Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
3
,
No
. 3,
J
une
2
0
1
3
,
pp
. 33
7~
34
3
I
S
SN
: 208
8-8
7
0
8
3
37
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Voltage Profile Improvement of
Distribution System using
Distributed Generating Units
Gumm
adi
Sri
n
i
vas
a R
a
o
*
,
Y.P
.
O
bul
esh
*
*
* Departement o
f
Electr
i
cal
and
Elec
tronics Eng
i
neering
,
V.R
.
Siddhart
ha Engin
e
ering Co
lleg
e
(A
utonomous)
** Departement
of Electr
i
cal
and
Electron
i
cs
Eng
i
neer
ing, Lak
i
redd
y
Ba
liredd
y
C
o
lleg
e
of
Engin
e
ering (Autonom
ous)
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Ja
n
7, 2013
Rev
i
sed
Ap
r 5, 20
13
Accepted
May 20, 2013
The power s
y
stem
utiliti
es are incr
easing
ever
yda
y
,
to
enhance th
e
distribution pow
er quality
and maintain th
e voltage stability
is a challenging
task in th
e complex distribu
tion
This
can b
e
achieved through
the Distributed
Generation (DG).
DGs are
the fina
l link
between th
e high voltag
e
transm
ission an
d the
consum
er
s,it
is also kno
wn as Activ
e
Distribution
networks (ADN). This will
effec
tive
l
y im
prove the a
c
ive
power loss
reduction Th
is
paper r
e
presen
ts tec
hnique to
minimize power
losses in
a
distribution f
eed
er b
y
op
timizin
g DG m
odel in terms of size, location and
operat
i
ng point
of DG. Sensitivi
t
y
ana
l
y
s
is for p
o
wer losses in t
e
rm
s of DG
size
and DG op
erat
ing poin
t
has been p
e
rform
ed. Th
e proposed
sensitiv
i
t
y
indic
e
s
can indi
cat
e the ch
anges
in power los
s
e
s
with res
p
ect
to DG current
injection
.
The p
r
oposed techn
i
q
u
e has
been d
e
v
e
loped with
con
s
idering load
chara
c
t
e
ris
t
i
c
s
and repres
enting
cons
tant curr
ent
m
odel. The e
ffe
ctiv
enes
s
of
the proposed technique
is tested and
verif
i
ed u
s
ing MATLAB software on
long rad
i
al distr
i
bution s
y
s
t
em.
Keyword:
Di
st
ri
b
u
t
e
d ge
nerat
i
n
g u
n
i
t
s
R
a
di
al
di
st
ri
b
u
t
i
on sy
st
em
Sen
s
itiv
ity an
alysis
Op
tim
al size a
n
d rating
o
f
DG
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Gu
mm
ad
i Sriniv
asa Rao,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
V.R
.
Si
d
dha
rt
h
a
En
gi
nee
r
i
n
g
col
l
e
ge(
A
ut
o
n
o
m
ous),
K
a
nur
u,
V
i
j
a
y
a
w
a
d
a
, A
ndh
r
a
Pr
ad
esh
5
2000
7, I
n
d
i
a,
Em
a
il:
v
a
su
1
i
n@yaho
o.co
m
1.
INTRODUCTION
DG
(
d
i
s
t
r
i
b
ut
e
d
gene
rat
i
o
n)
i
s
de
fi
ne
d a
s
i
n
stallatio
n
an
d op
eratio
n of sm
all
m
o
d
u
l
ar
p
o
wer
gene
rat
i
n
g t
e
c
h
n
o
l
o
gi
es t
h
at
can
be c
o
m
b
i
n
ed
wi
t
h
e
n
er
g
y
m
a
nagem
e
nt an
d st
o
r
a
g
e s
y
st
em
s. It
i
s
u
s
ed t
o
im
prove the
operations
of the electric
ity d
e
liv
ery system
s
at o
r
n
e
ar th
e
end use
r
[1].
T
h
ese system
s may or
m
a
y
not
be c
o
nnect
e
d
t
o
t
h
e
el
ect
ri
c gri
d
.
D
i
st
ri
but
ed
gene
rat
i
o
n
sy
st
em
can em
pl
oy
a
ra
nge
o
f
t
e
c
h
nol
ogi
cal
opt
i
o
ns f
r
om
renewa
bl
e t
o
n
o
n
-re
ne
wabl
e
and ca
n o
p
erat
e ei
t
h
er i
n
a con
n
ect
ed
gri
d
or o
f
f
-
g
ri
d m
ode. T
h
e
size o
f
a
d
i
stribu
ted
g
e
n
e
ration
system
typ
i
c
a
lly ran
g
e
s from
less th
an
a kilo
watt to
a few m
e
g
a
watts.
