Data Co
llector
s
y
stem was
develop
e
d using
batch d
a
ta processing s
cenario
a
nd S
Q
L nativ
e q
u
er
y in J
a
v
a
programming language.
The result of tes
ting
shown this data processing
s
cenario was
ve
r
y
eff
ect
ive to
m
a
de databas
e
m
a
nipulatio
n es
peci
all
y
for
large-s
i
zed
dat
a
.
Keyword:
Aut
o
m
a
ted syste
m
B
a
t
c
h p
r
oce
ssi
ng
B
u
s r
o
ut
e
pl
an
ni
n
g
Data collector
Soft
ware
engineering
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Adam
Hendra Brata,
Depa
rt
m
e
nt
of
C
o
m
put
er Sci
e
nce a
n
d
I
n
f
o
rm
at
i
on E
n
gi
nee
r
i
n
g
,
Natio
n
a
l Cen
t
ral Un
i
v
ersity,
N
o
.
3
0
0
,
Jhon
gd
a R
d
., Jhon
g
l
i
City, Tao
y
u
a
n Cou
n
t
y
3
200
1, Taiw
an
, RO
C
.
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Uni
v
ersity of
Brawijaya,
Jl
. Vet
e
ra
n,
M
a
l
a
ng
6
5
1
4
5
,
E
a
st
Java,
I
n
do
n
e
si
a.
Em
a
il: mizu
n
o
.tatsu
ya.m
x
@
gmail.co
m
1.
INTRODUCTION
Bu
s
rap
i
d
transit is o
n
e
of i
m
p
o
r
tan
t
pub
lic tran
spo
r
t m
o
d
e
s i
n
Taiwan
as well as i
n
cap
ital city o
f
Taiwan, Taipei [1]. In Tai
p
ei,
m
a
ny
appl
i
cat
i
ons
t
h
at
ha
ve b
een devel
ope
d t
o
assi
st
t
h
e pa
ssen
g
ers
w
h
o wan
t
to
trav
el with
p
u
b
lic tran
spo
r
t in
Taip
ei city
[2
], [3
],
bu
t these cu
rren
t app
licatio
n
s
typ
i
cally sti
ll h
a
v
e
so
m
e
dra
w
backs
l
i
k
e
i
n
acc
urat
e i
n
f
o
rm
at
i
ons a
n
d
ha
ve l
e
ss
attractive GUI. T
h
ese
2 m
e
ntioned problem
s can
be
solve with better
algorithm
to
m
a
ke sure the
inform
ation always
accurate [5]
and better GUI
im
prove
ment
tech
n
i
qu
es, like u
s
i
n
g aug
m
e
n
ted
reality tech
no
log
y
[6
].
These 2
pr
o
p
o
s
ed sol
u
t
i
o
n
s
basi
cal
l
y
need
1 sy
st
em
t
o
pro
v
i
d
e t
h
em
som
e
useful
dat
a
for
fu
rt
he
r
pr
ocessi
ng
. T
h
i
s
m
e
nt
i
oned a
ppl
i
cat
i
o
n
basi
cal
l
y
has a m
a
i
n
f
u
nct
i
o
n
as
an se
rv
er t
h
at
abl
e
t
o
p
r
ovi
de
dat
a
wh
ich
will b
e
u
s
ed
b
y
th
em
. Th
is system
mu
st b
e
ab
le to
worked
as a si
n
g
l
e serv
er wit
h
m
u
lti fu
n
c
tion
a
lities
t
o
p
r
ovi
de t
h
e
m
a faci
l
i
t
y
t
h
at
can
be
use
d
f
o
r
t
h
ose
2 m
e
nt
i
oned
p
r
op
ose
d
s
o
l
u
t
i
o
ns at
o
n
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Software
Devel
opme
nt of
Aut
o
matic
Dat
a
C
o
llector for B
u
s
Route Planning
System
(
A
da
m Hen
d
r
a
Br
at
a)
15
1
Pre
v
i
o
usl
y
, t
h
ere was a sy
st
em
t
h
at
have been
devel
ope
d by
So
ft
wa
re
M
e
t
hod
ol
o
g
y
Labo
rat
o
ry
(SML), National Cen
t
ral Un
i
v
ersity, Taiwan
wh
ich
h
a
s si
m
i
lar fun
c
tion
with
t
h
e prop
o
s
ed
system
.
