I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
,
p
p
.
1
3
8
5
~
1
3
9
7
I
SS
N:
2
0
8
8
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
ec
e.
v
7
i3
.
p
p
1
3
8
5
-
1397
1
3
8
5
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Appro
x
i
m
a
tion
M
ea
sures
f
o
r
Co
n
ditiona
l F
unc
tion
a
l
Dependen
cies Usi
ng
St
rippe
d Con
d
ition
a
l P
a
rti
tions
Anh Duy
T
ra
n
1
,
So
m
j
it
Arc
h
-
int
2
,
Ng
a
m
n
ij
Arc
h
-
int
3
1,
2,
3
De
p
a
rtm
e
n
t
o
f
Co
m
p
u
ter S
c
ien
c
e
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
,
Kh
o
n
Ka
e
n
Un
iv
e
rsity
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
A
p
r
1
1
,
2
0
1
7
R
ev
i
s
ed
M
a
y
5
,
2
0
1
7
A
cc
ep
ted
M
a
y
2
4
,
2
0
1
7
Co
n
d
it
io
n
a
l
f
u
n
c
ti
o
n
a
l
d
e
p
e
n
d
e
n
c
ies
(CF
Ds
)
h
a
v
e
b
e
e
n
u
se
d
to
i
m
p
ro
v
e
th
e
q
u
a
li
ty
o
f
d
a
ta,
in
c
lu
d
in
g
d
e
tec
ti
n
g
a
n
d
re
p
a
iri
n
g
d
a
ta
i
n
c
o
n
siste
n
c
ies
.
A
p
p
ro
x
ima
ti
o
n
m
e
a
su
re
s
h
a
v
e
si
g
n
if
ica
n
t
i
m
p
o
rtan
c
e
f
o
r
d
a
ta
d
e
p
e
n
d
e
n
c
ies
in
d
a
ta
m
in
in
g
.
T
o
a
d
a
p
t
to
e
x
c
e
p
ti
o
n
s
in
re
a
l
d
a
ta,
th
e
m
e
a
su
re
s
a
re
u
se
d
to
re
lax
th
e
strictn
e
ss
o
f
CF
Ds
fo
r
m
o
re
g
e
n
e
ra
li
z
e
d
d
e
p
e
n
d
e
n
c
ies
,
c
a
ll
e
d
a
p
p
ro
x
im
a
te
c
o
n
d
it
io
n
a
l
f
u
n
c
ti
o
n
a
l
d
e
p
e
n
d
e
n
c
ies
(A
CF
Ds
).
T
h
is
p
a
p
e
r
a
n
a
ly
z
e
s
th
e
w
e
a
k
n
e
ss
e
s
o
f
d
e
p
e
n
d
e
n
c
y
d
e
g
re
e
,
c
o
n
f
id
e
n
c
e
a
n
d
c
o
n
v
ictio
n
m
e
a
su
re
s
f
o
r
g
e
n
e
ra
l
CF
Ds
(
c
o
n
sta
n
t
a
n
d
v
a
riab
le CF
Ds
).
A
n
e
w
m
e
a
su
re
f
o
r
g
e
n
e
ra
l
CF
Ds
b
a
se
d
o
n
in
c
o
m
p
lete
k
n
o
w
led
g
e
g
ra
n
u
larit
y
is
p
ro
p
o
se
d
to
m
e
a
su
re
th
e
a
p
p
ro
x
im
a
ti
o
n
o
f
th
e
se
d
e
p
e
n
d
e
n
c
ies
a
s
w
e
ll
a
s
th
e
d
istri
b
u
ti
o
n
o
f
d
a
ta
tu
p
les
i
n
to
th
e
c
o
n
d
it
io
n
a
l
e
q
u
iv
a
len
c
e
c
las
se
s.
F
in
a
ll
y
,
th
e
e
ffe
c
ti
v
e
n
e
ss
o
f
strip
p
e
d
c
o
n
d
it
i
o
n
a
l
p
a
rti
ti
o
n
s
a
n
d
th
is
n
e
w
m
e
a
su
re
a
re
e
v
a
lu
a
ted
o
n
sy
n
th
e
ti
c
a
n
d
re
a
l
d
a
ta
se
ts.
T
h
e
se
re
su
lt
s
a
re
i
m
p
o
rtan
t
to
th
e
stu
d
y
o
f
th
e
o
r
y
o
f
a
p
p
ro
x
im
a
ti
o
n
d
e
p
e
n
d
e
n
c
ies
a
n
d
im
p
ro
v
e
m
e
n
t
o
f
d
isc
o
v
e
r
y
a
lg
o
rit
h
m
s o
f
CF
Ds
a
n
d
A
CF
Ds
.
K
ey
w
o
r
d
:
Ap
p
r
o
x
im
ate co
n
d
itio
n
al
f
u
n
cti
o
n
al
d
ep
en
d
en
cies
Me
asu
r
es
Strip
p
ed
c
o
n
d
itio
n
al
p
ar
titio
n
s
I
n
co
m
p
lete
k
n
o
wled
g
e
g
r
an
u
lar
it
y
C
o
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
An
h
Du
y
T
r
an
,
Dep
ar
t
m
en
t o
f
C
o
m
p
u
ter
Scie
n
ce
,
Facu
l
t
y
o
f
Scie
n
ce
,
Kh
o
n
Kae
n
U
n
iv
er
s
it
y
,
1
2
3
Mo
o
1
6
Mittap
ap
R
o
ad
.
,
Nai
-
M
u
a
n
g
,
M
u
an
g
Di
s
tr
ict,
Kh
o
n
Kae
n
4
0
0
0
2
,
T
h
ailan
d
E
m
ail:
d
u
y
a
n
h
2
0
8
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Hig
h
d
ata
q
u
alit
y
h
as
a
v
er
y
i
m
p
o
r
tan
t
r
o
le
f
o
r
m
a
n
y
o
r
g
an
izatio
n
s
i
n
m
a
k
i
n
g
co
r
r
ec
t
d
ec
is
io
n
s
.
Ho
w
e
v
er
,
in
r
ea
l
-
w
o
r
ld
ap
p
licatio
n
s
,
th
e
d
ata
o
f
te
n
co
n
tain
s
in
co
n
s
i
s
te
n
cies
,
in
ac
c
u
r
ac
ies
an
d
er
r
o
r
s
b
ec
au
s
e
o
f
in
te
g
r
atio
n
o
f
d
ata
f
r
o
m
v
a
r
io
u
s
s
o
u
r
ce
s
.
A
r
ec
e
n
t
r
ep
o
r
t
s
h
o
w
ed
th
at
b
ill
io
n
s
o
f
d
o
llar
s
in
lo
s
s
e
s
an
n
u
all
y
f
o
r
US
b
u
s
i
n
es
s
i
s
d
u
e
to
p
o
o
r
d
ata
q
u
alit
y
[1
]
.
A
lt
h
o
u
g
h
f
u
n
ctio
n
al
d
ep
en
d
en
c
ies
(
F
Ds)
ar
e
s
i
g
n
i
f
ican
t
co
n
s
tr
ain
ts
an
d
k
n
o
w
led
g
e
i
n
r
elatio
n
al
d
atab
ase
d
esig
n
a
n
d
d
ata
m
i
n
i
n
g
[2
-
6
]
,
th
e
y
ar
e
n
o
t
r
o
b
u
s
t
en
o
u
g
h
to
ad
d
r
ess
d
ata
q
u
alit
y
p
r
o
b
le
m
.
T
h
er
ef
o
r
e,
CF
D
s
h
a
v
e
b
ee
n
ex
ten
d
ed
f
r
o
m
FD
s
to
s
o
lv
e
t
h
is
p
r
o
b
lem
[7
-
8]
.
FDs
o
n
l
y
h
o
ld
o
n
a
s
et
o
f
tu
p
l
es
s
ati
s
f
y
i
n
g
t
h
e
co
n
d
itio
n
s
c
h
ar
ac
ter
ized
b
y
C
FD
s
.
Fo
r
ex
a
m
p
le,
let
cu
s
t
b
e
a
r
elatio
n
s
p
ec
if
y
i
n
g
cu
s
to
m
er
s
w
it
h
t
h
e
attr
ib
u
te
s
:
C
C
(
co
u
n
t
r
y
co
d
e)
,
Z
I
P
(
zip
co
d
e)
,
S
T
R
(
s
tr
ee
t)
,
A
C
(
ar
ea
co
d
e)
,
C
T
(
city
)
a
s
i
n
tr
o
d
u
ce
d
in
[7
][
9
]
.
L
et's
co
n
s
id
er
t
w
o
C
FD
s
:
1
=
(
[
C
C
,
ZIP
]
S
TR,
(
4
4
,
-
||
-
))
a
n
d
2
=
(
[
C
C
,
A
C
]
C
T,
(
0
1
,
212
||
N
YC
)
)
.
C
FD
1
o
n
l
y
h
o
ld
s
o
n
th
e
r
elatio
n
cu
s
t
w
h
en
th
e
cu
s
to
m
er
's
co
u
n
tr
y
co
d
e
is
4
4
.
C
FD
2
s
h
o
w
s
t
h
at
if
al
l
cu
s
to
m
er
s
i
n
th
e
US
(
C
C
=0
1
)
h
av
e
a
n
ar
ea
co
d
e
o
f
2
1
2
,
th
en
th
eir
cit
y
m
u
s
t
b
e
NY
C
.
T
h
ese
co
n
s
tr
ain
t
s
ca
n
n
o
t
b
e
d
is
co
v
e
r
ed
f
r
o
m
t
h
e
d
atab
ases
u
s
i
n
g
t
h
e
co
n
ce
p
t o
f
FD.
T
h
e
m
ai
n
ap
p
lica
tio
n
o
f
C
FD
s
is
d
ata
clea
n
i
n
g
[
7
][
10
][
11
]
in
w
h
ic
h
C
F
D
d
is
co
v
er
y
is
an
i
m
p
o
r
tan
t
s
tag
e.
T
h
e
m
ea
s
u
r
es
h
a
v
e
b
ee
n
u
s
ed
to
d
is
co
v
er
th
e
in
ter
est
in
g
r
u
les
,
r
ed
u
ce
s
ea
r
ch
s
p
ac
e
an
d
r
elax
s
tr
ictn
e
s
s
of
C
FDs
w
it
h
e
x
ce
p
tio
n
s
i
n
d
a
ta
[
9
][
12
-
13
]
.
C
h
ian
g
et
al
[
1
2
]
in
tr
o
d
u
ce
d
t
h
e
v
ar
io
u
s
m
ea
s
u
r
es to
ev
al
u
ate
th
e
d
ata
q
u
alit
y
r
u
le
s
,
in
cl
u
d
in
g
S
u
p
p
o
r
t,
2
-
T
est,
C
o
n
f
id
en
ce
,
I
n
ter
est
an
d
C
o
n
v
ict
i
o
n
.
B
ased
o
n
th
e
s
u
b
s
u
m
ed
class
es
in
t
h
e
p
ar
titi
o
n
s
,
th
e
s
e
m
ea
s
u
r
es
ca
p
tu
r
e
d
in
ter
esti
n
g
C
FDs
s
u
c
h
th
at
th
er
e
e
x
i
s
t
t
h
e
co
n
d
itio
n
al
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
: 1
3
8
5
–
1
3
9
7
1386
attr
ib
u
tes
o
n
th
e
le
f
t
h
a
n
d
s
id
e
(
L
HS)
o
f
th
ese
C
FDs
.