There
are
va
ri
o
u
s m
e
t
hods
use
d
fo
r l
o
ss re
duct
i
o
n
i
n
p
o
w
er
sy
st
em
net
w
o
r
k
l
i
k
e fee
d
e
r
reco
nfi
g
u
r
at
i
o
n, ca
paci
t
o
r pl
acem
e
nt
[1
2]
,
hi
g
h
vol
t
a
ge
di
st
ri
but
i
o
n sy
st
em
, con
d
u
ct
o
r
gra
d
i
n
g, a
n
d
D
G
uni
t
placem
ent. All these m
e
thods
are invol
ved
with pa
ssive
el
em
ent except
DG
unit placem
ent. Both ca
pacitors
and
D
G
u
n
i
t
s
red
u
ce p
o
w
er
l
o
ss an
d i
m
prove
v
o
l
t
a
ge re
gul
at
i
o
n,
but
wi
t
h
t
h
e D
G
s
l
o
ss re
duct
i
o
n
alm
o
st
d
oub
les th
at
o
f
Cap
acito
rs [2
]
,
[9
].
The
di
st
ri
but
e
d
gene
rat
i
o
n
u
n
i
t
s
co
n
n
ect
ed
t
o
l
o
cal
distri
bution system
s are
not dis
p
atchable by
a
cen
tral op
erat
o
r
, bu
t th
ey can
h
a
v
e
a sign
ifican
t
im
p
act o
n
th
e
p
o
wer flow,
v
o
ltag
e
profile, stab
ility,
co
n
tinu
ity, sh
ort circu
it lev
e
l,
an
d qu
ality o
f
p
o
wer su
pp
ly fo
r cu
st
o
m
ers an
d electricity su
pp
liers
[3
], [4].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:20
88-
870
8
I
J
ECE Vo
l. 3
,
N
o
. 3
,
Jun
e
201
3
:
337
–34
3
33
8
2.
PROBLEM FORMATION
Th
e co
m
p
lex
ity o
f
th
e d
i
strib
u
tion
system
an
d
th
e power qu
ality main
tain
ing
is
ach
iev
e
d
b
y
al
l
o
cat
i
ng t
h
e
DGs
i
n
t
h
e
di
st
ri
but
i
o
n
b
u
s.
The
p
r
op
ose
d
t
ech
ni
q
u
e i
s
base
d
on
o
p
t
i
m
al
pl
acem
e
nt
o
f
D
G
u
n
its,
wh
ich
is co
n
c
en
trate
with
sp
eci
ficatio
n
s
lik
e b
a
sed
on
th
eir size an
d
lo
cation. Th
e stab
ility o
f
th
e
di
st
ri
b
u
t
i
o
n
sy
s
t
em
i
s
depe
nds
o
n
t
h
e
f
o
l
l
o
wi
ng
fact
ors
.
Vo
ltag
e
stab
ility,
Real and Reac
tive powe
r,
Power loss
2.1. Power
l
o
s
s
es
Po
wer
l
o
sses
i
n
di
st
ri
but
i
o
n
sy
st
em
s vary
wi
t
h
n
u
m
e
rous
fact
o
r
s
dep
e
ndi
ng
u
p
o
n
t
h
e sy
st
em
co
nfigu
r
ation,
su
ch
as lev
e
l
o
f
lo
sses
through tra
n
sm
ission a
n
d
distribu
tio
n
li
n
e
s, transform
e
rs, cap
acito
rs,
insulators, etc.
Power loss
es c
a
n
be
divide
d into t
w
o
categories: real
powe
r loss
a
n
d react
ive power loss
[11].
C
onse
q
uent
l
y
,
react
i
v
e
po
w
e
r m
a
kes i
t
possi
bl
e t
o
t
r
a
n
sfer
real
p
o
w
e
r
t
h
ro
u
gh t
r
an
sm
i
ssi
on an
d
d
i
stribu
tio
n lines to
cu
sto
m
e
r
s. Th
e t
o
tal real an
d
reactiv
e
p
o
wer lo
sses in
a
d
i
stribu
tio
n system
can
b
e
calculated by,
∑
|
|
(
1
)
|
|
Wh
ere
n
b
r is to
tal n
u
m
b
e
r
o
f
b
r
an
ch
es in
the syste
m
, Ii is t
h
e m
a
g
n
itu
d
e
o
f
cu
rren
t flow in
bran
ch
I,
ri
and xi
a
r
e
t
h
e resistance a
n
d
reacta
n
ce of bra
n
ch
i,
res
p
ectively. Different
ty
pe
s of loads
connected
to
d
i
stribu
tio
n
feed
ers also
affect th
e
lev
e
l o
f
p
o
wer lo
sses.
