Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 5
,
O
c
tob
e
r
201
5, p
p
. 1
119
~112
7
I
S
SN
: 208
8-8
7
0
8
1
119
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Dual Orthogonal
Feed Ci
rcul
a
r Polarization Array Antenna
Using M
i
crost
r
ip
Slot F
eed Net
w
ork
Quaz
i
Del
w
ar
Ho
ssai
n
*,
M
d
. Az
ad
H
o
ss
ai
n*
*,
Mu
ham
m
ad
As
ad
R
a
hman
*
*Department of Electrical
and
Electron
i
c
Engin
e
ering, Ch
ittagong
Un
iversity
of
En
gineer
ing & Technolog
y
**Department of
Electron
i
cs
and Telecommunication
Eng
i
neer
ing, Chittagong University
of
Eng
i
n
eering
& Techno
log
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
May 2, 2015
Rev
i
sed
Au
g 2, 201
5
Accepted Aug 17, 2015
This pap
e
r presents a new
cir
c
ularly
polarized
microstrip array
an
tenna
using
dual-orthogon
al feed
techniqu
e. The
f
eed n
e
twor
k for 1×2 array
is designed
using microstrip lines and slot line
s b
y
apply
i
ng
double-sided MIC concep
t
effectively
.
Th
e 90° phase differ
e
nce
between tw
o orthogonally
f
eed signals
is
creat
ed b
y
ch
oos
ing appropria
te feed
poin
t
in the feed network
to advance
one of th
e f
eed
signals b
y
quar
t
er wave leng
th
(
λ
/4) from other
.
Ex
cellent
radiation perfor
m
ance is obtain
e
d from this prop
osed antenn
a with low cross
polar component. The impedance
(< -10dB
) ban
d
width of th
e ar
ray
is 9
.
1%
and th
e 3-dB
axial r
a
tio
bandwidth is 1.85%
(from 9.905 GHz
to 1
0
.09 GHz)
.
The average g
a
in is higher than
9dBiC over the 3-dB AR bandwidth. The
relation between
antenn
a dimens
ions and
ch
arac
t
e
ris
t
i
c
s
is
als
o
i
nves
tigat
ed
with a
par
a
m
e
tri
c
an
al
ysis of
th
e
antenn
a.
Keyword:
Ar
ray
ant
e
nna
Circu
l
ar po
lari
zatio
n
Doub
le-sid
ed
MIC
D
u
al
-
o
r
t
ho
gonal f
eed
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Quazi Delwa
r
Hos
s
ain,
Depa
rtm
e
nt of
Electrical an
d Electronic
Engineering,
Ch
ittag
o
n
g
Univ
ersity of En
gin
eering
& Tech
no
log
y
,
Ch
ittag
o
n
g
-434
9, Ban
g
l
ad
esh
Em
a
il: q
d
h
o
ssain
@yahoo
.co
m
1.
INTRODUCTION
Circu
l
ar
p
o
l
arizatio
n
(C
P) an
t
e
n
n
a
s are
su
itab
l
e fo
r
m
a
n
y
micro
w
av
e app
licatio
n
s
as it
h
a
s ab
ility to
reduce polariza
tion losses
.
Linearly pol
arized an
tenn
as n
e
ed strict alig
n
m
e
n
t b
e
tween
tran
sm
it
ter an
d
receiv
e
r
whe
r
e as circ
ularly polarize
d
antennas ca
n
comm
unicate fo
r
v
a
r
i
ab
le or
u
nkn
own
or
ientatio
n
[1
]. In
case o
f
array
a
n
t
e
n
n
a,
wei
ght
a
n
d s
i
ze are t
w
o
p
a
ram
e
t
e
rs t
o
be
ke
pt
at
m
i
nd
d
u
r
i
n
g
des
i
gn
p
r
oce
ss as
som
e
appl
i
cat
i
o
ns re
qui
re l
o
w wei
g
ht
an
d
sm
all size antenna. Mi
crost
r
ip a
n
te
n
n
a
s are g
o
od ca
ndi
dat
e
t
o
o
v
e
r
com
e
th
is prob
lem
d
u
e
to its inh
e
ren
t
adv
a
n
t
ag
es o
f
low
p
r
o
f
ile, lig
h
t
weigh
t
,
lo
w co
st and
easy in
teg
r
ati
o
n wit
h
microwa
v
e circuits [2]. C
onv
en
tion
a
l arr
a
y an
tenn
as use o
n
l
y m
i
cr
o
s
tr
i
p
l
i
n
es t
o
desi
gn
fee
d
net
w
o
r
k t
h
at
lead to com
p
lex structure and l
o
nger
m
i
cro
s
t
r
ip
lin
e len
g
t
h
fo
r im
p
e
d
a
n
ce m
a
tch
i
ng
circu
it. As a resu
lt,
antenna struct
ure
becom
e
s large
r
an
d pe
rf
orm
a
nce deg
r
a
d
es d
u
e t
o
hi
g
h
er fee
d
i
n
g l
o
ss and cr
oss
p
o
l
a
ri
zed
rad
i
ation
[3
].
Use
o
f
dou
b
l
e-sid
e
d
MIC
con
cep
t t
h
at
g
i
v
e
s flex
i
b
ility to
pu
t d
i
fferen
t
t
y
p
e
s
o
f
t
r
an
sm
ission
lin
es on
th
e both
sid
e
s of
th
e
su
bstr
ate can
be u
s
ed
to d
e
si
gn
sm
all sized
ar
r
a
y an
tenn
a
by o
v
e
r
c
o
m
in
g
th
ese
pr
o
b
l
e
m
s
[4]
.
There
are t
w
o
main ways to e
x
cite
circular polarization ra
di
ation.
A m
i
crostrip
patch ele
m
ent can
be
use
d
t
o
ac
hi
ev
e ci
rcul
a
r
pol
a
r
i
zat
i
on
ra
di
at
i
o
n
by
m
eans of
a
pert
ur
bat
i
o
n
se
gm
ent
.
S
v
eral
st
ruct
ure
s
f
o
r
a
ci
rcul
arl
y
p
o
l
a
ri
zed a
n
t
e
n
n
a usi
n
g pe
rt
u
r
b
a
t
i
on t
ech
ni
q
u
e
have
bee
n
st
udi
e
d
[
5
-
9
]
.