T
h
e
n
o
n
-
s
u
b
s
u
m
ed
clas
s
es
ar
e
u
s
e
d
to
f
o
r
m
alize
th
e
ap
p
r
o
x
im
a
te
co
n
s
ta
n
t
C
FD
s
f
o
r
id
en
tify
i
n
g
d
ir
t
y
d
ata
v
alu
e
s
.
T
h
er
ef
o
r
e,
it
s
ee
m
s
d
if
f
ic
u
lt
to
ap
p
r
o
x
im
ate
t
h
e
g
en
er
al
C
FD
s
b
ased
o
n
th
ese
m
ea
s
u
r
es.
T
h
e
in
ter
esti
n
g
r
u
les
in
t
h
e
d
i
s
co
v
er
y
p
r
o
b
lem
o
f
co
n
s
ta
n
t
C
FD
s
[
1
4
]
w
er
e
also
e
v
al
u
ate
d
b
ased
o
n
th
e
2
-
Te
s
t
.
Mo
r
eo
v
er
th
e
c
o
n
v
ictio
n
is
a
n
e
f
f
ec
t
iv
e
m
ea
s
u
r
e
f
o
r
ass
o
ciatio
n
r
u
les
b
ec
au
s
e
it
tac
k
le
s
th
e
w
ea
k
n
ess
e
s
o
f
t
h
e
co
n
f
id
en
c
e
an
d
in
ter
est
m
ea
s
u
r
es
[
1
5
]
.
A
s
s
h
o
w
n
in
[
1
2
]
,
th
e
co
n
v
ictio
n
i
s
th
e
b
es
t
m
ea
s
u
r
e
f
o
r
p
r
o
v
id
in
g
th
e
i
n
t
er
esti
n
g
C
FD
s
an
d
id
e
n
ti
f
y
in
g
t
h
e
d
ir
t
y
d
ata
v
al
u
es.
T
h
er
e
f
o
r
e,
th
e
co
n
v
ict
io
n
m
ea
s
u
r
e
w
i
ll b
e
s
elec
ted
f
o
r
a
n
al
y
s
i
s
in
t
h
is
s
t
u
d
y
.
R
ec
en
t
l
y
,
Nak
a
y
a
m
a
et
a
l
[
1
3
]
p
r
esen
ted
t
h
e
f
o
r
m
aliza
tio
n
o
f
A
C
FDs
w
it
h
t
h
e
co
n
f
id
en
c
e
m
ea
s
u
r
e
b
ased
o
n
th
e
m
a
x
i
m
u
m
n
u
m
b
er
o
f
tu
p
les
in
a
r
elatio
n
s
at
is
f
y
in
g
t
h
e
co
n
d
it
io
n
al
d
ep
en
d
en
c
y
.
T
h
is
m
ea
s
u
r
e
is
ex
ten
d
ed
f
r
o
m
t
h
e
er
r
o
r
m
ea
s
u
r
e
g
3
[
1
6
]
,
w
h
ic
h
h
a
s
b
ee
n
u
s
ed
w
id
el
y
i
n
th
e
s
t
u
d
y
,
d
is
co
v
er
y
a
n
d
ap
p
licatio
n
o
f
ap
p
r
o
x
i
m
ate
f
u
n
ctio
n
al
d
ep
en
d
en
cie
s
(
AFDs
)
a
n
d
co
m
p
a
r
ab
le
d
ep
en
d
en
cies
(
C
Ds)
[
17
-
2
1
]
.
Nak
a
y
a
m
a
et
al
f
o
c
u
s
ed
o
n
e
x
te
n
d
in
g
t
h
r
ee
d
is
co
v
er
y
al
g
o
r
ith
m
s
f
o
r
A
C
FD
s
(
ap
p
r
o
x
C
F
DM
in
er
,
a
p
p
r
o
x
C
T
A
NE
an
d
ap
p
r
o
x
Fas
tC
FD)
f
r
o
m
C
FD d
i
s
co
v
er
y
al
g
o
r
ith
m
s
[9
].
Un
f
o
r
tu
n
atel
y
t
h
e
e
f
f
ec
tiv
e
n
es
s
o
f
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
an
d
e
v
alu
a
tio
n
o
f
t
h
is
m
e
asu
r
e
f
o
r
AC
FD
s
w
er
e
n
o
t
co
n
s
id
er
ed
.
T
h
er
ef
o
r
e
w
e
in
tr
o
d
u
ce
th
e
co
n
d
itio
n
al
i
n
d
is
ce
r
n
ib
ilit
y
r
elatio
n
,
co
n
d
itio
n
a
l
eq
u
iv
ale
n
ce
c
lass
,
co
n
d
itio
n
a
l
p
ar
titi
o
n
,
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
a
n
d
d
ep
en
d
en
c
y
d
eg
r
ee
a
s
a
n
ex
ten
s
io
n
f
r
o
m
t
h
e
co
n
ce
p
ts
o
f
P
a
w
la
k
r
o
u
g
h
s
et
[
2
2
-
23
]
to
co
n
f
r
o
n
t
t
h
is
p
r
o
b
le
m
.
R
o
u
g
h
s
et
t
h
eo
r
y
i
s
an
ef
f
ec
tiv
e
ap
p
r
o
ac
h
f
o
r
a
n
al
y
z
in
g
u
n
ce
r
tai
n
a
n
d
i
n
co
m
p
lete
d
ata
in
m
a
n
y
ar
ea
s
o
f
d
ata
m
i
n
in
g
,
k
n
o
w
led
g
e
d
is
co
v
er
y
an
d
attr
ib
u
te
r
ed
u
c
t
io
n
[
2
2
-
28
]
.
I
n
ad
d
itio
n
,
in
f
o
r
m
atio
n
(
k
n
o
w
led
g
e)
g
r
a
n
u
lar
it
y
ca
n
b
e
u
s
ed
to
m
ea
s
u
r
e
u
n
ce
r
tai
n
t
y
o
f
in
f
o
r
m
atio
n
[
29
-
33
]
.
T
h
is
s
tu
d
y
al
s
o
in
f
er
s
th
at
t
h
e
m
ea
s
u
r
e
m
e
n
t
o
f
A
C
FDs
allo
w
s
u
s
to
k
n
o
w
th
e
d
is
tr
ib
u
tio
n
d
eg
r
ee
o
f
o
b
j
ec
ts
in
th
e
co
n
d
it
io
n
al
eq
u
iv
a
len
ce
cla
s
s
es.
Fo
r
ex
a
m
p
le
,
w
e
ca
n
r
ep
r
esen
t
h
o
w
m
u
ch
d
eg
r
ee
p
atien
t
s
co
r
r
esp
o
n
d
in
g
to
an
y
s
y
m
p
to
m
ar
e
d
is
tr
ib
u
ted
in
to
d
is
ea
s
e
g
r
o
u
p
s
.
Ho
w
ev
er
t
h
e
ab
o
v
e
m
ea
s
u
r
e
s
ca
n
n
o
t
ex
p
r
ess
t
h
is
d
is
tr
ib
u
t
io
n
.
W
e
th
er
ef
o
r
e
i
n
tr
o
d
u
ce
t
h
e
i
n
co
m
p
lete
k
n
o
w
led
g
e
g
r
an
u
la
r
it
y
o
f
co
n
d
itio
n
al
p
ar
titi
o
n
in
d
u
ce
d
b
y
ite
m
s
et
s
b
ased
o
n
th
e
k
n
o
w
led
g
e
g
r
an
u
lar
i
t
y
o
f
t
h
e
p
ar
t
itio
n
[
3
3
]
to
p
r
o
p
o
s
e
a
n
ew
m
ea
s
u
r
e
th
at
n
o
t
o
n
l
y
m
ea
s
u
r
e
s
th
e
ap
p
r
o
x
i
m
atio
n
d
eg
r
ee
o
f
d
ep
en
d
en
cies
C
FDs
,
b
u
t
al
s
o
th
e
d
is
tr
ib
u
tio
n
o
f
d
ata
tu
p
les
in
to
th
e
co
n
d
it
io
n
a
l
eq
u
iv
ale
n
ce
class
e
s
.
T
h
is
m
e
asu
r
e
ca
n
g
iv
e
u
s
a
m
o
r
e
g
e
n
e
r
al
v
ie
w
o
f
A
C
FDs
w
it
h
e
x
p
ec
tat
io
n
f
o
r
ex
te
n
d
in
g
A
C
FDs
to
o
t
h
er
ap
p
licatio
n
d
o
m
ai
n
s
s
u
c
h
as
cla
s
s
i
f
icatio
n
an
d
s
o
cio
lo
g
ica
l
in
v
e
s
ti
g
atio
n
.
Fi
n
all
y
th
e
co
m
p
u
tat
io
n
s
o
f
m
ea
s
u
r
es
u
s
i
n
g
t
h
e
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
allo
w
th
e
d
is
co
v
er
y
ti
m
e
o
f
C
FD
s
an
d
AC
FD
s
to
b
e
i
m
p
r
o
v
ed
ef
f
ec
t
iv
el
y
.
Fro
m
th
i
s
p
r
o
m
is
i
n
g
an
al
y
s
is
,
th
e
p
ap
er
f
o
cu
s
es
o
n
s
o
lv
in
g
t
h
e
f
o
llo
w
i
n
g
is
s
u
e
s
:
C
o
m
p
u
tin
g
t
h
e
m
ea
s
u
r
es
b
a
s
ed
o
n
t
h
e
co
n
d
itio
n
al
p
ar
titi
o
n
s
a
n
d
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
.
E
v
alu
a
tin
g
t
h
e
ef
f
ec
ti
v
en
e
s
s
o
f
th
e
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
f
o
r
d
is
co
v
er
y
al
g
o
r
ith
m
o
f
AC
FD
s
(
ap
p
r
o
x
C
T
A
NE
)
b
ased
o
n
th
e
co
n
f
id
en
ce
m
ea
s
u
r
e.
E
v
alu
a
tin
g
t
h
e
li
m
itatio
n
s
o
f
th
e
m
ea
s
u
r
es
f
o
r
A
C
FDs
,
i
n
clu
d
i
n
g
th
e
d
ep
en
d
e
n
c
y
d
eg
r
ee
,
co
n
f
id
e
n
ce
an
d
co
n
v
ictio
n.
P
r
o
p
o
s
in
g
a
n
e
w
m
ea
s
u
r
e
f
o
r
C
FD
s
an
d
ev
al
u
ati
n
g
th
e
u
tili
t
y
o
f
t
h
is
m
ea
s
u
r
e
.
T
h
e
r
est
o
f
th
e
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
:
Sectio
n
2
p
r
esen
ts
p
r
i
m
ar
y
co
n
ce
p
t
s
o
f
p
ar
titi
o
n
,
d
ep
en
d
en
c
y
d
eg
r
ee
a
n
d
co
n
d
itio
n
al
f
u
n
ctio
n
al
d
ep
en
d
en
ci
es.
I
n
s
ec
tio
n
3
,
w
e
co
m
p
u
te
th
e
m
ea
s
u
r
es
an
d
p
r
o
p
o
s
e
a
n
e
w
m
ea
s
u
r
e
f
o
r
C
FDs
b
ased
o
n
co
n
d
itio
n
al
p
ar
titi
o
n
an
d
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
as
w
el
l
as
an
al
y
ze
a
m
o
n
g
th
e
m
ea
s
u
r
e
s
.
Sectio
n
4
i
n
tr
o
d
u
ce
s
th
e
d
i
s
co
v
er
y
p
r
o
b
le
m
o
f
AC
F
Ds
a
n
d
p
r
o
d
u
ct
o
f
t
w
o
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
.