Th
i
s
sy
st
em
had a f
unct
i
o
n as
a si
ngl
e
dat
a
u
p
d
a
t
er t
o
p
r
ovi
ded
t
h
e u
p
d
at
ed i
n
f
o
rm
at
i
on t
o
B
u
s R
o
ut
e Pl
a
n
n
e
r
m
obi
l
e
appl
i
cat
i
on
whi
c
h wa
s al
so
devel
o
p
e
d
by
SM
L. T
h
i
s
sy
st
em
used real
-t
im
e pr
ocessi
n
g
sce
n
a
r
i
o
t
o
pr
ocessi
ng
t
h
e dat
a
, but
t
h
i
s
p
r
oces
si
n
g
sce
n
ari
o
ha
d
a dra
w
bac
k
f
o
r p
r
oc
essi
ng
t
h
e
l
a
rg
e-si
zed dat
a
[4
]
.
I
n
th
is p
a
p
e
r, au
to
m
a
tic
d
a
ta co
llecto
r
syste
m
w
a
s p
r
oposed
to
g
a
v
e
all-
in
-on
e
so
lu
ti
on
f
r
o
m
th
o
s
e
men
tio
n
e
d prob
lem
s
with
effectiv
e strateg
i
es to
p
r
o
cessi
n
g
th
e
d
a
ta and
to
m
a
n
i
p
u
l
at
es d
a
ta in
d
a
tab
a
se,
especially for l
a
rge
-
sized data
.
2.
R
E
SEARC
H M
ETHOD
2.
1.
A
u
t
o
m
a
ti
c D
a
t
a
Col
l
ect
or
Th
e so
ft
ware
th
at will b
e
dev
e
lop
e
d
i
n
this research
is Au
t
o
m
a
t
i
c Data Co
llecto
r
for bu
s rou
t
e
planning system
.
This system
has
3
m
a
in
functionalities, nam
e
ly Data
collector, Data update
r and Data
m
a
nagem
e
nt
.
Data co
llecto
r
h
a
s a fu
n
c
tion
to
sto
r
e th
e
d
a
ta th
at h
a
v
e
been
ob
tain
ed
from v
a
rio
u
s d
a
ta so
urces in
to
d
a
tab
a
se frequen
tly. Use
case d
i
agram
fo
r th
e
Data Co
l
l
ecto
r
fun
c
tionality is sh
o
w
n in
Fi
g
u
re
1
.
Data
col
l
ect
or ha
s a fu
nct
i
on t
o
st
ore t
h
e
dat
a
t
h
at
have bee
n
o
b
t
a
i
n
ed
fr
om
vari
ous
dat
a
sou
r
ces i
n
t
o
da
t
a
base
freq
u
e
n
tly. Use case
d
i
ag
ram fo
r t
h
e
Data C
o
ll
ecto
r
fun
c
tion
a
lity is sh
own in
Fi
g
u
re
1
.
Dat
a
u
pdat
e
r
has a f
unct
i
o
n
t
o
m
a
ke dat
a
i
n
da
t
a
base s
t
ay
updat
e
d w
i
t
h
t
h
e newe
st
dat
a
t
h
at
p
r
ov
id
ed
b
y
Taip
ei Bu
s
API.
Use case d
i
ag
ra
m
fo
r th
e
Dat
a
Up
d
a
ter fun
c
tio
n
a
lity is shown in
Figu
re 2.
Fig
u
re
1
.
Use case d
i
ag
ram
for
d
a
ta co
llector fu
n
c
tion
a
lity
Fig
u
re
2
.
Use case d
i
ag
ram
for
d
a
ta upd
ater
fu
n
c
tion
a
lity
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 1
,
Febru
a
ry
2
015
:
15
0
–
15
7
15
2
Fig
u
re
3
.
Use case d
i
ag
ram
for
d
a
ta m
a
n
a
g
e
men
t
fun
c
tion
a
lity
Data m
a
n
a
g
e
men
t
h
a
s a fun
c
tio
n to p
e
rfo
r
m
d
a
ta m
a
n
a
g
e
m
e
n
t
activ
ities to
m
a
k
e
Ad
m
i
n
i
strato
r
easier to
m
a
n
a
g
e
a
wh
o
l
e
d
a
ta th
at
u
s
ed in
th
is
system
. Use case
diagram
for t
h
e
Data Mana
gem
e
nt
fun
c
tion
a
lity is sho
w
n
i
n
Fi
gure
3
.
