Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
5
,
No
. 3,
J
une
2
0
1
5
,
pp
. 40
3~
40
8
I
S
SN
: 208
8-8
7
0
8
4
03
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Modeling and Simulation of Trip
le Coupled Cantilever Sensor
for Mass Sensing Applications
Nal
l
u
ri
Si
d
d
ai
ah
#$
,
D.
V.
R
a
ma k
o
ti Re
dd
y
$
, Y
Bhav
ani Sa
nka
r
#
, R.
Anil Kuma
r
#
,
Hossein
P
a
kd
ast*
#
Department of Electronics
& C
o
mmunication Engineer
ing,
K L
University
, Vaddeswaram
Guntur (dt), And
h
ra Pradesh
,
India
$
Department of
I
n
strumenta
tion
Engineering, Co
lleg
e
of
Engin
e
ering,
Andhr
a Un
iversity
, Andhra
Pradesh, Ind
i
a
*Laboratorio
TA
SC, IOM, CNR,
Trieste, Italy
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 6, 2014
Rev
i
sed
Feb
23
, 20
15
Accepted
Mar 10, 2015
Cantil
ever s
e
ns
o
r
s
have been the
growing attent
i
on in las
t
decad
es
and their
use as a mass detector. Th
is work pres
ents desig
n
, modeling and
analy
s
is of
Triple coupled
cantilev
e
r (TCC
) sens
or
using MEMS simulation
software
Com
s
ol Multiphysics with
cr
itical dimensions of
100
μ
m length, 2
0
μ
m wi
dt
h
and 2
μ
m
thickn
ess. Sim
u
lations
were p
e
rformed based on f
i
nite element
modeling techniques, where d
i
ff
erent r
e
sonant fr
equencies were
observed for
differen
t
modes
of operation. It
is al
so observed
that
the r
e
sonant frequen
c
y
of the s
e
ns
or decreas
es
as
s
o
m
e
m
a
s
s
is
applied on one particu
l
ar cantilever
.
The various
par
a
m
e
ters
great
l
y
affec
ting the p
e
rform
ance of T
CC s
u
ch as
resonant frequen
c
y
,
dimensi
ons, material and pressure or force applied on it.
We also observed that while
adding some
ma
ss o
n
a
n
y
one
l
a
te
ral c
a
n
ti
l
e
ve
r,
the r
e
s
onant
freq
u
enc
y
of
th
at
res
p
ect
ive m
ode
re
duced.
Keyword:
Finite elem
ent
analysis
Mass detection
Micro
-
can
tilever
Sens
or
Trip
le co
up
led
can
tilev
e
r
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Nalluri Siddaiah,
Depa
rt
m
e
nt
of
El
ect
roni
cs
&
C
o
m
m
uni
cat
i
o
n E
n
gi
neeri
n
g,
K L Un
iv
ersity, Vadd
eswaram
,
An
d
h
ra
Pra
d
es
h,
I
ndi
a
Em
a
il: n
a
llu
ri.sid
du
@k
lun
i
v
e
rsity.in
1.
INTRODUCTION
Th
e wi
d
e
sp
read
av
ailab
ility o
f
in
exp
e
nsiv
e
m
i
cro
f
abricated
can
tilev
e
r stru
ctures
h
a
s resu
lted
i
n
rene
we
d intere
st based on surface stress ca
nt
ilever se
nsors.Many microca
n
tilever
se
nsors
which build on
t
h
e
measurem
ent of displacem
ent
and
sm
al
lest detectable
m
o
ti
on ha
ve
bee
n
utilized
for
high precision che
m
ical
an
d sm
all fo
rce d
e
tection
.
The field
o
f
m
i
cr
o
can
tilev
e
r se
nso
r
s h
a
s
b
een very activ
e in recen
t years. Th
e m
o
st
appl
i
cat
i
o
ns ar
e fo
u
nd i
n
t
h
e
st
udy
o
f
phy
s
i
sor
p
t
i
o
n
s
,
ch
emiso
r
p
tion
s
and
b
i
m
o
lecu
lar
in
teractio
n
an
alysis.
Research
p
r
ogress in
can
tilev
e
r se
n
s
o
r
s un
d
e
r
d
i
fferen
t
en
v
i
ron
m
en
ts h
a
s
p
r
o
v
i
d
e
d n
e
w
d
i
m
e
n
s
io
n
s
of
com
p
lex bioc
hem
i
cal reactions
as
hybri
d
ization
of DNA or
pat
h
ogen
detection in
antibody-antigen
fu
nct
i
o
nal
i
zat
ion
an
d
p
r
ot
e
o
m
i
cs.
Mech
an
ically Trip
le co
up
led can
tilev
e
rs sen
s
ors
o
ffers sev
e
ral adv
a
n
t
ages ov
er sing
le can
tilev
e
r
sensors i
n
cludi
n
g less vac
uum
requirem
e
nt
s for
operati
on, m
a
ss localiza
tion, i
n
se
nsitivity to surface
stress
an
d d
i
stri
b
u
tion
to
a sp
ecific ad
so
rb
tion
.