T
h
e
ev
alu
a
tio
n
o
f
m
ea
s
u
r
es
an
d
d
is
co
v
er
y
o
f
AC
FD
s
ar
e
co
n
d
u
ce
d
o
n
th
e
s
y
n
t
h
etic
an
d
r
ea
l d
ata
s
ets i
n
Sectio
n
5
.
Sectio
n
6
co
n
cl
u
d
es
th
e
p
ap
er
.
2.
P
RE
L
I
M
I
NARIE
S
I
n
th
i
s
s
ec
tio
n
,
w
e
i
n
tr
o
d
u
ce
s
o
m
e
co
n
ce
p
ts
o
f
r
elati
o
n
al
d
atab
ase,
in
d
is
ce
r
n
ib
ili
t
y
r
elat
io
n
,
p
ar
titi
o
n
s
,
d
ep
en
d
en
c
y
d
e
g
r
ee
an
d
co
n
d
itio
n
al
f
u
n
ctio
n
al
d
ep
en
d
en
cie
s
[7
-
9
]
[
2
2
-
23
]
[
34
]
.
L
et
r
(
R
)
b
e
a
r
elatio
n
o
n
a
s
et
o
f
attr
ib
u
tes
R
=
{A
1
,
A
2
,
.
.
.
,
A
m
}
,
w
h
er
e
d
o
m(
A
k
)
i
s
a
d
o
m
ain
o
f
A
k
R.
T
h
en
an
i
n
d
is
ce
r
n
ib
ilit
y
r
elatio
n
I
X
is
d
ef
i
n
ed
b
y
]}
[
]
[
,
|
)
,
{(
2
k
j
k
i
k
j
i
X
A
t
A
t
X
A
r
t
t
I
T
h
e
r
elatio
n
I
X
p
a
r
titi
o
n
s
th
e
s
et
o
f
tu
p
les
r
i
n
to
eq
u
iv
a
le
n
ce
class
es.
Fo
r
t
i
r
,
an
eq
u
i
v
al
en
ce
clas
s
)
(
i
X
t
I
o
f
t
i
o
n
a
s
et
o
f
attr
ib
u
tes
X
is
d
ef
in
ed
by
]}
[
]
[
,
|
{
)
(
k
j
k
i
k
j
i
X
A
t
A
t
X
A
r
t
t
I
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
p
p
r
o
xima
tio
n
Mea
s
u
r
es fo
r
C
o
n
d
itio
n
a
l F
u
n
ctio
n
a
l D
e
p
en
d
en
cies U
s
in
g
S
tr
ip
p
ed
.
.
.
.
(
A
n
h
Du
y
Tr
a
n
)
1387
T
h
en
a
s
et
o
f
eq
u
i
v
alen
ce
c
lass
es
}
|
)
(
{
r
t
t
I
I
i
i
X
X
is
ca
lled
a
p
ar
titi
o
n
o
f
r
o
n
X
.
T
h
e
p
ar
titi
o
n
X
I
is
f
i
n
er
t
h
an
Y
I
if
an
d
o
n
l
y
i
f
f
o
r
an
y
eq
u
iv
ale
n
ce
cla
s
s
w
X
I
,
th
er
e
e
x
is
t
s
t
h
e
eq
u
iv
a
len
ce
clas
s
q
in
Y
I
s
u
c
h
th
at
w
q
.
T
o
r
ed
u
ce
co
m
p
u
tat
io
n
al
t
i
m
e
w
it
h
t
h
e
p
ar
titi
o
n
s
,
H
u
h
tala
et
al
.
[
1
7
]
h
av
e
p
r
o
p
o
s
ed
th
e
s
tr
ip
p
ed
p
ar
titi
o
n
o
f
X
I
,
d
en
o
ted
X
I
ˆ
as f
o
llo
w
s
}
1
|
|
|
{
ˆ
w
I
w
I
X
X
A
s
et
o
f
tu
p
les
O
r
ca
n
b
e
ap
p
r
o
x
i
m
ated
w
it
h
r
esp
ec
t
t
o
X
R
b
y
d
e
f
in
in
g
th
e
lo
wer
)
(
*
O
X
ap
p
r
o
x
im
a
tio
n
,
w
h
er
e
}
)
(
|
{
)
(
*
O
t
I
r
t
O
X
i
X
i
.
T
h
en
f
o
r
t
w
o
s
et
s
o
f
attr
ib
u
tes
X
a
n
d
Y
,
)
(
)
,
(
*
O
X
r
Y
X
P
OS
Y
I
O
is
a
p
o
s
itiv
e
r
eg
io
n
o
f
d
ep
en
d
e
n
c
y
X
Y
.
T
h
e
co
ef
f
icie
n
t
|
|
)
,
(
)
,
(
r
r
Y
X
P
O
S
r
Y
X
d
ef
in
e
s
a
d
ep
en
d
en
c
y
d
e
g
r
ee
o
f
X
Y
.
I
f
,
1
)
,
(
r
Y
X
th
en
X
Y
is
a
f
u
n
ctio
n
a
l d
ep
en
d
en
c
y
.
Fu
n
ctio
n
al
Dep
e
n
d
en
cies
(
F
Ds)
ex
p
r
ess
th
e
r
elatio
n
s
h
ip
b
et
w
ee
n
t
w
o
s
ets
o
f
attr
ib
u
tes
o
n
t
h
e
r
elatio
n
r
(
R
)
.
I
n
m
o
r
e
g
en
er
ali
ze
d
f
o
r
m
,
C
FD
s
s
p
ec
if
y
t
h
e
co
n
s
tr
ain
ts
b
et
w
ee
n
t
w
o
s
e
ts
o
f
attr
ib
u
tes
f
ix
ed
b
y
p
ar
ticu
lar
v
alu
e
s
.
A
C
o
n
d
itio
n
al
Fu
n
ctio
n
al
Dep
en
d
en
c
y
(
C
FD)
,
d
en
o
ted
(
X
Y,
t
p
)
[9
]
,
is
a
Fu
n
ctio
n
al
Dep
en
d
en
c
y
w
it
h
r
esp
ec
t
to
p
atter
n
t
u
p
le
t
p
s
u
c
h
t
h
at
f
o
r
ea
ch
A
k
X
Y ,
t
p
[A
k
]
=
’
a
’
o
r
t
p
[A
k
]
=
’
-
’
,
w
h
er
e
th
e
co
n
s
ta
n
t
a
d
o
m(
A
k
)
a
n
d
v
alu
e
o
f
u
n
n
a
m
ed
v
ar
iab
le
’
-
’
d
r
a
w
n
f
r
o
m
d
o
m(
A
k
)
.
A
t
u
p
le
t
i
m
atc
h
es
t
h
e
p
atter
n
tu
p
le
t
p
o
n
th
e
s
et
o
f
attr
ib
u
tes
X
,
d
en
o
ted
t
i
[
X
]
≤
t
p
[
X
]
if
an
d
o
n
ly
i
f
f
o
r
ea
ch
A
k
X
,
(
t
i
[A
k
]
=
t
p
[A
k
]
)
or
(t
i
[A
k
]
=
'
a
',
t
p
[A
k
]
=
'
-
')
,
a
d
o
m(
A
k
)
.
W
e
w
r
ite
t
i
[
X
]
<<
t
p
[
X
]
if
t
i
[X
]
≤
t
p
[
X
]
b
u
t
t
p
[
X
]
t
i
[
X
]
.
T
h
e
C
FD
=
(
X
Y,
t
p
)
h
o
l
d
s
o
n
r
(
o
r
r
s
ati
s
f
ies
,
d
en
o
t
ed
|
r
)
if
,
f
o
r
an
y
t
i
,
t
j
r
s
u
ch
t
h
at
t
i
[
X
]
=
t
j
[
X
]
≤
t
p
[
X
]
,
th
en
t
i
[
Y
]
=
t
j
[
Y
]
≤
t
p
[
Y
]
.
As
m
en
tio
n
ed
i
n
[9
][
12
]
w
e
ca
n
d
is
co
v
er
th
e
C
F
Ds
o
f
f
o
r
m
=
(
X
A
k
,
t
p
),
w
h
er
e
th
e
s
i
n
g
l
e
attr
ib
u
te
A
k
is
i
n
R
a
n
d
n
o
t i
n
X
.
L
et
=
(
X
A
k
, t
p
)
b
e
a
C
FD a
n
d
X
≠
.
A
cc
o
r
d
in
g
t
o
[9
]
,
X
c
X
is
a
s
et
o
f
attr
ib
u
tes
s
u
c
h
th
at
t
p
[X
c
]
is
a
co
n
s
tan
t
p
atter
n
t
u
p
le.
T
h
e
r
e
m
ain
in
g
attr
ib
u
te
s
X
v
=
X
-
X
c
is
co
r
r
esp
o
n
d
in
g
to
v
ar
iab
le
p
atter
n
t
u
p
le
s
u
ch
th
at
t
p
[X
v
]
=
(
-
,
.
.
.
,
-
).
T
h
er
ef
o
r
e,
th
e
C
FD
ca
n
b
e
ex
p
r
es
s
ed
b
y
t
h
e
f
o
r
m
=
(
[
X
c
, X
v
]
A
k
, t
p
).
3.
AP
P
RO
XIM
AT
E
M
E
ASUR
E
S F
O
R
CF
Ds
I
n
th
is
s
ec
t
io
n
,
w
e
p
r
esen
t
th
e
co
n
d
itio
n
al
p
ar
titi
o
n
,
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
,
an
d
a
p
p
r
o
x
im
a
te
m
ea
s
u
r
es
f
o
r
d
ep
en
d
en
cies.
W
e
f
ir
s
t c
o
n
s
id
er
s
o
m
e
m
ea
s
u
r
es
f
o
r
C
FDs
.
Def
ini
t
io
n
3
.
1
.
[9
][
12
]
[
3
5
]
L
et
r
(
R
)
b
e
a
r
ela
tio
n
,
t
h
e
s
u
p
p
o
r
t
o
f
C
FD
=
(
X
A
k
,
t
p
)
o
n
r
,
d
en
o
ted
s
u
p
(
,
r
)
,
is
d
ef
i
n
ed
b
y
|
|
|
|
)
,
s
u
p
(
r
r
r
p
t
(
1
)
w
h
er
e
|
|
|
|
]
[
k
p
p
XA
t
t
r
r
is
t
h
e
n
u
m
b
er
t
u
p
les i
n
r
m
a
tch
i
n
g
t
p
o
n
s
et
o
f
attr
ib
u
t
es
XA
k
.
Fro
m
th
e
co
n
v
ict
io
n
m
ea
s
u
r
e
in
[
1
2
]
,
Def
in
itio
n
3
.
2
d
ef
in
es t
h
is
m
ea
s
u
r
e
f
o
r
g
e
n
er
al
C
FDs
.
Def
ini
t
io
n 3
.
2
.
L
et
r
(
R
)
b
e
a
r
elatio
n
,
th
e
co
n
v
ic
tio
n
m
ea
s
u
r
e
o
f
C
FD
= (
X
A
k
, t
p
)
o
n
r
,
d
en
o
ted
C
o
n
v(
,
r
)
,
is
d
ef
i
n
ed
b
y
]))
[
,
(
]),
[
,
((
]))
[
,
(
(
])).
[
,
((
)
,
(
k
p
k
p
k
p
k
p
A
t
A
X
t
X
P
A
t
A
P
X
t
X
P
r
C
o
n
v
w
h
er
e
p
r
o
b
ab
ilit
y
P
(
X
,
t
p
[
X
]
)
i
s
eq
u
al
to
s
u
p
(
X
,
t
p
[
X
]
)
an
d
if
(
X
,
t
p
[
X
]
)
an
d
(A
k
,
t
p
[A
k
])
ar
e
in
d
ep
en
d
en
t,
t
h
en
C
o
n
v(
,
r)
is
eq
u
a
l to
1
.