Th
e fo
llowing
su
b-section
s
will d
i
scu
ss th
e
p
o
wer
l
o
sses i
n
a sy
st
em
wi
t
h
an
d
w
i
t
hout
D
G
i
n
cl
usi
o
n t
h
r
o
u
g
h
r
e
prese
n
t
i
n
g l
o
a
d
s
wi
t
h
c
o
nst
a
nt
cu
rre
nt
m
o
d
e
l
s
.
2.2.
Distributi
on s
y
s
t
em with constant cur
rent l
o
ad m
o
del
C
onst
a
nt
c
u
r
r
e
n
t
l
o
a
d
s
d
r
aw
co
nst
a
nt
c
u
rr
ent
f
r
om
t
h
e
di
st
ri
b
u
t
i
o
n
fe
eder
an
d a
r
e i
nde
pe
nde
nt
o
f
vol
t
a
ge
. Th
e r
e
l
a
t
i
onshi
p bet
w
een
p
o
we
r (
P
) co
ns
um
ed by
t
h
e const
a
nt
cur
r
ent
l
o
a
d
a
nd t
h
e b
u
l
k
vo
l
t
a
ge (V
)
can be represe
n
ted
a
s
,
(
2
)
A di
st
ri
but
i
o
n
sy
st
em
wi
t
h
N num
ber o
f
b
u
s
es and
N-
1
nu
m
b
er of co
nst
a
nt
cur
r
e
n
t
l
o
ad
s i
s
sho
w
n i
n
Fi
gu
re 1.
Fi
gu
re
1.
N
-
b
u
s
sy
st
em
wi
t
h
N-
1 c
o
nst
a
nt
c
u
r
r
ent
l
o
ad
s
Fro
m
th
e ab
ove figu
re Vo
ltag
e
at
b
u
s i can b
e
exp
r
essed in
term
s o
f
substatio
n
v
o
ltag
e
and
th
e to
tal
v
o
ltag
e
dro
p
fro
m
th
e sub
s
tatio
n to
bu
s
I as fo
llo
ws.
B
y
appl
y
i
n
g
t
h
e seri
es e
x
pans
i
on,
we
o
b
t
a
i
n
:
∑
(
3
)
1
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE I
S
SN
:
208
8-8
7
0
8
Vo
ltag
e
Pro
file Imp
r
o
v
emen
t
o
f
Distribu
tion S
y
stem
u
s
ing
Distrib
u
t
ed
...
(
G
ummad
i
S
r
in
i
v
a
s
a
Ra
o
)
33
9
Th
e equ
a
tio
ns
for in
itial system
p
o
w
er lo
sses is:
2
1
|
|
(
5
)
1
6
2
1
|
|
A
DG is conne
c
ted to t
h
e
feeder at
bus
k,
as
s
h
own in Figure
2, and i
n
jecti
n
g c
u
rrent
I
DG
DG
in
to
t
h
e net
w
o
r
k.
Fi
gu
re
2.
N
-
b
u
s
ra
di
al
sy
st
e
m
with
DG c
o
nnected at
bus
K
Fi
gu
re
3.
C
u
rre
nt
fl
ow
i
n
t
h
e s
y
st
em
wi
t
h
an
d
wi
t
h
ou
t
DG
As sho
w
n
in
Fig
u
re 3
,
th
e in
t
e
g
r
ation
of DG in
to
th
e syste
m
resu
lts in
a
red
u
c
ti
o
n
of cu
rren
t fl
o
w
fr
om
t
h
e subst
a
t
i
on t
o
t
h
e
D
G
co
n
n
ect
i
o
n
poi
nt
k
,
b
u
t
do
es
no
t affect the cu
rren
t flow
p
a
st th
e
po
in
t
o
f
k
t
o
th
e rem
o
te end.