I
n
[
5
]
,
a m
e
t
hod i
s
reporte
d
to
des
i
gn circ
ular polarized
rectan
gu
lar m
i
cro
s
trip an
tenn
a
with
one
point
feed where
feed point is
located eithe
r
on x axis
or
on
th
e d
i
agon
al
lin
e o
f
th
e p
a
tch.
Trun
catin
g a
pai
r
of
p
a
t
c
h c
o
r
n
er
s i
n
rect
a
n
g
u
l
a
r
o
r
squ
a
re
p
a
tch
for CP is
d
i
scu
ssed
i
n
[6
]. An
an
tenn
a with
slits
or
spu
r
lin
es to th
e
bou
nd
ary of t
h
e
p
a
tch is
rep
o
rt
e
d
i
n
[7
-
8
]
.
Desi
gn
o
f
t
r
apez
oi
dal
s
h
ape sl
ot
an
tenn
a ex
cited
b
y
CPW
lin
e is sh
own
in
[9
].
Du
al
-
ort
h
o
g
onal
fee
d
t
ech
ni
q
u
e i
s
anot
h
e
r way
t
o
ge
nerat
e
C
P
whe
r
e t
w
o se
parat
e
o
r
t
h
o
g
o
n
al
feed
s are e
x
ci
t
e
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
111
9
–
11
27
1
120
wi
t
h
a 90
° p
h
a
s
e di
ffe
rence
.
Dual
fee
d
C
P
ant
e
n
n
as ha
ve
been
prese
n
t
e
d
i
n
[2,
1
0]
. On t
h
e ot
he
r ha
n
d
,
si
ngl
e
feed or
dual feed a
n
tennas
c
a
n
be a
rraye
d
[11-15].
A
serial feed
sequ
en
tially ro
tated
tech
n
i
qu
e is
used
t
o
design a CP a
r
ray antenna
[11] where eac
h
patch elem
ent
is sin
g
l
e feed.
In
t
h
is array, co
m
p
lete feed
network
i
s
desi
gne
d usi
ng m
i
crost
r
i
p
l
i
n
es. A C
P
sl
ot
array
ant
e
n
n
a wi
t
h
ort
h
og
o
n
a
l
feed i
s
prese
n
t
e
d i
n
[
12]
. I
n
[13
-
1
4
]
, sing
le layer m
i
cro
s
trip
array an
te
nn
as
fo
r CP ar
e
p
r
opo
sed
w
h
er
e a 90
°
h
ybrid circuit is u
s
ed
to ach
i
ev
e
ci
rcul
ar pol
a
r
i
zat
i
on. Do
u
b
l
e
-si
d
e
d
M
I
C tech
no
log
y
is u
s
ed
to
design
th
e array antennas of [12-14]
as the
feed net
w
ork in each array consists of
m
i
crostrip lines and
slot lines. An
ot
her 128 ele
m
e
n
ts CP array antenna
ex
cited
u
s
ing
a 1b
y 4 corp
orate feed
n
e
two
r
k of
h
o
llow m
e
t
a
llic wav
e
g
u
i
des is d
e
m
o
n
s
trated
in
[1
5
]
.
I
n
t
h
is p
a
p
e
r, a d
u
a
l
-
or
tho
gonal f
eed
1
×
2
m
i
cr
o
s
t
r
ip
arr
a
y an
tenn
a is d
i
scussed
.
Th
e
f
eed
n
e
two
r
k
is
fo
rm
ed by
pl
a
c
i
ng m
i
crosri
p
l
i
n
es
on
t
h
e
ob
ve
rse si
de a
n
d
sl
ot
l
i
n
e
s
o
n
t
h
e
re
ve
rse
si
de
of t
h
e s
u
bst
r
at
e.
Double-side
d
MIC conce
p
t
is e
m
ployed to design
fe
ed network s
u
ccess
f
ully. A param
e
tric study is
conducted
by s
i
m
u
lation to optim
i
ze
t
h
e ant
e
nna
pe
rf
orm
a
nce. T
h
e
pr
op
o
s
ed ar
ray
ant
e
nna
has a
3-
dB
axi
a
l
rat
i
o
ba
nd
wi
dt
h of
1.
85
%. Th
e com
p
l
e
t
e
ant
e
nna st
r
u
ct
u
r
e al
on
g wi
t
h
ant
e
nna
per
f
o
r
m
a
nces i
s
prese
n
t
e
d an
d
di
scuss
e
d
i
n
s
u
bse
que
nt
sect
i
o
ns.
Literature re
vi
ew that has
been done aut
h
or
use
d
in the chapte
r "Introduction" t
o
explain t
h
e
di
ffe
re
nce of t
h
e m
a
nuscri
p
t
wi
t
h
ot
her
pa
pers
, t
h
at
i
t
is
in
n
o
v
a
tiv
e, it are u
s
ed
in the cha
p
ter "Research
Meth
od
" to
d
e
scr
i
b
e
t
h
e step o
f
r
e
sear
ch
an
d u
s
ed
i
n
th
e ch
ap
ter
"Results an
d
D
i
scu
s
sio
n
"
t
o
su
ppor
t th
e
an
alysis o
f
th
e resu
lts [2
]. If th
e
m
a
n
u
s
cri
p
t
was wr
itten
really h
a
v
e
h
i
g
h
o
r
i
g
in
ality, which
p
r
op
o
s
ed
a n
e
w
m
e
thod
or algorithm
,
the a
d
ditional c
h
a
p
ter afte
r th
e
"Introduction" c
h
apte
r a
n
d be
fore the
"Res
earc
h
M
e
t
h
o
d
" c
h
apt
e
r ca
n
be a
dde
d t
o
ex
pl
ai
n
b
r
i
e
fl
y
t
h
e t
h
e
o
ry
and/
or
t
h
e
pr
o
p
o
se
d m
e
t
hod/
al
go
ri
t
h
m
[4]
.
2.
A
N
T
EN
NA
DESIGN
The com
p
lete s
t
ructure of the
arra
y an
tenn
a is sh
ow
n
in
Fi
gu
r
e
1. Th
e an
ten
n
a
is d
e
sign
ed
on
Tef
l
on
glass fibe
r s
u
bstrate backe
d
by the ground
plane. Relative dielectric const
a
nt (
ε
r
)
of t
h
e s
ubst
r
at
e i
s
2.
15
wi
t
h
a t
h
i
c
knes
s
of
0.
8 m
m
.