Sp
letzer et.al
p
r
o
p
o
s
ed
co
up
led
can
tilev
e
rs
fo
r m
o
d
e
l
o
calization
d
e
ri
v
e
d
m
a
ss d
e
tectio
n
[1
].
B. Ilic et.al p
r
o
p
o
s
ed
,
reso
n
a
n
t
micro
s
tru
c
tu
re an
d
reso
n
a
n
t
micro
can
tilev
e
rs as
v
e
ry sen
s
itiv
e to
o
l
s
for m
a
ss d
e
tectio
n
do
wn
to
si
n
g
l
e m
o
lecu
le lev
e
l [2
].
W
ith
th
e i
n
v
e
n
tio
n
of At
o
m
i
c
force
microscope
(AFM) in 1986 the
use
of m
i
cr
ocantileve
r
re
sonat
o
rs becam
e ve
ry popul
a
r
in m
a
ss detection.
A
larg
e v
a
riety o
f
sen
s
o
r
techno
log
i
es b
a
sed
o
n
can
tilev
e
r stru
ctures were ap
p
lied
as m
a
ss d
e
tecto
r
s such
as
biological,
physical, chem
ical, m
e
di
cal
di
agn
o
st
i
c
s an
d e
n
vi
ro
nm
ent
a
l
m
oni
t
o
ri
n
g
[
3
,
4
,
5,
6]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
40
3 – 4
0
8
40
4
On th
e o
t
h
e
r si
d
e
o
f
co
in
, from
d
i
m
e
n
s
io
n
po
in
t
o
f
v
i
ew t
h
e ch
alleng
e lie in
can
tilev
e
r
op
ti
m
i
zatio
n
to
ward
s its sen
s
itiv
ity li
m
i
t
of
d
e
tectin
g in
d
i
v
i
du
al m
o
lecu
les
u
s
ing
nan
o
m
ech
an
ical
d
e
tection
rang
es i
n
h
ybrid
izatio
n, p
r
o
t
eo
m
i
cs,
mass sen
s
ing
ap
p
lication
s
. Each
can
tilev
e
r is
m
o
d
e
led
as a d
a
m
p
ed
si
m
p
le
h
a
rm
o
n
i
c o
s
cillato
r,
wh
ile the effect
o
f
the o
v
e
rh
ang
cou
p
ling
is m
o
deled
as a sp
ri
n
g
con
n
ecti
n
g th
ree
o
s
cillato
rs. The effectiv
e m
a
ss o
f
an
alyte i
n
b
i
m
o
lecu
lar mass d
e
tectio
n b
e
in
g
d
e
tected
b
y
u
s
i
n
g
reso
n
a
n
t
fre
que
ncy
shi
f
t
,
bet
w
ee
n be
fo
re an
d aft
e
r
anal
y
t
e i
n
t
e
raction and stiffness c
o
ef
ficient. Ideally coupled
can
tilev
e
rs are id
en
tical, howev
er m
a
n
u
factu
r
ing
t
o
leran
ces and
m
a
terial v
a
riation
s
cau
s
e t
h
e
p
r
op
erties of
o
n
e
can
tilev
e
r
to
d
i
ffer sligh
tly fro
m
an
o
t
h
e
r.
1
.
1
Triple co
upled cantilev
e
r
To
d
e
sign
TC
C, first ind
i
v
i
du
al can
tilev
e
rs
was
d
e
sign
ed
with
critical d
i
men
s
io
n
s
of
10
0
μ
m
l
e
ngt
h,
20
μ
m
wi
dt
h
an
d
2
μ
m
th
ickn
ess.
After th
at all th
ese three i
n
d
i
v
i
du
al
can
tilev
e
rs were
cou
p
l
ed
with
ov
erh
a
ng
di
m
e
nsi
ons o
f
10
0
μ
m
l
ong,
20
μ
m
wi
dt
h and
2
μ
m
.
One si
de of
ove
r
h
a
ng
bo
u
nda
ri
es are set
t
o
be fi
xed a
n
d
rem
a
in
in
g
all
b
oun
d
a
ries are set to
b
e
free. Here we
u
s
ed
d
i
fferen
t m
a
terials fo
r all su
bdo
m
a
in
s o
f
TC
C
sens
or an
d we got
di
f
f
ere
n
t
m
ode
s by
si
m
u
l
a
t
i
on.
Fig
u
re
1
.
Sch
e
matic d
i
ag
ram
o
f
Tri
p
le coup
led
can
tilev
e
r
(TCC)
1.2 Finite
Element
Analysis
Mesh
i
n
g
:
Fin
ite ele
m
e
n
t an
alysis is a n
u
m
erical so
lu
tio
n
of th
e field
p
r
ob
lem
s
wh
ere m
a
th
e
m
at
ically a
fi
el
d p
r
obl
em
i
s
descri
bed
b
y
di
ffe
rent
i
a
l
equat
i
o
n
or
b
y
i
n
t
e
gral
e
x
p
r
essi
o
n
.