T
h
e
cu
rr
en
t f
l
ow
s
in br
an
c
h
i
in
th
e
presen
ce of DG is,
(
6
)
=
i
k
Th
e
vo
ltag
e
at
lo
ad
bu
s i i
n
the feed
er is,
,
1
(
7
)
,
1
Equ
a
tio
n
(7
)
rev
eals th
at th
e v
o
ltag
e
profile o
f
t
h
e feed
er is i
m
p
r
ov
ed
wh
en
DG is co
nn
ected in
t
o
th
e system
. Th
e vo
ltag
e
im
p
r
o
v
e
m
e
n
t
at lo
ad
b
u
s
es (ex
c
ept th
e u
tility b
u
s)
b
e
fo
re
and
after
D
G
connectio
n
poi
nt
i
s
gi
ve
n i
n
E
q
uat
i
o
n
(
8
)
respect
i
v
el
y
as
,
∆
1
(
8
)
∆
1
Thus,
real a
n
d
reactive
powe
r losses
of the
s
y
ste
m
have
be
com
e
as,
∑
|
|
∑
|
|
(
9
)
|
|
|
|
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:20
88-
870
8
I
J
ECE Vo
l. 3
,
N
o
. 3
,
Jun
e
201
3
:
337
–34
3
34
0
By rearra
nging E
quation
(9) the
real and reactiv
e
power losse
s of the syste
m
with DG can
be
expresse
d i
n
te
rm
s of the
real
an
d reactiv
e power lo
sses wit
h
ou
t
DG and
a
lo
ss redu
ction
as,
|
|
|
|
(
1
0
)
Whe
r
e
1
–
2
|
|
cos
1
and
L
i
s
t
h
e phase
angl
e o
f
th
e
lo
ad
cu
rr
ent.
T
h
er
e
f
o
r
e,
the
activ
e an
d reactiv
e lo
ss
redu
ctio
n,
Pl
oss and
Ql
oss,
wi
t
h
D
G
a
r
e
gi
ve
n as
,
∆
|
|
(
1
1
)
∆
|
|
From
Equat
i
o
n
(11
)
we can
o
bvi
ou
sl
y
see t
h
at
t
h
e
powe
r
losses in the syste
m
can be reduced
by th
e
DG
onl
y
i
f
t
h
e l
o
ss fact
or
, f Loss i
s
l
e
ss t
h
an zer
o. Thi
s
fa
ct
or i
s
depe
n
d
e
n
t
on
bot
h si
ze and l
o
cat
i
o
n o
f
D
G
.
The
deri
vative
of DG P L
o
ss
with
respect t
o
DG curre
nt is,
|
|
2
1
|
|
2
|
|
cos
1
(
1
2)
Si
m
ilarly, th
e d
e
ri
v
a
tiv
e
o
f
the reactiv
e l
o
ss
with
resp
ect t
o
DG curren
t
is,
|
|
2
1
|
|
2
|
|
cos
1
(13)
The
deri
vative
s
of real and
re
active powe
r l
o
sses
with
res
p
ect to the
phas
e an
gle
of DG current
a
r
e,
2
|
|
|
|
1
s
i
n
(
1
4
)
2
|
|
|
|
1
1
2
s
i
n
An
y ch
ang
e
s in
DG cu
rren
t, i
n
term
s
o
f
m
a
g
n
itu
d
e
an
d
p
h
a
se, will resu
lt i
n
a ch
ang
e
in
th
e real and
reactive powe
r losses of t
h
e syste
m
.
The influences
of
DG curre
nt and
DG op
erating
po
in
t on
lo
ss chan
ges
can
b
e
assessed
thro
ugh
th
e ab
ov
e
sen
s
itiv
it
y in
d
i
ces.
Th
e real
p
o
wer lo
ss
redu
ction
ob
tain
s its
max
i
m
u
m
v
a
l
u
e on
ly if d
e
riv
a
tiv
e of Ploss with
DG
reaches
zero
value. T
h
erefore
,
m
a
xim
u
m
DG c
u
rrent i
n
je
c
tion
by DG
for minim
u
m
real powe
r loss
is,
|
,
,
|
|
|
(15)
3
.
TEST
SYSTEM
Fi
gu
re
4.
O
n
e l
i
ne di
a
g
ram
of
feede
r
The
o
n
e l
i
n
e
di
agram
of
p
r
o
p
o
se
d t
e
st
sy
st
em
i
s
sho
w
n i
n
fi
g
u
re
4.
an
d
fe
eder
det
a
i
l
s
are
gi
ve
n
bel
o
w
Feed
er d
e
tails:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE I
S
SN
:
208
8-8
7
0
8
Vo
ltag
e
Pro
file Imp
r
o
v
emen
t
o
f
Distribu
tion S
y
stem
u
s
ing
Distrib
u
t
ed
...
(
G
ummad
i
S
r
in
i
v
a
s
a
Ra
o
)
34
1
Type:
Ra
dial fee
d
er
Le
ngth:
48KM
Line
im
pedanc
e, z
1
: 0.6672+
j0.