Thi
c
k
n
ess o
f
t
h
e c
o
p
p
er s
h
eet
use
d
fo
r ra
di
at
i
ng a
nd
gr
o
u
n
d
pl
a
n
e i
s
0.
01
8 m
m
. The
di
m
e
nsi
on
of t
h
e
gr
o
u
n
d
pl
an
e i
s
6
1
.
3
5×3
7
.
2
3
m
m
2
.
Fi
gu
re
1.
C
o
m
p
l
e
t
e
st
ruct
ure
of
t
h
e
1×
2 ar
ra
y
ant
e
n
n
a
(a)
T
o
p
vi
e
w
(b
) C
r
oss sect
i
onal
vi
ew
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dua
l
Orthog
ona
l Feed
Circu
l
a
r
Po
lariza
tion Array An
tenna
Using
Microstrip
S
l
o
t
…
(
Q
uazi
Delwa
r
H.
)
1
121
Sq
uare m
i
crost
r
i
p
pat
c
h i
s
used as radi
at
i
n
g
el
em
ent
.
As the pat
c
h l
e
n
g
t
h
det
e
rm
i
n
es the res
ona
nt
freq
u
e
n
c
y [1
6
]
, th
e fo
llowing eq
u
a
tion
is u
s
ed
to
calcu
late th
e p
a
tch
len
g
th
an
d
th
en
the wid
t
h
of th
e
p
a
tch
keep
s as
sam
e
l
e
ngt
h
val
u
e
be
cause
of
s
qua
r
e
pat
c
h
.
2
2
∆
(1
)
Wh
ere C is th
e v
e
lo
city of ligh
t
and
f
r
i
s
t
h
e
reso
na
nt
f
r
eq
u
e
ncy
.
Due t
o
a f
r
act
i
on
of t
h
e fi
el
d
s
l
i
e
s out
si
de t
h
e p
h
y
s
i
cal
di
m
e
nsi
on
(
W
×
L
) o
f
t
h
e
pat
c
h
cal
l
e
d as t
h
e
fring
ing
field
,
t
h
e effectiv
e
p
a
tch
leng
th
L
e
becom
e
s L + 2
Δ
L and the
relative
dielectric constant
ε
r
is
repl
aced
by the e
ffecti
v
e dielectric constant
ε
re
. T
h
e
value of
ε
re
c
a
n
be cal
cul
a
t
e
d
b
y
t
h
e eq
uat
i
o
n
gi
ve
n i
n
[
1
7]
as
εr
e
1
2
ε
1
2
1
1
0
/
(2
)
whe
r
e
h is t
h
e t
h
ickness
of the
substrate.
Ad
di
t
i
onal
l
i
ne
l
e
ngt
h
Δ
L
o
n
ei
t
h
er e
n
d
o
f
t
h
e pat
c
h
l
e
n
g
t
h
can
be
obt
ai
ne
d
fr
om
[18]
as
∆
0
.412
0
.
3
0
.
258
0
.264
0
.
8
(3
)
Each si
de
of
t
h
e pat
c
hes i
s
set
as
9.
55
m
m
for
10
G
H
z
fre
q
u
e
ncy
.
The
fee
d
net
w
or
k i
s
c
o
m
posed
o
f
micro
s
trip
lin
es an
d
sl
o
t
lin
es. Th
e
d
oub
le-sid
ed
MIC co
n
cep
t is v
e
ry effectiv
e to
d
e
sig
n
th
is typ
e
of feed
net
w
or
k an
d i
t
i
s
successful
l
y
em
pl
oy
ed i
n
t
h
i
s
desi
gn p
r
ocess. R
a
di
at
i
ng
pat
c
hes an
d m
i
crost
r
i
p
l
i
n
es are
placed on the uppe
r surface of the subs
trat
e and the slot lines lie on the
lowe
r surface of the substrat
e. The
feed
net
w
or
k
consi
s
t
s
of
m
i
crost
r
i
p
-
s
l
o
t
bra
n
ch ci
r
c
u
i
t
and sl
ot
-m
icrost
ri
p b
r
a
n
c
h
ci
rcui
t
.
F
o
r
pr
ope
r
im
pedance m
a
tchi
n
g
bet
w
ee
n
m
i
crost
r
i
p
l
i
n
e
and
sl
ot
l
i
n
e,
t
h
e i
m
pedance
of m
i
crost
r
i
p
l
i
ne s
h
o
u
l
d
be
h
a
l
f
of
t
h
e sl
ot
l
i
n
e i
m
pedance [
19]
. Fo
r a
desire
d characte
r
istic im
pedance Z
C
, the wi
dth
of t
h
e m
i
crostrip line can
be calculate
d
by [20] as
W
8
2
(4
)
Whe
r
e A
=
0.23
.
and B =
√
For
proper m
a
tching bet
w
een
the each patc
h
and m
i
cros
trip
line of the slot
-mic
rostrip bra
n
ch circuit,
12
1
Ω
q
u
a
r
t
e
r-
wave
t
r
a
n
sf
or
m
e
r i
s
use
d
t
h
a
t
i
s
com
put
ed
b
y
[2
1]
as
Z
(5
)
Whe
r
e Z
0
i
s
t
h
e im
pedance
at
feed
p
o
i
n
t
of t
h
e
pat
c
h a
n
d
Z
i
is th
e m
i
cro
s
trip
lin
e im
p
e
dan
ce
o
f
t
h
e
slot-m
icrostrip bra
n
c
h
circ
uit.
3.
BASIC BEHAVIOR OF THE ARRAY
To ge
nerat
e
ci
rcul
ar
pol
a
r
i
zed wa
ves, t
w
o ort
h
o
g
onal
si
g
n
al
s of e
qual
am
pl
i
t
ude wi
t
h
9
0
° p
h
as
e
shift betwee
n them
are needed. The
ba
si
c b
e
havi
or o
f
t
h
e pr
o
pose
d
ci
rcu
l
arly polarized
array antenna
can be
expl
ai
ne
d
usi
n
g Fi
g
u
re
2. T
w
o sepa
rat
e
ort
h
og
o
n
al
feed P
o
rt
I an
d Po
rt
II
are use
d
t
o
ex
ci
t
e
t
w
o dege
n
e
rat
e
ort
h
o
g
onal
m
odes i
n
t
h
e
pat
c
hes. M
o
re
ove
r,
t
h
e feed
poi
nt
as sho
w
n i
n
fi
g
u
re i
s
ch
ose
n
i
n
suc
h
a way
t
h
at
t
h
e
si
gnal
of t
h
e l
o
wer
feed
ci
rcui
t
i
s
ahead
by
q
u
art
e
r
wa
ve l
e
ngt
h f
r
om
t
h
at
of
u
ppe
r fee
d
c
i
rcui
t
t
h
at
creat
e 90
°
pha
se
di
ffe
renc
e bet
w
ee
n t
w
o
ort
h
o
g
onal
i
n
p
u
t
si
g
n
al
.
