Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
5
,
No
. 5, Oct
o
ber
2
0
1
5
,
pp
. 92
9~
93
8
I
S
SN
: 208
8-8
7
0
8
9
29
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Performance Analysis of Do
ubly Fed Induction Generator
Using Vector Control Technique
Aye
M
y
at
Thin
*
,
Na
ng
S
a
w Y
u
za
na
Kya
i
ng
**
Department o
f
Electrical Power
Engine
ering, Mandalay
Technolo
g
y
University
Mandalay
,
M
y
anmar
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 28, 2015
Rev
i
sed
Ju
l 12
,
20
15
Accepte
d
J
u
l 22, 2015
There ar
e m
a
n
y
s
o
lar power and wind s
t
ations
ins
t
alled in th
e po
wer s
y
s
t
em
for environmental and econom
ic reasons. In fact, wind energ
y
is inexpensiv
e
and th
e safetes
t
among all so
urces of
r
e
new
a
ble energ
y
,
it has been
recognized
that variab
le speed
wind turbin
e
based on th
e
doubly
fed
induction g
e
ner
a
tor. It
is the most e
ffective with less cost and high power
y
i
eld
.
Th
is paper has
chosen doubly
fed
induction
gen
e
r
a
tor for
a
comprehensive s
t
ud
y
o
f
modelling, pe
rformance and an
aly
s
ing.
DFIG wind
turbine h
a
s to o
p
erate below
an
d above s
y
nchr
onous speed which requ
ires
smooth transition mode change for relia
ble op
eration to be controlled
to
provide stab
ility
for the power
s
y
stem
. Hence
its
performance d
e
p
e
nds on the
generator its
elf
and the
conver
t
er opera
tion
and
control s
y
stem. This paper
pres
ents
com
p
l
e
ted
m
a
them
at
i
cal
m
odel of
DFIG with its
AC/DC/AC
converter driven
b
y
DC machin
e. Th
e
rotor is
considered f
e
d b
y
a voltag
e
source converter
whereas the stator is connected to the grid directly
. Th
e
capacity
of th
e
wind power generation
is 1.5MW. The voltag
e
rating and
frequency
for
th
is s
y
stem are 57
5V,
50Hz .This
paper show detailed model
of DFIG.
Keyword:
D
oub
ly f
e
d
indu
ctio
n g
e
n
e
r
a
to
r,
Mo
d
e
lling
an
d
si
m
u
latio
n
,
Reactive powe
r c
o
m
p
ensation
Varia
b
le spee
d
win
d
t
u
r
b
ine
Voltage
s
o
urce
conve
rter
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Aye Myat Thi
n
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Po
w
e
r E
ngi
neer
i
n
g, Mandalay Te
chnology
Uni
v
ersity,
Man
d
a
lay, My
an
m
a
r
.
Em
a
il: aye
m
ya
tth
in
.m
tu
ep
@gmail.co
m
1.
INTRODUCTION
The electric
power ge
neration usi
n
g wi
nd fa
rm
is su
bj
ect t
o
co
nsid
erab
le atten
tio
n in
t
h
e wo
rl
d
d
u
e
t
o
t
h
e i
n
c
r
ease
of el
ect
ri
ci
t
y
dem
a
nd an
d c
o
nsum
pt
i
o
n
,
w
h
i
c
h l
e
d t
o
t
h
e d
e
pl
et
i
on
of e
x
i
s
t
i
ng e
n
er
gy
s
o
u
r
ces
su
ch
as fo
ssil
fu
els, co
al, and
o
il.
W
i
nd
po
wer is
environm
entally eco
nom
ically
acc
eptable a
nd t
h
e safest
source am
ong
rene
wa
ble ene
r
gy s
o
urces
[1]. Large
wind
t
u
r
b
i
n
es ca
n
b
e
ope
rat
e
d at
a con
s
t
a
nt
s
p
e
e
d o
r
vari
a
b
l
e
spe
e
d
usi
ng
di
f
f
ere
n
t
t
y
pes o
f
gen
e
rat
o
r
s
t
h
at
ca
n
be ei
t
h
e
r
di
r
ect
l
y
conn
ect
ed t
o
t
h
e
net
w
or
k
o
r
connected through a
power
electronic conve
r
ter.
In
rece
nt
y
ear
s m
o
re de
vel
o
pm
ent
has
bee
n
ca
rri
ed ou
t t
o
im
p
r
ov
e th
e
perform
ance of va
riable
sp
eed
w
i
nd
tur
b
i
n
es to
o
v
e
rco
m
e th
e p
r
ob
lem
o
f
th
e necessity to
o
p
er
ate abo
v
e
, belo
w
,
and
th
ro
ugh
syn
c
hrono
us sp
eed
; as th
e
resu
lt of th
is
dev
e
lop
m
en
t th
e wind
en
erg
y
in
du
stry en
d
e
d
up
with
d
oub
ly-fed
i
n
d
u
ct
i
on
ge
ne
rat
o
r
.
W
i
nd t
u
r
b
i
n
e
gene
rat
o
r
whi
c
h i
s
t
h
e m
o
st
effi
ci
e
n
t
ge
nerat
o
r i
n
wi
n
d
ene
r
gy
con
v
e
rsi
o
n
sy
st
em
. In
fact
, i
t
i
s
o
n
e
o
f
t
h
e m
o
st
im
por
t
a
nt
ge
nerat
o
rs
i
n
hi
g
h
-
p
owe
r
ap
pl
i
cat
i
ons;
i
t
i
s
a f
o
rm
of
t
h
ree
-
p
h
a
se asyn
ch
ro
nou
s m
ach
in
e with
its ro
tor
wind
ing
s
also
connected to t
h
e
grid th
rough the
powe
r el
ectronic
co
nv
erter [2
]. In
d
e
ed
,
DFIG
offers a nu
m
b
er o
f
featu
r
es
when
it is co
m
p
ared
with
o
t
h
e
r gen
e
rat
o
rs: its ab
ilit
y
to operate at (
3
0
%
)
of
syn
c
h
r
on
ou
s sp
eed, its co
nv
er
ter h
a
s on
ly to
h
a
nd
le ro
tor
cir
c
u
it po
w
e
r
,
h
i
gh
effi
ci
ency
,
m
a
xi
m
u
m
powe
r
ext
r
act
e
d
,
an
d i
n
de
pe
nde
nt
ext
r
act
e
d
,
an
d i
n
de
pe
nde
nt
co
nt
r
o
l
of a
c
t
i
v
e a
n
d
reactiv
e po
wers. On
o
t
h
e
r
h
a
n
d
, DFIG h
a
s so
m
e
d
i
sad
v
a
ntag
es su
ch
as its sen
s
itiv
ity
t
o
un
b
a
lan
ced
fau
lt
co
nd
itio
n wh
ich
can
h
eat th
e stato
r
wind
ing
h
e
n
c
e redu
ce th
e m
ach
in
e
lifeti
m
e. Fu
rtherm
o
r
e li
m
ited
ran
g
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
929
–
9
38
93
0
spee
d, c
ont
r
o
l
com
p
l
i
c
i
t
y
,
and t
h
e co
st
o
f
m
a
i
n
t
e
nance due t
o
sl
i
p
r
i
ngs ass
e
m
b
l
y
[3]
are am
ong i
t
s
adva
nt
age
.