3
745ohm
/KM
N
o
m
i
nal voltage:
22K
V
4. RES
U
LTS AN
D DIS
C
US
SION
S
A DG is place
d at bus 47 and inject
s on
ly real p
o
wer in
t
o
th
e syste
m
.
To inject real powe
r only, the
pha
se o
f
D
G
c
u
r
r
ent
i
s
m
a
de equal
t
o
t
h
e
pha
se o
f
l
o
cal
vol
t
a
ge at
c
o
nnect
i
o
n
poi
nt
.
T
he m
a
gni
t
u
d
e
of
DG
cu
rren
t
v
a
ries
fro
m
0
to
2 p.u
.
Figu
re
5
sho
w
s th
e
r
eal
po
wer losses and
its sen
s
itiv
ity with
resp
ect
to
th
e
chan
ge i
n
m
a
gni
t
ude
o
f
D
G
c
u
r
r
ent
i
n
je
ct
i
o
n
f
o
r c
o
nst
a
nt
c
u
r
r
ent
l
o
ad
m
odel
.
Whe
n
t
h
e DG curre
n
t increa
se
s, the
rate
of cha
n
ge
of t
h
e real
lo
ss is
ch
ang
i
ng
fro
m
n
e
g
a
tiv
e to
p
o
s
itiv
e, wh
ich
m
ean
s th
at
t
h
e real lo
ss starts d
ecreasi
n
g,
an
d
after a certain
lev
e
l o
f
DG cu
rren
t it
starts to
increase. T
h
erefore, m
i
nim
u
m
real lo
ss ca
n
be ac
hi
eve
d
onl
y
i
f
t
h
e
de
ri
vat
i
v
e
of
real
l
o
ss
wi
t
h
res
p
e
c
t
t
o
D
G
current reac
hes
zero value.
The m
a
xim
u
m DG curre
nt for constant current load
is 1
.
3
5
p
.
u
.
similar resu
lts are ob
tain
ed
fo
r the
case of
r
eactive po
w
e
r
l
o
ss an
d show
n in Fi
g
u
r
e
6
.
Fig
u
re
5
.
Real lo
ss an
d its sensitiv
ity with
resp
ect to
DG
cu
rre
nt
m
a
gni
t
u
de
Fig
u
re
6
.
Reactiv
e lo
ss and
its sen
s
itiv
ity wit
h
respect
t
o
DG current
Ma
gnitude
Fig
u
re
7
and
Fig
u
re
8
sho
w
s
th
e sen
s
itiv
ity o
f
real
and
reactiv
e power, resp
ectiv
ely,
for
th
e ch
ang
e
in phase
angle
of IDG, in the
cases of c
o
nsta
nt
i
m
pedance a
n
d
co
nst
a
nt
cu
r
r
ent
l
o
ad
m
odel
s
.
From
these figures
,
we obse
rve that bot
h re
al a
nd reactive
powe
r losses decr
ease with the increasing
of
D
G
c
u
rre
nt
pha
se
(t
hei
r
sl
ope
s a
r
e
negat
i
ve)
.
Ho
we
ver
,
t
h
ere a
r
e
p
o
i
n
t
s
w
h
ere
t
h
e
rea
l
an
d
react
i
v
e
po
we
r
losses start inc
r
easing. T
h
ese
poi
nts are c
o
ns
idere
d
as
th
e
op
ti
m
a
l p
h
a
se of DG cu
r
r
e
n
t
f
o
r
mi
n
i
mu
m r
e
a
l
a
n
d
reactive powe
r
losses.
By u
s
in
g
t
h
e sen
s
itiv
ity an
alysis, o
p
tim
al o
u
tpu
t
curren
t
s fro
m
DG can
b
e
d
e
term
in
ed
for d
i
fferen
t
DG locations.
Since it is
not
effective t
o
pla
ce the
DG cl
os
er to t
h
e se
nding end
of
the feeder, whe
r
e
t
h
ere
is
enough support from
the substation,
DG
is
assum
e
d to be
placed
only at
the downstrea
m
load buses
of t
h
e
syste
m
Fig
u
re
7
.
Real lo
ss an
d its sensitiv
ity with
resp
ect to
pha
se of D
G
c
u
r
r
ent
Fig
u
re
8
.
Reactiv
e lo
ss and
its sen
s
itiv
ity wit
h
respect
t
o
pha
s
e
of DG curre
nt
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
1.
6
1.