W
h
en
RF signal is su
p
p
lied
t
o
th
e f
e
ed
po
int, th
e sig
n
a
ls are d
i
v
i
d
e
d
in
phase to
th
e slo
t
lin
e th
ro
ugh
th
e
m
i
cro
s
trip-slo
t p
a
rallel b
r
an
ch
es and
th
ey are su
ccessi
vely d
i
v
i
d
e
d
in
o
u
t
of ph
ase to th
e
m
i
cro
s
trip lin
es
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
111
9
–
11
27
1
122
through the slot-microstrip se
ries bra
n
c
h
es and fee
d
the signals to each pa
tch ele
m
ent. Microstri
p
-sl
o
t branc
h
circu
it acts as a
p
a
rallel power d
i
v
i
d
e
r
with
in
-ph
a
se
ou
tpu
t
s an
d slot-
m
icr
o
str
i
p bran
ch is ser
i
es po
w
e
r
divide
r where out
puts
a
r
e
i
n
out
of phase
[19]. T
h
ere
f
ore,
in each patc
h
of t
h
e a
rray, t
w
o orthogonal signal
s
are form
ed with 90°
phase sh
ift an
d
as a
resu
lt circu
l
arly po
larized
si
g
n
a
l
is ex
cited
.
One in
terestin
g
t
h
in
g
is
that LHCP and RHCP can be
excited usi
ng s
a
m
e
array st
ru
ct
ure by
c
h
an
g
i
ng fee
d
poi
nt
as sho
w
n i
n
Fi
gu
re 2
.
Wh
en
feed
po
i
n
t is p
l
aced
at
Feed-1, LHCP
will b
e
rad
i
ated
an
d RHCP can
b
e
ex
cited
by ch
ang
i
ng
feed
p
o
i
n
t
p
o
s
ition
fro
m
Feed-1
to
Feed-2.
Fi
gu
re
2.
B
a
si
c be
havi
or
o
f
t
h
e array
a
n
t
e
nna
4.
PA
RAM
ETRIC
STUD
Y OF THE
A
R
R
AY
To o
b
t
a
i
n
best
perf
orm
a
nce,
t
h
e param
e
t
r
i
c
st
udy
of t
h
e
pr
o
pose
d
ant
e
nna i
s
co
nd
uct
e
d. Di
f
f
e
r
ent
p
a
ram
e
ters fo
r p
a
ram
e
tric stu
d
y
are illu
strat
e
d
i
n
Fi
g
u
re
1
.
Th
e m
i
cro
s
trip
lin
e wi
d
t
h of th
e
bran
ch
ci
rcu
its
den
o
t
e
d by
M
W
, t
h
e spaci
ng
bet
w
ee
n t
h
e fe
ed l
i
n
e an
d t
h
e
sl
ot
-m
i
c
rost
ri
p b
r
anc
h
poi
nt
den
o
t
e
d
by
D
and t
h
e
l
e
ngt
h
of t
h
e sl
ot
l
i
n
e ext
e
nsi
on f
r
o
m
m
i
crost
r
i
p
l
i
n
e i
n
sl
ot
-m
i
c
rost
ri
p b
r
anch
den
o
t
e
d
b
y
L
SM
are
m
a
in
three
param
e
t
e
rs res
p
o
n
si
bl
e f
o
r
p
r
ope
r i
m
pedanc
e m
a
t
c
hi
ng
.
Fi
gu
re
3.
Ef
fec
t
of
M
W
o
n
the
retu
rn
l
o
ss
of t
h
e an
tenn
a
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Dual
Orthogonal Fee
d
Circul
ar P
o
larizati
on Array A
n
tenna
Using Micr
ostrip Sl
ot …
(
Q
uazi
Delwa
r
H.
)
1
123
Hence
,
t
h
ese p
a
ram
e
t
e
rs can
be o
p
t
i
m
i
zed
by
param
e
t
r
i
c
st
udy
. T
h
e sl
o
t
l
i
n
e wi
dt
h (S
W
) and t
h
e
p
o
s
ition
of th
e feed
po
in
t (F
L
) are anot
her
t
w
o pa
ram
e
t
e
r
s
t
o
be st
udi
ed
as t
h
ey
i
n
fl
uence b
o
t
h
i
m
pedanc
e
b
a
ndwid
th
and
ax
ial ratio
.Th
e
effects of
vary
i
n
g t
h
e
wi
dt
h o
f
m
i
crost
r
i
p
l
i
n
es (M
W
) on the antenna
perform
a
nce are shown in Figure
3. It
is ob
serv
ed
th
at th
e
o
p
e
rating
b
a
ndwid
th
is sh
ifted
left and
return
lo
ss
decrease
s
with increasi
ng t
h
e
m
i
crostr
ip
line wid
t
h. Fi
g
u
re 4
sh
ows t
h
e si
m
u
lated
retu
rn
lo
ss ob
tain
ed
b
y
chan
gi
n
g
t
h
e s
p
aci
n
g
bet
w
ee
n sl
ot
-m
i
c
rost
ri
p b
r
anc
h
a
n
d t
h
e fee
d
l
i
n
e
w
h
en
ot
her
para
m
e
t
e
rs are fi
xe
d. T
h
e
val
u
e
of
D c
h
an
ges t
h
e o
p
e
rat
i
ng
fre
q
u
e
n
cy
an
d t
h
e i
m
pedance ba
n
d
wi
dt
h i
s
dec
r
eased
ra
pi
dl
y
wi
t
h
i
n
creasi
n
g t
h
e
spaci
n
g
. B
u
t
a
t
an o
p
t
i
m
u
m
poi
nt
, i
t
gi
ves
bet
t
e
r ret
un l
o
ss val
u
e
an
d i
m
pedance ba
n
d
wi
dt
h
and it is chose
n
as
16.935 mm
.
Fi
gu
re
4.
R
e
t
u
r
n
l
o
ss f
o
r
di
ffe
rent
val
u
es
o
f
D
Fi
gu
re
5.