In
ge
neral
,
t
h
e
cont
rol
sy
st
em
of
act
i
v
e a
n
d
react
i
v
e
p
o
w
e
r o
f
DF
IG
i
s
achi
e
ve
d
by
co
nt
r
o
l
l
i
ng t
h
e
injecte
d
rotor curren
ts, using
each
of
݀
-
ݍ
ro
to
r curren
t
s to
regu
late th
e activ
e
an
d
reactiv
e
p
o
wers
inde
pende
n
tly of each ot
her.
2.
WIND
T
URB
INE MODELLING
W
i
nd
turb
i
n
es
co
nv
ert th
e k
i
n
e
tic
energy present in t
h
e wind int
o
m
echanical energy by
m
eans of
pr
o
duci
ng t
o
r
q
ue.
Si
nce t
h
e
ener
gy
co
nt
ai
n
e
d
by
t
h
e
wi
n
d
i
s
i
n
t
h
e
fo
r
m
of ki
net
i
c
e
n
er
gy
, i
t
s
m
a
gni
t
ude
depe
n
d
s
on t
h
e
ai
r de
nsi
t
y
an
d t
h
e
wi
n
d
vel
o
ci
t
y
. The
wi
n
d
p
o
w
er
de
vel
ope
d
by
t
h
e t
u
rbi
n
e i
s
gi
ven
by
t
h
e
equat
i
o
n (
1
) [
1
-1
0]
:
3
ρ
Av
β
λ
,
p
C
2
1
m
P
(1
)
Whe
r
e C
p
is the Power C
o
-efficien
t
,
ρ
is th
e air d
e
n
s
ity in
kg
/
m
3
.A is the area of the t
u
rbine blades in m
2
and
V is th
e
wind
v
e
lo
city in
m
/
s
ec. Th
e
power
coefficient is define
d as the
p
o
we
r
out
put
of
t
h
e wi
nd
t
u
r
b
i
n
e
t
o
the available powe
r in the
wind
regim
e
. This coeffici
en
t determin
es th
e “
m
ax
i
m
u
m
power” the
wind
turbine
can abs
o
rb
from the available wind powe
r at
a give
n
wind
sp
eed. It is a fun
c
tio
n
o
f
t
h
e tip
-sp
e
ed
ratio
(
) a
n
d
the blade pitch angle (
). T
h
e bl
ade pi
t
c
h a
ngl
e can
be co
nt
r
o
l
l
e
d by
usi
ng a “pi
t
c
h
-
co
nt
r
o
l
l
e
r” and t
h
e t
i
p
-
spee
d rat
i
o
(T
S
R
) i
s
gi
ve
n a
v
ω
R
λ
(2
)
P
m=
Mechanical out
put
powe
r
of the t
u
rbine
(W)
C
p =
perform
a
nce coe
ffici
en
t
o
f
th
e t
u
rb
in
e
ρ
= t
h
e ai
r
de
nsi
t
y
(k
g/
m
3
),
A= the
turbi
n
e
swept
area
(m
2
),
V=
win
d
s
p
ee
d
(m
/s)
λ
= tip
sp
eed rati
o
o
f
th
e
ro
t
o
r blade to
wind
speed a
n
d
β
= t
h
e
bl
ade
pi
t
c
h an
gl
e
(de
g
)
Whe
r
e (
) t
h
e
rot
a
t
i
o
nal
spee
d
of t
h
e
gene
ra
t
o
r a
n
d
R
i
s
i
s
radi
us
of t
h
e
r
o
t
o
r bl
a
d
es.
H
e
nce, t
h
e TSR
can
be
co
n
t
ro
lled b
y
co
n
t
ro
lling
th
e ro
tatio
n
a
l sp
eed of th
e
g
e
n
e
rat
o
r. In a
wind
t
u
rb
in
e, C
p
ca
n
be
rep
r
ese
n
t
e
d
by
a
n
o
n
lin
ear cu
rve in
term
s o
f
λ
in
place of different
β
o
r
t
h
e
f
o
l
l
o
wi
ng
rel
a
t
i
ons
hi
p.
[4]
β
2
λ
(
0.00184
β
0.3
13
2
λ
π
sin
β
0.0167
(0.44
C
p
)
)
(
)
(3
)
3.
DO
UBLY
FED I
N
D
U
C
TIO
N
GE
NER
A
T
O
R
Th
e DFIG is cu
rren
tly th
e syste
m
o
f
ch
o
i
ce fo
r m
u
lti-MW win
d
turb
i
n
es. Th
e aerod
yn
amic s
y
ste
m
m
u
st
be capabl
e
of o
p
erat
i
n
g o
v
er a wi
de
wi
nd s
p
ee
d r
a
nge i
n
or
der
t
o
achi
e
ve
opt
im
u
m
aerody
n
a
m
i
c
efficiency
by tracki
ng t
h
e
opt
im
u
m
tip speed ratio. T
h
ere
f
or
e, th
e
g
e
n
e
rato
r’s ro
tor m
u
st b
e
ab
le to
o
p
erate at
a va
ri
abl
e
rot
a
t
i
onal
s
p
ee
d. T
h
e
DFI
G
sy
st
em
t
h
eref
ore
o
p
e
rat
e
s i
n
b
o
t
h
sub
-
a
n
d s
u
p
e
r
-
sy
nc
hr
o
n
o
u
s
m
odes
w
ith
a
ro
to
r speed
r
a
ng
e ar
oun
d th
e
syn
c
h
r
on
ou
s
sp
eed
.