8
2
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
Ou
t
p
u
t
D
G
C
u
r
r
e
n
t
--
---
--
-->
-
R
e
a
l
lo
s
s
s
e
n
s
it
iv
it
y
,
R
e
a
l
lo
s
s
--
---
---
---
---
---
---
--
---
->
-
R
e
a
l
l
o
s
s
a
n
d
i
t
s se
n
s
i
t
i
v
i
t
y
w
i
th
r
e
s
p
e
c
t
to
D
G
C
u
r
r
e
n
t
m
a
g
n
i
t
u
d
e
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
1.
6
1.
8
2
-0
.
0
8
-0
.
0
6
-0
.
0
4
-0
.
0
2
0
0.
0
2
0.
0
4
0.
0
6
O
u
t
p
u
t
D
G
C
u
rre
n
t
---
---
---
---
---
->
-
R
e
a
c
t
i
v
e
lo
s
s
S
e
n
s
it
iv
it
y
,
R
e
a
c
t
i
v
e
lo
s
s
--
---
---
---
---
---
---
>
-
R
e
a
c
t
i
v
e
lo
s
s
a
n
d
it
s
S
e
n
s
it
iv
it
y
w
i
t
h
r
e
s
p
e
c
t
t
o
D
G
c
u
r
r
e
n
t
ma
g
n
it
u
d
e
-1
.
4
-1
.
2
-1
-0
.
8
-0
.
6
-0
.
4
-0
.
2
0
0.
2
0.
4
-0
.
0
4
-0
.
0
2
0
0.
02
0.
04
0.
06
0.
08
0.
1
P
h
as
e of
D
G
C
u
r
r
e
n
t
(
R
ad
i
a
n
s
)
---
--
--
---
--
--
---
--
--
---
->
-
R
e
a
l
lo
s
s
S
e
n
s
i
t
iv
it
y
,
R
e
a
l
lo
s
s
--------------->
-
R
e
a
l
l
o
s
s
a
n
d
i
t
s
S
e
n
s
i
t
i
v
i
t
y
w
i
t
h
r
e
s
p
ec
t
t
o
ph
as
e
of
D
G
c
u
r
r
en
t
-1.
4
-1
.
2
-1
-0.
8
-0
.
6
-0.
4
-0
.
2
0
0.
2
0.
4
-0.
0
2
-0.
0
1
0
0.
01
0.
02
0.
03
0.
04
0.
05
P
has
e of
D
G
C
u
rr
ent
(ra
di
a
n
s
)
-
-
-
---
->
-
R
e
a
c
t
i
v
e
l
o
ss
se
n
s
i
t
i
v
i
t
y,
R
e
a
c
t
i
ve
l
o
ss
--
---
---
----
->
-
R
e
ac
t
i
v
e
l
o
s
s
and i
t
s
s
ens
i
t
i
v
i
t
y
w
i
t
h
res
p
ec
t
t
o
ph
as
e of
D
G
c
u
r
r
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:20
88-
870
8
I
J
ECE Vo
l. 3
,
N
o
. 3
,
Jun
e
201
3
:
337
–34
3
34
2
Fi
gu
re
9.
M
i
ni
m
u
m
real
pow
er l
o
s
s
es
obt
ai
ned
by
optim
al sizes of DG
Fig
u
re
10
. Mini
m
u
m
reactiv
e p
o
wer lo
sses
ob
tain
ed
b
y
op
tim
a
l
sizes of
D
G
A ra
nge
of
DG
l
o
cat
i
on f
r
om
bus
3
5
t
o
b
u
s
69 i
s
exam
i
n
ed. B
y
pl
aci
ng
a DG o
f
t
h
e o
p
t
im
al
si
ze at
the corresponding load
bus for the bus
35 to bus 69,
one
at a t
i
m
e,
the real and
reactive power losses of the
syste
m
are calculated a
n
d re
porte
d
in
Fi
g
u
re
9 a
n
d Fi
gu
re
1
0
,
res
p
ect
i
v
el
y
.
The res
u
lts show t
h
at, for
both loa
d
m
ode
ls,
m
i
nim
u
m
r
eal and reacti
v
e power l
o
sses
are obtained
whe
n
DG is l
o
cated at
bus
47.
Fig
u
re 11
shows th
e vo
ltag
e
p
r
ofile o
f
th
e
syste
m
wi
t
h
and wi
t
h
out
D
G
.
From
t
h
i
s
fi
gur
e, we can see
t
h
at
DG
desi
g
n
ed
fo
r m
i
nim
u
m
power l
o
ss
es al
so i
m
prov
es t
h
e v
o
l
t
a
ge
pr
ofi
l
e
o
f
t
h
e
sy
st
em
. In t
h
e
sy
st
e
m
with
ou
t
DG, l
o
west
vo
ltag
e
lev
e
l was appro
x
i
m
a
tely 0
.