These
fi
ni
t
e
el
em
en
t
s
ar
e
characte
r
ized for a speci
fic pieces of
sm
all size structure, whic
h ha
ve
a sim
p
le variati
on, explaine
d by
p
o
l
yno
m
i
al (rectan
gu
lar,
q
u
ad
rilateral, trian
g
u
l
ar, te
trahedral & Manhattan) a
r
e spanne
d by ele
m
ent to
el
em
ent
con
n
e
c
t
e
d by
no
des.
Thi
s
assem
b
l
y
gi
ves t
h
e
FEA
of t
h
e enti
re structur
e where it is re
ferred a
s
Mesh.
[Robe
r
t.
et.al]
. A TCC
is ap
p
lied
with
mesh
in
g
(tetrah
e
dral).
Fi
gu
re 2.
M
e
sh
i
ng schem
a
t
i
c
of
TC
C
2.
MODELING AND SIMUL
A
TION RESULTS
Th
e TCC is m
o
d
e
led
for differen
t
m
a
teri
als lik
e Semic
o
ndu
ctors, in
su
lato
rs and
poly
m
ers and
cor
r
es
po
n
d
i
n
g
res
ona
nt
f
r
e
que
nci
e
s a
r
e
t
a
bul
at
ed i
n
t
a
bl
e1.
T
he
di
m
e
nsi
o
ns
of
T
C
C
are u
n
al
t
e
red
&
sim
u
l
a
t
i
on i
s
v
e
ri
fi
ed
f
o
r
t
h
e
beha
vi
o
r
of
re
son
a
nt
fre
q
u
en
cy
whi
c
h c
o
r
r
e
sp
on
ds t
o
m
a
t
e
ri
al
pr
o
p
ert
i
e
s l
i
k
e
y
o
u
n
g
’
s m
odu
l
u
s an
d de
nsi
t
y
. Veri
fi
cat
i
o
n
of t
h
ese F
E
A of the structure yields to close ada
p
tation of
m
a
t
e
ri
al
s whi
c
h are
bi
oc
om
pat
i
b
l
e
and B
i
o
-
de
gra
d
a
b
l
e
, si
gnat
u
re
p
r
o
p
er
t
i
e
s for
bi
ol
ogi
cal
appl
i
cat
i
o
n
.
Th
e
rel
a
t
i
on bet
w
e
e
n t
h
e res
ona
nt
fre
que
nci
e
s
t
o
You
n
g
’s
M
o
d
u
l
u
s & D
e
nsi
t
y
are pl
o
t
t
e
d whe
r
e a m
e
rel
y
optim
ized
m
a
terial for the
specified
Yo
u
n
g
’
s M
o
dul
us a
n
d
de
nsi
t
y
are
us
ed
fo
r
fa
bri
cat
i
o
n
.
As B
i
oM
E
M
S i
s
a wid
e
co
llateral field
wh
ere
th
e m
a
terial scien
ce show a
p
r
o
m
in
en
t i
m
p
o
r
tan
ce fo
r i
n
div
i
d
u
a
l app
licatio
n
.
TCC with
Semico
nd
u
c
t
o
rs (Si, Po
ly
-Si),
I
n
s
u
lators
(SiC, Si
3N
4)
a
n
d
p
o
ly
m
e
rs (PT
F
E,
P
M
M
A
)
whic
h
give
n
a clo
s
e i
n
terp
retatio
n
fo
r th
e
material selecti
o
n in
Bi
o
Sen
s
i
n
g app
licatio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Modeling
and Simulation of Trip
le Coupled Cantilever Se
nsor
for
M
a
ss
Sensing A
pplic
ations
(
N
. Si
dd
ai
a
h
)
40
5
M
ode
1
Fro
m
ab
ov
e sim
u
la
tio
n
resu
lts in
m
o
d
e
1
fo
r all typ
e
s o
f
m
a
terials th
ree can
tilev
e
rs i
n
TCC are
v
i
brated
i
n
same p
h
a
se
with d
i
fferen
t reson
a
n
t
frequ
en
ci
es. It is
o
b
served
th
at
Silico
n
carb
i
d
e
(SiC)
materiel
p
o
s
ses h
i
gh
reson
a
n
t
fr
equen
c
y (
366
.4
74 K
h
z). I
t
is also
ob
serv
ed
th
at Plo
y
tr
tr
af
l
u
or
eth
y
len
e
(PTFE)
pol
y
m
er
m
a
t
e
rial
have
l
o
west
reso
na
nt
f
r
eq
u
e
ncy
(
1
0.
14
6
Khz
)
.
M
ode
2
In
m
o
d
e
2
Th
e TCC two
lateral can
tilev
e
rs are v
i
brated
in
o
ppo
site p
h
a
se b
u
t
cen
tral can
tilev
e
r is in
st
at
i
onary
.
In
t
h
i
s
m
ode al
so
Si
C
m
a
t
e
ri
el
havi
n
g
hi
g
h
est
r
e
so
nant
fre
que
ncy
an
d P
T
FE
has l
o
west
res
ona
n
t
fre
que
ncy
.