The stator ci
rc
uit is directly c
o
nn
ected
t
o
th
e g
r
id
wh
ile th
e ro
t
o
r
winding is connected
vi
a slip-rings
to a t
h
ree
-
pha
s
e converter.
For
va
riable
-s
peed system
s
whe
r
e t
h
e s
p
e
e
d
range
re
qui
rem
e
nts are s
m
all, for
ex
am
p
l
e ±
3
0
%
o
f
syn
c
h
r
o
nous sp
eed, th
e DFI
G
o
f
f
e
r
s
ad
eq
u
a
te p
e
r
f
or
man
ce and
is su
ff
icien
t
f
o
r
th
e sp
eed
rang
e requ
ired to
exp
l
o
it typ
i
cal
w
i
nd
r
e
so
ur
ces an
A
C
-
D
C-A
C
co
nver
t
er
is in
cluded
in
th
e i
n
du
ctio
n
gene
rator rotor circuit. The
powe
r electroni
c conve
r
ters
need
on
ly b
e
rated
to
h
a
nd
le a fraction
of the to
tal
po
we
r -t
he r
o
t
o
r
po
wer t
y
pi
c
a
l
l
y
about
3
0
%
nom
i
n
al
generat
o
r p
o
w
er
.
There
f
o
r
e, t
h
e l
o
sses i
n
t
h
e
po
wer
electronic c
o
nverter ca
n
be
reduce
d, c
o
m
p
ared t
o
a
syste
m
where t
h
e
conve
r
ter ha
s
to ha
ndle the
entire
po
we
r, a
n
d t
h
e
sy
st
em
cost
i
s
l
o
we
r
due
to
t
h
e p
a
rtially-rated
p
o
wer electro
n
i
cs.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Performance
An
alysis of Doubl
y
Fed Indu
ction
G
e
nerator Us
ing Vector
Control Technique
(Aye Myat
Thin)
93
1
4.
OPERATING
MODE
S
OF
DO
UBLY
FE
D
IN
DU
CTIO
N
GENE
RAT
OR
The DF
IG
st
at
or
i
s
c
o
n
n
ect
ed
t
o
t
h
e gri
d
wi
t
h
fi
xe
d gri
d
fr
eque
ncy
(f
S
)
at
f
i
x
e
d gr
id vo
ltag
e
(
V
S
) t
o
gene
rat
e
co
nst
a
nt
fre
que
ncy
.
AC
Po
wer d
u
ri
ng al
l
ope
r
a
t
i
ng co
n
d
i
t
i
ons an
d t
h
e r
o
t
o
r i
s
co
nne
ct
ed t
o
t
h
e
fre
que
ncy
c
o
n
v
ert
e
r/
VSC
ha
vi
n
g
a
vari
a
b
l
e
(sl
i
p
/
r
ot
o
r)
f
r
eq
ue
ncy
(f
r
= s
f
S
).
At
c
onst
a
nt
f
r
eq
ue
ncy
f
S
, the
m
a
gnet
i
c
fi
el
d
pr
od
uce
d
i
n
t
h
e st
at
or
rot
a
t
e
s at
const
a
nt
ang
u
l
a
r
vel
o
ci
t
y
/
s
peed (
S
=
2
π
f
S
),
wh
ich is th
e
syn
c
hrono
us sp
eed of th
e mach
in
e. Th
e st
ato
r
ro
ta
ting
mag
n
e
tic field will in
du
ce a vo
ltag
e
b
e
tween
th
e
termin
als o
f
the ro
t
o
r
.
This i
n
duce
d
rot
o
r
v
o
ltage p
r
o
d
u
ces
a rot
o
r
cu
rre
nt
(I
r
),
wh
ich
in tu
rn
p
r
od
u
ces a ro
t
o
r
m
a
gnet
i
c
fi
el
d
th
at ro
tates at
v
a
riab
le an
gu
l
a
r v
e
lo
city/sp
e
ed
(
r
= 2
π
f
r
).
Usu
a
lly th
e
st
a
t
or an
d r
o
t
o
r h
a
ve t
h
e
sam
e
num
ber of
pol
es
(
P
) a
nd t
h
e convent
i
on is that the
stator m
a
g
n
e
tic field
ro
tates clo
c
kwise. Th
erefo
r
e,
t
h
e st
at
or m
a
gnet
i
c
fi
el
d r
o
t
a
t
e
s cl
ock
w
i
s
e at
a fi
xed c
o
ns
t
a
nt
spee
d o
f
P
s
120f
(rpm)
s
ω
.
Since the
rot
o
r
is con
n
ected
to th
e
v
a
riab
le freq
u
e
n
c
y
VSC,
th
e ro
tor m
a
g
n
etic field
also
rotates at a s
p
ee
d
of
P
r
120f
(rpm)
r
ω
.
4.
1.
Su
b-S
y
nc
hron
ous
Spee
d
Mode
Fig
u
re
1
illu
strates th
e case
wh
ere t
h
e
ro
t
o
r m
a
g
n
e
tic field
ro
tates at a slo
w
er sp
eed than
the stator
m
a
gnet
i
c
fi
el
d.
The m
achi
n
e i
s
o
p
erat
e
d
i
n
t
h
e su
b-sy
nc
hr
on
ous
m
ode, i
.
e
.
s
ω
m
ω
1
.
If and
o
n
l
y if its sp
eed
is ex
actly
0
r
ω
s
ω
m
ω
and
2
.
Bo
th
th
e ph
ase seq
u
e
n
ces of th
e ro
to
r an
d
stato
r
mm
f’s a
r
e th
e sam
e
an
d
in
th
e p
o
sitiv
e d
i
rection
,
as
referred
t
o
as
p
o
s
itiv
e ph
ase
sequ
en
ce (
0
r
ω
).
This c
o
ndition takes
place
during slow wind
spee
ds.
In
o
r
d
e
r to
ex
tract
m
a
x
i
m
u
m
p
o
w
er fro
m
th
e win
d
t
u
rb
in
e, th
e fo
llo
wi
n
g
cond
itio
n
s
shou
ld
b
e
satisfied
:
3.
The r
o
t
o
r si
de
VSC
shal
l
p
r
ovi
de l
o
w fre
que
ncy
AC
cu
rre
nt
(ne
g
at
i
v
e
r
v
will
ap
p
l
y)
for
th
e
ro
t
o
r
win
d
in
g.