2.
2.
S
o
f
t
w
a
re Desi
gn
So
ft
ware arch
i
t
ectu
r
e th
at
u
s
ed
in th
is app
licatio
n
act
u
a
lly a sim
p
lificatio
n
o
f
MVC
d
e
sig
n
p
a
ttern.
Th
is syste
m
arch
itectu
r
e h
a
d an
m
a
in
id
ea to
m
e
rg
e Co
ntro
ller-typ
ed
class with
Mod
e
l-typ
e
d
class in
to
1
single Core-ty
p
ed class
.
This
several c
o
re cl
asses we
re des
i
gne
d bas
e
d
on
t
h
ei
r co
nt
r
o
l
l
i
ng
fu
nct
i
o
n ba
sed
o
n
use case
analys
is. This
application a
d
opt
batc
h
processi
ng
to do
d
a
tab
a
se man
i
pu
latio
n. This scen
ario
h
a
ve an
objective t
o
ac
celerate the processing
tim
e
an
d
t
o
redu
ce in
sertion
tim
e.
Au
t
o
m
a
t
i
c Data Co
llecto
r
syste
m
h
a
s
a dat
a
pr
ocessi
ng
sc
hem
e
sho
w
n
i
n
Fi
g
u
re
4
.
Dat
a
p
r
oce
ssi
ng
sc
hem
e
i
s
di
vi
ded
by
3
m
a
i
n
pat
t
e
r
n
s
bas
e
d
o
n
Au
t
o
m
a
t
i
c Data Co
llecto
r
syste
m
fu
n
c
tion
a
lities. Figu
re
5
sh
ows class
d
i
ag
ram
o
f
propo
sed
system
.
Fi
gu
re
4.
Dat
a
pr
ocessi
ng
sch
e
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Software
Devel
opme
nt of
Aut
o
matic
Dat
a
C
o
llector for B
u
s
Route Planning
System
(
A
da
m Hen
d
r
a
Br
at
a)
15
3
Fi
gu
re
5.
C
l
ass di
ag
ram
2.3.
Software Implementation
2.
3.
1
J
a
v
a
XML
P
a
rser
There a
r
e 3 ba
si
c
m
e
t
hods t
o
parse XM
L i
n
Java, SA
X, St
AX a
nd D
O
M
.
DOM
i
s
go
od
for b
ack
-
and-forth
data
access. Za
o a
n
d Bhuyan said, DOM is be
tter for c
o
m
p
lex a
n
d freque
nt XML parsing.
SAX and
StAX a
r
e a
p
propriate for a
pplications
with
extrem
ely restrictive
m
e
m
o
ry but
no
t
fo
r
b
a
ck
an
d
fo
r
t
h
access
or
m
o
d
i
ficatio
n
[7
]. Nico
la and Jo
hn
said
th
at
DOM is th
e m
o
st su
itab
l
e f
o
r
d
a
tab
a
se app
licatio
n
s
,
wh
i
l
e SAX
and
StAX are
m
o
re appropri
ate for
stream
ing a
p
plicatio
n
s
[8]
.
T
h
i
s
p
r
o
pos
ed sy
st
em
use
d
D
O
M
m
odel
as
XML
parse
r
, because t
h
is type is
suitable
for databa
se a
ppli
cation.
2.
3.
2
J
a
v
a
B
a
tch Pr
ocessi
n
g
an
d
JDB
C
N
a
ti
ve Q
u
ery
Batch
p
r
o
cessi
n
g
is
h
a
v
e
a
g
o
a
l to
pro
cess a larg
e set
o
f
d
a
ta in
a sp
ecific way, au
to
m
a
tical
ly,
with
ou
t need
i
n
g
an
y
u
s
er in
terv
en
tion
.
Th
e
d
a
ta is firs
t c
o
llected, duri
ng
a work da
y,
for exam
ple, and then
batch-proce
sse
d, s
o
all the col
l
ected
dat
a
i
s
p
r
oces
sed i
n
o
n
e
go
[9]
.