Thi
s
m
ode i
s
ve
ry
usef
ul
t
o
det
ect
t
h
e si
ngl
e m
o
l
ecul
e
s,
vi
r
u
ses,
bact
eri
a
et
c.
M
ode
3
In
m
o
d
e
3
t
w
o
lateral can
tilev
e
rs
o
f
TCC
are
v
i
brated
in
sam
e
p
h
a
se bu
t cen
tral can
tilev
e
r is
v
i
brated
is in
op
po
site ph
ase
with
lateral can
tilev
e
rs.
In
th
i
s
also
SiC m
a
t
e
rial h
a
s h
i
g
h
e
st reson
a
n
t
freq
u
e
n
c
y
and
PT
FE m
a
teri
al
has l
o
we
s
t
fre
que
ncy
.
Fi
gu
re 3.
Ei
g
n
e
n fre
que
ncy
Vs Yo
u
n
g
M
o
dul
us
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
40
3 – 4
0
8
40
6
Fi
gu
re 3.
Ei
g
n
e
n fre
que
ncy
Vs Yo
u
n
g
M
o
dul
us
2.
1 Fi
br
obl
a
st
De
tecti
o
n
A cell th
at sy
n
t
h
e
sizes th
e
ex
tracellu
lar
matrix
a co
llag
e
n
wh
ich
p
l
ays a cru
c
ial ro
le in
woun
d
h
ealin
g, sp
cal
led
as co
nn
ect
iv
e tissu
e.
Th
ese ar
e m
o
r
pholo
g
i
cally h
e
tero
g
e
n
e
o
u
s w
ith d
i
v
e
r
s
e app
e
ar
an
ces
d
e
p
e
nd
ing
on
lo
catio
n
& activ
ity. Th
e
m
a
in
fu
n
c
tion
a
lity i
s
to
o
r
g
a
n
i
ze th
e stru
ct
u
r
al integ
r
ity o
f
tissue an
d
th
eir conn
ectiv
ity. Th
ey
d
o
carry
o
u
t
t
h
e fun
c
tion
a
lity
b
y
con
tinu
o
u
s
secretin
g
p
r
ecu
r
sors liqu
i
d
s
o
f
ex
tracellu
lar matrix
wh
ich
are
ex
trafibrillar matrix
(water
,
h
y
alu
r
o
a
, g
l
yco
p
ro
tien
s
) and
v
a
riety of
fib
e
rs. Th
is
co
m
p
o
s
itio
n
determin
es th
e p
r
op
erties o
f
co
nn
ectiv
e tissues
wh
ere th
e mito
sis is
trig
gered
b
y
th
e fibro
c
yctes
up
o
n
t
h
e t
i
s
s
u
e
dam
a
ge. Thi
s
can b
e
t
e
rm
ed as (h
FG
F) t
e
r
m
ed as h
u
m
a
n fi
br
o
b
l
a
st
[7
,
8
]
whi
c
h a
r
e
pr
o
duce
d
b
y
ep
ith
elial, t
u
m
o
r &
o
t
h
e
r
cell typ
e
s. It is u
s
ed
as a
facto
r
fo
r cu
ltiv
atin
g em
b
r
yo
n
i
c
ste
m
cells in
cu
lture
wi
t
h
o
u
t
i
n
duci
ng
di
ffe
re
nt
i
a
t
i
on.
It
sh
ows
hi
gh a
ffi
ni
t
y
for
hea
p
ra
n
sul
f
at
e [
7
]
[8]
.
W
i
del
y
em
p
l
oy
ed
app
r
oaches
i
n
t
h
e sy
nt
hesi
s
of
bl
o
o
d
c
o
m
p
at
ibl
e
m
a
t
e
ri
al
s are he
pa
ri
ni
zat
i
o
n
,
i
n
w
h
i
c
h
sy
nt
het
i
c
p
o
l
y
m
e
rs ar
e
co
ated
o
r
immo
b
ilized
with
hep
a
ri
n
s
[9-12
]
.
Hep
a
ri
n (1
8.2 m
g
) 4
-
azido
anilin
e (7
.75
m
g
), and
WSC
(10 m
g
)
were
di
ssol
v
ed
i
n
dei
oni
ze
d
wat
e
r (
20 m
L
) & pH i
s
m
s
m
a
i
n
t
a
i
n
ed t
o
be 7. T
h
e sol
u
t
i
o
n
was st
i
rred at
4 C
fo
r
2
4
hr an
d
u
ltra filtrated
, t
h
e residu
e
was
rep
eated
ly
wash
ed
with d
i
st
illed
water
for th
e rem
o
v
a
l
o
f
4-
azid
o
a
n
ilin
e. Th
is m
i
cro
p
a
ttern
–
i
mm
o
b
iliz
atio
n
can
b
e
carried
ou
t u
s
i
n
g
Di
p
Pen
Nano
lith
og
raph
y (DPN),
cap
illary system
o
r
Nan
o
e
n
a
b
l
er
on
lateral
can
tilev
e
r
of
TCC. En
zym
e
fu
n
c
tion
a
lized
TCC can
b
e
used
t
o
st
udy
i
t
s
fre
qu
ency
s
h
i
f
t
f
o
r
t
h
e
gr
o
w
t
h
of
fi
br
o
b
l
a
st
[
21]
.