4
.
Th
e
ro
t
o
r
po
wer sh
all b
e
sup
p
lied b
y
t
h
e
DC bu
s cap
acito
r
v
i
a th
e
roto
r si
d
e
VSC, wh
ich
ten
d
s
t
o
decrease
the
DC bus voltage. The
gri
d
side
VSC in
creases/co
n
t
ro
ls th
is
DC vo
ltag
e
and
tend
s t
o
keep
it
co
nstan
t
. Po
wer is ab
sorb
ed
fro
m
th
e g
r
id
via th
e g
r
id
sid
e
VSC an
d
d
e
liv
ered
to
th
e roto
r v
i
a th
e ro
tor
si
de V
S
C
.
Du
ri
n
g
t
h
i
s
ope
ra
t
i
ng m
ode, t
h
e
gri
d
si
de
VS
C
ope
rat
e
s as
a rect
i
f
i
e
r a
n
d
rot
o
r si
de
V
S
C
ope
rates as
an inve
rter. He
nce
powe
r is
delive
r
ed
to
t
h
e gri
d
by
the stator.
5
.
Th
e
ro
t
o
r power is cap
acitiv
e.
Fig
u
r
e
1
.
Su
b-
syn
c
hr
ono
u
s
oper
a
tin
g m
o
d
e
of
DFIG
4.
2 S
uper
-
Syn
c
hron
ous
Spe
ed Mode
The su
pe
r-sy
n
chr
o
no
us s
p
ee
d m
ode i
s
achi
e
ved
by
havi
n
g
t
h
e r
o
t
o
r m
a
gnet
i
c
fi
el
d r
o
t
a
t
e
cou
n
t
e
r
clockwise. Figure 2 re
present
s
this
scenario. Howeve
r, in orde
r to repres
en
t th
e co
un
ter
clo
c
kwise ro
tat
i
o
n
of
th
e ro
tor,
wh
ich
is an
alyticall
y
eq
u
i
v
a
len
t
t
o
in
v
e
rting
th
e directio
n
o
f
th
e
ro
t
o
r m
a
g
n
e
tic
field
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
929
–
9
38
93
2
Fig
u
r
e
2
.
Su
p
e
r
-
s
ynchr
ono
us
o
p
e
r
a
ting
m
o
de of
D
F
IG
The m
achine is
operate
d
in th
e su
per
-
sy
nc
h
r
on
o
u
s m
ode,
i
.
e.,
s
ω
m
ω
1
.
If and
o
n
l
y if its sp
eed
is ex
actly
m
=
s
– (-
r
) =
s
+
r
>
0(
and
2
.
Th
e
ph
ase sequ
en
ce in th
e
ro
tor ro
tates in op
po
site
d
i
rectio
n
to th
at
o
f
th
e stator, i.e., n
e
g
a
tiv
e ph
ase
sequence (
r
< 0). T
h
i
s
co
ndi
t
i
on t
a
kes pl
ac
e du
ri
n
g
t
h
e con
d
i
t
i
on
of
hi
g
h
wi
n
d
s
p
eeds
.
The fol
l
owi
n
g
co
nd
itio
ns n
e
ed
to
b
e
satisfied
in
order to
ex
tract
m
a
x
i
m
u
m p
o
w
er fro
m
th
e wind
tu
rb
i
n
e and
to
reduce
mechanical stress:
3
.
Th
e
ro
t
o
r wi
n
d
in
g
d
e
liv
ers
AC po
wer to th
e po
wer
g
r
i
d
thro
ugh
th
e VSCs.
4
.
Th
e ro
tor
p
o
wer is tran
sm
itte
d
to
DC bu
s cap
acito
r, wh
ich
tend
s to
raise th
e DC
v
o
ltag
e
. Th
e
g
r
i
d
sid
e
VSC redu
ces/co
n
t
ro
ls th
is
DC-lin
k
v
o
ltag
e
an
d
ten
d
s to
k
eep
it con
s
ta
nt. Powe
r is e
x
tracted
from
the
rot
o
r si
de V
S
C
and del
i
v
e
r
e
d
t
o
t
h
e gri
d
. Du
ri
n
g
t
h
i
s
op
erat
i
ng m
ode, t
h
e rot
o
r si
de
VSC
o
p
erat
es
as a
rectifier an
d the g
r
i
d
si
d
e
VSC o
p
e
rates as
an
inv
e
rter
.
Hen
ce
p
o
wer is
deliv
ered to
t
h
e g
r
i
d
d
i
rectly by
the stator and via the VSCs
by the
rot
o
r.
5
.
Th
e
r
o
t
o
r power
is indu
ctiv
e
4.
2. Synchr
on
ous Speed
Mode
The sy
nch
r
on
o
u
s s
p
ee
d m
ode
i
s
rep
r
ese
n
t
e
d
by
fi
gu
re
3.
Fi
gu
re 3.
Sy
nc
hr
o
n
o
u
s o
p
erat
i
ng
m
ode o
f
D
F
IG
The m
achine is
operate
d
in th
e sy
nc
hr
on
o
u
s
spee
d m
ode, i
.
e.
m
=
s
1
.
If and
o
n
l
y if its sp
eed
is ex
actly
m
=
S
– 0
=
S
> 0, a
n
d
2.
The phase sequence in th
e roto
r is th
e sa
m
e
as th
at o
f
th
e
stato
r
, bu
t n
o
ro
tor
mm
f
is p
r
o
d
u
c
ed
(
r
= 0
)
.
The following
cond
itions are
necessa
ry in order t
o
ext
r
act
maxi
m
u
m
power from
the wi
nd t
u
rbine
unde
r
th
is cond
itio
n
:
3
.
Th
e ro
tor si
d
e
co
nv
erter sh
all p
r
ov
id
e
DC
ex
citatio
n
for the
rotor,
s
o
that
the gene
rat
o
r operates
as a
syn
c
hrono
us mach
in
e. Th
e
ro
t
o
r sid
e
VSC will n
o
t
p
r
ov
id
e an
y k
i
nd
o
f
AC curren
t/p
ower for th
e ro
t
o
r
win
d
in
g.
He
nc
e the
rot
o
r
p
o
w
e
r is ze
ro
(P
r
= 0)
.
