I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l
a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
201
7
,
p
p
.
2
9
5
0
~
2
9
5
7
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
6
.
p
p
2
9
5
0
-
2957
2950
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Theo
retic
a
l Anal
y
sis
of a tw
o
-
sta
g
e Sag
na
c loo
p f
ilt
er
U
sing
J
o
nes M
a
trice
s
N.
A.
B
.
Ah
m
a
d
1
,
S.
H
.
Da
hl
a
n
2
,
N.
A.
Cho
la
n
3
1,
2,
3
Re
se
a
rc
h
Ce
n
ter f
o
r
A
p
p
li
e
d
El
e
c
tro
m
a
g
n
e
ti
c
s,
Un
iv
e
rsiti
T
u
n
Hu
ss
e
in
On
n
M
a
lay
sia
(U
T
HM),
8
6
4
0
0
P
a
rit
Ra
ja,
Ba
tu
P
a
h
a
t,
J
o
h
o
r,
M
a
lay
sia
1,
2,
3
F
a
c
u
l
ty
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ic E
n
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
u
n
Hu
ss
e
in
On
n
M
a
lay
sia
(U
T
HM),
8
6
4
0
0
P
a
rit
Ra
ja,
Ba
tu
P
a
h
a
t,
J
o
h
o
r,
M
a
lay
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
2
2
,
2
0
1
7
R
ev
i
s
ed
No
v
1
4
,
2
0
1
7
A
cc
ep
ted
No
v
3
0
,
2
0
1
7
In
th
is
w
o
rk
,
a
th
e
o
re
ti
c
a
l
a
n
a
l
y
s
is
o
f
a
S
a
g
n
a
c
lo
o
p
f
il
ter
(S
L
F
)
w
it
h
t
w
o
-
sta
g
e
p
o
lariz
a
ti
o
n
m
a
in
tain
in
g
fib
e
rs
(P
M
F
s)
a
n
d
p
o
lariz
a
ti
o
n
c
o
n
tro
ll
e
rs
(P
Cs)
is
p
re
se
n
ted
.
T
h
e
tran
sm
issio
n
f
u
n
c
ti
o
n
o
f
th
is
tw
o
-
sta
g
e
S
L
F
is
c
a
lcu
late
d
in
d
e
tail
b
y
u
sin
g
Jo
n
e
s
m
a
tri
x
.
T
h
e
c
a
lcu
latio
n
is
p
e
r
f
o
r
m
e
d
in
o
rd
e
r
t
o
i
n
v
e
stig
a
te
th
e
f
il
terin
g
c
h
a
ra
c
teristics
.
T
h
e
th
e
o
re
ti
c
a
l
re
su
lt
s
sh
o
w
th
a
t
th
e
w
a
v
e
len
g
th
in
terv
a
l
is
d
e
p
e
n
d
in
g
o
n
t
h
e
d
y
n
a
m
i
c
se
tt
in
g
s
o
f
th
e
len
g
th
o
f
th
e
P
M
F
s
a
n
d
t
h
e
p
o
la
riza
ti
o
n
a
n
g
le
o
f
th
e
P
Cs.
B
y
c
h
a
n
g
in
g
th
e
p
o
lariz
a
ti
o
n
a
n
g
le
o
f
th
e
P
Cs,
a
m
u
lt
ip
le
o
f
sin
g
le,
d
u
a
l
o
r
tri
p
le
w
a
v
e
len
g
th
in
e
a
c
h
c
h
a
n
n
e
l
c
a
n
b
e
a
c
h
iev
e
d
.
Ba
se
d
o
n
th
is
stu
d
y
,
a
f
lat
m
u
lt
iwa
v
e
len
g
th
sp
e
c
tru
m
c
a
n
b
e
o
b
tain
e
d
b
y
a
d
ju
stin
g
th
e
P
M
F
s
a
n
d
th
e
P
Cs
i
n
th
e
tw
o
-
sta
g
e
S
L
F
.
T
h
is
f
in
d
in
g
sig
n
ifi
c
a
n
tl
y
c
o
n
tri
b
u
tes
to
th
e
g
e
n
e
ra
ti
o
n
o
f
m
u
lt
i
w
a
v
e
len
g
th
f
ib
e
r
las
e
r
(M
W
F
L
)
th
a
t
c
a
n
b
e
u
se
d
f
o
r
m
a
n
y
o
p
ti
c
a
l
a
p
p
li
c
a
ti
o
n
s
.
K
ey
w
o
r
d
:
Mu
lti
w
a
v
ele
n
g
th
f
ib
er
laser
Op
tical
f
ib
er
P
o
lar
izatio
n
co
n
tr
o
ller
(
P
C
)
P
o
lar
izatio
n
m
a
in
tai
n
i
n
g
f
ib
er
Sag
n
ac
lo
o
p
f
ilter
(
SLF)
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
N.
A
.
B
.
Ah
m
ad
,
Facu
lt
y
o
f
E
lectr
ical
a
n
d
E
lect
r
o
n
ic
E
n
g
i
n
ee
r
i
n
g
,
Un
i
v
er
s
iti T
u
n
H
u
s
s
ei
n
On
n
Ma
la
y
s
ia
(
UT
HM
)
,
8
6
4
0
0
P
a
r
it R
aj
a,
B
atu
P
ah
at,
J
o
h
o
r
,
Ma
lay
s
ia.
E
m
ail:
n
u
r
u
lati8
9
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Ma
n
y
ar
t
icles
o
n
m
u
lt
i
w
av
e
len
g
th
f
ib
er
laser
(
M
W
F
L
)
h
av
e
b
ee
n
p
u
b
li
s
h
ed
lead
i
n
g
to
th
e
co
n
tr
ib
u
tio
n
o
f
v
ar
io
u
s
ap
p
licatio
n
s
s
u
ch
as
o
p
tical
i
n
s
tr
u
m
en
t
te
s
ti
n
g
,
o
p
tical
f
ib
er
s
e
n
s
i
n
g
,
s
p
ec
tr
o
s
co
p
y
,
m
icr
o
w
av
e
p
h
o
to
n
ics,
o
p
tical
co
m
m
u
n
icatio
n
n
et
w
o
r
k
s
,
an
d
d
en
s
e
w
av
ele
n
g
t
h
d
iv
is
io
n
m
u
ltip
le
x
in
g
(
W
DM
)
s
y
s
te
m
[
1
-
3
]
.