Def
ini
t
io
n
3
.
3
.
[
1
3
]
L
et
r
(
R
)
b
e
a
r
elatio
n
,
t
h
e
co
n
f
id
en
ce
o
f
C
FD
=
(
X
A
k
,
t
p
)
o
n
r
,
d
en
o
ted
co
n
f (
,
r
)
,
is
d
e
f
i
n
ed
b
y
|
|
)}
,
(
|
'
,
'
||
'
m
a
x
{
|
)
,
(
r
t
A
X
r
r
r
r
r
c
o
n
f
p
k
(2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
: 1
3
8
5
–
1
3
9
7
1388
P
ar
titi
o
n
s
o
f
ite
m
s
e
ts
ar
e
i
n
tr
o
d
u
ce
d
in
[9
]
to
c
h
ec
k
co
r
r
ec
tn
es
s
o
f
C
FD
s
i
n
th
e
d
is
co
v
er
y
p
r
o
b
le
m
.
L
et
r
(
R
)
b
e
a
r
elat
io
n
o
n
R
an
d
(
Z,
t
p
[
Z
]
)
b
e
an
ite
m
s
et,
w
h
er
e
Z
R
.
T
h
er
e
ex
is
t
s
a
co
n
d
itio
n
al
in
d
is
ce
r
n
ib
ilit
y
r
elat
io
n
])
[
,
(
Z
t
Z
p
I
o
n
r
,
d
ef
i
n
ed
b
y
]}
[
]
[
]
[
|
)
,
{(
2
])
[
,
(
Z
t
Z
t
Z
t
r
t
t
I
p
j
i
j
i
Z
t
Z
p
A
co
n
d
itio
n
al
eq
u
i
v
ale
n
ce
class
o
f
t
i
w
it
h
r
esp
ec
t
to
item
s
et
(
Z,
t
p
[
Z
]
)
,
d
en
o
ted
),
(
])
[
,
(
i
Z
t
Z
t
I
p
is
d
ef
in
ed
b
y
]}
[
]
[
]
[
|
{
)
(
])
[
,
(
Z
t
Z
t
Z
t
r
t
t
I
p
j
i
j
i
Z
t
Z
p
.
T
h
er
ef
o
r
e
th
er
e
ex
is
t
s
a
co
n
d
itio
n
al
p
ar
titi
o
n
o
f
r
w
it
h
r
esp
ec
t to
(
Z,
t
p
[
Z
]
)
,
d
ef
in
ed
b
y
}
0
|
)
(
|
,
|
)
(
{
])
[
,
(
])
[
,
(
])
[
,
(
i
Z
t
Z
i
i
Z
t
Z
Z
t
Z
t
I
r
t
t
I
I
p
p
p
(3
)
T
ab
le
1
.
A
d
ata
tab
le
A1
A2
A3
t
1
0
1
0
t
2
0
1
0
t
3
1
2
0
t
4
1
2
0
t
5
0
1
0
t
6
0
2
1
t
7
1
2
2
t
8
1
3
2
t
9
1
3
2
t
10
2
1
3
t
11
2
2
1
W
e
h
av
e
th
a
t
)
(
])
[
,
(
i
Z
t
Z
r
t
t
I
p
i
,
w
h
er
e
)
(
])
[
,
(
i
Z
t
Z
t
I
p
≠
,
is
n
o
t
al
w
a
y
s
eq
u
al
to
r
.
T
h
er
ef
o
r
e
th
e
co
n
d
itio
n
al
p
ar
titi
o
n
])
[
,
(
Z
t
Z
p
I
is
a
s
e
m
i
-
p
ar
titi
o
n
.
Fo
r
ex
a
m
p
le,
let
r
(
R
)
b
e
a
r
elatio
n
as T
ab
le
1
.
T
h
en
}
{
},
{
},
,
{
},
,
,
{
},
{
},
,
,
{
11
10
9
8
7
4
3
6
5
2
1
,
(
)
,
,
2
1
t
t
t
t
t
t
t
t
t
t
t
I
A
A
;
}
{
},
,
,
{
},
{
11
7
4
3
6
,
(
)
2
,
,
2
1
t
t
t
t
t
I
A
A
r
t
t
t
t
t
w
A
A
I
w
}
,
,
,
,
{
11
7
6
4
3
)
2
,
,
2
,
1
(
Def
ini
t
io
n 3
.
4
.
L
et
O
r
b
e
a
s
et
o
f
t
u
p
les
an
d
let
(
Z,
t
p
[
Z
]
)
b
e
an
ite
m
s
et
s
u
c
h
t
h
at
Z
R,
th
e
lo
w
er
)
(
])
[
,
(
*
O
Z
t
Z
p
ap
p
r
o
x
im
a
tio
n
o
f
O
i
s
d
ef
i
n
e
d
b
y
}
)
(
|
{
)
(
])
[
,
(
])
[
,
(
])
[
,
(
*
O
t
I
and
I
r
t
O
Z
t
Z
i
Z
t
Z
Z
t
Z
i
p
p
p
(4
)
Def
ini
t
io
n
3
.
5
.
L
et
r
(
R
)
b
e
a
r
elatio
n
,
th
e
d
ep
en
d
en
c
y
d
eg
r
ee
o
f
C
FD
=
(
X
A
k
,
t
p
)
o
n
r
,
d
en
o
ted
(
,
r
)
,
is
d
ef
i
n
ed
by
|
|
|
)
,
(
|
|
|
1
)
,
(
]
[
]
[
r
r
P
O
S
r
r
X
t
X
t
p
p
(5
)
w
h
er
e:
)
(
])
[
,
(
)
,
(
*
])
]
[
]
[
,
(
q
X
t
X
r
P
OS
p
I
q
X
t
k
A
p
t
k
A
p
an
d
w
r
X
p
t
X
p
I
w
X
t
])
[
,
(
]
[
P
ro
po
s
it
io
n
3
.
1
.
L
et
r
(
R
)
b
e
a
r
elatio
n
,
th
e
s
u
p
p
o
r
t o
f
C
FD
= (
X
A
k
, t
p
)
o
n
r
is
co
m
p
u
ted
by
|
|
|
|
|
|
|
|
)
,
s
u
p
(
])
[
,
(
r
w
r
r
r
k
XA
p
t
k
XA
p
I
w
t
(
6)
P
r
o
o
f.
w
e
h
a
v
e
|
|
|
|
]
[
k
p
p
XA
t
t
r
r
=
|
|
])
[
,
(
w
k
XA
p
t
k
XA
I
w
.
P
r
o
p
o
s
itio
n
3
.
1
th
er
e
f
o
r
e
ca
n
b
e
in
f
er
r
e
d
f
r
o
m
De
f
i
n
itio
n
3
.
1
P
ro
po
s
it
io
n
3
.
2
.
L
et
r
(
R
)
b
e
a
r
elatio
n
,
t
h
e
co
n
v
ictio
n
m
e
asu
r
e
o
f
C
FD
=
(
X
A
k
,
t
p
)
o
n
r
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
p
p
r
o
xima
tio
n
Mea
s
u
r
es fo
r
C
o
n
d
itio
n
a
l F
u
n
ctio
n
a
l D
e
p
en
d
en
cies U
s
in
g
S
tr
ip
p
ed
.
.
.
.
(
A
n
h
Du
y
Tr
a
n
)
1389
co
m
p
u
ted
by
|
|
|
|
|)
|
|
.
(
|
|
|
.
|
|
1
)
,
(
]
[
]
[
]
[
]
[
k
p
p
k
p
p
XA
t
X
t
A
t
X
t
r
r
r
r
r
r
r
C
o
n
v
(
7
)
w
h
er
e
Z
=X
,
Z
=A
k,
o
r
Z
=X
A
k
,
w
r
Z
p
t
Z
p
I
w
Z
t
])
[
,
(
]
[
an
d
if
(
X
,
t
p
[
X
]
)
an
d
(A
k
,
t
p
[A
k
])
ar
e
in
d
ep
en
d
en
t,
th
e
n
C
o
n
v(
,
r)
is
eq
u
a
l to
1
.
P
r
o
o
f
.
W
e
h
av
e
]))
[
,
(
(
k
p
k
A
t
A
P
=1
-
|
|
|
|
1
]))
[
,
s
u
p
(
(
]
[
r
r
A
t
A
k
p
A
t
k
p
k
an
d
]))
[
,
(
]),
[
,
((
k
p
k
p
A
t
A
X
t
X
P
=
]))
[
,
s
u
p
(
(
X
t
X
p
-
|)
|
|
.
(
|
|
|
1
]))
[
,
s
u
p
(
(
]
[
]
[
k
p
p
XA
t
X
t
k
p
k
r
r
r
XA
t
XA
T
h
er
ef
o
r
e
Pro
p
o
s
itio
n
3
.
2
ca
n
b
e
p
r
o
v
en
f
r
o
m
De
f
in
i
tio
n
3
.
2
.
P
ro
po
s
it
io
n 3
.
3
.
L
et
r
(
R
)
b
e
a
r
elatio
n
an
d
= (
X
A
k
, t
p
)
.
T
h
en
th
e
m
ea
s
u
r
e
C
o
n
f
is
co
m
p
u
ted
b
y
|
|
}
,
|
|
m
a
x
{
|
|
|
1
)
,
(
])
[
,
(
])
[
,
(
]
[
r
w
q
I
q
q
r
r
C
o
n
f
X
p
t
X
k
p
k
p
I
w
XA
t
XA
X
t
(
8
)
w
h
er
e
o
t
h
e
r
w
i
s
e
r
O
X
if
I
w
w
w
r
c
X
t
X
I
w
X
t
c
p
c
X
p
t
X
p
|
|
|
|
|
|
|
|
|
])
[
,
(
]
[
])
[
,
(
(
9
)
P
r
o
o
f.
Fro
m
E
q
u
atio
n
2
,
w
e
o
b
tain
|
|
|
|
}
|
,
|
|
m
a
x
{
|
)
,
(
]
[
]
[
r
r
r
s
r
s
s
r
C
o
n
f
X
t
X
t
p
p
|
|
}
|
,
|
|
m
a
x
{
|
|
|
1
]
[
]
[
r
s
r
s
s
r
X
t
X
t
p
p
On
t
h
e
o
th
er
h
an
d
,
i
n
a
s
i
m
ilar
w
a
y
to
th
e
co
m
p
u
tat
io
n
o
f
g
3
i
n
[
1
7
]
,
w
e
h
a
v
e
}
|
,
|
|
m
a
x
{|
]
[
s
r
s
s
X
t
p
])
[
,
(
}
,
|
|
m
a
x
{|
])
[
,
(
X
p
t
X
k
p
k
I
w
XA
t
XA
w
q
I
q
q
.
P
r
o
p
o
s
itio
n
3
.
3
is
th
er
ef
o
r
e
p
r
o
v
en
.
E
x
a
m
p
le
3
.
1
.