Gene
rat
o
r ca
n
gene
rat
e
i
n
b
o
t
h
s
u
b a
n
d
su
p
e
r sy
nc
h
r
o
n
o
u
s
m
ode,
here
t
h
e s
p
ee
d i
s
t
a
k
e
n as
su
pe
r
synchronous speed, where the power can
be extracted from the stator as
we
ll as ro
to
r
circu
it. Th
e mach
in
es
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Performance
An
alysis of Doubl
y
Fed Indu
ction
G
e
nerator Us
ing Vector
Control Technique
(Aye Myat
Thin)
93
3
u
s
e two
b
a
ck
to
b
a
ck
con
v
e
rt
ers in
th
e ro
tor circu
it. Th
e
main
p
u
r
po
se o
f
th
e m
ach
in
e sid
e
co
nv
erter is to
co
n
t
ro
ls th
e activ
e an
d
reactiv
e power
b
y
co
n
t
ro
lling
th
e
d
-
q
co
m
p
on
en
t
s
o
f
ro
t
o
r cu
rren
t wh
ile th
e g
r
id
-side
con
v
e
r
t
e
r i
s
t
o
cont
r
o
l
t
h
e d
c
l
i
nk vol
t
a
ge
and e
n
s
u
res t
h
e ope
rat
i
on at
uni
t
y
po
we
r fa
ct
or by
m
a
ki
ng t
h
e
reactiv
e
p
o
wer drawn
b
y
th
e syste
m
fro
m
th
e u
tility g
r
id
t
o
zero.
5.
MODELLING OF DOUB
LY FE
D INDUCTION GE
NERATOR
The d
o
u
b
l
y
fe
d i
n
d
u
ct
i
o
n ge
nerat
o
r has
bee
n
use
d
fo
r va
ri
abl
e
spee
d dri
v
es. The st
at
or i
s
con
n
ect
ed
d
i
rectly to
th
e
g
r
i
d
and
th
e
roto
r is fed
b
y
a
b
i
d
i
rectio
n
a
l co
nv
erter th
at is also
con
n
ected
to
th
e
g
r
i
d
.
Using
vect
o
r
co
nt
rol
t
echni
q
u
es
, t
h
e
bi
di
rect
i
o
nal
con
v
e
r
t
e
r assu
res ene
r
gy
ge
n
e
rat
i
on at
n
o
m
i
nal
gri
d
f
r
e
q
u
e
ncy
.
The converter’s m
a
in aim
is to co
m
p
ensa
te for the
difference
betwee
n
th
e sp
eed
of th
e ro
to
r and
the
syn
c
hrono
us sp
eed with th
e slip
con
t
ro
l
Th
e m
a
in
ch
aracteristics
m
a
y
b
e
su
mm
arize
d
as fo
llo
ws:
i
.
l
i
m
i
t
e
d opera
t
i
ng s
p
ee
d ra
n
g
e
(-
3
0
% t
o
+
2
0
%)
ii. Sm
a
ll scale powe
r electronic conve
r
ter
(re
duce
d
powe
r l
o
sses a
n
d
price
)
iii. Co
m
p
lete c
o
n
t
ro
l
o
f
activ
e po
wer and
reactiv
e po
wer exch
ang
e
d
with
t
h
e
g
r
i
d
a.
Need
fo
r slip
-ring
s
b. Nee
d
fo
r ge
arb
o
x
(
n
orm
a
l
l
y
a
t
h
ree
-
st
age
one
For a
DFIG a
s
sociated
with
a bac
k
-t
o-back conve
rter
on
t
h
e ro
tor si
d
e
an
d with th
e stato
r
d
i
rectly
co
nn
ected
t
o
th
e grid
, an
SFOC (stator flux o
r
ien
t
ed
con
t
ro
l) system
is u
s
ed
in
o
r
d
e
r t
o
co
n
t
ro
l sep
a
rat
e
ly th
e
active and
reac
tive powe
r
on t
h
e stator si
de.
Fi
gu
re
4.
D
o
ub
l
y
fed i
n
d
u
ct
i
o
n m
achi
n
e b
a
s
e
d
wi
n
d
t
u
r
b
i
n
e
6.
DY
N
A
MI
C SI
MUL
A
TIO
N
OF DFIG
IN
TERMS
OF
DQ WIN
D
I
N
GS
The dy
nam
i
c
perform
a
nce of ac m
achine
is som
e
what com
p
lex beca
use the three
pha
se rotor
wind
ing
s
m
o
v
e
with
resp
ect
to
th
r
ee phase
stator windings. Hence a thre
e phase m
achine can be re
presented
with an equivalent two pha
s
e
m
ach
ine replacing the
va
riables associa
t
ed
with
th
e stato
r
wind
ing
s
o
f
a
m
achi
n
e wi
t
h
vari
a
b
l
e
s asso
c
i
at
ed wi
t
h
fi
ct
i
ous
wi
ndi
ngs
r
o
t
a
t
i
ng
wi
t
h
t
h
e rot
o
r at
sy
nc
hr
o
n
o
u
s s
p
ee
d.
The
anal
y
s
i
s
can b
e
sim
p
l
i
f
i
e
d gr
eat
l
y
by
t
r
ansf
orm
i
ng t
h
e t
h
r
ee phase st
at
o
r
and
rot
o
r wi
n
d
i
n
gs (
w
i
t
h
an
gul
a
r
displacem
ent) to a fictious t
w
o phase stat
or a
n
d ro
tor. These fictious
two phase windi
ngs
are
c
a
lled d-q
wi
n
d
i
n
gs.T
he
st
at
ors a
n
d
r
o
t
o
r a
-
,
b
-
a
nd c
-
p
h
ase
v
o
l
t
a
ge
eq
uat
i
ons
can
be t
r
a
n
s
f
o
r
m
e
d t
o
t
h
e
d-
q a
x
i
s
. It
i
s
neede
d
t
o
c
o
ns
ider t
h
e following t
h
re
e facts
if th
e m
o
d
e
l
o
f
do
ub
ly fed
i
n
du
ctio
n g
e
n
e
rato
r creat.Th
e
y are
1. Transfor
m
a
ti
on of 3 stationa
ry to 2 stationary
axes
2. Transfor
m
a
ti
on of 2 stationa
ry to 2 sy
nchro
nously
axes
3. Mathe
m
atic
a
l
m
odel of doub
ly
fed induction
generator
qs
φ
s
ω
d
t
ds
d
φ
ds
i
s
R
ds
V
(4
)
ds
s
ω
dt
qs
d
φ
qs
i
s
R
qs
V
(5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
929
–
9
38
93
4
qr
φ
r
ω
s
ω
d
t
dr
d
φ
dr
i
r
R
dr
V
(6
)
dr
φ
r
ω
s
ω
d
t
qr
d
φ
qr
i
r
R
qr
V
(7
)
The
stator flux can be
e
x
press
e
d
as:
dr
i
m
L
ds
i
s
L
ds
φ
(8
)
qr
i
m
L
qs
i
s
L
qs
φ
(9
)
The rot
o
r
flux can be
e
x
press
e
d
as
ds
i
m
L
dr
i
r
L
dr
φ
(1
0)
qs
i
m
L
qr
i
r
L
qr
φ
(1
1)
The active
and
reactive
powe
r at the stator
qs
i
qs
v
ds
i
ds
v
s
P
(1
2)
qs
i
ds
V
ds
i
qs
V
s
Q
(1
3)
The active
and
reactive
powe
r at the
rot
o
r
qr
i
qr
v
dr
i
dr
v
r
P
(1
4)
qr
i
dr
V
dr
i
qr
V
r
Q
(1
5)
In t
h
e area
of
wi
n
d
ene
r
gy
p
r
od
uct
i
o
n, m
a
chi
n
es
of m
e
di
um
and hi
g
h
p
o
w
er w
h
i
c
h are m
a
i
n
l
y
used.