T
h
e
m
u
lti
w
a
v
el
en
g
t
h
c
h
ar
ac
ter
is
tic
s
in
ter
m
s
o
f
n
u
m
b
er
o
f
li
n
es,
c
h
an
n
el
s
p
ac
in
g
,
w
a
v
ele
n
g
t
h
ten
ab
ilit
y
,
f
lat
n
es
s
,
an
d
f
u
ll
b
an
d
co
v
er
ag
e
w
er
e
e
x
te
n
s
i
v
el
y
d
is
co
v
er
ed
[
4
]
.
I
n
r
ec
en
t
y
e
ar
s
,
m
o
s
t
o
f
MW
F
L
r
esear
ch
es
ar
e
b
ased
o
n
t
h
e
u
s
e
o
f
er
b
iu
m
-
d
o
p
ed
f
ib
er
a
m
p
li
f
ier
(
E
DF
A
)
d
u
e
to
it
s
m
a
n
y
a
d
v
an
ta
g
es
s
u
ch
as
lo
w
p
o
lar
izatio
n
s
e
n
s
iti
v
it
y
,
h
i
g
h
s
atu
r
atio
n
p
o
w
er
,
w
id
e
b
a
n
d
w
id
th
an
d
b
r
o
ad
b
an
d
g
ai
n
in
t
h
e
co
m
m
u
n
icatio
n
w
in
d
o
w
[
5
-
7
]
.
Ho
w
e
v
er
,
o
w
i
n
g
to
th
e
E
DF
A
h
o
m
o
g
en
eo
u
s
li
n
e
b
r
o
ad
en
i
n
g
,
it
is
d
i
f
f
icu
lt
to
ac
h
iev
e
s
tab
le
MW
FL
at
r
o
o
m
te
m
p
er
atu
r
e.
A
n
o
t
h
er
p
o
p
u
lar
g
ain
m
ec
h
a
n
is
m
f
o
r
MW
FL
is
R
a
m
a
n
a
m
p
li
f
icatio
n
w
h
ic
h
is
p
ar
ti
cu
lar
l
y
at
tr
ac
tiv
e
d
u
e
to
lo
w
n
o
is
e
a
n
d
its
ab
ilit
y
to
b
e
g
en
er
ated
at
an
y
w
a
v
ele
n
g
t
h
(
d
ep
en
d
en
t
o
n
p
u
m
p
w
av
ele
n
g
t
h
)
w
i
th
o
u
t
t
h
e
n
ee
d
f
o
r
a
s
p
ec
ialized
g
ain
m
ed
iu
m
b
u
t
h
ig
h
p
u
m
p
p
o
w
er
is
r
eq
u
ir
ed
to
o
p
er
ate
th
is
laser
[
8
]
,
{
9
]
.
A
co
m
m
o
n
m
et
h
o
d
o
f
g
en
er
at
in
g
MW
F
L
i
s
th
r
o
u
g
h
t
h
e
u
s
e
o
f
n
o
n
li
n
ea
r
ef
f
ec
ts
s
u
c
h
as
s
ti
m
u
lated
B
r
illo
u
in
s
ca
tter
in
g
(
SB
S)
[
1
0
]
,
f
o
u
r
-
w
a
v
e
m
i
x
in
g
(
FW
M)
,
an
d
n
o
n
lin
ea
r
p
o
lar
izatio
n
r
o
tatio
n
(
NP
R
)
[
1
1
]
.
NP
R
h
as
e
m
er
g
ed
as
an
i
n
ter
esti
n
g
ch
o
ice
d
u
e
to
its
ad
v
an
ta
g
es
o
f
p
er
f
o
r
m
i
n
g
c
h
an
g
ea
b
le
o
p
er
atin
g
r
eg
i
m
e
s
o
f
m
u
lti
w
a
v
ele
n
g
t
h
lasi
n
g
as
w
ell
a
s
p
as
s
i
v
el
y
m
o
d
e
lo
ck
ed
at
d
ep
lo
y
i
n
g
a
co
m
b
f
il
t
er
w
ith
in
t
h
e
la
s
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Th
eo
r
etica
l A
n
a
lysi
s
o
f a
tw
o
-
s
ta
g
e
S
a
g
n
a
c
lo
o
p
filt
er u
s
in
g
Jo
n
es Ma
tr
ices (
N
.
A
.
B
.
A
h
ma
d
)
2951
s
tr
u
ct
u
r
e.
T
h
e
co
m
b
f
ilter
w
h
i
ch
w
a
s
b
ase
d
o
n
t
h
e
Sa
g
n
ac
l
o
o
p
f
ilter
(
S
L
F)
h
ad
b
ee
n
u
s
e
d
ex
ten
s
i
v
el
y
i
n
t
h
e
d
esig
n
o
f
MW
F
L
[
1
2
-
1
4
]
.
SLF
is
p
o
p
u
lar
to
b
e
u
s
ed
f
o
r
v
ar
io
u
s
ap
p
licatio
n
s
d
u
e
to
it
s
s
i
m
p
le
s
tr
u
ct
u
r
e
an
d
o
u
tp
u
t
v
ar
iab
ilit
y
w
h
ic
h
ca
n
s
i
m
p
l
y
b
e
d
o
n
e
b
y
v
ar
y
i
n
g
t
h
e
P
C
a
n
d
P
MF
p
ar
am
eter
[
1
5
-
1
7
]
.
T
u
n
in
g
c
h
ar
ac
t
er
is
tic
is
a
d
esire
d
f
ea
t
u
r
e
o
f
an
y
co
m
b
f
ilter
w
h
e
n
it
is
u
s
ed
in
a
m
u
lti
w
a
v
ele
n
g
t
h
li
g
h
t
s
o
u
r
ce
.
T
h
e
SL
F
o
f
o
n
e
-
s
ta
g
e
p
o
lar
izatio
n
-
m
ain
tain
in
g
f
ib
er
(
P
MF)
an
d
p
o
la
r
izatio
n
co
n
tr
o
ller
(
P
C
)
is
an
ex
a
m
p
le
o
f
a
s
i
m
p
le
f
ilter
d
ev
ic
e
as
u
s
ed
in
[
1
5
]
.
I
n
th
at
SLF,
th
e
P
C
co
n
s
is
t
s
o
n
l
y
o
f
t
w
o
w
a
v
ep
lates
an
d
t
h
e
w
a
v
ele
n
g
th
t
u
n
ab
ili
t
y
i
s
r
ea
lized
b
y
t
u
n
i
n
g
t
h
e
t
w
o
w
a
v
ep
lates
.