2.
2 Gl
uc
ose
Se
nsor
Mo
n
itoring
Gl
u
c
ose in
d
i
ab
et
ic p
a
tien
t
s is v
e
ry
m
u
ch esse
nt
i
a
l
;
here we r
e
po
rt
a no
vel
t
echni
que
fo
r
micro
m
ech
an
ical d
e
tectio
n of
b
i
o
l
og
ically relev
a
n
t
g
l
u
c
o
s
e b
y
imm
o
b
iliz
atio
n
o
f
g
l
u
c
o
s
e ox
id
ase (GOx
) on
to
a surface
of lateral cantilever of
Tri
p
le
Couple
Cantilever (TCC). In
this pape
r we propose
a novel glucose
bi
ose
n
s
o
r
ba
s
e
d
o
n
e
n
zy
m
e
speci
fi
ci
t
y
t
o
fa
bri
cat
e a
h
i
ghl
y
sel
ect
i
v
e
gl
ucose
bi
os
ens
o
r.
T
h
e e
n
zym
e
fu
nct
i
o
nal
i
zed
TC
C
u
nde
r
go
es f
r
eq
ue
ncy
s
h
i
f
t
due
t
o
t
h
e
react
i
ons
bet
w
een
gl
uc
ose a
n
d
GO
x i
m
m
obi
l
i
zed
TCC.
Molecular a
d
s
o
rption,
whe
n
confine
d
to one surface
of
T
CC, resu
lts in
diffe
re
ntial surface stress t
h
at
l
eads t
o
shi
f
t
i
n
fre
q
u
ency
.
Gene
ral
appl
i
c
at
i
ons o
f
t
h
i
s
l
a
bel
-
f
r
ee det
e
c
t
i
on m
e
t
hod
h
a
ve bee
n
sh
o
w
n f
o
r
DN
A
hy
bri
d
i
zat
i
on,
fo
r si
n
g
l
e
–bas
e
m
i
sm
at
ches det
ect
i
o
n
[1
3,
14]
a
nd
n
a
no
- m
echani
cal
m
o
t
i
on i
n
d
u
ced by
an
tib
od
y- an
tigen
r
eactio
n [15,16
].
Diab
etes m
e
l
lit
u
s
is a d
i
sease in
wh
ich
cells fails to
tak
e
g
l
u
c
ose du
e to
eith
er lack
of insu
lin
or an
in
sen
s
itiv
ity to
in
su
lin
, th
e asso
ciates lev
e
ls o
f
b
l
ood
g
l
u
c
o
s
e fo
r pro
l
o
n
g
e
d
p
e
riod
s lead
s to
d
i
fferent sid
e
ef
f
ects, in
cludin
g
r
e
tino
p
a
t
hy, n
e
p
h
ro
p
a
t
hy, n
e
u
r
op
ath
y
and
h
ear
t
r
e
lated
issu
es. To
stab
ilize th
e b
l
ood
gl
uc
ose l
e
vel
s
i
s
m
a
jor cri
t
e
ri
a t
o
del
a
y
t
h
e
ons
et
o
f
di
abet
es p
r
o
g
r
essi
o
n
[
1
8
,
19]
.
Gl
u
c
ose
det
ect
i
o
n
was
achieve
d by imm
obilizing a la
yer of gl
ucose oxi
dase on
the
surface of the lateral can
tilevers of TCC and
then
det
ect
i
n
g
f
r
eq
u
e
ncy
s
h
i
f
t
bet
w
een
bef
o
re
a
n
d
aft
e
r GO
x Sur
f
ace
m
odi
fi
cat
i
on of
TC
C
& u
p
o
n
det
e
c
t
i
on o
f
gl
uc
ose.
In
th
is
d
e
tectio
n
sch
e
m
e
we will u
s
e TCC d
i
m
e
n
s
io
ns o
f
1
00u
m
l
o
ng
,
2
0
u
m
wid
e
and
2u
m
th
ick
n
e
ss.
Functionalization of Gluc
ose
Ox
i
d
ase (GOx)
ont
o the surface
of latera
l cantilevers of TCC by
cross
e
s l
i
n
ki
n
g
wi
t
h
Gl
ut
aral
d
e
hy
de
(G
A
)
i
n
t
h
e p
r
ese
n
ce
of
B
ovi
ne se
rum
al
bum
i
n
(B
SA
) [
2
0]
. The
enz
y
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Modeling
and Simulation of Trip
le Coupled Cantilever Se
nsor
for
M
a
ss
Sensing A
pplic
ations
(
N
. Si
dd
ai
a
h
)
40
7
sol
u
t
i
o
n i
s
pre
p
are
d
by
di
ss
ol
vi
n
g
2
0
m
g
of GO
x,
5m
g of B
S
A an
d 4
0
u
L
of
50%
GA i
n
seq
u
e
n
ce i
n
1m
L of
b
u
ffer so
lu
tion
(PH=7
)
. [14
]
A
well d
e
fin
e
d
cap
illary
syste
m
o
r
Dip
p
e
n
n
a
no
lith
ograph
y
(DPN)
or
Nano
en
ab
ler is u
s
ed
to
d
i
sp
en
se it on
to
t
h
e latera
l can
tilev
e
r
o
f
TCC. En
zym
e
-fu
n
c
tion
a
lized
TCC can
b
e
use
d
t
o
st
u
d
y
i
t
s
fr
eq
ue
ncy
shi
f
t
res
p
onse
t
o
v
a
ri
o
u
s c
once
n
t
r
at
i
ons
of
gl
uco
s
e.