R
e
t
u
r
n
l
o
ss f
o
r
di
ffe
rent
val
u
es
o
f
L
S
The vari
at
i
o
n of ret
u
rn
l
o
ss f
o
r di
f
f
ere
n
t
val
u
es of
L
S
i
s
pl
ot
t
e
d i
n
Fi
g
u
re
5. T
h
e c
u
t
-
of
f
fre
que
ncy
i
s
al
m
o
st fix
e
d
bu
t i
m
p
e
d
a
n
ce
b
a
ndwid
th
is red
u
c
ed
wh
en
th
e leng
th
is in
creased
.
So
L
S
= 5.2 m
m
i
s
t
h
e
opt
i
m
u
m
val
u
e t
h
at
pr
ovi
des
hi
g
h
er
ret
u
rn l
o
ss wi
t
h
best
p
o
ssi
bl
e i
m
pedance ba
n
d
wi
dt
h
.
Fi
g
u
re
6 sh
o
w
s t
h
e
effect
s o
f
va
r
y
i
ng t
h
e l
e
ngt
h of m
i
crost
r
i
p
l
i
n
e ext
e
nsi
on
of sl
ot
-m
i
c
rost
ri
p b
r
anc
h
ci
rcui
t
(L
SM
) fo
r two
d
i
fferen
t
v
a
lu
es o
f
m
i
cro
s
trip lin
e ex
ten
s
ion o
f
m
i
cro
s
trip
-slo
t b
r
an
ch
(L
MS
).
Whe
n
L
MS
(= 5.
58 m
m
) is equal
to
th
e v
a
lu
e o
f
th
e
wav
e
leng
th
(
λ
)
at
desi
g
n
f
r
eq
ue
ncy
,
va
ri
at
i
on of
L
SM
h
a
s little effect o
n
th
e
p
e
rfo
rm
a
n
ce
of
the antenna. B
u
t
in the case
of L
SM
= L
MS
,
t
h
e cut
-
of
f f
r
e
que
ncy
i
s
m
oved f
r
om
l
o
wer
fre
que
ncy
t
o
a
hi
g
h
e
r
fre
que
ncy
a
n
d
gi
ves
bet
t
e
r
ret
u
r
n
l
o
ss
val
u
e
.
Fi
gu
re
6.
R
e
t
u
r
n
l
o
ss f
o
r
di
ffe
rent
val
u
es
o
f
L
MS
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
111
9
–
11
27
1
124
Fig
u
re
7
.
Ax
ial ratio
for
d
i
fferen
t feed
l
o
catio
n (F
L
)
Fi
gu
re 8.
Retur
n
lo
ss f
o
r
diffe
rent
values
o
f
F
L
After pro
p
e
r i
m
p
e
d
a
n
ce m
a
t
c
h
i
ng
, it is requ
ired
to
analysis th
o
s
e
p
a
rameters wh
ich
influ
e
n
ce the
axi
a
l
rat
i
o
ba
n
d
wi
dt
h.
Feed
poi
nt
l
o
cat
i
on
(F
L
) i
s
ve
ry
i
m
port
a
nt
para
m
e
t
e
r t
h
at
req
u
i
r
e
d
fi
ne t
uni
ng t
o
get
o
p
tim
u
m
ax
ial
ratio
. Fi
g
u
re
7
and
Fi
g
u
re
8
show th
e axial ratio
an
d
retu
rn
lo
ss
for
d
i
fferen
t
feed
lo
catio
n
respect
i
v
el
y
.
T
h
o
u
g
h
t
h
e p
o
si
t
i
on of
t
h
e fee
d
poi
nt
shi
f
t
s
t
h
e ope
rat
i
n
g
f
r
e
que
ncy
ban
d
w
i
d
t
h
as
s
h
ow
n by
Figure 8 but it is also necessary to
place feed point in such
a location that can create 90° phase differenc
e
b
e
tween
th
e
o
r
th
og
on
al feed
sig
n
a
ls of th
e
patch
.
Wh
en
th
e
p
o
s
ition
is at th
e op
tim
u
m
p
o
i
n
t
, th
e rad
i
ation
will
b
e
p
e
rfectly circu
l
arly
p
o
l
arized
an
d th
e ax
ial ratio
cu
rve at op
erating frequ
en
cy
will b
e
ap
pro
ach
ed
to
a
min
i
m
u
m
v
a
lu
e. Th
e m
i
n
i
m
u
m
ax
ial ratio
o
f
0.243
d
B
is fo
und
wh
en
F
L
= 7.
5 m
m
as sho
w
n i
n
Fi
g
u
r
e
7
a
n
d
i
t
can be
t
a
ke
n
as an
o
p
t
i
m
u
m
poi
nt
as i
t
al
s
o
gi
ves
bet
t
e
r
ret
u
r
n
l
o
ss
val
u
e
.
Fi
gu
re 9.
Ax
ial
ratio
for d
i
fferen
t
v
a
l
u
es o
f
S
W
Figure 10.
R
e
tu
rn
lo
s
s
f
o
r
d
i
ff
e
r
en
t
v
a
lu
e
s
o
f
S
W
Slo
t
lin
e wi
d
t
h sho
u
l
d
b
e
op
ti
mized
to
g
e
t
better ax
ial ratio and
ret
u
rn
loss. Variatio
n
s
of ax
ial ratio
and
retur
n
loss
for c
h
an
gin
g
S
W
are show
n
i
n
Fi
gu
re 9 a
n
d Fi
g
u
re
10 r
e
spect
i
v
el
y
.
Fo
r
fi
ne t
uni
ng
of
axi
a
l
ratio
, it is
n
ecessary to adju
st
slo
t
lin
e
wid
t
h
an
d select an
op
ti
m
u
m
v
a
lu
e t
h
at will
g
i
v
e
go
od
ax
ial
ratio
with
b
e
tter i
m
p
e
d
a
nce
m
a
tch
i
n
g
.
Bu
t it is
also
o
b
s
erv
e
d
th
at at a
lo
ng
er wi
d
t
h, th
e ax
ial ratio
an
d
ret
u
rn
lo
ss
ag
ai
n
start to
decrea
s
e
. So S
W
= 0.2
mm is th
e o
p
t
i
m
u
m
v
a
lu
e to
g
e
t b
e
tter p
e
rform
a
n
ce.
5.