I
n
[
1
6
]
,
tw
o
P
C
s
i
n
t
h
e
S
L
F
w
a
s
r
ep
o
r
ted
w
h
er
e
ea
ch
P
C
is
lo
ca
ted
at
b
o
th
en
d
s
o
f
t
h
e
P
MF.
I
n
th
i
s
p
ap
er
,
a
t
w
o
-
s
tag
e
Sa
g
n
ac
lo
o
p
f
ilter
(
SLF)
co
n
s
i
s
t
o
f
t
w
o
p
o
lar
izatio
n
m
ai
n
tai
n
in
g
f
ib
er
s
(
P
MFs)
an
d
t
w
o
p
o
lar
izatio
n
co
n
tr
o
ller
s
(
P
C
s
)
w
er
e
i
n
v
esti
g
ated
a
n
d
d
e
m
o
n
s
tr
ated
th
eo
r
etica
ll
y
.
T
h
e
o
p
er
atin
g
p
r
in
cip
le
is
s
t
u
d
ied
th
o
r
o
u
g
h
l
y
a
n
d
s
i
m
u
lated
b
y
ap
p
ly
i
n
g
t
h
e
J
o
n
es
m
atr
i
x
.
T
o
ch
ar
ac
ter
ize
th
is
t
w
o
-
s
ta
g
e
S
L
F,
w
e
v
ar
y
th
e
len
g
th
o
f
t
h
e
P
MFs
an
d
th
e
p
o
lar
izatio
n
an
g
le
o
f
t
h
e
P
C
s
.
T
h
e
w
a
v
ele
n
g
t
h
in
ter
v
a
l
d
ep
en
d
s
o
n
b
o
th
P
MFs
an
d
P
C
s
w
a
s
co
n
f
ir
m
ed
b
y
th
e
tr
an
s
m
i
s
s
io
n
s
p
ec
tr
u
m
r
esu
lt
s
.
T
h
e
m
u
ltip
le
s
in
g
le,
d
u
al
o
r
tr
ip
le
w
a
v
ele
n
g
th
lasi
n
g
ar
e
o
b
tain
ed
b
y
ad
j
u
s
tin
g
th
e
P
C
s
.
2.
T
H
E
O
R
E
T
I
CA
L
AND
O
P
E
RATI
NG
P
R
I
NC
I
P
L
E
T
h
e
s
tr
u
ct
u
r
e
o
f
t
w
o
p
o
lar
izatio
n
m
ain
tain
in
g
f
ib
er
s
(
P
MFs
)
an
d
t
w
o
p
o
lar
izatio
n
co
n
tr
o
l
ler
s
(
P
C
s
)
o
f
Sag
n
ac
lo
o
p
f
ilter
(
SL
F)
is
s
ch
e
m
atica
l
l
y
s
h
o
w
n
i
n
Fi
g
u
r
e
1
.
P
MF1
an
d
P
MF2
ar
e
t
w
o
P
MFs
w
it
h
d
if
f
er
e
n
t
len
g
t
h
s
a
n
d
b
ir
ef
r
in
g
en
ce
.
P
C
1
an
d
P
C
2
ar
e
t
w
o
PC
s
m
ad
e
f
r
o
m
a
h
al
f
-
w
av
e
p
l
ate
(
HW
P
)
co
il
an
d
t
w
o
q
u
ar
ter
-
w
a
v
e
p
lates
(
QW
P
)
c
o
ils
at
b
o
th
en
d
s
.
T
h
ey
a
r
e
alter
n
atel
y
co
n
n
ec
ted
f
o
r
th
e
t
w
o
-
s
tag
e
S
L
F.
E
v
er
y
s
tag
e
co
n
s
i
s
ts
o
f
o
n
e
P
MF
an
d
o
n
e
P
C
.
A
p
o
lar
izati
o
n
-
i
n
s
e
n
s
iti
v
e
3
d
B
co
u
p
ler
is
u
s
ed
to
co
n
n
ec
t
t
h
e
r
in
g
ca
v
i
t
y
an
d
th
e
t
w
o
-
s
ta
g
e
SL
F.
T
h
e
li
g
h
ts
tr
av
el
in
to
th
e
3
d
B
co
u
p
ler
th
r
o
u
g
h
p
o
r
t
1
,
an
d
t
h
en
s
p
lit
s
i
n
to
t
w
o
.
Fi
f
t
y
p
er
ce
n
t
o
f
t
h
e
o
u
tp
u
t
li
g
h
ts
tr
a
v
el
clo
ck
w
is
e
(
C
W
)
ar
o
u
n
d
th
e
lo
o
p
th
r
o
u
g
h
p
o
r
t
3
.
Me
an
w
h
ile,
t
h
e
o
th
er
f
i
f
t
y
p
er
ce
n
t
o
f
th
e
o
u
t
p
u
t
lig
h
t
s
tr
av
el
co
u
n
ter
clo
ck
w
i
s
e
(
C
C
W
)
w
it
h
π
/2
p
h
ase
d
if
f
er
e
n
ce
th
r
o
u
g
h
p
o
r
t
4
.
T
h
e
t
w
o
li
g
h
ts
co
n
tr
a
r
il
y
p
ass
th
r
o
u
g
h
t
h
e
P
C
s
a
n
d
P
MFs
b
ef
o
r
e
r
ee
n
ter
in
g
t
h
e
3
d
B
co
u
p
ler
an
d
tr
a
n
s
m
itted
o
u
t t
h
r
o
u
g
h
p
o
r
t 2
.
Fig
u
r
e
1
.
T
h
e
s
tr
u
ctu
r
e
o
f
t
w
o
-
s
ta
g
e
Sa
g
n
ac
lo
o
p
f
ilter
(
SL
F
)
f
o
r
th
e
an
al
y
s
i
s
o
f
J
o
n
es
m
at
r
ices f
o
r
m
u
li
s
m
T
h
e
p
o
lar
izatio
n
s
tate
o
f
th
e
C
W
an
d
C
C
W
tr
av
e
lli
n
g
li
g
h
t
s
in
t
h
is
w
o
r
k
w
a
s
an
a
l
y
ze
d
u
s
in
g
J
o
n
es
m
atr
i
x
[
1
7
]
w
h
ic
h
ca
n
d
escr
ib
e
ef
f
ic
ien
t
l
y
t
h
e
p
o
lar
izatio
n
s
t
ate
o
f
a
p
lan
e
w
av
e.