Th
e respon
ses an
d non
lin
earity o
f
th
e
micro
can
tilever are st
u
d
i
ed u
n
d
e
r d
i
fferen
t
p
a
ram
e
ter
co
nd
itio
ns,
app
lied
v
o
ltag
e
s an
d
v
a
riou
s g
a
p
s
b
e
tween
cap
acito
r p
l
ates. Th
e Non
lin
ear
d
y
n
a
m
i
cal
b
e
h
a
v
i
o
u
r
are characte
r
ised by using phase portrait and point car
e mappi
ng in
phas
e
space. The ra
tional param
e
ters the
analytical solutions a
nd
num
e
rical si
m
u
latio
n
s
are sim
ilar. Basically ME
MS d
e
v
i
ces are in
h
e
ren
tly non
lin
ear.
Som
e
nonli
n
e
a
r m
echanical characte
r
istics are large
de
form
ations,
surface c
o
ntact creep
phenom
ena a
n
d
dam
p
i
ng e
ffec
t
s. M
a
ny
R
e
se
arche
r
s
ha
ve i
nve
st
i
g
at
ed
t
h
ese cha
r
acteris
tics of MEMS under va
rious
loa
d
co
nd
itio
ns.
Most MEMS devices are non-linea
r and
micro-scale
effects and c
oupled fields give rise to the
co
m
p
lete n
o
n
-lin
earities, m
e
ch
an
ical-d
eformatio
n
,
su
rface con
t
act, ti
me d
e
p
e
nd
en
t
masses an
d no
n-lin
ear
dam
p
ing effects etc. [15],
da
m
p
ing like squeeze film dam
p
ing.All thes
e non-linea
rities play a
m
a
j
o
r role in
co
rresp
ond
ing
ch
aracterisatio
n
of ME
MS stru
ctures.
In
case o
f
MEMS
wh
ere
d
ealing
with
b
i
o
l
og
ical en
tities
an
d
t
h
ese are co
un
tab
l
e sin
ce
th
e ex
citatio
n
o
r
actu
a
tion
o
f
can
tilev
e
r structu
r
es is g
e
n
e
rally elec
tro
s
tatic [1
6
]
whe
r
e
direct c
u
rrent is
s
upe
rim
posed to a
n
altern
ate c
u
rrent harm
onic
-voltage. T
h
es
e actuation methods
ag
ain
ad
d
h
a
ssle to
calib
ration
with
h
y
steresis an
d
d
y
n
a
mic in
stab
ilities
[17
]
. So
in
ord
e
r to
m
i
n
i
m
i
s
e
all
th
ese in
stab
ilities and
n
o
n
-
li
nearities o
f
th
e
micro
d
e
v
i
ces
th
e d
y
n
a
m
i
c e
x
citatio
n
o
f
the TCC is carri
ed
o
u
t
u
s
ing
LDV laser
d
opp
ler
v
i
bro
m
eter wh
ere
th
e ex
citation
i
s
carried
u
s
e a pu
lsed b
l
u
e
laser an
d th
e
sh
i
f
t in
reso
na
nt
f
r
e
q
u
e
ncy
i
s
cal
i
b
r
a
t
e
d
usi
n
g t
h
e
shi
f
t
i
n
re
d l
a
ser
whi
c
h i
s
i
n
ci
de
nt
of
t
h
e
dy
nam
i
c exci
t
e
d
can
tilev
e
r
with p
h
a
se sh
ift of
th
e laser b
eam
th
e sh
ift in
reso
n
a
n
t
frequ
e
n
c
y can
b
e
calib
rated
.
Th
is techn
i
qu
e
h
o
l
d
s
g
ood
for b
i
o
l
og
ical en
tities wh
ere
th
e sign
al is
v
e
ry sm
all an
d
easily affected
b
y
t
h
e extern
al
d
i
stu
r
b
a
n
ces.
A sm
all ch
ange in
t
h
e
b
i
o
l
og
ical p
a
ram
e
te
r co
un
ts a lo
t
m
o
re d
i
fferen
c
e in
calibration
en
d
because the
output
volta
ge ra
nge
s
will be i
n
pico-m
icro an
d c
h
ange
is in
few less tha
n
t
h
at.