L
et
'
s
co
m
p
u
te
t
h
e
m
ea
s
u
r
e
s
S
u
p
,
,
C
o
n
f,
an
d
C
onv
f
o
r
th
e
d
ep
en
d
en
cies
1
an
d
2
f
r
o
m
T
ab
le
1
:
1
= (
A
1
A
2
,
0
||
1
)
2
= (
A
1
A
2
,
-
||
-
)
T
h
r
o
u
g
h
1
,
2
an
d
T
ab
le
1
,
w
e
ca
n
in
f
er
th
e
co
n
d
itio
n
al
p
ar
titi
o
n
s
as
f
o
llo
w
s
:
}
,
,
,
{
6
5
2
1
)
0
,
(
1
t
t
t
t
I
A
}
,
{
},
,
,
,
,
{
},
,
,
,
{
11
10
9
8
7
4
3
6
5
2
1
)
,
(
1
t
t
t
t
t
t
t
t
t
t
t
I
A
}
,
,
,
{
10
5
2
1
)
1
,
(
2
t
t
t
t
I
A
}
,
{
},
,
,
,
,
{
},
,
,
,
{
9
8
11
7
6
4
3
10
5
2
1
)
,
(
2
t
t
t
t
t
t
t
t
t
t
t
I
A
}
,
,
{
5
2
1
)
1
,
0
,
(
2
,
1
t
t
t
I
A
A
}
{
},
{
},
,
{
},
,
,
{
},
{
},
,
,
{
11
10
9
8
7
4
3
6
5
2
1
)
,
,
(
2
,
1
t
t
t
t
t
t
t
t
t
t
t
I
A
A
Fro
m
th
e
s
e
co
n
d
itio
n
al
p
ar
titi
o
n
s
an
d
E
q
u
atio
n
s
5
-
8
,
w
e
h
a
v
e:
11
/
3
)
,
(
1
r
Sup
11
/
11
)
,
(
2
r
Sup
11
/
7
11
0
4
1
)
,
(
1
r
0
11
0
11
1
)
,
(
2
r
11
/
10
11
3
4
1
)
,
(
1
r
C
o
n
f
11
/
7
11
)
1
3
3
(
11
1
)
,
(
2
r
c
o
n
f
11
/
28
3
4
)
4
11
.(
4
.
11
1
)
,
(
1
r
C
o
n
v
1
)
,
(
2
r
C
o
n
v
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
: 1
3
8
5
–
1
3
9
7
1390
B
ec
au
s
e
1
))
,
((
)).
,
((
))
,
,
((
2
1
2
1
A
P
A
P
A
A
P
,
w
e
i
n
f
er
th
a
t
)
,
(
1
A
an
d
)
,
(
2
A
ar
e
in
d
ep
en
d
en
t.
T
he
r
ef
o
r
e
,
1
)
,
(
2
r
C
o
n
v
.
T
h
e
f
o
llo
w
in
g
p
r
o
p
o
s
itio
n
ex
p
r
ess
es
an
i
n
ter
esti
n
g
r
el
atio
n
s
h
ip
b
et
w
ee
n
t
h
e
co
n
f
i
d
en
ce
an
d
d
ep
en
d
en
c
y
d
eg
r
ee
.
P
ro
po
s
it
io
n 3
.
4
.
L
et
r
(
R
)
b
e
a
r
elatio
n
an
d
= (
X
A
k
, t
p
)
.
T
h
en
|
|
}
,
|
|
m
a
x
{
|
)
,
(
)
,
(
])
[
,
(
])
[
,
(
r
w
q
I
q
q
r
r
C
o
n
f
X
p
t
X
k
p
k
I
w
XA
t
XA
P
r
o
o
f.
Fro
m
(
8
)
,
w
e
o
b
tain
t
h
e
f
o
llo
w
in
g
co
n
n
ec
tio
n
|
|
}
,
|
m
a
x
{
|
|
|
1
)
,
(
])
[
,
(
])
[
,
(
]
[
r
w
q
I
q
q
r
r
C
o
n
f
X
p
t
X
k
p
k
p
I
w
XA
t
XA
X
t
|
|
|
)
(
])
[
,
(
|
|
|
1
*
]
[
])
[
,
(
r
q
X
t
X
r
p
I
q
X
t
k
A
p
t
k
A
p
|
|
}
,
|
m
a
x
{
|
)
,
(
])
[
,
(
])
[
,
(
r
w
q
I
q
q
r
X
p
t
X
k
p
k
I
w
XA
t
XA
W
e
n
ex
t
p
r
esen
t
an
e
x
a
m
p
le
to
an
al
y
ze
th
r
ee
m
ea
s
u
r
es,
in
clu
d
in
g
d
ep
en
d
en
c
y
d
e
g
r
ee
,
co
n
f
id
e
n
ce
an
d
co
n
v
ict
io
n
f
o
r
g
en
er
al
C
F
Ds.
E
x
a
m
p
le
3.
2
.
L
et
'
s
co
m
p
u
te
t
h
e
m
ea
s
u
r
e
s
f
o
r
th
e
f
o
llo
w
in
g
d
ep
en
d
en
cies f
r
o
m
T
ab
le
1
1
= (
A
1
A
2
,
0
||
1
)
2
= (
A
1
A
2
,
-
||
-
)
3
= (
A
1
A
2
A
3
,
-
,
2
||
-
)
4
= (
A
1
A
3
,
1
||
-
)
5
= (
A
1
A
2
A
3
,
-
,
-
||
0
)
6
= (
A
2
A
3
A
1
,
2
,
-
||
-
)
Fro
m
E
q
u
atio
n
s
5
,
7
an
d
8
,
w
e
h
av
e
(
1
,
r)
=
7
/1
1
(
2
,
r)
=
0
(
3
,
r)
=
8
/1
1
C
o
n
f
(
1
,
r
)
= 1
0
/1
1
C
o
n
f
(
2
,
r
)
= 7
/1
1
C
o
n
f
(
3
,
r
)
= 1
0
/1
1
C
o
n
v
(
1
,
r
)
= 2
8
/1
1
C
o
n
v
(
2
,
r
)
= 1
C
o
n
v
(
3
,
r
)
= 1
(
4
,
r)
=
6
/1
1
(
5
,
r)
=
3
/1
1
(
6
,
r)
=
9
/1
1
C
o
n
f
(
4
,
r
)
= 9
/1
1
C
o
n
f
(
5
,
r
)
= 5
/1
1
C
o
n
f
(
6
,
r
)
= 1
0
/1
1
C
o
n
v
(
4
,
r
)
= 1
C
o
n
v
(
5
,
r
)
= 1
C
o
n
v
(
6
,
r
)
= 1
Re
m
a
r
k
3
.
1
.
Fro
m
E
x
a
mp
l
e
3
.
2
,
let'
s
ev
a
lu
ate
t
h
e
m
ea
s
u
r
es
b
ased
o
n
th
eo
r
y
an
al
y
s
is
:
1.
T
h
e
m
ea
s
u
r
e
C
o
n
v
ca
n
n
o
t d
ef
i
n
e
h
o
w
m
u
c
h
d
ep
en
d
en
c
y
(
o
r
v
io
latio
n
)
is
t
h
er
e
i
n
= (
[
X
c
, X
v
]
A
k
, t
p
)
w
it
h
th
e
f
o
llo
w
i
n
g
C
FD
f
o
r
m
s
:
t
p
[A
k
]
= ‘
-
‘
,
X
c
=
:
2
t
p
[A
k
]
= ‘
-
‘
,
X
c
≠
, X
v
≠
:
3
and
6
t
p
[A
k
]
= ‘
-
‘
,
X
v
=
:
4
t
p
[A
k
]
≠
‘
-
‘
,
X
c
=
:
5
T
o
u
n
r
av
el
th
is
,
b
ec
au
s
e
(
X
,
t
p
[
X
]
)
an
d
(A
k
,
t
p
[A
k
])
ar
e
in
d
ep
en
d
en
t
i
n
t
h
ese
f
o
r
m
s
,
w
e
in
f
er
th
a
t
th
eir
C
o
n
v
m
ea
s
u
r
es
ar
e
al
w
a
y
s
eq
u
al
to
1
ev
en
w
h
en
a
n
y
v
alu
e
s
in
d
ata
t
u
p
les
ar
e
ch
an
g
ed
.
W
e
ca
n
s
ee
t
h
is
li
m
ita
tio
n
i
n
2,
3,
4,
5
,
an
d
6
.
2.
Dep
en
d
en
c
y
d
eg
r
ee
i
s
to
o
s
t
r
ict
f
o
r
m
ea
s
u
r
in
g
t
h
e
ap
p
r
o
x
im
atio
n
o
f
C
F
Ds.
I
n
d
ee
d
,
w
it
h
d
ep
en
d
en
c
y
2
f
r
o
m
E
x
a
m
p
le
3
.
2
,
w
e
o
b
s
er
v
e
th
at
j
u
s
t
f
o
u
r
t
u
p
les
v
io
lati
n
g
2
m
ak
e
d
ep
en
d
en
c
y
d
eg
r
ee
o
f
2
to
b
e
0
.
3.
As
s
h
o
w
n
i
n
E
x
a
m
p
le
3.
2
f
o
r
d
ep
en
d
en
cies
f
r
o
m
1
to
6
,
th
e
m
ea
s
u
r
e
C
o
n
f
ca
n
o
v
er
co
m
e
th
e
d
r
a
w
b
ac
k
s
o
f
a
n
d
C
o
n
v
f
o
r
g
en
er
al
C
FD
s
.
H
o
w
ev
er
,
t
h
e
y
ca
n
n
o
t
m
ea
s
u
r
e
t
h
e
d
is
tr
ib
u
tio
n
o
f
d
ata
tu
p
es i
n
th
e
co
n
d
it
io
n
al
eq
u
i
v
a
len
ce
clas
s
es.
I
n
d
ee
d
,
if
v
alu
e
s
i
n
t
u
p
es
t
3
a
n
d
t
9
co
r
r
esp
o
n
d
in
g
to
attr
ib
u
tes
A
3
a
n
d
A
2
ar
e
ch
a
n
g
ed
f
r
o
m
0
to
1
an
d
3
to
5
,
th
en
C
o
n
f
(
ev
en
a
n
d
C
o
n
v
)
o
f
2
an
d
4
n
ev
er
c
h
an
g
e.
T
h
er
ef
o
r
e,
w
e
p
r
o
p
o
s
e
th
e
f
o
ll
o
w
i
n
g
le
m
m
a
an
d
d
ef
in
i
tio
n
s
f
o
r
a
n
e
w
m
ea
s
u
r
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
p
p
r
o
xima
tio
n
Mea
s
u
r
es fo
r
C
o
n
d
itio
n
a
l F
u
n
ctio
n
a
l D
e
p
en
d
en
cies U
s
in
g
S
tr
ip
p
ed
.
.
.
.
(
A
n
h
Du
y
Tr
a
n
)
1391
Fro
m
t
h
e
k
n
o
w
led
g
e
g
r
a
n
u
l
ar
it
y
o
f
a
p
ar
titi
o
n
[
3
3
]
,
w
e
in
tr
o
d
u
ce
t
h
e
i
n
co
m
p
let
e
k
n
o
w
led
g
e
g
r
an
u
lar
it
y
o
f
co
n
d
itio
n
al
p
ar
titi
o
n
in
d
u
ce
d
b
y
ite
m
s
et
(
Z,
t
p
[
Z
]
)
.
Def
ini
t
io
n
3
.
6
.
L
et
}
...,
,
{
1
])
[
,
(
l
Z
t
Z
w
w
I
p
b
e
a
co
n
d
itio
n
al
p
ar
titi
o
n
w
it
h
t
h
e
in
co
m
p
lete
p
r
o
b
a
b
ilit
y
d
is
tr
ib
u
tio
n
)
(
...,
),
(
1
])
[
,
(
l
I
w
P
w
P
P
Z
p
t
Z
o
n
th
e
s
et
o
f
t
u
p
es
r
,
|
|
/
|
|
)
(
r
w
w
P
i
i
an
d
1
)
(
])
[
,
(
Z
p
t
Z
i
I
w
i
w
P
.