I
n
g
e
n
er
al,
elec
tr
ic
f
ield
ca
n
b
e
ex
p
r
ess
ed
in
it
s
co
m
p
lex
a
m
p
litu
d
e
cos
s
i
n
X
Y
E
E
E
E
E
(
1
)
w
h
er
e
θ
i
s
t
h
e
a
n
g
le
in
b
et
w
e
en
t
h
e
p
o
lar
izatio
n
d
ir
ec
tio
n
o
f
th
e
i
n
p
u
t
l
ig
h
t
w
it
h
t
h
e
x
-
a
x
is
.
No
te
th
a
t
t
h
er
e
ar
e
C
W
lig
h
t
p
r
o
p
ag
atio
n
s
(
f
r
o
m
p
o
r
t
3
to
p
o
r
t
4
)
,
an
d
C
C
W
lig
h
t
p
r
o
p
ag
atio
n
s
(
f
r
o
m
p
o
r
t
4
to
p
o
r
t
3
)
.
T
h
u
s
,
th
er
e
ar
e
f
o
u
r
elec
tr
ic
f
ield
s
g
o
in
g
i
n
an
d
o
u
t
o
f
t
h
e
Sag
n
ac
lo
o
p
f
ilter
.
T
h
e
in
itial
lig
h
t
s
ar
e
co
u
p
led
in
to
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
5
0
–
2
9
5
7
2952
f
ib
e
r
lo
o
p
b
y
th
e
3
d
B
co
u
p
ler
.
T
h
e
f
ield
s
at
p
o
r
t
1
an
d
2
ca
n
b
e
r
elate
d
to
th
e
f
ield
s
at
p
o
r
t
3
an
d
4
u
s
in
g
th
e
J
o
n
es
m
atr
i
x
(
r
ep
r
esen
ted
b
y
M
C
)
,
as d
escr
ib
ed
in
[
1
8
]
31
42
C
EE
M
EE
(
2
)
E
3
an
d
E
4
ar
e
th
e
o
u
tp
u
t
elec
tr
ic
f
ield
s
o
f
p
o
r
t
3
an
d
p
o
r
t
4
,
an
d
E
1
an
d
E
2
ar
e
th
e
in
itia
l
el
ec
tr
ic
f
ield
s
o
f
p
o
r
t
1
an
d
p
o
r
t
2
as
s
h
o
w
n
in
Fi
g
u
r
e
1
.
T
h
e
in
itia
l
li
g
h
t
is
i
n
p
u
t
o
n
l
y
to
t
h
e
P
o
r
t
1
,
h
en
ce
E
2
=
0
.
T
h
e
C
W
lig
h
t
o
u
t
o
f
p
o
r
t 3
g
o
es th
r
o
u
g
h
th
e
P
C
f
ir
s
t.
T
h
e
J
o
n
es
m
atr
i
x
f
o
r
H
W
P
an
d
QW
P
s
o
f
th
e
P
C
is
as
f
o
llo
w
s
[
1
9
]
c
o
s
s
i
n
c
o
s
2
s
i
n
s
i
n
2
2
2
2
()
s
i
n
s
i
n
2
c
o
s
s
i
n
c
o
s
2
2
2
2
j
j
j
jj
j
j
j
j
jj
ii
T
ii
(
3
)
w
h
er
e
θ
j
is
t
h
e
an
g
u
lar
o
r
ien
t
atio
n
s
o
f
th
e
t
h
r
ee
w
av
ep
late
s
,
w
ith
j
is
t
h
e
w
a
v
ep
lates
i
n
d
ex
,
1
,
2
,
an
d
3
.
φ
j
d
en
o
ted
as
φ
1
=
2
π
/
m
,
φ
2
=
2
π
/
l
,
an
d
φ
3
=
2
π
/
n
w
h
er
e
t
h
e
l
,
m
an
d
n
is
th
e
n
u
m
b
er
o
f
lo
o
p
in
th
e
P
C
p
lates
w
h
ic
h
is
eq
u
al
to
4
,
2
,
an
d
4
,
r
esp
ec
tiv
el
y
.
W
h
e
n
th
e
li
g
h
ts
tr
av
el
f
r
o
m
p
o
r
t
3
to
p
o
r
t
4
,
t
h
e
y
g
o
th
r
o
u
g
h
t
h
e
P
C
in
s
eq
u
e
n
ce
o
f
QW
P
-
HW
P
-
QW
P
.
T
h
e
J
o
n
es m
atr
i
x
f
o
r
P
C
1
an
d
P
C
2
ar
e
r
e
p
r
esen
tatio
n
o
f
t
h
e
p
r
o
d
u
ct
o
f
th
r
ee
J
o
n
es
m
atr
ice
s
1
1
1
1
2
1
3
(
,
,
)
2
PC
A
i
B
C
i
D
i
M
C
i
D
A
i
B
(
4
)
2
2
1
2
2
2
3
(
,
,
)
2
PC
E
i
F
G
i
H
i
M
G
i
H
E
i
F
(
5
)
w
h
er
e,
1
2
1
3
1
2
1
1
1
3
1
2
1
2
1
1
1
2
1
3
1
2
1
1
1
3
1
2
1
2
1
1
2
2
2
3
2
2
2
1
2
3
2
2
2
2
2
1
22
c
o
s
(2
)
c
o
s
(2
2
2
)
c
o
s
(2
2
)
c
o
s
(2
2
)
s
i
n
(2
)
s
i
n
(2
2
2
)
s
i
n
(2
2
)
s
i
n
(2
2
)
c
o
s
(2
)
c
o
s
(2
2
2
)
c
o
s
(2
2
)
c
o
s
(2
2
)
s
i
n
(2
)
s
i
A
B
C
D
E
F
G
2
3
2
2
2
1
2
3
2
2
2
2
2
1
n
(2
2
2
)
s
i
n
(2
2
)
s
i
n
(2
2
)
H
(
6
)
Fro
m
(
4
)
-
(
6
)
,
th
e
an
g
le
s
o
f
θ
11
,
θ
12
,
an
d
θ
13
a
r
e
f
o
r
th
e
p
o
la
r
izatio
n
s
tate
o
f
P
C
1
,
w
h
ile
t
h
e
an
g
le
s
o
f
θ
21
,
θ
22
,
θ
23
ar
e
f
o
r
th
e
p
o
lar
izatio
n
s
tat
e
o
f
P
C
2
.