In such order the
Dyn
a
m
i
c
m
o
d
e
m
easu
r
em
en
t o
f
th
e can
tilev
e
r u
s
i
n
g
v
i
bro
m
eter yield
s
a
g
ood
resu
lt
in
ch
aracterisin
g
t
h
e
fun
c
tion
a
lized
can
tilev
e
r with b
i
o
l
og
ical en
tities. In
o
u
r ex
p
e
rim
e
n
t
th
e
fib
r
ob
last an
d
g
l
u
c
o
s
e are sen
s
ed
usi
n
g
fu
nct
i
o
n
a
l
i
zat
i
on o
n
t
h
e TC
C
.
3.
E
X
PERI
MEN
T
AL SETUP
The TCC is
mounted in a m
e
asurem
ent cham
ber by
maintaining a v
acc
um
,
excited by
a freque
n
cy –
m
odul
at
ed re
d
l
a
ser [
7
]
,
det
e
c
t
ed u
s
i
n
g a
g
r
e
e
n l
a
ser
&
f
o
u
r
qua
dra
n
t
p
h
o
t
odi
o
d
e
(
4
Q
P
C
)
.
A m
a
nual
m
i
cro-
p
o
s
ition
i
ng
x
y
stag
e is u
s
ed
to
m
o
v
e
th
e whole ch
ip
with
resp
ect to
th
e op
t
i
cal p
a
th
to
reco
rd
th
e freq
u
e
ncy o
f
each ca
ntileve
r
by m
oving second m
i
cro-positioni
ng xy
stage to m
a
xi
mize the signa
l on 4QPC
.
We first
measu
r
e th
e freq
u
e
n
c
y of mi
d
d
l
e can
tilev
e
r in
seco
nd
m
o
d
e
fo
r th
e stab
ilizin
g
and
fi
n
d
i
n
g
o
u
t
th
e
n
on-
linearity am
ong the cantileve
r in fabrica
tion. Upon surface
im
m
obilization
of
GOx on lateral cantilever with
wh
ich
th
e frequ
e
n
c
y
o
f
seco
nd
can
tilev
e
r is measu
r
ed. Be
fo
re ch
aracterizin
g
th
is eac
h
dev
i
ce is ch
aracterized
in
secon
d
m
o
de fo
r set-up
alig
n
m
en
t o
f
th
e TCC wh
ich
distracts the readings. If
t
h
e a
m
pli
t
ude val
u
e
s
are
affect
ed
e
qual
l
y
can
be
o
r
de
r
e
d as
m
i
sali
gn
m
e
nt
res
u
l
t
i
ng
i
n
am
pl
i
t
ude ra
t
i
o
o
f
ρ
a
.
W
i
t
h
gl
ucose
i
n
det
ect
i
o
n
wh
ere t
h
e
g
l
u
c
o
s
e m
o
lecu
les
b
i
nd
s t
o
GOx
o
n
th
e surface o
f
th
e lateral
can
tilev
e
rs. The m
easu
r
e
m
en
ts are
rep
eated
with
measu
r
ing
b
e
nch
.
As
add
e
d mass
o
n
la
teral can
tilev
e
rs
of TCC effects
th
e am
p
litu
d
e
o
f
t
h
e
mid
d
l
e can
tilev
e
r in
secon
d
m
o
d
e
o
f
op
eratio
n
. Th
e sh
ift
in
freq
u
e
n
c
y is
m
easu
r
ed
upo
n
con
s
id
ering th
e
ρ
a
gives
exact m
a
ss adde
d.
This
can
be m
easured
by
re
d & gr
een
l
a
ser
o
n
p
h
o
t
o
det
ect
o
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
40
3 – 4
0
8
40
8
Fi
gu
re
4.
Ex
pe
ri
m
e
nt
al
set
up
4.
CO
NCL
USI
O
N
The TCC is
m
odeled for
differe
nt m
a
terials and
the re
sonant fre
que
n
cy of each Eigen m
ode is
sim
u
l
a
t
e
d and
i
s
obse
r
ve
d t
o
be usi
ng t
h
i
s
as bi
o
-
sens
o
r
. T
h
e TC
C
i
s
act
uat
e
d usi
n
g
Di
el
ect
ri
c for
ce g
r
a
d
i
e
nt
m
e
thod a
n
d
Optical e
x
citation
for eac
h
corres
ponding
Eige
n state.
A s
u
rface m
odification protocol is
pr
o
pose
d
f
o
r
Fi
br
o
b
l
a
st
and
Gl
uco
s
e [2
2]
fo
r TC
C
t
o
us
e i
t
as Bi
o-Se
nso
r
su
ch t
h
at
t
h
e wo
rk ca
n
furt
her
ext
e
n
d
ed
f
o
r
d
i
ffere
nt
pat
h
o
g
e
ns,
or e
n
zy
m
e
s and
Pr
ot
ei
n
b
a
se sens
ors
[
2
3]
. Thi
s
ca
n
be
fu
rt
he
r ext
e
nd
ed t
o
DN
A ba
se bi
o
-
sens
ors
whe
r
e
PC
R
and EL
IS
A base t
e
st
s
ca
n be
do
ne at
M
i
cro l
e
vel
usi
n
g M
E
M
S
base
d B
i
o–
sen
s
o
r
s b
y
u
s
ing
Trip
le co
up
le can
tilev
e
rs.