In J
a
v
a
, bat
c
h
p
r
oces
si
ng
fu
nct
i
o
n c
a
n be
use
d
with calling t
h
e a
ddBat
ch() and e
x
ec
uteBatch()
m
e
tho
d
s
fo
r State
m
ent or
Pre
p
a
r
edState
m
ent objects
usi
n
g J
D
B
C
[
1
0]
. D
w
y
e
r
sai
d
bat
c
h
p
r
ocessi
ng
i
s
i
m
provi
n
g
t
h
e
ef
fi
ci
enc
y
of t
r
an
sact
i
o
n
pr
ocessi
ng
s
y
st
em
s
especi
al
l
y
i
f
deal
i
ng wi
t
h
bi
g dat
a
[1
1]
. JDB
C
i
s
de
si
gned t
o
al
l
o
w Java
u
s
er m
a
ni
pul
at
es SQL dat
a
b
a
s
e
fro
m
Java
pr
o
g
ram
wi
t
h
si
m
p
l
e
, fa
st
an
d ef
fi
ci
ent
way
wi
t
h
usi
n
g st
a
nda
rd
nat
i
ve S
Q
L
q
u
ery
.
2.3.3
Graphic
a
l Us
er In
terface Im
plementation
The gra
phical user inte
rface
for this
application consists of
2 m
a
in
pages, Data Collector and Da
t
a
Man
a
g
e
m
e
n
t
. Th
ese
2
p
a
g
e
s represen
t 3
main
fu
n
c
tion
a
lities o
f
Au
to
m
a
tic Data Co
llecto
r
system
. Fi
g
u
re
6
shows
the gra
phical user
int
e
rface fo
r
Dat
a
Collector
pa
ge.
Figure
7
s
h
ows t
h
e
gra
p
hical use
r
inte
rface for
Dat
a
M
a
na
gem
e
nt
pa
ge.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 1
,
Febru
a
ry
2
015
:
15
0
–
15
7
15
4
Fi
gu
re 6.
G
U
I
fo
r dat
a
col
l
ect
or
pa
ge
Fi
gu
re 7.
G
U
I
fo
r dat
a
m
a
nag
e
m
e
nt
pag
e
2.
4.
S
o
f
t
w
a
re T
e
sti
n
g
2.
4.
1
D
a
t
a
Co
l
l
ector
T
e
sti
n
g
Th
is testin
g has ob
j
ecti
v
e to
k
now th
e
perfo
r
m
a
n
ce of th
e pro
p
o
s
ed syste
m
’s d
a
ta co
llector
cap
ab
ility.
Ru
n pr
opo
sed
syste
m
in
3
d
a
ys, 17
h
our
s collectin
g
ti
m
e
(
6
a.m
–
11
p
.
m
)
.
Th
e targ
eted
bu
s ro
u
t
e is bu
s r
o
u
t
e nu
m
b
er
2
4
3
,
w
ith
53
bu
s stop
s (25
bu
s stop
s fo
r
go b
u
s
and
28
bus
stops for back bus).
Measure
the
num
b
er of
data t
h
at
collected by the propose
d
syste
m
.
The c
o
m
p
ared
col
l
ect
ed dat
a
i
s
t
a
ken
fr
om
one
o
f
dat
a
bas
e
t
a
bl
es w
h
i
c
h
has t
h
e bi
gge
s
t
am
ount
o
f
dat
a
am
ong t
h
e
ot
he
rs.
Thi
s
t
e
st
i
n
g
us
e t
h
i
s
si
m
p
l
e
cal
cul
a
t
i
on t
o
gi
ve a
pe
rf
orm
a
nce st
an
dart
:
Syste
m
will g
r
ab
th
e n
e
w
d
a
t
a
fro
m
API in
ev
ery
25
seco
nd
s.
Testing a
ssum
p
tions :
o
Tot
a
l
dat
a
i
n
1 day
= ((
17
x
6
0
x 60
)
/
2
5
) x 53
= 12
9
7
4
4
d
a
t
a
o
Make a c
o
m
p
arison
betwee
n
the data t
h
at c
o
ll
ected by t
h
e
proposed
syste
m
and t
h
e tot
a
l
dat
a
st
an
dart
w
h
i
c
h
ha
ve
bee
n
det
e
rm
i
n
ed
be
fo
re.
o
Test
i
n
g
d
o
n
e
b
y
i
g
n
o
ri
ng
al
l
t
h
e
ot
he
r
pr
oces
ses r
u
nni
ng
o
n
t
h
e c
o
m
put
er a
n
d
ot
her
fact
or
s
rel
a
t
i
ng t
o
t
h
e
per
f
o
r
m
a
nce of
t
h
e sy
st
em
.