T
h
e
P
MF
is
a
h
i
g
h
b
ir
ef
r
i
n
g
e
n
ce
f
ib
er
w
h
ich
ca
u
s
es t
h
e
p
h
a
s
e
s
h
i
f
t (
Δ
φ
)
.
T
h
e
J
o
n
es
m
atr
ix
o
f
a
P
MF
th
at
d
ep
en
d
in
g
o
n
Δ
φ
is
r
ep
r
es
en
ted
as
10
()
0
P
M
F
i
M
e
(
7
)
w
h
er
e
Δ
φ=2
π
L
Δ
n
/λ
is
t
h
e
p
h
a
s
e
s
h
if
t
o
f
t
h
e
P
MF.
Δ
n
is
t
h
e
r
ef
r
ac
tiv
e
i
n
d
ex
d
i
f
f
er
en
ce
b
et
w
ee
n
t
h
e
f
a
s
t
-
ax
i
s
an
d
th
e
s
lo
w
-
a
x
is
o
f
th
e
P
M
F
(
b
ir
ef
r
in
g
en
ce
)
,
L
i
s
th
e
le
n
g
t
h
o
f
th
e
P
MF
an
d
λ
is
t
h
e
w
a
v
ele
n
g
t
h
o
f
t
h
e
p
r
o
p
a
g
atio
n
lig
h
t.
C
o
n
s
eq
u
e
n
t
l
y
,
Δ
φ
1
,
Δ
n
1
,
an
d
L
1
ar
e
p
ar
am
eter
s
r
ef
er
r
ed
f
o
r
P
MF1
an
d
Δ
φ
2
,
Δ
n
2
,
an
d
L
2
ar
e
p
ar
am
eter
s
r
ef
er
r
ed
f
o
r
P
MF2
.
T
h
e
J
o
n
es
Ma
tr
ices
o
f
C
W
(
f
r
o
m
p
o
r
t
3
to
p
o
r
t
4
)
an
d
C
C
W
(
f
r
o
m
p
o
r
t
4
to
p
o
r
t
3
)
o
f
t
h
e
Sag
n
a
c
lo
o
p
f
ilter
as th
e
p
r
o
d
u
cts
o
f
M
P
M
F
1
,
M
P
M
F
2
,
M
PC1
,
an
d
M
P
C2
,
ar
e
as sh
o
w
n
i
n
[
2
0
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Th
eo
r
etica
l A
n
a
lysi
s
o
f a
tw
o
-
s
ta
g
e
S
a
g
n
a
c
lo
o
p
filt
er u
s
in
g
Jo
n
es Ma
tr
ices (
N
.
A
.
B
.
A
h
ma
d
)
2953
2
2
1
1
1
1
2
2
C
W
P
M
F
P
C
P
M
F
P
C
C
C
W
P
C
P
M
F
P
C
P
M
F
M
M
M
M
M
M
M
M
M
M
(
8
)
I
n
th
is
a
n
al
y
s
i
s
,
t
h
e
elec
tr
ic
f
i
eld
E
3
at
p
o
r
t
3
w
i
ll
g
o
th
r
o
u
g
h
P
C
1
-
P
MF1
-
P
C
2
-
P
MF2
an
d
d
en
o
ted
as
E'
4
w
h
en
i
t
r
ea
ch
es
p
o
r
t
4
.
Sam
e
n
o
tatio
n
s
c
h
e
m
e
i
s
u
s
ed
f
o
r
elec
tr
ic
f
ield
s
tr
av
e
lli
n
g
f
r
o
m
p
o
r
t
4
to
p
o
r
t
3
w
h
er
e
th
e
f
ield
i
s
d
en
o
ted
as
E
'
3
.
Af
ter
lo
o
p
in
g
th
e
f
ib
er
,
th
e
elec
tr
ic
f
ield
at
p
o
r
t
3
an
d
p
o
r
t
4
ca
n
b
e
w
r
itte
n
as
E'
3
=
M
CCW
·E'
4
an
d
E'
4
=
M
CCW
·E'
3
.
T
h
en
E'
3
an
d
E'
4
ar
e
co
u
p
led
in
to
th
e
co
u
p
ler
ag
ain
an
d
t
h
e
r
esu
l
tin
g
o
u
tp
u
t li
g
h
ts
ca
n
b
e
r
elate
d
w
i
th
its
i
n
p
u
t a
s
13
24
''
''
CCW
EE
M
EE
(
9
)
w
h
er
e
E'
1
is
th
e
r
ef
lecte
d
elec
tr
ic
f
ield
at
p
o
r
t
1
an
d
E'
2
i
s
t
h
e
tr
an
s
m
itted
elec
tr
ic
f
ield
at
p
o
r
t
2
.
M
CCW
is
t
h
e
m
atr
i
x
w
h
e
n
li
g
h
ts
g
o
th
r
o
u
g
h
th
e
3
d
B
co
u
p
ler
in
v
er
s
el
y
.