92
7p
.u
.
How
e
ver
,
w
ith
DG
of
th
e
op
tim
al
size
f
o
r
co
nstan
t
cu
rrent lo
ad
m
o
d
e
l co
nn
ected at th
e op
ti
m
a
l lo
cati
o
n (bu
s
4
7
) is
0
.
9
8
p
.
u
Fig
u
re 11
. Vo
ltag
e
p
r
o
f
ile o
f
th
e
system
with
and
with
ou
t DG
5. CO
N
C
L
U
S
I
ON
Th
e resu
lts sho
w
th
at th
e i
n
tegratio
n
o
f
DG is h
i
g
h
l
y
effectiv
e in
red
u
c
i
n
g
po
wer lo
sses and
i
m
p
r
ov
ing
th
e v
o
ltag
e
p
r
ofile in
th
e d
i
stributio
n
system
. T
h
e stud
ies also rev
eal th
at m
a
x
i
m
u
m
b
e
n
e
fits fro
m
DG
can
be
o
b
t
a
i
n
ed
o
n
l
y
i
f
p
r
o
p
er
D
G
pl
an
ni
n
g
i
s
per
f
o
r
m
ed. T
h
e
opt
i
m
al
DG m
odel
va
ri
es f
r
om
sy
st
em
t
o
sy
st
em
, depe
n
d
i
n
g
on
t
h
e s
y
st
em
confi
g
u
r
at
i
ons
, t
y
pes
of c
o
nn
ect
ed
l
o
ads
,
a
nd a
t
r
ade
-
o
f
f
am
ong t
h
e
objectives
of DG usage
REFERE
NC
ES
[1]
P
Chiradej
a, R
Ram
a
kum
ar. An Approach to
Quantif
y
the Te
c
hnica
l
Ben
e
fits of
Distributed
Generation.
IE
EE
Transactions on
Energy Con
version
. 2004; 19(4):
764–773.
[2]
W Caisheng, M
H
Nehrir. Analy
t
ical A
pproach
es
for Optimal Placement of Di
str
i
b
u
ted Gen
e
ration
Sources in Power
Sy
s
t
e
m
s
. IEEE Transactions on Power Systems
. 2
004; 19(4): 2068
– 2076
.
35
40
45
50
55
60
65
70
1.
2
1.
4
1.
6
1.
8
2
2.
2
2.
4
x 1
0
4
B
u
s
N
u
m
b
e
r
------>
-
Mi
mi
mu
m r
e
a
l
p
o
w
e
r
l
o
s
s
-------------->
-
M
i
n
i
m
u
m
re
al
po
w
e
r l
o
s
s
ob
t
a
i
ned
by
D
G
s
at
d
i
f
f
e
r
en
t
bu
s
l
o
c
a
t
i
o
n
s
35
40
45
50
55
60
65
70
0.
7
0.
8
0.
9
1
1.
1
1.
2
1.
3
1.
4
x 1
0
4
B
u
s
N
u
m
ber
---
---
---
---
-->
-
Mi
n
i
mu
m
r
e
a
c
t
i
v
e
p
o
w
e
r
l
o
s
s
-
-----
----
-----
-----
>
-
M
i
ni
m
u
m
rea
c
t
i
v
e
pow
e
r
l
o
s
s
obt
ai
ned
by
D
G
s
at
di
f
f
e
rent
bus
e
l
o
c
a
t
i
ons
0
10
20
30
40
50
60
70
0.
9
3
0.
9
4
0.
9
5
0.
9
6
0.
9
7
0.
9
8
0.
9
9
1
1.
0
1
1.
0
2
1.
0
3
B
u
s
num
ber
V
o
l
t
ag
e (
p
.
u
.
)
V
o
l
t
a
ge p
r
of
i
l
e
of
t
he s
y
s
t
e
m
w
i
t
h
a
nd w
i
t
hout
D
G
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE I
S
SN
:
208
8-8
7
0
8
Vo
ltag
e
Pro
file Imp
r
o
v
emen
t
o
f
Distribu
tion S
y
stem
u
s
ing
Distrib
u
t
ed
...
(
G
ummad
i
S
r
in
i
v
a
s
a
Ra
o
)
34
3
[3]
PM Costa
,
MA
Ma
tos.
Loss Allocation in Distri
bution Ne
tworks
with Embedded
Generation.