Thus,
the
stator resistance was neglect
ed
.
B
y
usi
n
g t
h
e
st
at
or fl
ux
o
r
i
e
nt
ed
pri
n
ci
pl
e, t
h
e st
at
o
r
f
l
ux i
s
ori
e
nt
ed
o
n
t
h
e
d
-
axi
s
,
t
h
e
n
t
h
e fl
u
x
q-a
x
i
s
c
o
m
pone
nt
0
qs
φ
(1
6)
s
φ
ds
φ
(1
7)
Hence, the stat
or voltage can be written as
0
ds
V
(1
8)
ds
ωφ
s
V
qs
V
(1
9)
qr
i
s
L
m
L
qs
i
(2
0)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Performance
An
alysis of Doubl
y
Fed Indu
ction
G
e
nerator Us
ing Vector
Control Technique
(Aye Myat
Thin)
93
5
qs
i
qs
v
ds
i
ds
v
2
3
s
P
(2
1)
qs
i
ds
v
ds
i
qs
v
2
3
s
Q
(2
2)
qr
i
s
L
m
L
s
v
2
3
s
P
(2
3)
rq
i
s
L
m
L
s
sV
r
P
(2
4)
rd
i
s
L
m
L
s
sV
r
Q
(2
5)
7.
TECHNI
C
AL
D
A
TE
FO
R GENER
A
TO
R AN
D CO
N
V
ERTER
Do
u
b
l
y
fed i
n
duct
i
o
n ge
ne
ra
t
o
r nee
d
s t
h
e f
o
l
l
o
wi
ng
para
m
e
t
e
r. They
are gene
rat
o
r
dat
a
, con
v
e
r
t
e
r
dat
a
an
d ot
h
e
r param
e
t
e
rs.
Tabl
e 1. Param
e
t
e
rs
o
f
ge
nera
t
o
r
N
o
m
i
nal Pow
e
r
1.5 M
W
L
i
ne to line voltage
575V
Fr
equency
(
f)
50 H
z
Stator Resistance(
R
s
) 0.023p
u
Rotor Resistance(R
r
)
0.016p
u
M
a
gnetizing I
nductance (
L
m
)
2.9pu
Tabl
e 2. Param
e
t
e
r
o
f
gri
d
M
a
x. Pow
e
r
0.5pu
G
r
id-
s
ide coupling
inductor
(
L
,R)
0.3pu, 0.003
pu
N
o
m
i
nal D
C
bus v
o
ltage
1150V
D
C
bus capacitor
1000
0e-
6
Do
u
b
l
y
-fe
d i
n
duct
i
o
n ge
ne
ra
t
o
r al
so has c
o
nt
r
o
l
reg
u
l
a
t
o
r
gai
n
s
,
DC
bu
s vol
t
a
ge
reg
u
l
a
t
o
r gai
n
s an
d
rot
o
r
side c
u
r
r
e
n
t re
g
u
lator
gai
n
s.
8.
DETAILED
MODEL FOR DOUBLY
FED
IN
DUC
TION
GEN
E
RA
TOR
A
1
.
5
M
W
w
i
nd
f
a
r
m
co
nn
ected
to
a 25
-kV
d
i
str
i
bu
tio
n syste
m
ex
po
rts p
o
w
e
r
to
a
2
30-
kV
g
r
i
d
th
ro
ugh
a 30
km 2
5
k
V
f
e
eder
. 400
-kW
r
e
sistiv
e lo
ad
is co
nn
ected
on th
e in
du
ction g
e
n
e
r
a
tor
(DFI
G)
con
s
i
s
t
i
ng
of
a wo
u
nd
rot
o
r
i
n
d
u
ct
i
on
ge
n
e
rat
o
r a
n
d an
AC
/
D
C
/
AC
I
G
B
T
-
b
ase
d
P
W
M
co
nv
ert
e
r
.
W
i
n
d
tu
rb
in
es
u
s
e a
d
oub
ly-fed
indu
ctio
n g
e
n
e
rato
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
929
–
9
38
93
6
Fi
gu
re 5.
W
i
nd
Farm
DFI
G
D
e
t
a
i
l
e
d
M
odel
The st
at
o
r
wi
ndi
ng i
s
c
o
nn
ect
ed di
rect
l
y
t
o
t
h
e
50
H
z
gri
d
w
h
i
l
e
t
h
e r
o
t
o
r i
s
fe
d at
va
ri
abl
e
fre
que
ncy
t
h
r
o
ug
h t
h
e AC
/
D
C
/
AC
con
v
ert
e
r. The D
F
I
G
tech
no
log
y
allo
ws ex
trac
t
i
n
g
m
a
xim
u
m
energy
fr
om
th
e wind
for low wi
n
d
sp
eed
s
b
y
o
p
tim
izin
g
th
e tu
rb
in
e speed
,
wh
ile m
i
n
i
m
i
z
i
n
g
m
ech
an
ical stresses on
th
e
tu
rb
in
e
du
ri
n
g
gu
sts
o
f
wi
n
d
. In
t
h
is m
o
d
e
l, th
e
wind
speed
is m
a
in
tain
ed con
s
tan
t
at 1
5
m
/s.Th
e
co
n
t
ro
l
sy
st
em
uses a t
o
r
q
ue co
nt
r
o
l
l
e
r i
n
or
der t
o
m
a
i
n
t
a
i
n
t
h
e s
p
e
e
d at
1.