T
h
en
in
co
m
p
lete
k
n
o
w
led
g
e
g
r
an
u
lar
it
y
o
f
])
[
,
(
Z
t
Z
p
I
is
d
ef
in
ed
b
y
l
i
i
i
l
i
i
i
Z
t
Z
r
w
w
w
P
w
I
IE
p
1
1
])
[
,
(
|
|
|
|
|
|
)
(
|
|
)
(
(
1
0
)
L
e
mm
a
3
.
1
.
L
et
r
(
R
)
b
e
a
r
elatio
n
=
(
X
A
k
,
t
p
)
h
o
ld
s
o
n
r
i
f
a
n
d
o
n
l
y
i
f
)
(
)
(
])
[
,
(
])
[
,
(
k
p
k
p
XA
t
XA
X
t
X
I
IE
I
IE
P
r
o
o
f.
W
e
d
em
o
n
s
tr
ate
th
at
)
(
)
(
])
[
,
(
])
[
,
(
k
p
k
p
XA
t
XA
X
t
X
I
IE
I
IE
if
an
d
o
n
l
y
if
t
h
er
e
is
th
e
s
a
m
e
d
is
tr
ib
u
tio
n
o
f
t
h
e
tu
p
les
r
i
n
to
class
es
])
[
,
(
X
t
X
p
I
w
an
d
])
[
,
(
k
p
k
XA
t
XA
I
q
r
esp
ec
tiv
el
y
,
i
.
e
,
f
o
r
an
y
])
[
,
(
X
t
X
p
I
w
,
th
er
e
ex
is
t
s
])
[
,
(
k
p
k
XA
t
XA
I
q
s
u
c
h
th
at
q
w
,
i.e
,
h
o
ld
s
o
n
r
.
L
e
m
m
a
3
.
1
is
th
er
ef
o
r
e
p
r
o
v
en
.
Fro
m
L
e
m
m
a
3
.
1
,
a
d
is
tr
ib
u
tio
n
er
r
o
r
d
eg
r
ee
o
f
ca
n
b
e
ex
p
r
ess
ed
b
y
)
(
)
(
)
(
)
,
(
])
[
,
(
])
[
,
(
])
[
,
(
X
t
X
XA
t
XA
X
t
X
E
p
k
p
k
p
I
IE
I
IE
I
IE
r
(
1
1
)
T
h
en
w
e
h
av
e
a
n
e
w
m
ea
s
u
r
e
f
o
r
C
FD a
s
f
o
llo
w
s
Def
ini
t
io
n
3
.
7
.
L
et
r
(
R
)
b
e
a
r
elatio
n
a
n
d
=
(
X
A
k
,
t
p
)
.
A
n
e
w
m
ea
s
u
r
e,
ca
lled
d
is
tr
ib
u
tio
n
d
ep
en
d
en
c
y
d
eg
r
ee
,
is
d
ef
in
ed
b
y
:
o
t
h
e
r
w
i
s
e
I
if
I
IE
I
IE
r
r
X
t
X
X
t
X
XA
t
XA
E
D
p
p
k
p
k
0
0
|
|
)
(
)
(
)
,
(
1
)
,
(
])
[
,
(
])
[
,
(
])
[
,
(
(
1
2
)
E
x
a
m
p
le
3
.
3
.
Fro
m
E
x
a
m
p
le
3
.
2
,
w
e
h
a
v
e
D
(
2
,
r)
=
5
/9
an
d
D
(
4
,
r
)
=
1
3
/2
5
.
I
f
w
e
c
h
an
g
e
d
ata
v
alu
e
s
as i
n
R
e
m
ar
k
3
.
1
(
3
.
)
,
t
h
en
D
(
2
,
r
)
= 2
3
/4
5
an
d
D
(
4
,
r
)
= 1
1
/2
5
.
W
e
s
ee
th
at
th
e
b
ig
g
er
m
ea
s
u
r
e
D
,
th
e
b
ig
g
er
d
ep
en
d
en
c
y
p
r
o
b
a
b
ilit
y
o
f
.
I
f
D
(
,
r
)
=
1
,
th
en
b
ec
o
m
e
s
a
C
FD.
T
h
er
ef
o
r
e
D
ca
n
b
e
u
s
ed
to
m
ea
s
u
r
e
t
h
e
ap
p
r
o
x
i
m
a
tio
n
o
f
AC
FD
s
.
Mo
r
eo
v
er
,
D
ca
n
m
ea
s
u
r
e
t
h
e
d
is
tr
ib
u
tio
n
d
eg
r
ee
o
f
d
ata
tu
p
les
b
ased
o
n
th
e
co
n
d
itio
n
al
d
ep
en
d
en
c
i
es
as
i
n
d
ica
ted
i
n
f
o
llo
w
in
g
e
x
a
m
p
le.
T
ab
le
2
.
A
d
ata
tab
le
o
f
p
atien
ts
N
a
me
S
y
mp
t
o
m
D
i
se
a
se
t
1
N
1
1
1
t
2
N
2
1
2
t
3
N
3
1
3
t
4
N
4
2
2
t
5
N
5
2
2
t
6
N
6
2
2
t
7
N
7
1
4
t
8
N
8
1
5
t
9
N
9
3
1
t
10
N
10
2
3
t
11
N
11
2
4
t
12
N
12
3
1
t
13
N
13
3
1
t
14
N
14
2
1
t
15
N
15
3
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
: 1
3
8
5
–
1
3
9
7
1392
E
x
a
m
p
le
3
.
4
.
L
et
r
(
R
)
b
e
a
r
elatio
n
as T
ab
le
2
W
ith
11
=
(
S
ymp
to
m
Dis
ea
s
e,
1
||
-
)
,
12
=
(
S
ymp
to
m
Dis
ea
s
e,
2
||
-
)
,
an
d
13
=
(
S
y
mp
to
m
Dis
ea
s
e,
3
||
-
)
in
T
ab
le
2
,
w
e
h
av
e
D
(
11
,
r
)
=
1
/5
,
D
(
12
,
r
)
=
1
/3
,
an
d
D
(
13
,
r
)
=1
.
If
v
alu
e
s
i
n
t
u
p
es
t
10
an
d
t
11
co
r
r
esp
o
n
d
in
g
to
Dis
ea
s
e
attr
ib
u
te
ar
e
ch
a
n
g
ed
f
r
o
m
3
to
1
an
d
4
to
2
,
th
en
D
(
12
,
r
)
= 5
/9
.
W
e
o
b
s
er
v
e
th
at
th
e
n
ea
r
er
t
h
e
m
ea
s
u
r
e
D
(
1i
,
r
)
is
to
1
,
th
e
b
ig
g
er
th
e
ce
n
tr
alize
d
d
is
tr
ib
u
tio
n
o
f
th
e
p
atien
t
s
i
n
i
r
1
in
to
o
n
e
o
r
m
o
r
e
d
is
ea
s
e
s
is
.
W
e
n
o
w
p
r
o
p
o
s
e
th
e
co
m
p
u
ta
tio
n
f
o
r
m
ea
s
u
r
es
b
ased
o
n
th
e
s
tr
ip
p
ed
c
o
n
d
itio
n
al
p
ar
titi
o
n
to
r
ed
u
ce
th
e
co
m
p
u
tatio
n
al
t
i
m
e
i
n
d
is
c
o
v
er
in
g
A
C
FDs
.
Def
ini
t
io
n
3
.
8
.
L
et
r
(
R
)
b
e
a
r
elatio
n
an
d
le
t
(
Z,
t
p
[
Z
]
)
b
e
an
ite
m
s
et
s
u
c
h
t
h
at
Z
R
.
A
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
of
])
[
,
(
Z
t
Z
p
I
,
d
en
o
ted
])
[
,
(
ˆ
Z
t
Z
p
I
is
d
ef
in
ed
b
y
}
1
|
|
|
{
ˆ
])
[
,
(
])
[
,
(
w
I
w
I
Z
t
Z
Z
t
Z
p
p
(
1
3
)
B
ased
o
n
th
e
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
,
f
o
r
an
y
ite
m
s
et
(
Z,
t
p
[
Z
]
)
,
w
h
er
e
Z
≠
an
d
Z
R
,
if
1
|
|
]
[
Z
t
p
r
,
th
en
w
e
h
av
e
t
h
e
f
o
llo
w
in
g
d
ef
i
n
itio
n
s
,
p
r
o
p
o
s
itio
n
s
,
an
d
le
m
m
as.
Def
ini
t
io
n
3
.
9
.
L
et
r
(
R
)
b
e
a
r
elatio
n
.
T
h
en
,
th
e
s
u
p
p
o
r
t
o
f
is
co
m
p
u
ted
ac
co
r
d
in
g
E
q
u
atio
n
1
,
w
h
er
e
|
|
p
t
r
is
d
ef
i
n
ed
b
y
o
t
h
e
r
w
i
s
e
r
O
Z
if
XA
Z
I
w
w
r
r
c
k
Z
t
Z
XA
t
t
c
p
c
k
p
p
|
|
,
ˆ
|
|
|
|
|
|
|
])
[
,
(
]
[
(
1
4
)
P
ro
po
s
it
io
n
3
.
5
.
T
h
e
in
co
m
p
l
ete
k
n
o
w
led
g
e
g
r
a
n
u
lar
it
y
o
f
])
[
,
(
Z
t
Z
p
I
is
d
ef
i
n
ed
b
y
|
|
)
1
|
(|
|
|
|
|
1
)
(
])
[
,
(
ˆ
]
[
])
[
,
(
Z
p
t
Z
p
p
I
w
Z
t
Z
t
Z
r
w
w
r
I
IE
(
1
5
)
P
r
o
o
f.
Fro
m
E
q
u
atio
n
3
an
d
1
3
,
w
e
i
n
f
er
th
a
t
])
[
,
(
ˆ
]
[
|
|
|
|
Z
p
t
Z
p
I
w
Z
t
w
r
is
th
e
n
u
m
b
er
o
f
s
in
g
l
e
co
n
d
itio
n
al
eq
u
i
v
ale
n
ce
clas
s
e
s
r
e
m
o
v
ed
f
r
o
m
th
e
co
n
d
i
t
io
n
a
l p
ar
titi
o
n
])
[
,
(
Z
t
Z
p
I
.
Hen
ce
,
|
|
)
1
|
(|
|
|
|
|
|
|
|
|
|
|
]
[
ˆ
ˆ
]
[
2
ˆ
2
])
[
,
(
])
[
,
(
])
[
,
(
])
[
,
(
Z
t
I
w
I
w
Z
t
I
w
I
w
p
Z
p
t
Z
Z
p
t
Z
p
Z
p
t
Z
Z
p
t
Z
r
w
w
w
r
w
w
(
1
6
)
P
r
o
p
o
s
itio
n
3
.
5
is
th
er
ef
o
r
e
p
r
o
v
en
.
No
w
t
h
r
o
u
g
h
t
h
e
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
,
th
e
n
e
w
m
ea
s
u
r
e
D
ca
n
b
e
co
m
p
u
ted
u
s
in
g
E
q
u
atio
n
s
1
2
,
1
4
,
an
d
15.
T
h
e
co
m
p
u
ta
tio
n
o
f
C
o
n
f
is
b
ased
o
n
P
r
o
p
o
s
itio
n
3
.
6
as f
o
llo
w
s
P
ro
po
s
it
io
n
3
.
6
.
L
et
r
(
R
)
b
e
a
r
elatio
n
a
n
d
=
(
X
A
k
,
t
p
)
w
h
er
e
X
R
,
A
k
R
.