Fin
all
y
,
t
h
e
tr
an
s
m
is
s
io
n
f
u
n
ctio
n
f
o
r
C
W
an
d
C
C
W
p
r
o
p
ag
atio
n
s
ca
n
b
e
d
er
iv
ed
b
ased
o
n
(
8
)
as f
o
llo
w
22
2
2
2
1
'
s
i
n
4
C
C
W
C
W
E
M
M
nL
T
E
(
1
0
)
I
n
ad
d
itio
n
,
t
h
e
v
ar
iat
io
n
o
f
t
r
an
s
m
is
s
io
n
s
p
ec
tr
a
at
i
n
d
ep
en
d
en
t
o
p
er
atin
g
w
a
v
ele
n
g
th
c
an
also
b
e
o
b
tain
ed
u
s
i
n
g
t
h
e
f
o
llo
w
in
g
e
q
u
atio
n
[
2
0
]
1
2
1
2
1
1
2
1
2
2
2
()
1
2
3
4
5
()
6
7
8
9
1
1
16
i
i
i
i
i
i
i
i
K
e
K
e
K
e
K
e
K
T
K
K
e
K
e
K
e
K
e
(
1
1
)
Her
e,
K
1
u
n
til
K
9
ar
e
ex
p
r
es
s
e
d
as
(
1
2
)
1
1
2
1
2
1
3
1
1
2
2
2
3
2
2
2
1
2
2
2
2
2
3
2
1
1
2
1
1
1
2
1
3
2
1
2
1
2
1
3
1
1
1
2
1
3
1
2
1
1
2
2
2
2
2
3
2
1
2
s
i
n
2
s
i
n
2
2
2
s
i
n
2
2
s
i
n
2
2
s
i
n
2
s
i
n
2
2
2
s
i
n
2
2
s
i
n
2
2
c
o
s
2
c
o
s
2
2
2
c
o
s
2
2
c
o
s
2
2
s
i
n
2
s
i
n
2
2
2
Ki
Ki
2
2
2
1
2
2
2
3
3
1
2
1
2
1
3
1
1
1
2
1
1
1
2
1
3
2
2
2
3
2
1
1
2
1
2
1
1
2
2
2
3
4
2
3
2
1
2
2
2
2
2
2
2
3
2
s
i
n
2
2
s
i
n
2
2
s
i
n
2
s
i
n
2
2
2
s
i
n
2
2
s
i
n
2
2
c
o
s
2
2
2
c
o
s
2
c
o
s
2
2
c
o
s
2
2
s
i
n
2
2
2
s
i
n
2
s
i
n
2
2
s
i
n
2
i
Ki
i
Ki
2
2
1
1
2
1
3
1
1
1
2
1
2
1
1
1
2
1
3
5
1
3
1
1
1
2
1
2
1
2
1
3
1
2
1
1
2
2
2
2
2
3
2
1
2
2
2
3
2
2
2
1
6
1
2
2
c
o
s
2
2
2
c
o
s
2
c
o
s
2
2
c
o
s
2
2
s
i
n
2
2
2
s
i
n
2
s
i
n
2
2
s
i
n
2
2
c
o
s
2
c
o
s
2
2
2
c
o
s
2
2
c
o
s
2
2
s
i
n
2
s
i
n
i
Ki
i
K
1
2
1
3
1
1
1
2
1
3
1
2
1
1
2
2
2
2
2
3
2
1
2
2
2
3
2
2
2
1
7
1
2
1
3
1
1
1
2
1
2
1
3
1
2
1
1
2
2
2
2
2
3
2
1
2
2
2
s
i
n
2
2
s
i
n
2
2
c
o
s
2
c
o
s
2
2
2
c
o
s
2
2
c
o
s
2
2
c
o
s
2
2
2
c
o
s
2
c
o
s
2
2
c
o
s
2
2
s
i
n
2
s
i
n
2
2
2
s
i
n
2
i
i
Ki
i
2
2
2
3
2
2
2
1
8
1
2
1
3
1
1
1
2
1
2
1
3
1
2
1
1
2
2
2
2
2
3
2
1
2
2
2
3
2
2
2
1
9
1
3
1
1
1
2
1
2
1
2
1
1
1
2
1
3
2
s
i
n
2
2
c
o
s
2
2
2
c
o
s
2
c
o
s
2
2
c
o
s
2
2
s
i
n
2
s
i
n
2
2
2
s
i
n
2
2
s
i
n
2
2
s
i
n
2
2
2
s
i
n
2
s
i
n
2
2
s
i
n
2
2
Ki
i
Ki
2
2
2
3
2
1
2
2
2
2
2
3
2
2
2
1
c
o
s
2
2
2
c
o
s
2
c
o
s
2
2
c
o
s
2
2
i
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
5
0
–
2
9
5
7
2954
Fro
m
(
1
1
)
an
d
(
1
2
)
,
th
e
tr
an
s
m
i
s
s
io
n
T
co
n
s
i
s
t
o
f
m
an
y
s
i
m
p
le
co
m
b
in
a
to
r
ial
p
ar
a
m
e
ter
s
,
w
h
ic
h
ar
e
t
h
e
p
r
o
d
u
cts o
f
th
e
p
h
a
s
e
m
o
d
u
lat
io
n
(
e
i
Δ
φ
1
, e
i
Δ
φ
2
o
r
e
i
(Δ
φ
1+
Δ
φ
2)
)
a
n
d
th
e
a
m
p
l
itu
d
e
m
o
d
u
latio
n
s
(
K
1
to
K
9
).
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
I
n
o
r
d
er
to
ch
ar
ac
ter
ize
t
h
e
t
w
o
-
s
ta
g
e
Sag
n
ac
lo
o
p
f
ilter
(
SL
F),
th
e
tr
an
s
m
is
s
io
n
s
p
ec
tr
u
m
o
f
th
e
s
tr
u
ct
u
r
e
s
h
o
w
n
i
n
Fi
g
u
r
e
1
is
s
i
m
u
lated
b
y
ad
j
u
s
ti
n
g
t
h
e
P
MF
p
ar
a
m
eter
s
(
L
an
d
Δ
n
)
an
d
P
C
p
ar
a
m
eter
s
(
θ
11
,
θ
12
,
θ
13
,
θ
21
,
θ
22
,
an
d
θ
23
)
.
W
h
en
th
e
P
MF
w
ith
t
h
e
f
o
llo
w
i
n
g
p
ar
a
m
eter
s
:
L
1
=
1
0
m
,
Δ
n
1
=
1
×1
0
-
4
,
L
2
=
5
m
,
an
d
Δ
n
2
=
4
×1
0
-
4
ar
e
ap
p
li
ed
,
th
e
ch
an
g
es
o
f
P
C
p
ar
a
m
eter
s
w
ill
ca
u
s
e
t
h
e
tr
an
s
m
i
s
s
io
n
-
a
m
p
lit
u
d
e
r
e
m
o
d
u
latio
n
.
I
n
Fi
g
u
r
e
2
,
s
e
v
er
al
tr
an
s
m
is
s
io
n
s
p
ec
tr
a
f
r
o
m
1
5
4
4
n
m
to
1
5
5
6
n
m
ar
e
p
lo
tted
w
it
h
it
s
P
C
s
s
tate
s
ch
an
g
ed
f
o
r
ev
er
y
p
late.
E
ac
h
f
i
g
u
r
e
co
n
tai
n
s
s
ix
d
i
f
f
er
en
t
v
al
u
es
o
f
p
o
lar
izatio
n
a
n
g
le
b
ased
o
n
p
lates
o
f
P
C
1
an
d
P
C
2
.
Fig
u
r
e
2
(
a)
s
h
o
w
s
t
h
e
th
r
ee
w
a
v
ele
n
g
th
p
ea
k
s
w
h
e
n
th
e
P
C
1
an
d
P
C
2
s
tates
at
θ
11
=
0
.
4
1
5
π
,
θ
12
=
0
.
0
2
π
,
θ
13
=
0
.
3
6
π
,
θ
21
=
0
.