I
E
E
E
Trans
a
ctions
o
n
Power S
y
stems.
2004; 19(1): 384
–389.
[4]
SK Salman. The Impact of Embedded Generation
on Vo
ltage Reg
u
lation
and Losses
of Distribution Networks
. IEE
Colloquium on
the Impact of Em
bedde
d Gen
e
ration on Distribution Networks
(Digest No. 1996/1
94). 1996; 2/1-2
/
5.
[5]
CLT Borges
, D
M
F
a
lcao.
Impa
ct of Distributed Generation Alloca
tion and Sizing on Reliability, Losses, and
Voltage Profile.
IEEE Bologna Power Tech Conf
eren
ce Proceedings. Bologna. 20
03; 2.
[6]
IE Davidson, NM Ijumba.
Optimization Model f
o
r Loss Minimization in
a Deregulated Pow
e
r Distribution Netwo
r
k.
IEEE
Africon
C
onferenc
e
in Afr
i
ca
(AFRICON), Africa. 2002
; 2
:
887–894.
[7]
T Griffin, K Tomsovic,
D Secrest,
A Law.
Plac
eme
n
t of Dispe
rsed Ge
ne
rations for Re
duc
e
d
Losse
s.
P
r
oceed
ings
of
the 33rd
Annual
Hawaii In
tern
ationa
l Conf
eren
ce on S
y
s
t
em Sciences
.
2000
.
[8]
J Muta
le,
G Strba
c
,
S Curc
ic
, N Je
nkins.
Allo
cation of Losses in
Distribution
Sys
t
ems with
Embedded Generation
.
IEE
Proceedings
of Gen
e
ration
,
Transmi
ssion and Distribution
. 2
000; 147; 1: 7–1
4.
[9]
R Jahani,
A Shafighi Mal
e
kshah
,
H Ch
ahkand
i
Nejad.
Appl
ying
a new adv
a
nc
e
d
inte
llig
ent
alg
o
rithm
for opti
m
a
l
distributed gen
e
ration location and sizi
ng in radial distribution sy
stems.
Australian Journal of Basic and Applied
Scien
ces
. 2011;
5(5): 642-649
.
[10]
A Augugliaro,
L Dusonchet, S
Favuzza, ER
Sanseverino.
Voltage Regulatio
n and Po
wer Losses Minimization
in
Automated Distribution Networks b
y
an
Evolu
tionar
y
Multiob
j
ective Appro
a
ch.
IEEE Transactions on
Power
Sy
ste
m
s.
2004; 1
9
(3); 1516–1527
.
[11]
JJ Ja
mia
n
,
MW Musta
f
a
,
H Mokhlis,
MA Ba
ha
rudin.
A New Particl
e
Swarm
Optim
ization Te
chnique
in
Optim
izing Siz
e
of Di
stributed Generation.
International Journ
a
l of Electric
a
l
and Computer Engineering (
I
JECE
).
2012; 2(1): 137-
146.
[12]
Abdolreza Sadi
ghm
anesh,
Kaz
e
m
Zare,
Meh
r
an
Sabahi.
Di
strib
u
ted Gener
a
tion
unit and Capa
c
itor Plac
em
ent f
o
r
Loss Voltage profile and ATC
Optim
ization
.
International Jo
urnal
of
Elec
trical and Computer Engineering
(I
J
E
C
E
). 2012
;
2(6): 774-780
.
BIOGRAP
HI
ES
OF AUTH
ORS
G.Srinivasa Rao
receiv
e
d his B.E. degr
ee in E
l
e
c
tri
cal
and Ele
c
t
r
onics Engine
eri
ng in 2000 from
University
of
Madras, Ind
i
a
and M.Tech
d
e
gree from Jawaharlal
Nehru
Technological
University
, Anatapur, Ind
i
a
in 2
005.His fields o
f
inter
e
sts ar
e distributed g
e
ner
a
ting units
and
power quality
.
Y.P.Obulesh received hi
s B.E. degree in Electrical and
Electron
ics Engineering in 1995 fro
m
Andhra Universi
t
y
, Indi
a, M.Tech degree f
r
om
I
ndian Institu
te of
Techno
log
y
, Kh
argapur,
India
in 1998
and P
h
D from Jawaharlal
Nehru
Technolog
ical U
n
iver
sity
, H
y
derabad, India in
2006..His fields
of interests ar
e
P
o
wer electr
onics
and dr
ives, r
e
neuble
energ
y
s
y
stems and active
filte
rs.
Evaluation Warning : The document was created with Spire.PDF for Python.