RESULTS
A
N
D
DI
SC
US
S
I
ONS
Th
e an
tenn
a is d
e
sign
ed
and
si
m
u
lated
u
s
ing
co
mm
ercial
EM
soft
ware package
,
Adva
nced
Design
Sy
st
em
(AD
S
)
base
d
o
n
t
h
e
M
e
t
h
o
d
of M
o
m
e
nt
s (M
OM
).
The
o
p
t
i
m
al
dim
e
nsi
ons
o
f
t
h
e a
n
t
e
n
n
a
o
b
t
a
i
n
ed
by param
e
tric
analysis are:
M
W
= 1.5 m
m
,
S
W
= 0.2
m
m
,
D = 16.
9
35 m
m
, L
MS
= L
SM
=
L
S
= 5.2 m
m
and F
L
=
7
.
5
mm
.
Retu
rn
lo
ss
(S1
1
) of th
e array is sh
own
in
Fi
g
u
re 11
. Th
e resu
lt in
d
i
cates th
at th
e return
lo
ss i
s
sm
a
ller th
an
-10
d
B
fro
m
9
.
65
to
10
.5
7
GHz. So
th
e im
p
e
d
a
n
ce
b
a
ndwidth
is 9
.
1
%
with resp
ect to
th
e cen
ter
f
r
e
q
u
e
n
c
y
o
f
10
.1
1 GH
z. Figu
r
e
12
sho
w
s th
e ax
ial r
a
tio
p
e
rf
or
m
a
n
ce of
th
e
pr
opo
sed an
tenn
a. From
9
.
905
GHz t
o
1
0
.09
GHz, th
e ax
ial ratio
is b
e
l
o
w 3
d
B
lev
e
l. So
th
e ax
ial ratio
(AR <
3
d
B
) b
a
nd
wi
d
t
h
of t
h
e
d
e
sign
ed
ar
r
a
y
an
ten
n
a
is 185
MH
z or
abou
t 1
.
8
5
%
respect to the center fre
quency of 9.99
GHz a
n
d the
min
i
m
u
m
v
a
lu
e o
f
ax
ial ratio
is 0
.
0
2
6
d
B
at
9
.
9
9
GHz. Th
i
s
resu
lt sho
w
s
a g
ood
ax
ial ratio
sm
a
ller th
an
3 d
B
at th
e d
e
sign
freq
u
e
n
c
y an
d it
co
nfirm
s
th
at
the
proper ci
rcular po
larization is ach
iev
e
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Dual
Orthogonal Fee
d
Circul
ar P
o
larizati
on Array A
n
tenna
Using Micr
ostrip Sl
ot …
(
Q
uazi
Delwa
r
H.
)
1
125
F
i
g
u
r
e
1
1
.
R
e
tu
rn
lo
s
s
o
f
t
h
e
a
n
t
e
n
n
a
Fig
u
re 12
. Ax
ial
ratio
o
f
t
h
e
an
tenn
a
Gain
of th
e array an
tenn
a is il
lu
strated
i
n
Figu
re
13
. Max
i
mu
m
g
a
in
of
9
.
49
d
B
ic is ach
i
ev
ed at 9.91
GHz
. It is als
o
obse
rve
d
tha
t
avera
g
e gai
n
ove
r the
co
mp
lete o
p
erating b
a
ndwid
th
i
s
hi
g
h
er
t
h
an 9 dB
i
c
.
Fi
gu
re
1
4
e
x
h
i
bi
t
s
t
h
e
radi
at
i
on
pat
t
e
r
n
of
1×
2 a
rray
a
n
t
e
nna
at
9.
99
GHz
. Fi
gu
re
s
h
o
w
s
g
o
o
d
ra
di
at
i
o
n
p
e
rf
or
m
a
n
ce of
th
e arr
a
y an
ten
n
a
.
An
te
nn
a rad
i
atio
n is left h
a
nd
circu
l
ar
ly po
larized (LHCP). B
u
t it
is also
pos
si
bl
e t
o
ra
d
i
at
e ri
ght
ha
nd
ci
rcul
arl
y
p
o
l
a
ri
zed
(R
HC
P
)
wa
ves
usi
n
g
s
a
m
e
ant
e
n
n
a st
ruct
ure
by
c
h
a
ngi
ng
o
n
l
y
feed po
i
n
t.
When Feed
-2
is
u
s
ed
t
o
ex
cite th
e
an
t
e
nna,
i
n
p
u
t
si
gnal
o
f
P
o
rt
I
i
s
ahea
d
by
qua
rt
e
r
wavel
e
ngt
h t
h
a
n
t
h
at
o
f
P
o
rt
I
I
.
As a res
u
l
t
,
t
h
e ra
di
at
i
on
wi
l
l
be R
H
C
P
. T
h
e cr
oss
p
o
l
a
r
l
e
vel
of t
h
e ant
e
nna
i
s
bet
t
e
r t
h
an -
45
dB
t
h
at
i
ndi
cat
es very
go
o
d
radi
a
t
i
o
n pe
r
f
o
r
m
a
nce of t
h
e ant
e
nna
. To
com
p
are the antenna
per
f
o
r
m
a
nce, f
o
u
r
pre
v
i
o
us
w
o
r
k
s a
r
e l
i
s
t
e
d i
n
Ta
bl
e
1.
Fig
u
r
e
13
. G
a
i
n
o
f
th
e
ar
r
a
y
an
tenn
a
Fi
gu
re
1
4
. R
a
d
i
at
i
on pat
t
e
r
n
a
t
9.
99
G
H
z
Tabl
e 1.
C
o
m
p
ari
s
o
n
Ref
.
No.
Year
Arra
y Si
ze
Frequency,
GHz
Im
pedance
B
W
(
<
-
10dB)
Axial Ratio B
W
(<
3
dB)
Gain,
dBic
[11]
2006
2×2
2.45
0.073 GHz
0.02 GHz
---
[12]
2010
2×2
7.
5
1.
8
GHz
12%
-
-
-
[13]
2012
2×2
10
1.25 GHz
(
<
-
15dB)
10%
12.
5
[14]
2012
2×2
10
1.
5
GHz
3.
8%
-
-
-
Pr
oposed
Antenna
2014
1×2
10
0.92 GHz / 9.1%
0.185 GHz / 1.85%
9.49
6.
CO
NCL
USI
O
NS
A ne
w dual-orthogonal feed circul
arly pol
arized m
i
crostrip arra
y
ant
e
nna at
1
0
G
H
z
has bee
n
dem
onst
r
at
ed i
n
t
h
i
s
pa
per
.