6
4
π
,
θ
22
=
0
.
0
5
π
,
an
d
θ
23
=
0
.
6
5
4
π
.
I
f
co
n
tin
u
o
u
s
l
y
ad
j
u
s
tin
g
t
h
e
P
C
s
,
as
s
h
o
w
n
i
n
Fig
u
r
e
2
(
b
)
(
θ
11
=
0
.
4
4
π
,
θ
12
=
0
.
0
0
0
1
π
,
θ
13
=
0
.
0
0
0
1
π
,
θ
21
=
0
.
6
3
5
π
,
θ
22
=
0
.
0
3
5
π
,
an
d
θ
23
=
0
.
7
6
π
)
an
d
Fi
g
u
r
e
2
(
c)
(
θ
11
=
0
.
4
7
π
,
θ
12
=
0
.
0
0
0
1
π
,
θ
13
=
0
.
0
1
π
,
θ
21
=
0
.
5
5
5
π
,
θ
22
=
0
.
0
3
5
π
,
an
d
θ
23
=
0
.
6
1
π
)
,
th
e
lef
t
w
a
v
ele
n
g
t
h
p
ea
k
s
o
f
t
h
e
m
u
ltip
le
d
u
al
w
av
ele
n
g
t
h
f
il
ter
in
g
c
h
an
n
el
d
ec
li
n
es
g
r
ad
u
all
y
a
n
d
is
b
ec
o
m
i
n
g
m
u
ltip
le
s
i
n
g
le
w
av
e
len
g
t
h
ch
an
n
el
s
co
n
d
itio
n
.
Fro
m
F
ig
u
r
e
2
(
d
)
,
w
h
e
n
t
h
e
p
o
lar
izatio
n
a
n
g
le
o
f
θ
11
,
θ
12
,
θ
13
,
θ
21
,
θ
22
,
a
n
d
θ
23
,
is
s
et
to
0
.
8
2
π,
0
.
0
1
π,
0
.
7
π,
0
.
1
5
π,
0
.
0
5
π,
an
d
0
.
6
π
,
a
f
lat
m
u
lti
w
a
v
ele
n
g
th
s
p
e
ctr
u
m
i
s
o
b
tain
ed
.
Mu
ltip
le
s
in
g
le
w
a
v
elen
g
t
h
co
n
d
itio
n
is
o
b
s
er
v
ed
i
n
Fi
g
u
r
e
2
(
d
)
w
h
er
e
ea
ch
c
h
an
n
e
l
co
n
tain
s
o
n
l
y
s
i
n
g
le
w
av
e
l
en
g
t
h
p
ea
k
.
Fro
m
Fig
u
r
e
2
(
a)
to
Fig
u
r
e
2
(
d
)
,
th
e
r
esu
lt
s
s
h
o
w
t
h
at
b
y
ad
j
u
s
ti
n
g
th
e
s
tates
o
f
t
h
e
P
C
s
,
th
e
tr
a
n
s
m
i
s
s
io
n
s
p
ec
tr
u
m
o
f
t
h
e
t
w
o
-
s
ta
g
e
S
L
F
ca
n
b
e
s
w
itc
h
f
r
o
m
m
u
l
tip
le
tr
ip
le
-
w
a
v
elen
g
t
h
to
m
u
ltip
le
d
u
al
-
w
av
elen
g
th
o
r
ev
e
n
to
m
u
ltip
le
s
i
n
g
le
-
w
av
ele
n
g
t
h
.
Fig
u
r
e
2
.
T
h
e
v
ar
iatio
n
o
f
tr
an
s
m
i
s
s
io
n
s
p
ec
tr
a
o
f
t
h
e
t
w
o
-
s
t
ag
e
Sag
n
ac
lo
o
p
f
ilter
(
S
L
F)
a
t d
if
f
er
e
n
t r
ad
ian
o
f
P
C
1
an
d
P
C
2
s
tate;
(
a)
θ
11
=
0
.
4
1
5
π
,
θ
12
=
0
.
0
2
π
,
θ
13
=
0
.
3
6
π
,
θ
21
=
0
.
6
4
π
,
θ
22
=
0
.
0
5
π
,
an
d
θ
23
=
0
.
6
5
4
π
,
(
b
)
θ
11
=
0
.
4
4
π
,
θ
12
=
0
.
0
0
0
1
π
,
θ
13
=
0
.
0
0
0
1
π
,
θ
21
=
0
.
6
3
5
π
,
θ
22
=
0
.
0
3
5
π
,
an
d
θ
23
=
0
.
7
6
π
,
(
c)
θ
11
=
0
.
4
7
π
,
θ
12
=
0
.
0
0
0
1
π
,
θ
13
=
0
.
0
1
π
,
θ
21
=
0
.
5
5
5
π
,
θ
22
=
0
.
0
3
5
π
,
an
d
θ
23
=
0
.
6
1
π
(
d
)
θ
11
=
0
.
8
2
π
,
θ
12
=
0
.
0
1
π,
θ
13
=
0
.
7
π,
θ
21
=
0
.
1
5
π
,
θ
22
=
0
.
0
5
π
,
an
d
θ
23
=
0
.
6
π
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Th
eo
r
etica
l A
n
a
lysi
s
o
f a
tw
o
-
s
ta
g
e
S
a
g
n
a
c
lo
o
p
filt
er u
s
in
g
Jo
n
es Ma
tr
ices (
N
.
A
.
B
.
A
h
ma
d
)
2955
We
th
en
f
u
r
th
er
i
n
v
e
s
ti
g
ati
n
g
th
e
t
w
o
-
s
ta
g
e
Sa
g
n
ac
lo
o
p
f
i
lter
(
SL
F)
ch
ar
ac
ter
izatio
n
s
b
y
al
ter
in
g
th
e
P
MFs
len
g
t
h
(
L
1
an
d
L
2
)
.
T
h
e
tr
an
s
m
is
s
io
n
s
p
ec
tr
u
m
as
s
h
o
w
n
i
n
Fig
u
r
e
3
ar
e
s
i
m
u
lated
w
ith
t
h
e
b
ir
ef
r
in
g
en
ce
o
f
t
h
e
P
MFs
a
n
d
P
C
s
f
i
x
ed
w
it
h
t
h
e
f
o
llo
w
i
n
g
p
ar
a
m
eter
s
:
Δ
n
1
=
1
×1
0
-
4
,
Δ
n
2
=
4
×1
0
-
4
,
θ
11
=
0
.