T
h
en
,
th
e
co
n
f
id
e
n
ce
m
ea
s
u
r
e
C
o
n
f
o
f
is
d
ef
in
ed
b
y
o
t
h
e
r
w
i
s
e
r
r
r
A
t
if
r
w
f
r
Conf
k
p
p
X
p
t
X
XA
t
X
t
k
p
I
w
|
|
|
|
|
|
1
'
'
]
[
|
|
)
(
1
)
,
(
]
[
]
[
ˆ
])
[
,
(
(
1
7
)
w
h
er
e
o
t
h
e
r
w
i
s
e
w
w
q
t
h
a
t
s
u
c
h
I
q
e
x
i
s
t
s
t
h
e
r
e
if
I
q
q
w
w
f
k
p
k
k
p
k
XA
t
XA
XA
t
XA
1
|
|
ˆ
}
ˆ
|
|
m
a
x
{
|
|
|
)
(
])
[
,
(
])
[
,
(
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
p
p
r
o
xima
tio
n
Mea
s
u
r
es fo
r
C
o
n
d
itio
n
a
l F
u
n
ctio
n
a
l D
e
p
en
d
en
cies U
s
in
g
S
tr
ip
p
ed
.
.
.
.
(
A
n
h
Du
y
Tr
a
n
)
1393
|
|
]
[
X
t
p
r
an
d
|
|
]
[
k
p
XA
t
r
ar
e
co
m
p
u
ted
b
ased
o
n
E
q
u
atio
n
1
4.
P
r
o
o
f.
I
f
t
p
[A
k
]
=
‘
-
‘
,
th
en
f
o
r
an
y
eq
u
iv
ale
n
ce
cla
s
s
])
[
,
(
X
t
X
p
I
w
,
th
er
e
ex
is
t
th
e
eq
u
iv
a
len
ce
class
es
])
[
,
(
k
p
k
XA
t
XA
I
q
s
u
c
h
t
h
at
q
w
k
XA
p
t
k
XA
I
q
])
[
,
(
.
On
th
e
o
th
er
h
an
d
,
f
o
r
an
y
])
[
,
(
X
t
X
p
I
w
,
if
ca
r
d
in
alit
y
o
f
w
is
eq
u
al
to
1
an
d
t
i
w
t
h
e
n
t
i
al
w
a
y
s
s
atis
f
ie
s
=
(
X
A
k
,
t
p
)
.
He
n
ce
,
f
o
r
an
y
])
[
,
(
ˆ
X
t
X
p
I
w
,
if
th
er
e
ex
i
s
ts
])
[
,
(
ˆ
k
p
k
XA
t
XA
I
q
s
u
ch
t
h
at
q
w
,
th
en
t
h
e
n
u
m
b
er
o
f
t
u
p
le
s
in
w
v
io
lati
n
g
C
FD
is
}
,
ˆ
|
|
m
a
x
{|
|
|
)
(
])
[
,
(
w
q
I
q
q
w
w
f
k
p
k
XA
t
XA
.
Oth
er
w
is
e,
q
w
a
s
r
e
m
o
v
ed
f
r
o
m
t
h
e
co
n
d
itio
n
al
p
ar
titi
o
n
])
[
,
(
k
p
k
XA
t
XA
I
.
T
h
u
s
,
f(
w
)
= |
w
|
-
1
.
If
t
p
[A
k
]
≠
‘
-
‘
,
th
en
f
o
r
an
y
])
[
,
(
X
t
X
p
I
w
,
if
th
er
e
ex
i
s
ts
])
[
,
(
k
p
k
XA
t
XA
I
q
s
u
ch
t
h
at
q
w
,
th
e
n
q
is
u
n
iq
u
e.
Hen
ce
,
|
|
|
|
|
|
1
|
|
|
|
|
|
1
)
,
(
]
[
]
[
])
[
,
(
])
[
,
(
r
r
r
r
q
w
r
C
o
n
f
k
p
p
X
p
t
X
k
XA
p
t
k
XA
XA
t
X
t
I
w
I
q
P
r
o
p
o
s
itio
n
3
.
6
is
th
er
ef
o
r
e
p
r
o
v
en
.
4.
T
H
E
DI
SCO
V
E
RY
P
RO
B
L
E
M
O
F
ACF
Ds
L
et
S
u
p
Th
r
b
e
a
s
u
p
p
o
r
t th
r
esh
o
ld
,
a
C
FD
=
(
X
A
k
, t
p
)
i
s
f
r
eq
u
e
n
t i
f
s
u
p
(
, r
)
SupT
hr
[9
]
As in
tr
o
d
u
ce
d
in
[
1
3
]
,
w
ith
a
c
o
n
f
id
e
n
ce
th
r
es
h
o
ld
C
o
n
fTh
r
,
th
e
AC
FD
=
(
X
A
k
, t
p
)
h
o
ld
s
o
n
th
e
r
elatio
n
r
(
o
r
r
ap
p
r
o
x
i
m
atel
y
s
atis
f
ie
s
,
d
e
n
o
ted
r
|=
Conf
)
if
a
n
d
o
n
l
y
i
f
C
o
n
f(
,
r
)
C
o
n
fTh
r
.
T
h
en
=
(
X
A
k
,
t
p
)
is
m
i
n
i
m
al
if
1
)
,
X
A
k
2
)
f
o
r
an
y
p
r
o
p
er
s
u
b
s
et
,
X
Y
,
(
|
k
C
o
n
f
A
Y
r
]),
[
||
]
[
k
p
p
A
t
Y
t
an
d
3
)
f
o
r
an
y
p
atter
n
t
u
p
le
p
s
w
h
er
e
p
p
s
t
,
)
||
]
[
,
(
|
X
s
A
X
r
p
k
C
o
n
f
.
P
ro
ble
m
1
.
L
et
r
(
R
)
b
e
a
r
elatio
n
.
T
h
e
d
is
co
v
er
y
p
r
o
b
lem
o
f
A
C
FDs
is
to
d
is
co
v
er
th
e
f
r
e
q
u
en
t
an
d
m
i
n
i
m
al
A
C
FDs
o
n
r
.
T
h
e
r
ig
h
t
-
h
a
n
d
-
s
id
e
(
R
H
S
)
ca
n
d
id
ate
s
et
o
f
(
X
,
s
p
)
,
d
en
o
te
d
C
+
(
X
,
s
p
)
,
is
u
s
ed
to
ch
ec
k
m
i
n
i
m
alit
y
o
f
d
ep
en
d
en
cie
s
a
n
d
p
r
u
n
e
t
h
e
s
ea
r
ch
s
p
ac
e
o
f
d
is
co
v
er
y
alg
o
r
ith
m
s
o
f
C
FDs
an
d
A
C
FDs
(
C
T
A
NE
a
n
d
ap
p
o
x
C
T
A
N
E
)
b
ased
o
n
attr
ib
u
te
-
s
et/p
atter
n
lattice
.
T
o
d
is
co
v
er
th
e
f
r
eq
u
en
t
an
d
m
i
n
i
m
al
AC
FD
s
o
n
r
,
t
h
e
al
g
o
r
ith
m
ap
p
o
x
C
T
A
NE
[
1
3
]
s
tar
ts
f
r
o
m
a
s
et
L
1
=
{
(
A
k
,
-
)
| A
k
∈
R
}
∪
{
(
A
k
, a
)
|
s
u
p
(
A
k
, a
)
≥
S
u
p
T
h
r
,
A
k
∈
R
,
a
∈
dom
(
A
k
)
}
an
d
g
e
n
er
ates
L
2
f
r
o
m
L
1
,
L
3
f
r
o
m
L
2
,
…in
w
h
ich
,
is
th
e
s
et
o
f
ite
m
s
ets
(
X
,
s
p
)
s
u
c
h
th
at
th
e
ca
r
d
in
alit
y
o
f
X
is
eq
u
al
to
.
Fo
r
ea
ch
ite
m
s
et
(
X
,
s
p
)
∈
,
th
e
R
HS
ca
n
d
id
ate
s
et
C
+
(
X
,
s
p
)
is
co
m
p
u
ted
b
y
in
ter
s
ec
tio
n
o
f
R
HS
ca
n
d
id
ate
s
e
ts
C
+
(X
\
A
k
,s
p
[X
\
A
k
]
)
f
o
r
an
y
A
k
X
.
T
h
en
t
h
e
d
ep
en
d
en
c
y
=
(
X
\
A
k
A
k
,
s
p
[X
\
A
k
]
|
|s
p
[A
k
])
is
m
i
n
i
m
al
if
an
d
o
n
l
y
if
(
A
k
,
s
p
[
A
k
])
C
+
(
X
,
s
p
)
.
Fro
m
th
a
t,
to
m
in
e
th
e
f
r
e
q
u
en
t
a
n
d
m
i
n
i
m
a
l
AC
FD
s
o
n
r
,
ap
p
o
x
C
T
A
N
E
ch
ec
k
s
t
h
e
d
ep
en
d
en
c
ies
=
(
X
\
A
k
A
k
,
s
p
[X
\
A
k
]
||
s
p
[A
k
])
s
u
c
h
t
h
at
(
A
k
,
s
p
[A
k
]
)
∈
C
+
(
X
,
s
p
)
,
(
X
,
s
p
)
,
an
d
A
k
X
.
L
e
t
u
p
b
e
a
n
y
tu
p
le
p
atter
n
s
u
c
h
t
h
at
u
p
[
A
k
]
=
s
p
[A
k
]
o
r
-
,
an
d
u
p
[
X
\
A
k
]
≤
s
p
[
X
\
A
k
]
.
I
f
C
o
n
f(
,
r
)
≥
C
o
n
fTh
r
,
th
e
n
o
u
tp
u
t
,
a
n
d
r
e
m
o
v
e
(
A
k
,
∗
)
f
r
o
m
C
+
(
X
,
u
p
)
f
o
r
ev
er
y
(
X
,
u
p
)
∈
w
h
er
e
’
∗
’
d
en
o
tes
a
ll
v
alu
e
s
f
o
r
A
k
,
in
clu
d
i
n
g
t
h
e
v
ar
iab
le
.
I
f
C
o
n
f(
,
r
)
=0
,
th
en
re
m
o
v
e
(
A
p
,
∗
)
f
ro
m
C
+
(
X
,
u
p
)
f
o
r
e
v
e
r
y
A
p
∈
R
\
X
,
a
n
d
(
X
,
u
p
)
∈
.
Nex
t,
th
e
alg
o
r
ith
m
r
e
m
o
v
e
s
ite
m
s
ets
(
X
,
s
p
)
f
r
o
m
s
u
ch
th
at
C
+
(
X
,
s
p
)
is
e
m
p
t
y
.
T
h
i
s
p
r
o
ce
s
s
is
p
er
f
o
r
m
ed
f
o
r
th
e
n
ex
t
lev
e
ls
,
,
…
u
n
til t
h
er
e
ex
i
s
t
s
q
s
u
c
h
t
h
at
is
e
q
u
al
to
e
m
p
ty
.
R
ea
d
er
s
ca
n
r
ef
er
C
+
(
X
,
s
p
)
an
d
th
e
alg
o
r
ith
m
s
C
T
A
NE
a
n
d
ap
p
o
x
C
T
A
NE
in
t
h
e
p
ap
er
s
[
9
]
[
1
3
].
No
w
,
let
r
(
R
)
b
e
a
r
elatio
n
an
d
let
(
X
,
t
p
)
a
n
d
(
Y,
s
p
)
b
e
t
w
o
ite
m
s
ets
s
u
c
h
th
a
t
0
|
|
p
t
r
an
d
0
|
|
p
s
r
.