M
i
crost
r
i
p
l
i
n
e
s
and sl
ot
l
i
n
es are use
d
t
o
de
si
gn a
n
t
e
n
n
a f
eed net
w
o
r
k
w
i
t
h
t
h
e
hel
p
of
d
o
u
b
l
e
-si
d
e
d
M
I
C
c
o
ncept
a
n
d t
h
i
s
feed
net
w
o
r
k e
l
im
i
n
at
es t
h
e u
s
e of a
n
y
t
y
pes
of
p
o
we
r
di
vi
der
or
h
ybrid
circu
its. Param
e
tric an
alysis h
a
s b
e
en do
n
e
to
op
ti
mize th
e an
ten
n
a
p
a
ram
e
ters. Im
p
e
d
a
n
ce b
a
nd
wi
dt
h
(
<
-1
0 d
B
)
and ax
ial r
a
tio
b
a
nd
w
i
d
t
h
(
<
3-dB)
of
th
e ar
r
a
y
an
tenn
a ar
e 9.1% and
1.85
%
resp
ectiv
ely. An
tenna
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
111
9
–
11
27
1
126
sho
w
s
hi
g
h
ga
i
n
al
l
over t
h
e
ope
rat
i
ng
ba
n
d
wi
dt
h a
nd m
a
xi
m
u
m
gai
n
is 9.
49
dB
i
c
at
9.
91
GHz
. Ex
cel
l
e
nt
rad
i
ation
p
e
rform
a
n
ce is also
o
b
s
erv
e
d wh
ere
cro
ss
po
lar co
m
p
on
en
t is lo
wer than -45
d
B
.
Du
e to
the
excel
l
e
nt
ra
di
a
t
i
on
per
f
o
r
m
a
nce a
nd
hi
gh
gai
n
, t
h
e
p
r
o
pos
ed a
n
t
e
n
n
a
i
s
sui
t
a
bl
e
f
o
r m
a
ny
m
i
crowa
v
e
ap
p
lication
su
ch
p
o
rtab
le rada
r
,
RF sensor
s,
RFI
D
etc.
REFERE
NC
ES
[1]
J.
Garcia, A.
Arriol
a
,
F
.
C
a
s
a
d
o
,
X
.
C
h
e
n
,
J
.
I
.
Sancho,
and D. V
a
lderas, “Coverag
e
and r
ead
rang
e comparison of
linearly
and circularly
polar
ized radio
fr
equen
c
y
identi
fi
catio
n ultra-high fr
equen
c
y
tag
antennas”,
IET Microwaves,
Antennas and
Pr
opagation
, vol.
6, no
. 9
,
pp
.1070
–1078, 2012
.
[2]
J.
Q.
Howell,
“Mic
rostrip
antennas”,
IEEE Trans.
on Antennas and
propagation
, vo
l. 23
, no
. 1
,
pp
. 9
0
-93, 1975
.
[3]
K. Kodama, E. Nishiy
ama an
d M. Aikawa,
“Slot
array
antenna using bo
th-sided MIC technolog
y
”
,
IEEE
International symposium
on Antennas and Prop
agation
, vol. 3
,
pp. 2715-2718
,
2004.
[4]
M. Aikawa, H
.
Ogawa, “Double-side
d MIC’s and their
applications”,
IEE
E
T
r
ans
. Micr
ow. T
h
eo
r
y
T
ech
., vol. 37
,
no. 2
,
pp
. 406–4
13, 1989
.
[5]
M. Haneishi and
S. Yoshida, “A
desi
gn method of circularly
polar
ized recta
ngular
microstrip anten
n
a b
y
one-poin
t
method”,
Electr
onics and Comm
unications
in
Ja
pan
, vol. 64-B
,
n
o
. 4
,
pp
. 46-54
,
1981.
[6]
W.S. Chen, C.K. Wu, and K.
L. Wong,
“Sing
l
e-feed square-ring microstrip
antenna with tru
n
cated corners fo
r
com
p
act
cir
c
ular
polar
iza
tion
ope
ration
”
,
El
ectr
o
n
.
L
e
t
t
., vol. 34, p
p
. 1045–1047
, 1
998.
[7]
J.H. Lu, C.L. Tang, and K.L.
Wong, “Circular p
o
larization desig
n
of a si
ngle-feed equilateral-
triangular microstrip
antenn
a”
,
Electr
on. Lett
., vo
l. 34
, pp
. 319–321
, 1
998.
[8]
H.M. Chen and K.L. Wong, “On ci
rcular polar
ization design of a
nnular-ring micr
ostrip antenn
as”,
IEEE T
r
ans. on
Antennas and
Pr
opagation
, vol.
47, pp
. 1289–12
92, 1999
.
[9]
R.V.S
.
R.
Kris
hna and
R.
Kum
a
r, “
D
es
ign o
f
ultr
a wid
e
ban
d
trap
ezoid
al
s
h
ape s
l
o
t
anten
n
a with
ci
rcul
a
r
polarization”,
In
t.
J.
El
ec
tr
on. C
o
mmun
., vol. 67
, pp. 1038-1047,
2013.
[10]
G.G. Sanford, “
C
onformal microstrip phase
d
ar
ray
for aircr
a
ft
tests with ATS-6”,
I
EEE Trans.
on Antennas an
d
propagation
, vo
l. AP-26, no
. 5
,
p
p
. 642-646
, 197
8.
[11]
M
.
N. J
a
z
i
and
M
.
N. Azarm
a
n
e
s
h
, “
D
es
ign and
im
plem
enta
tion
of c
i
rcu
l
arl
y
p
o
lari
zed m
i
c
ros
t
rip an
tenna
arr
a
y
using a new serial feed sequ
entially
rotated tech
nique”,
IEE Pro
c
. Microw
. Antennas Propag
., vol. 153, no. 2
,
pp
.
133-140, 2006
.
[12]
Y. Ushijim
a, S.
Feng, E.
Nishi
y
am
a and M. Aik
a
wa, “
A
Novel
Circul
ar Polari
z
a
tion Swit
chabl
e
Slot-Ring Arra
y
Antenna with Or
thogonal Feed
Circuit”,
Asia-
P
ac
ific
Mi
crowave
Conferenc
e
(
A
P
M
C)
, pp. 1569-1
572, 2010
.
[13]
Y. Ushijim
a, E.