2
p
u
.
T
h
e react
i
v
e
p
o
w
er
pr
o
duce
d
by
t
h
e
wind
turb
in
e is re
gulated at 0Mvar.
Fi
gu
re
6.
Si
m
u
l
a
t
i
on res
u
l
t
s
o
f
rat
e
d
po
we
r,
react
i
v
e
po
we
r
,
v
o
l
t
a
ge a
n
d c
u
r
r
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Performance
An
alysis of Doubl
y
Fed Indu
ction
G
e
nerator Us
ing Vector
Control Technique
(Aye Myat
Thin)
93
7
Fig
u
re
7
.
Sim
u
latio
n
resu
lts
of DC
bu
s
vo
ltag
e
, t
u
rb
in
e sp
eed
,
vo
ltag
e
and curren
t
9.
SIMULATION RESULTS OF 1
.
5
M
W
WI
N
D
FA
RM
CONN
EC
TED TO
GRID
In
itially th
e DFIG wi
n
d
firm p
r
odu
ces activ
e po
wer of
1
.
5
M
W
wh
ich co
rresp
ond
s t
o
m
a
x
i
m
u
m
mechanical turbine
out
put m
i
nus elect
rical lo
sses
g
e
n
e
rator.Wh
en
th
e
g
r
i
d
vo
ltag
e
ch
ang
e
s su
dd
en
ly fro
m
its
rated
v
a
l
u
e 5
7
5
th
e stato
r
curren
t in
creases an
d
th
e activ
e
p
o
wer P su
dd
en
ly o
s
cillates a
n
d
th
en
it settl
es to
its
rated val
u
e.T
h
e refere
nce re
active power i
s
set at
0M
var b
u
t
whe
n
v
o
l
t
a
ge d
ecrease
s
the reactive
powe
r
su
dd
en
ly in
creases th
en
it settles to
0
M
v
a
r as p
e
r t
h
e con
t
ro
l strateg
y
m
a
d
e
in
th
e
ro
t
o
r
sid
e
con
v
erter.Th
e dc
lin
k
vo
ltag
e
w is swet at 1
1
5
0
V
b
y
th
e g
r
i
d
sid
e
conv
ert
e
r bu
t at th
e ti
me o
f
v
o
ltag
e
sag
it o
s
cillat
e
s an
d
fin
a
lly settles
t
o
its set v
a
lu
e
an
d
th
e ro
tor sp
eed
is also
main
tain
ed
con
s
t
a
n
t
to
its rated
wh
ile th
e wind sp
eed
i
s
kept
c
onst
a
nt
at
1
5
m
/
s.The t
u
rbi
n
e s
p
e
e
d i
s
1
.
2
p
u
o
f
gene
rat
o
r sy
n
c
hr
o
n
o
u
s s
p
ee
d.T
h
e
DC
v
o
l
t
a
ge i
s
regulated at 1150V and reacti
v
e powe
r is ke
pt at 0 Mvar.At t=0.03s,th
e positive
sequence
voltage suddenly
d
r
op
s to
0
.
5p
u cau
sing
an
oscillatio
n
on
th
e
DC bu
s voltag
e
and
o
n
t
h
e DFIG ou
tpu
t
power.Du
r
i
n
g
th
e
v
o
ltag
e
sag
con
t
ro
l system
tri
e
s to
regu
late
DC vo
ltag
e
and
reactiv
e
p
o
wer at th
ei
r set
po
in
ts.
10
.
CO
NCL
USI
O
N
The pe
rf
orm
a
nce anal
y
s
i
s
of a do
ubl
y
-
fed i
n
d
u
ct
i
o
n ge
ner
a
t
o
r d
r
i
v
e
n
by
a wi
nd t
u
r
b
i
n
e has bee
n
descri
bed
.
I
n
t
h
i
s
pa
per
,
dy
n
a
m
i
c equat
i
o
n
of
d
o
u
b
l
y
fe
d
i
n
d
u
ct
i
o
n ge
n
e
rat
o
r
has
bee
n
s
h
o
w
n. Es
pe
ci
al
l
y
,
Gene
rat
e
d
po
wer
,
DC
v
o
l
t
a
ge, wi
nd s
p
e
e
d, pi
t
c
h a
ngl
e and g
r
i
d
si
de v
o
l
t
a
ges ar
e i
d
ent
i
f
i
e
d b
y
usi
n
g
M
A
TLAB
si
m
u
l
a
t
i
on m
odel
.
D
u
e t
o
t
h
e a
d
vance
s
i
n
p
o
w
e
r el
ect
ro
ni
cs,
i
t
adva
nt
age
d
t
o
use t
h
e
d
o
u
b
l
y
fed
in
du
ctio
n
g
e
n
e
rato
r system
with
v
a
riab
le sp
eed
co
nn
ect
ed to the electrical gr
id
th
ro
ugh
an
AC-DC-AC
co
nv
er
ter
f
o
r
i
m
p
r
o
v
i
ng
t
h
e
ef
f
i
cien
cy
o
f
th
e
p
o
w
e
r conver
s
ion
.
Th
e
D
F
I
G
is
ab
le t
o
pr
ov
id
e
a con
s
i
d
er
ab
le
cont
ri
b
u
t
i
o
n
t
o
gri
d
vol
t
a
ge
s
u
p
p
o
rt
du
ri
n
g
sho
r
t
ci
rc
u
it period
s. C
o
nsidering
th
e
resu
lts it can
b
e
said
th
at
DFI
G
pr
o
v
ed
t
o
be m
o
re rel
i
a
bl
e an
d st
a
b
l
e
sy
st
em
wh
en connected
to grid
si
de
with th
e
p
r
o
p
e
r co
nv
ert
e
r
cont
rol system
s.Due to the a
b
ove
this c
ont
rol system
,t
he result will give
the
optim
al condition
for t
h
e
overal
l
gene
ration.
It is certain t
h
at the a
dve
rtence
technology
and
k
now
ledg
e of
gr
id
con
n
e
cted
D
F
IG
w
i
nd
t
u
rb
i
n
e
gene
rat
i
n
g sy
st
em
can be
g
o
t
fr
om
t
h
i
s
pape
r
.