T
h
en
,
th
e
ite
m
s
et
(
Z,
u
p
)
i
s
g
e
n
er
ated
f
r
o
m
(
X
,
t
p
)
a
n
d
(
Y,
s
p
)
s
u
c
h
th
at
Z =
X
Y
an
d
0
|
|
)
,
(
]
[
]
[
0
|
|
])
[
,
(
Y
X
if
s
t
Y
X
s
Y
X
t
and
Y
X
if
Y
X
Y
s
t
s
t
u
p
p
p
p
p
p
p
p
p
A
cc
o
r
d
in
g
to
th
e
p
r
o
d
u
ct
o
f
t
w
o
p
ar
titi
o
n
s
i
n
[
9
]
an
d
[
1
7
]
,
th
e
f
o
llo
w
i
n
g
le
m
m
as
h
o
ld
b
ase
d
o
n
th
e
co
n
d
itio
n
al
p
ar
titi
o
n
s
an
d
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
.
L
e
mm
a
4
.
1
.
T
h
e
co
n
d
itio
n
al
p
ar
titi
o
n
)
,
(
p
u
Z
I
is
co
m
p
u
ted
b
y
)
,
(
)
,
(
)
,
(
.
p
p
p
s
Y
t
X
u
Z
I
I
I
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
: 1
3
8
5
–
1
3
9
7
1394
w
h
er
e
}
0
|
|
,
,
|
{
.
)
,
(
)
,
(
)
,
(
)
,
(
q
w
I
q
I
w
q
w
I
I
p
p
p
p
s
Y
t
X
s
Y
t
X
L
e
mm
a
4
.
2
.
A
s
s
u
m
e
th
at
1
|
|
p
t
r
,
1
|
|
p
s
r
an
d
1
|
|
p
u
r
.
T
h
en
th
e
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
)
,
(
ˆ
p
u
Z
I
is
co
m
p
u
ted
b
y
)
,
(
)
,
(
)
,
(
ˆ
.
ˆ
ˆ
p
p
p
s
Y
t
X
u
Z
I
I
I
w
h
er
e
}
1
|
|
,
ˆ
,
ˆ
|
{
ˆ
.
ˆ
)
,
(
)
,
(
)
,
(
)
,
(
q
w
I
q
I
w
q
w
I
I
p
p
p
p
s
Y
t
X
s
Y
t
X
L
e
m
m
a
s
4
.
1
an
d
4
.
2
ar
e
u
s
e
d
to
co
m
p
u
te
t
h
e
p
r
o
d
u
cts
o
f
t
w
o
co
n
d
itio
n
al
p
ar
tit
i
o
n
s
a
n
d
s
tr
i
p
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
f
o
r
th
e
it
e
m
s
et
s
in
t
h
e
le
v
els
L
2
,
L
3
, …
o
f
th
e
attr
ib
u
te
-
s
et/p
atter
n
la
tti
ce
.
T
h
e
r
esu
lts
i
n
Sec
tio
n
3
an
d
4
allo
w
u
s
e
f
f
ec
tiv
e
l
y
i
m
p
r
o
v
e
th
e
co
m
p
u
tatio
n
ti
m
e
f
o
r
t
h
e
C
FD
a
n
d
AC
FD
d
is
co
v
er
y
al
g
o
r
it
h
m
s
.
T
h
ese
r
es
u
lt
s
ar
e
al
s
o
u
s
e
d
to
ev
al
u
ate
th
e
li
m
itat
io
n
s
o
f
t
h
e
m
ea
s
u
r
es
(
d
ep
en
d
en
c
y
d
eg
r
ee
,
co
n
v
icti
o
n
an
d
co
n
f
id
en
ce
)
i
n
g
e
n
er
a
l
C
FD
s
an
d
t
h
e
u
tili
t
y
o
f
t
h
e
p
r
o
p
o
s
ed
m
ea
s
u
r
e
(
D
).
5.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
is
s
ec
tio
n
e
v
al
u
ates
t
h
e
e
f
f
ec
tiv
e
n
e
s
s
o
f
t
h
e
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
f
o
r
t
h
e
d
is
co
v
er
y
alg
o
r
ith
m
o
f
AC
FD
s
b
ased
o
n
th
e
co
n
f
id
en
ce
m
ea
s
u
r
e
an
d
t
h
e
u
ti
lit
y
o
f
n
e
w
m
ea
s
u
r
e
(
D
).
B
ased
o
n
th
e
alg
o
r
ith
m
ap
p
o
x
C
T
A
NE
[
1
3
]
,
th
e
alg
o
r
ith
m
s
t
h
a
t
d
is
co
v
er
AC
FD
s
u
s
i
n
g
t
h
e
co
n
d
itio
n
al
p
ar
titi
o
n
s
(
C
P
s
)
an
d
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
(
S
CP
s
)
ar
e
ca
lled
C
P
-
ap
p
o
x
C
T
ANE
an
d
SC
P
-
ap
p
o
x
C
T
A
NE
,
r
esp
ec
tiv
el
y
.
CP
-
ap
p
o
x
C
T
A
NE
al
g
o
r
ith
m
m
i
n
es
t
h
e
AC
FD
s
th
r
o
u
g
h
t
h
e
p
r
o
d
u
ct
o
f
C
P
s
(
L
e
m
m
a
4.
1
)
an
d
th
e
co
m
p
u
tatio
n
s
o
f
t
h
e
s
u
p
p
o
r
t
an
d
co
n
f
id
en
ce
o
f
u
s
i
n
g
C
P
s
(
Def
i
n
it
i
o
n
3
.
1
an
d
P
r
o
p
o
s
itio
n
3
.
3
)
.
W
h
ile
th
e
d
is
co
v
er
y
o
f
SC
P
-
ap
p
o
x
C
T
ANE
is
b
ased
o
n
t
h
e
p
r
o
d
u
ct
o
f
S
C
P
s
(
L
e
m
m
a
4
.
2
)
an
d
t
h
e
co
m
p
u
tat
io
n
s
o
f
t
h
e
s
u
p
p
o
r
t a
n
d
co
n
f
id
e
n
ce
o
f
u
s
in
g
S
C
P
s
(
Def
i
n
it
i
o
n
3
.
1
,
Def
in
it
i
o
n
3
.
9
an
d
P
r
o
p
o
s
itio
n
3
.
6
).
T
ab
le
3
.
A
d
escr
ip
tio
n
o
f
d
ata
s
ets
D
a
t
a
se
t
#
o
f
a
t
t
r
i
b
u
t
es
#
o
f
t
u
p
l
e
s
1
S
y
n
t
h
e
t
i
c
d
a
t
a
se
t
s
6
-
12
5
0
0
0
0
0
2
B
l
o
o
d
T
r
a
n
sf
u
s
i
o
n
5
7
4
8
3
N
u
r
se
r
y
9
1
2
9
6
0
4
C
h
e
ss
7
2
8
0
5
6
5
C
a
r
Ev
a
l
u
a
t
i
o
n
7
1
7
2
8
W
ith
th
e
s
y
n
t
h
etic
a
n
d
r
ea
l
d
ata
s
ets
,
as
s
h
o
w
n
i
n
T
ab
le
3
,
t
h
e
ex
p
er
i
m
en
t
s
ar
e
co
n
d
u
ce
d
u
n
d
er
t
h
e
CP
-
ap
p
o
x
C
T
A
NE
a
n
d
SC
P
-
ap
p
o
x
C
T
A
NE
alg
o
r
it
h
m
s
.
T
h
ese
al
g
o
r
ith
m
s
ar
e
i
m
p
le
m
en
ted
in
R
o
n
a
co
m
p
u
ter
w
it
h
a
3
.
5
GHz
I
n
tel
C
o
r
e
i7
p
r
o
ce
s
s
o
r
an
d
8
GB
m
e
m
o
r
y
.
T
h
e
s
y
n
t
h
etic
d
ata
s
ets
s
et
s
a
r
e
g
e
n
er
ated
r
an
d
o
m
l
y
b
y
v
a
r
y
in
g
th
e
n
u
m
b
er
o
f
d
is
ti
n
ct
v
al
u
es
o
f
attr
ib
u
tes
(
N
DV
)
,
t
h
e
n
u
m
b
e
r
o
f
t
u
p
les
(
|r|
)
,
t
h
e
n
u
m
b
er
o
f
a
ttrib
u
te
s
(
a
r
ity
)
,
a
n
d
t
h
e
s
u
p
p
o
r
t
th
r
es
h
o
ld
(
S
u
p
Th
r
)
.
N
o
te
th
at
attr
ib
u
tes
p
er
d
ata
s
et
h
av
e
th
e
s
a
m
e
N
D
V.
T
o
ev
alu
ate
t
h
e
e
f
f
ec
tiv
e
n
e
s
s
o
f
s
tr
ip
p
ed
co
n
d
itio
n
al
p
ar
titi
o
n
s
f
o
r
d
is
co
v
er
y
al
g
o
r
it
h
m
s
,
t
h
e
ex
p
er
i
m
e
n
ts
ar
e
c
ar
r
ied
o
u
t a
s
f
o
llo
w
s
:
o
W
e
f
ix
C
o
n
fTh
r
,
|r|
,
a
r
ity
a
n
d
S
u
p
Th
r
eq
u
al
to
0
.
8
,
5
0
0
0
0
0
,
6
,
an
d
1
0
0
r
esp
ec
tiv
el
y
.
N
DV
is
v
ar
ied
f
r
o
m
1
0
0
to
5
0
0
.
o
Fix
i
n
g
C
o
n
fTh
r
,
N
V
D
,
a
r
ity
a
n
d
S
u
p
Th
r
eq
u
al
to
0
.
8
,
1
0
0
,
6
an
d
0
.
0
0
1
r
esp
ec
tiv
el
y
,
w
e
v
ar
y
|r|
f
r
o
m
1
0
0
k
to
5
0
0
k
.
o
W
ith
S
u
p
Th
r
=
0
.
0
0
5
,
C
o
n
fTh
r
=
0
.
8
an
d
N
DV
=
2
0
,
a
r
ity
is
v
ar
ied
f
r
o
m
6
to
1
2
.
o
W
ith
|r|
=
5
0
0
k
,
a
r
ity
=
6
,
N
DV
=
1
0
0
,
w
e
v
ar
y
S
u
p
Th
r
f
r
o
m
0
.
0
0
1
to
0
.
1
.
As
s
h
o
w
n
i
n
Fi
g
u
r
e
s
1
an
d
2
,
SC
P
-
ap
p
o
x
C
T
A
NE
o
u
tp
er
f
o
r
m
s
C
P
-
ap
p
o
x
C
T
A
NE
w
it
h
in
cr
ea
s
i
n
g
th
e
n
u
m
b
er
o
f
d
i
s
ti
n
ct
v
al
u
es,
ar
it
y
as
w
ell
a
s
th
e
n
u
m
b
er
o
f
tu
p
les a
n
d
d
ec
r
ea
s
in
g
t
h
e
s
u
p
p
o
r
t th
r
esh
o
ld
s
.
Si
m
i
lar
l
y
,
w
e
ca
n
ap
p
l
y
L
e
m
m
a
4
.
2
an
d
L
e
m
m
a
3
.
1
(
th
e
in
co
m
p
lete
k
n
o
w
l
ed
g
e
g
r
a
n
u
lar
it
y
o
f
S
C
P
s
f
o
r
C
FD
)
an
d
P
r
o
p
o
s
itio
n
3
.
5
to
r
e
d
u
ce
th
e
d
is
co
v
er
y
ti
m
e
o
f
C
FD
s
f
o
r
C
T
A
NE
al
g
o
r
it
h
m
i
n
t
h
e
p
ap
er
[
9
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.