2.
4.
2
Proces
si
ng T
i
me T
e
s
t
i
n
g
Th
is
testing
h
a
s
obj
ectiv
e
t
o
measu
r
e ho
w m
u
ch
th
e tim
e
that
needed for
the
propose
d system
to
p
r
o
cess so
m
e
d
a
ta and
m
a
k
e
a d
a
tab
a
se m
a
n
i
pu
latio
n
to
datab
a
se serv
er. Th
is test will co
m
p
are th
e pro
p
o
s
ed
sy
st
em
wi
t
h
the cu
rre
nt
ser
v
er sy
st
em
t
h
at
previ
o
u
s
l
y
devel
o
ped
by
f
o
rm
er pu
bl
i
c
t
r
ans
p
ort
a
t
i
o
n t
e
am
of
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Software
Devel
opme
nt of
Aut
o
matic
Dat
a
C
o
llector for B
u
s
Route Planning
System
(
A
da
m Hen
d
r
a
Br
at
a)
15
5
So
ft
ware Metho
d
o
l
og
y Labo
rato
ry [4
]. Th
is testin
g
will
m
e
asu
r
e th
e to
tal p
r
o
cessi
n
g
time, sin
ce th
e d
a
t
a
b
a
se
m
a
nipulation
m
e
thod
was
ca
lled in the fi
rst
tim
e
until this m
e
thod
produc
e
the
out
put
.
R
u
n
n
i
n
g
t
h
e pr
og
ram
s
t
o
exec
ut
e
t
h
e q
u
ery
m
u
lt
i
p
l
e
t
i
m
e
s
wi
t
h
di
ffe
re
nt
num
ber of
q
u
e
r
i
e
s.
10
q
u
e
r
i
e
s
10
0 q
u
eri
e
s
10
0
0
que
ri
es
1
000
0 qu
er
ies
1
000
00
qu
er
ies
Measure t
h
e
proces
sing tim
e
of th
e
propos
ed system
and the curre
nt
sy
ste
m
to
k
now
th
e pr
o
c
essing
ti
m
e
an
d
co
m
p
are th
e resu
lt.
Test
i
ng
d
one
b
y
i
gno
ri
n
g
al
l
t
h
e ot
her
p
r
oce
sses r
u
n
n
i
n
g
o
n
t
h
e c
o
m
put
er
and
ot
her
fact
ors
rel
a
t
i
ng
t
o
the pe
rform
a
nce of the
system.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
3
.
1
.
Result of Data
Co
llector
Testing
Th
is testing
stag
e
h
a
s i
n
ten
tion
t
o
m
easu
r
e t
h
e
p
e
rform
ance of t
h
e
propos
ed system
’s da
ta collecting
cap
ab
ility. Th
e testin
g resu
lt
will b
e
sho
w
n
in
Tab
l
e
1
an
d Figu
re 8. Th
e u
s
ag
e
of
sim
p
ler arch
itectu
r
e with
litt
le lo
op
s and bran
ch
es m
a
d
e
th
e co
m
p
lex
ity o
f
syst
e
m
arch
itectu
r
e was v
e
ry
l
o
w.
Th
e u
s
ag
e o
f
SQL n
a
tiv
e
que
ry
t
o
m
a
ke an dat
a
ba
se o
p
erat
i
o
n an
d t
h
e usa
g
e
of b
a
t
c
h pr
ocessi
ng
scenari
o
m
a
d
e
t
h
e t
h
e sy
st
em
ran
faster. A
l
t
h
ough
ov
erall system p
e
rform
an
ce w
a
s g
ood
, bu
t th
e p
r
op
o
s
ed
syste
m
st
ill
h
a
d
little d
a
ta
lo
sses.
Thi
s
dat
a
l
o
ss
es occu
red
bec
a
use som
e
t
i
m
e
s con
n
ect
i
o
n f
r
om
sy
st
em
t
o
dat
a
pro
v
i
d
e
r
has t
i
m
e
d out
si
nce
num
ber
of
re
q
u
est
t
o
AP
I
ha
s a l
i
m
i
t
.