ACKNOWLE
DGE
M
ENTS
First of all, the au
tho
r
is
g
r
atefu
l
to
ex
press
h
e
r d
e
ep
est g
r
atitud
e
to
His
Ex
cellen
c
y Dr Yan
Au
ng
Oo
., P
r
ofess
o
r an
d
Hea
d
of
De
part
m
e
nt
of El
ect
ri
ca
l power Engi
neeri
n
g, Mandalay Technological
U
n
i
v
er
sity, fo
r h
i
s en
cou
r
ag
emen
t, con
s
tru
c
tiv
e g
u
i
d
a
n
ce
an
d
k
i
nd
ly adv
i
ce th
rou
ghou
t th
e
p
r
ep
ar
at
io
n
o
f
th
is p
a
p
e
r.
The aut
h
or es
pecially indebt
ed
an
d g
r
at
ef
u
l
t
o
super
v
i
s
or
Dr.
Nang Sa
w Yuzana
Kyaing, lecturer,
Depa
rt
m
e
nt
of
El
ect
ri
cal
E
ngineering, Mandalay Technological
Uni
v
er
sity, fo
r h
e
r en
co
urag
em
en
t, valu
ab
le
sup
e
r
v
i
s
i
o
n, s
u
gge
st
i
ons
, ki
nd
l
y
perm
i
ssi
on and
g
u
i
d
el
i
n
e
du
ri
n
g
t
h
e e
n
t
i
r
e co
ur
se f
o
r t
h
e p
r
e
p
arat
i
o
n
of t
h
i
s
pape
r.
And
t
h
e au
t
h
or wou
l
d
lik
e t
o
co
nv
ey h
e
r
g
r
atitud
e
to
all
p
e
rson
s
who
were
d
i
rectly
o
r
i
n
d
i
rectly
involve
d
towa
rds t
h
e s
u
ccess
f
ul com
p
letion
of this
pape
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
929
–
9
38
93
8
REFERE
NC
ES
[1]
“DFI
G Based Wind Power Conversion S
y
stem Connected To
Grid”
Internatio
nal Journal of T
echnical Resear
ch
and Applications
Vol. 1, Issue 3 (
J
uly
-
August 201
3)
[2]
Modelling
and
Control of
a DFIG-Based Wind Turbin
e During a
Grid Voltage
Drop”
E
T
A
S
R
-
Engineering, Technology
&
App
lied
Science Res
e
arch
, Vol.
1, No.5, 2011, 121-1
25
[3]
“Modelling and
Simulation of Doubly
Fe
d Induction Gener
a
to
r Coupled With Wind Turbine-An
Overview”
Journal of Engin
eering, Co
mputers &
Applied
Sciences
(JEC
&AS), Vol 2, No.8, August 2013
[4]
Department of Meteorolog
y
an
d Hy
dro
l
og
y
,
“Assessment of
Solar Energ
y
Potentials for M
y
anmar”, September
2009.
[5]
“Performance Analy
s
is of Doubly
Fe
d
Induction Generator
in
Wind Ener
g
y
Conversion S
y
s
t
em”, ODISHA,
INDIA, June 20
11
[6]
“Performance of Control D
y
n
a
mic of Wind Tur
b
ine Ba
sed on
Doubly
Fed Ind
u
ction
Gen
e
rato
r under Differ
e
n
t
Modes of Operation, A.A
.
Mohammed, Electrical and elec
tronic
engineering dep
a
rtment, un
ivers
i
ty
of Benghazi,
Elm
a
rj,
L
i
b
y
a
[7]
Analy
s
is
, Modelling and Con
t
ro
l of
Doubly
Fed
Induction Gen
e
rator”, Divisi
on
of Electric Power Engin
eer
ing,
Department o
f
Energ
y
and
Env
i
r
onment, Chalmers
university
of Techno
log
y
,G
otehor
y
Swed
en 2
005.
[8]
Vector Con
t
rol o
f
a Doubly
Fed
I
nduction
Gener
a
tor based
Wind
Turbine
[9]
Grid Connected
Doubly
Fed I
nduction
Gener
a
tor B
a
sed Wind Turbin
e und
er Low Voltag
e Rid
e
Throug
h
,
Departm
e
nt of
Elec
tri
c
, E
l
e
c
troni
c and I
n
fo
rm
ation En
gineer
ing,GUGLELMO MARCONIS
,
March
2014,Bologna,Italy
[10]
“A Vector Contr
o
lled of Doubly
Fed Induction G
e
nerator fo
r a Variab
le Speed Wind Turbin
e Application
”
, b
y
D.J
Atkinson A.
akin and R
.
Jones
,
1997
[11]
“Modelling, Con
t
rol and
Analy
s
is of
a Doubly
Fed Induction
Gen
e
rator B
a
sed
Wind Turbine S
y
stems with Voltag
e
Regulation”
BIOGRAP
HI
ES OF
AUTH
ORS
Ms. Ay
e M
y
at
Thin. She was bor
n on 19
t
h
August 1984. She got the BE degr
ee an
d ME degree
in Electrical Power Engin
eer
ing
from Technolog
ic
al University
(
M
andalay
)
, M
y
anmar. And she
is
als
o
working
as
an
as
s
i
s
t
ant
lec
t
urer
at
Te
ch
nologic
a
l Univ
e
r
s
i
t
y
(M
anda
la
y). Now, s
h
e
is
attending Ph.D d
e
gree in
Electr
ical Power
in Ma
n
d
alay
Technolog
ical
University
, M
y
anmar.
She
achieved
ICSE paper that
held
in
In
y
a
r Lak
e
h
o
tel
and In
ternational pap
e
r fro
m ICTAEECE
Conference that
held in Bangkok
during this
y
ear
.
Her main inter
e
st is in Renewable Energ
y
and
Power Ele
c
tron
i
c
s. Her
em
ai
l is
a
y
em
yatth
in.m
tu
ep@gm
a
il.
com
.
Nang Saw Yuzana K
y
aing,
Departme
nt of Electrical Power Engi
neering
,
Mandalay
Techno
log
y
Univers
i
t
y
,
M
a
n
d
ala
y
,
M
y
anm
a
r
.
Em
ail
:
n
a
ns
aw
yuzana@gm
ai
l.co
m
Evaluation Warning : The document was created with Spire.PDF for Python.