REFERE
NC
ES
[1]
Hossein Pakdast, Mar
c
o Lazzarino, SNA -7633,
Sensors and A
c
tuators A, (201
2).
[2]
B. Ilic, Y. Yang
, K. Aubin, R
.
Reich
e
nbach
, S. Kr
y
l
ov
, H.G. C
r
aighead,
Enumeration of DNA molecules boun
d a
nanom
echani
c
al
oscillator, Nano
Lett
. 5
(2005)
25
4102.
[3]
A. Qazi
, D. Non
i
s
,
A. P
o
z
zato
,
M
.
Torm
en, M
.
Laz
zarino
,
S
.
C
a
rrato,
G. S
c
ol
es
,
As
y
m
m
e
trica
l
t
w
in cant
ilev
e
rs
f
o
r
single molecule
detection
,
A
ppl.
Ph
y
s
.
Lett. 90 (2
007) 173118.
[4]
M. Spletzer
, A. Ram
a
n, A.Q. W
u
, X.
Xu, R. Rei
f
enberger
, Ultra
s
ensitive m
a
ss sensing using m
o
de loca
liz
ation i
n
coupled
m
i
crocantilev
e
rs, Appl.
Ph
y
s
.
Let
t
. 88 (2
006) 254102.
[5]
E.
Gil-Santos,
D.
Ramos,
A.
J
a
na,
M
.
C
a
ll
ej
a,
A. Ram
a
n
,
J
.
Tam
a
yo,
Mass sensing basedon
deterministic
an
d
stochastic respo
n
ses of el
astically
coupled
n
a
nocantilev
ers,
Nano
Lett. (2009).
[6]
H. Okamoto, T. Kamada, K. O
nomits
u, I. Mah
boob, H. Yama
guchi, Optical tuning of
coupled micromechanical
resonators, Appl. Ph
y
s
.
Express
2 (2009).
[7]
Dvorak, P. and
Hampl, A. (
2005
) Folia Histoch
e
m C
y
tobio
l
43
, 2
03-B.
[8]
Ornitz, D.M. an
d Itoh, N. (
2001)
Genome Biol 2
Reviews 3005.
[9]
Shi,Y.et.al(2008
) CritR
ev Onco
l
Hematol 65
,43-5
3
.
[10]
Fontijn, D.
et
.al
.
(2006 Re J
Cancer 94 1627
-36.
[11]
Marek, L.et.al. (
2009) Mo
l Phar
macol 75
, 196-2
07.
[12]
Acevedo, V.D. et.al. (
2009) C
e
ll
C
y
cle 8, 580-8.
[13]
K. M. Hanson
,
H. Ji, G. Wu, R.
Da
tar, R. Cote,
A. Majumdar
an
d T.
Thund
at, A
n
al. Chem73, 15
67, (2001)
.
[14]
J. Fritz, M.K.
Balle
r, H.P.
Lang, H. Rothuizen, P. Vett
iger
, E. Mey
e
r
,
H.J. Güntherodt, Ch. Gerberand J.K
.
Gimzewski, Science, 288, 316, (2
000).
[15]
Wenming Zhan
g, Guang
Meng, Nonlinear d
y
n
a
mical s
y
stem
of
micro-cantilever under
combined parametric an
d
forcing
excitatio
ns in MEMS, Sens
ors and Actu
ators A, 119 (2005
) 291–299.
[16]
J. Chung, Dy
n
a
mic analy
s
is of a rotati
ng cantilever beam b
y
using the finite
element method, Jo
urnal of Sound and
vibration
(2002)
249(1), 147}164
.
[17]
Fadi M. Alsaleem, M
ohammad I. Younis, Memb
er, ASME
,
and
Laura Ruzziconi, An Ex
p
e
rimental and
Th
eoretical
Investiga
tion
of Dy
n
a
m
i
c
Pull-In in MEMS Res
onators Actuated Electrostatically
, Journal Of
Microelectromechanical
S
y
stems, Vol. 19,
No. 4
,
August 2010
.
[18]
G. Wu, R
.
Datar, K. Hanson, T.
Thundat, R. Cote
and A. Majumdar,
Natu
re B
i
otechnolog
y
,
19
, 856
, (2001)
.
[19]
K. Stevenson
,
A. Mehta, P. Sach
enko, K. Ha
nson and
T. Thundat, Langm
uir, 18, 8
732, (2002)
.
[20]
G. S. Wilson
an
d Y. Hu, Chem.
Rev, 100
, 2693
,
(2000).
[21]
J. Wang,
Electro
anal. 13
, 983
, (2
001).
[22]
Jianhong Pei, Fang Tian, and
Th
omas Thundat, P
r
oc. vo
l.776
, Materials Research
Society
.
[23]
Yong Soon
Pa
rk,
Yoshihiro Ito,
Mic
r
opa
tte
r
n-immobliz
a
tion
of he
pa
rin to re
gula
te
c
e
l
l growth with fibrobla
s
t
growth factor. Pg.no.117-122
, C
y
to
technolog
y
2
000.
Evaluation Warning : The document was created with Spire.PDF for Python.