B
e
si
de of
t
h
at
,
this
data losses also
occure
d bec
a
use syste
m
connection
t
o
dat
a
base se
r
v
er
has t
i
m
e
d out
aft
e
r seve
r
a
l
ho
urs a
nd
mad
e
th
e system failed
in
1
or
m
o
re iteratio
n
s
. In
th
e
fut
u
re w
o
r
k
, c
o
n
n
ect
i
o
n p
ool
i
ng can
be use
d
t
o
m
a
de be
tt
er d
a
tab
a
se con
n
ection
,
so
the risk
o
f
co
nnectio
n
t
i
m
e
out
can b
e
red
u
ce
d.
UR
L enc
odi
ng t
e
chni
que al
s
o
c
a
n be
use
d
t
o
sol
v
e t
h
e l
i
m
i
tat
i
on o
f
API
r
e
que
st
pr
o
b
l
e
m
.
The p
e
rcent
a
ge
of
da
t
a
t
h
at
succe
ssf
ul
l
y
col
l
ect
ed
by
t
h
e
p
r
o
p
o
se
d sy
t
e
m
show
n
i
n
Fi
gu
re
9.
Tab
l
e
1
.
Data co
llecto
r
testing resu
lt
Day
Colleted data
(reco
rd
)
Data standar
d
(reco
rd
)
1 1267
90
1297
44
2 1270
41
1297
44
3 1236
36
1297
44
Fig
u
re 8
.
Data co
llecto
r
testing
resu
lt
Fi
gu
re
9.
Perce
n
t
a
ge
o
f
c
o
l
l
ect
ed dat
a
120000
130000
140000
Day
1
D
ay
2
D
ay
3
Data
Co
llecto
r
Testin
g
Resu
lt
Collected Data
Threshold
Succe
ss
97%
Loss
3%
Success
Loss
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 1
,
Febru
a
ry
2
015
:
15
0
–
15
7
15
6
3.
2.
Res
u
l
t
o
f
Processi
n
g
T
i
me
T
e
sti
n
g
Testin
g
r
e
su
lt fo
r pr
o
c
essing
t
i
m
e
testin
g
show
n in
Tab
l
e
2
an
d Figur
e
1
0
.
Tabl
e
2.
Pr
oce
ssi
ng
t
i
m
e
t
e
st
ing
res
u
l
t
Nu
m
b
e
r
of
quer
i
es
Current sy
ste
m
(m
ilisecond)
Pr
oposes sy
stem
(m
ilisecond)
10
640
421
100
813
577
1000
1000
0
1000
00
2031
3178
4
2743
40
950
2111
6
2115
85
Fig
u
re 10
. Processin
g
ti
m
e
testin
g
resu
lt
From
this testing
known that
the propose
d
s
y
ste
m
ha
d a better perform
ace to do data
bas
e
ope
rations than the
cur
r
ent
sy
st
em
. T
h
e
pr
op
ose
d
sy
st
em
usi
n
g
bat
c
h
p
r
oces
si
ng
sce
n
ari
o
an
d t
h
e
cu
rre
nt
s
y
st
em
usi
ng
re
al
-t
im
e
pr
ocessi
ng s
c
e
n
ari
o
. T
h
i
s
ba
t
c
h p
r
oce
ssi
n
g
scena
r
i
o
i
s
effectiv
e to
d
eal
in
g
with
th
e data th
at h
a
ve
h
u
g
e
q
u
a
n
tity, b
ecause with
batch
pro
cessing
th
e syste
m
can
d
one d
a
tab
a
se
p
r
ocessin
g
i
n
a bulk
and
ex
ecu
t
e
it in
1
ti
m
e
, so
on
ly need
a little ti
me to
ex
ecu
te th
i
s
d
a
tab
a
se
p
r
o
c
essin
g
.
4.
CO
NCL
USI
O
N
Th
is research
d
ealt with
t
h
e
p
r
ob
lem
o
f
d
e
v
e
lop
i
ng
au
tomatic d
a
ta co
llecto
r
system
t
o
g
a
v
e
all-in
-
o
n
e
su
ppo
rt so
lu
tion
with
effectiv
e
strategies to
p
r
o
ce
ssi
ng
t
h
e
dat
a
a
n
d t
o
m
a
ni
pul
at
es dat
a
i
n
dat
a
base
.