Nishi
y
am
a and
M. Aikawa, “
S
ingle-l
a
yer
integ
r
ated m
i
crostr
ip
arra
y an
tenna f
o
r dual cir
c
ul
a
r
polarisation”,
I
E
T Microw.
Anten
nas and Propag
., Vol. 6
,
Issue 8
,
pp. 962-968
, 20
12.
[14]
Y. Ushijim
a, E.
Nishiyam
a, I.
To
y
o
d
a
and M. Aikawa, “
C
ircul
a
r polari
zat
ion switchab
l
e single
la
yer m
i
crostri
p
array
antenna”,
I
EEE Internation
a
l Symposium Ante
nnas and
Propagation So
ciety (
APSURSI)
, pp.
1-2, 2012
.
[15]
M
.
S
h
ahabadi,
D. Bus
u
ioc, A. Borji a
nd S. Safavi-Naeini,
“Low-cost, high-
ef
fi
cien
c
y
qu
as
i
-
planar arr
a
y
o
f
waveguide-f
ed circularly
po
la
r
i
zed microstrip antennas”,
IEEE T
r
ansactions on
Antennas and Propagation
, vol.
53, no
. 6
,
pp
. 20
36-2043, 2005
.
[16]
R. Garg, P. Bh
arti
a, I. Bh
al
, and A. Ittipiboon
, Mi
crostrip Ant
e
nna Design Handbook, Artech
House, London,
2001.
[17]
M.V. Schneider
, “
Microstrip dis
p
ersion
”, Pro
c
. I
EEE, vol. 60
, no
. 1
,
pp
. 144-146
, 1972.
[18]
E.O. Hammerstad, “Equations fo
r
microstrip
cir
c
uit d
e
sign”, 5th
European Microwave Con
f
., pp
.
268-272, 1975
.
[19]
K. Egas
hira, E
.
Nis
h
i
y
am
a and
M
.
Aikawa, “P
lanar a
rray
an
tenna using both-sided
M
I
C’s
feeded
c
i
rcui
ts
”,
Electronics and
Communications in
Japan
, vol. 8
7
, no
. 7
,
pp
. 23-
30, 2004
.
[20]
David M. Pozar
, Microwave Eng
i
neer
ing, 3r
d
edition, John Wiley
& Sons, Inc., 20
05.
[21]
Matthew N.O
.
S
a
diku, “Elements of El
ectromagnetics”, 3r
d
edition, Oxford Univ
ersity
Press, New York, 2005.
BIOGRAP
HI
ES OF
AUTH
ORS
Quaz
i Del
w
ar
Hossain
(MIEEE) was born in Barisal
,
Bangl
ad
esh, in 1976. H
e
rec
e
ived
the
B.Sc. degr
ee in
electri
cal
and el
ectron
i
c eng
i
neering from
Chittagong Universit
y
of Engineering
and Technolog
y
(CUET), Chittag
ong,
Bangladesh
,
in 2001; th
e Master of Engin
e
ering degree in
semiconductor
electronics and
in
tegration sciences from Hir
o
sh
ima University
, Hiroshima,
Japan,
in 2007;
and th
e Ph.D. d
e
gr
ee
in microelectronics from th
e
University
of
Trento
, Tr
ento
,
Italy
,
in 2010. During his Ph.D. program, he al
so spent a period with the SOI
Group, Bruno
Kessler Foundation,
Trento
, I
t
aly as a Postgradua
te Research
er. From 2001 to 200
7, he was with
CUET as a
Lecturer. In 2007
, h
e
became an As
sist
ant Professor with the Faculty
of
Electr
ical
and Computer
Engineering, CUET. Presently
he
is
working a
s
an As
s
o
ciate
P
r
ofes
s
o
r at the
Institution
.
His research
inter
e
st
s include im
ag
e
sensors, antenn
a design and re
lat
e
d readou
t
circu
it simulatio
n and experimental ch
aracte
r
i
zation of semico
nductor devices
, sensors an
d
photovoltaic cells.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dua
l
Orthog
ona
l Feed
Circu
l
a
r
Po
lariza
tion Array An
tenna
Using
Microstrip
S
l
o
t
…
(
Q
uazi
Delwa
r
H.
)
1
127
Md. Az
ad Hossain
(MIEEE)
was born in
Dhak
a, B
a
ngl
adesh, i
n
1981.
He
rec
e
ived
the
B.Sc
.
degree
in El
ect
r
i
ca
l and E
l
ec
tro
n
ic Engin
eer
ing
from Rajshahi University
of Engineer
ing and
Techno
log
y
(RU
ET), Rajshahi, Ba
nglad
esh, in 2004. The Master
of Engineering
degree in
EEE
from Saga Univ
ersity
, Saga, Japan, in 2010; a
nd the Ph.D. degree in Scien
c
e and advanced
Techno
log
y
, in
2013 from
the
sam
e
Institute.
From
2013
to
2014, he was with Chittagong
University
of En
gineer
ing and Technolog
y
(CUET)
as a Lectur
er. Presently
he is working as an
As
s
i
s
t
ant P
r
ofes
s
o
r at CUET.
His
res
earch in
t
e
res
t
s
inc
l
ude
M
i
crowave an
te
nna des
i
gn and
related readou
t circuit
simulation
and exper
i
m
e
nt
al char
act
eri
zat
i
on.
M
uhammad A
s
ad Ra
hman
was born in Chittagong
, Bang
la
desh, on Oct
ober, 1986. He
received his B.Sc. degree in El
ectrical and
El
ect
r
onic Engin
eerin
g from
Chittagong Universit
y
of
Engineering
and
Techno
log
y
(C
UET), B
a
nglad
es
h in 2009. Cu
rrently
h
e
is p
e
rusing M.Sc.
degree on larg
e s
cale ex
tens
ibl
e
m
i
cros
trip arra
y
antenn
a and als
o
working as
a fa
cult
y m
e
m
b
er
in CUET, Bang
ladesh. His f
i
eld
of interest is
microstrip
antenna design,
polar
ization div
e
rsity
techn
i
ques
,
wire
les
s
power t
r
ans
f
er and
nex
t
g
e
n
e
rat
i
on wir
e
les
s
com
m
unication
s
y
s
t
em
. He
is
a
student member
of IEEE
and member of
Institute of Eng
i
neers, B
a
nglad
esh.
Evaluation Warning : The document was created with Spire.PDF for Python.