Fro
m
so
ftware testin
g
resu
lt was kn
own
th
at all
o
f
th
e p
r
op
o
s
ed
system fu
n
c
tion
a
lities work
well, an
d fro
m
t
h
e dat
a
col
l
ect
i
ng t
e
st
i
ng was k
n
o
w
n t
h
e perf
orm
a
nc
e
repo
rt
of t
h
e
pro
p
o
se
d sy
st
em
’s dat
a
col
l
ect
i
ng
cap
ab
ility. In
t
h
e
n
e
x
t
testin
g, th
e
propo
sed syste
m
an
d
t
h
e
cu
rren
t
serv
er
ap
p
lication
were co
m
p
ared
t
o
proof
t
h
e
pr
op
ose
d
s
y
st
em
was bet
t
er t
h
a
n
t
h
e c
u
rre
nt
se
rve
r
a
p
pl
i
cat
i
on.
T
h
e
pr
o
pose
d
sy
st
em
was m
u
ch f
a
st
er
than the c
u
rre
n
t serve
r
application,
it was because the propose
d
system
was use batc
h processing sc
enari
o
and
o
n
t
h
e c
ont
rary
the
cu
rre
n
t
serve
r
a
p
plication use real-time
processing.
ACKNOWLE
DGE
M
ENTS
The a
u
t
h
o
r
s
w
oul
d l
i
k
e
t
o
t
h
ank
K
o
m
a
ng
C
a
nd
ra B
r
at
a,
Lut
f
i
F
a
na
ni
a
n
d
al
l
m
e
m
b
ers o
f
S
o
ft
wa
re
Meth
od
o
l
o
g
y
Labo
ratory
o
f
Nation
a
l Cen
t
ral Un
iversit
y
Taiwan
fo
r in
sigh
tfu
l
d
i
scu
ssion
s
du
ri
ng
th
is
researc
h
.
We
wo
ul
d al
s
o
l
i
k
e t
o
t
h
an
k t
h
e
Pl
anni
ng a
n
d
C
o
o
p
erat
i
o
n
of F
o
rei
g
n A
f
fai
r
s o
f
M
i
ni
st
ry
of
Edu
catio
n
an
d
Cu
ltu
re of Indo
n
e
sia fo
r th
e
In
tern
ation
a
l
Dual Degree scholars
hip so
th
at th
is research
co
u
l
d
be do
ne.
REFERE
NC
ES
[1]
Lan,
Lawren
ce
W., Ming-Te W
a
ng and April Y
.
Kuo , “Dev
elo
p
ment and deplo
y
ment of
public transport po
licy
and planning
in
Taiwan
”,
Spring
e
r Journal on
Transportation
, V
o
lume 33, Issue
2,
pp 153-170
,
2006.
[2]
Taiwan
Ministr
y
of Transp
ortation
(MOTC),
“Fun Tr
avel in
Taip
ei”, 2011
.
Taken from
:
http://english.dot.taipei.
gov.tw/ct.asp
?
x
I
tem=5116
5215&ctNode=6
5619&mp
=117002 , Last Access : May
7
,
2014
.
0
200000
400000
10
100
1000
10000
100000
Processing Tim
e
(m
iliseconds)
Num
b
er of
Queries
Processi
ng Ti
m
e
Test
i
ng
R
e
sul
t
Current Sy
stem
Proposed Sy
stem
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Software
Devel
opme
nt of
Aut
o
matic
Dat
a
C
o
llector for B
u
s
Route Planning
System
(
A
da
m Hen
d
r
a
Br
at
a)
15
7
[3]
Software Metho
dolog
y
Labor
ato
r
y
(SML),
“Bus Route Plann
e
r
Mobile Appli
cat
ion”, Na
tion
a
l C
e
ntra
l Universit
y
,
Private Communication
, Taiwan, 2013.
[4]
Software Metho
dolog
y
Labo
rato
r
y
(SML
)
,
“Bus Route Plann
e
r S
e
rver Applic
a
tio
n”, Na
tiona
l Ce
ntral Univ
ersi
t
y
,
Private Communication
, Taiwan, 2013.
[5]
Fanani, Lu
tfi, “Bus Arrival Prediction – to Ensur
e
User
s Not to
Miss the
Bus (
P
r
e
limina
r
y
Study
ba
se
d on Bus Line
243 Taipei)
”
, National
Cen
t
ral U
n
iversity
,
Master Thesis
, Taiwan
, 2014
.
[6]
Brata, Komang Candra, “Developing
Lo
cation
-
Based Augmented Reality
Info
rmation Support for Bus Route
Planning S
y
s
t
em
”, N
a
tion
a
l C
e
nt
ral Univ
ersit
y
,
Mas
t
er
T
h
es
is
, Taiwan,
2014.
[7]
L. Zhao and L
.
Bhu
y
an
, “
P
erform
ance Evalu
a
tio
n and Acceler
ati
on for XM
L
Data P
a
rs
ing”,
Proc. 9th Workshop
Computer Architecture Evaluatio
n Us
ing Commercial Workloads
(
C
AECW 06)
,
Texas, USA, 2006
.
[8]
Nicola
, Mathias
and Jasm
i John, “
X
ML
Pars
ing: A Threat to Databas
e
P
e
rform
ance”
,
Proc.
12th Int’l Conf.
Information and
Knowledge Man
agement (
C
IKM
03)
, pp. 175-178
, ACM Press, New York, USA, 2
003.
[9]
Walker, Michael, “Batch vs. Real Time
D
a
ta Processing”, 2013
.
Taken from
:
http://www.
da
tasc
ie
nce
c
e
n
tral.com/pro
file
s/blogs/ba
tc
h-vs-rea
l
-time
-da
t
a
-
pr
oc
e
ssing , La
st Acc
e
s
s : May
7, 2014.
[10]
Oracle, “Oracle Times Ten
In-M
emor
y
Database Java Develop
e
r
'
s
Guide”, 2014. Tak
e
n from
:
http://download
.
oracle.com/otn_
hos
ted_doc/timesten/1122/doc/time
sten.1122/e21
638/tuning
.htm#TTJDV251, Las
t
Access : May
7
,
2014.
[11]
Dwy
er,
Barry
,
“The Automatic
De
sign of Batch
Processing Sy
s
t
em
s”
,
Unive
r
sity
of Ade
l
aide,
Doctoral Thesis
,
Australia, 1999
.
BIOGRAP
HI
ES OF
AUTH
ORS
Adam
Hendra
Brata is
an Inte
rnation
a
l Dual
Degree M
a
s
t
er
s
t
udent betwe
e
n
Univers
i
t
y
of
Brawija
ya
, Indo
nes
i
a
and Nat
i
o
n
al Cen
t
ra
l Uni
v
ers
i
t
y
,
Ta
iwan.
He com
p
le
ted
his
Bach
elor
degree
in Department of Infor
m
atics Engin
eer
ing, University
of Brawijay
a
, I
ndonesia. His
res
earch in
ter
e
s
t
area is
in the co
m
puter s
c
ien
ce and
inform
ation techno
log
y
areas
,
es
peci
all
y
in
software engineering,
augm
ented
real
it
y a
nd g
a
me development.
Deron Liang is
an Professor
at th
e Dep
a
rt
ment of Computer Science and
Information
Engineering, National Centr
a
l
Un
i
v
e
r
si
ty
,
T
a
iwa
n
.
He
got
Ph.
D
de
gree
from Uni
v
e
r
si
ty
of
M
a
r
y
l
a
nd, US
A. His
res
ear
ch i
n
teres
t
are
in t
h
e dis
t
ribut
ed s
y
s
t
em
s
,
fau
lt to
leran
t
, s
e
curi
t
y
auditing
,
and ob
ject ori
e
nted
. He presentl
y
work
as Head of Soft
ware Methodo
lo
g
y
Labor
ator
y
in Department o
f
Computer Science and Inform
ation Engineering
,
National Centr
a
l University
,
Taiwan
.
Sholeh Hadi Pramono is an senior lecturer
in D
e
partment of Electr
i
cal Eng
i
neering, Univ
ersity
of Brawijay
a
, I
ndonesia. He
is expert in
Electr
ical Engin
eerin
g research
area, especially
in
optical telecommunication
and technolog
y
of
ante
nna. H
e
got Do
ctor degr
ee from
University
of
Indonesia, Indo
nesia. He presently
work in
Telecommunication Laborat
or
y
,
Department
of
Electrical
Engin
eering
,
University
of Brawij
ay
a
,
Indonesia as
an optical telecommunication
specia
list.
Evaluation Warning : The document was created with Spire.PDF for Python.