82π
,
θ
12
=
0
.
0
1
π,
θ
13
=
0
.
7
π,
θ
21
=
0
.
1
5
π
,
θ
22
=
0
.
0
5
π,
an
d
θ
23
=
0
.
6
π.
I
n
Fi
g
u
r
e
3
,
s
ev
er
al
tr
an
s
m
i
s
s
io
n
s
p
ec
tr
a
f
r
o
m
1
5
4
4
n
m
to
1
5
5
6
n
m
ar
e
p
lo
tted
w
it
h
t
h
e
co
n
d
itio
n
o
f
L
1
<
L
2
,
L
1
>
L
2
a
n
d
L
1
=
L
2
.
Fig
u
r
e
3
(
a)
an
d
Fig
u
r
e
3
(
b
)
co
n
tain
s
t
w
o
d
if
f
er
en
t
v
a
lu
e
s
o
f
P
MF1
a
n
d
P
MF2
len
g
th
w
h
i
le
Fi
g
u
r
e
3
(
c)
an
d
Fig
u
r
e
3
(
d
)
h
av
e
s
a
m
e
v
al
u
es
o
f
P
MF1
an
d
P
MF
2
len
g
th
.
F
ig
u
r
e
3
(
a)
g
i
v
es
th
e
tr
an
s
m
is
s
io
n
s
p
ec
tr
u
m
f
o
r
L
1
<
L
2
,
(
in
t
h
is
ca
s
e
L
1
=
5
m
a
n
d
L
2
=
1
0
m
)
.
E
ac
h
c
h
a
n
n
e
l
co
n
s
is
ts
o
f
m
u
ltip
le
w
a
v
ele
n
g
t
h
p
ea
k
s
an
d
m
i
n
i
m
u
m
w
a
v
ele
n
g
th
i
n
t
er
v
al
w
as
o
b
s
er
v
ed
.
I
n
Fig
u
r
e
3
(
b
)
,
a
m
a
x
i
m
u
m
w
a
v
ele
n
g
t
h
in
ter
v
a
l
ca
n
b
e
o
b
tain
ed
w
h
e
n
th
e
len
g
t
h
o
f
P
MFs
ar
e
L
1
=
1
0
m
an
d
L
2
=
5
m
.
B
ased
o
n
t
h
is
ca
lcu
latio
n
,
th
e
b
est
m
u
ltip
le
s
i
n
g
le
-
w
av
e
len
g
t
h
s
p
ec
tr
u
m
ca
n
b
e
ac
h
iev
ed
wh
en
t
h
e
le
n
g
t
h
o
f
L
1
is
lo
n
g
er
t
h
an
L
2
.
Fin
all
y
,
i
n
Fig
u
r
e
3
(
c)
an
d
Fig
u
r
e
3
(
d
)
,
id
en
tical
le
n
g
t
h
w
as
s
et
f
o
r
th
e
P
MF1
a
n
d
P
MF2
.
T
h
e
len
g
t
h
o
f
b
o
th
P
MFs
i
n
Fi
g
u
r
e
3
(
c)
ar
e
L
1
=
5
m
an
d
L
2
=
5
m
,
wh
ile
i
n
Fi
g
u
r
e
3
(
d
)
th
e
len
g
t
h
o
f
b
o
th
P
MF
s
ar
e
in
cr
ea
s
ed
to
L
1
=
1
0
m
an
d
L
2
=
1
0
m
.
I
t
is
o
b
s
er
v
ed
t
h
at
t
h
e
b
an
d
w
id
t
h
is
b
ec
o
m
i
n
g
n
ar
r
o
w
er
as
b
o
th
o
f
th
e
P
MFs
len
g
t
h
in
cr
ea
s
e
s
.
Fro
m
r
esu
l
ts
r
ep
r
ese
n
ted
i
n
Fig
u
r
e
2
an
d
Fig
u
r
e
3
,
i
t
ca
n
b
e
n
o
ted
th
at
t
h
e
g
i
v
e
n
P
MFs an
d
th
e
P
C
s
p
ar
a
m
eter
s
g
iv
e
s
s
i
g
n
if
ican
t i
n
f
l
u
en
ce
to
th
e
w
av
e
len
g
t
h
in
ter
v
al
o
f
t
h
e
SLF.
Fig
u
r
e
3
.
T
h
e
v
ar
iatio
n
o
f
tr
an
s
m
i
s
s
io
n
s
p
ec
tr
a
o
f
t
h
e
t
w
o
-
s
t
ag
e
Sag
n
ac
lo
o
p
f
ilter
(
S
L
F)
a
t d
if
f
er
e
n
t le
n
g
t
h
o
f
P
MF1
an
d
P
MF2
; (
a
)
L
1
= 5
m
an
d
L
2
=
1
0
m
(
b
)
L
1
=
10
m
an
d
L
2
=
5
m
(
c)
L
1
=
5
m
a
n
d
L
2
=
5
m
(
d
)
L
1
=
10
m
an
d
L
2
=
1
0
m
4.
CO
NCLU
SI
O
N
T
h
is
s
tu
d
y
d
is
c
u
s
s
ed
th
e
th
eo
r
etica
l
an
al
y
s
is
o
f
th
e
t
w
o
-
s
ta
g
e
Sag
n
ac
lo
o
p
f
ilter
(
SL
F)
w
h
er
e
th
e
ch
ar
ac
ter
is
tic
w
a
s
a
n
al
y
ze
d
u
s
i
n
g
t
h
e
J
o
n
es
m
atr
i
x
.
T
h
e
t
w
o
-
s
ta
g
e
S
L
F
co
n
s
is
t
o
f
t
w
o
p
o
lar
izatio
n
m
ai
n
tai
n
in
g
f
ib
er
s
(
P
MFs)
an
d
t
w
o
p
o
lar
izatio
n
co
n
tr
o
ller
s
(
P
C
s
)
.
Mu
l
tip
le
s
i
n
g
le
,
d
u
al
an
d
tr
ip
le
w
a
v
ele
n
g
t
h
s
w
er
e
o
b
s
er
v
ed
b
y
ad
j
u
s
tin
g
th
e
p
o
lar
izatio
n
an
g
le
o
f
th
e
P
C
s
.
T
h
e
w
a
v
elen
g
th
in
ter
v
al
i
s
d
ep
en
d
in
g
o
n
b
o
th
o
f
t
h
e
P
MFs
an
d
t
h
e
P
C
s
p
ar
a
m
eter
s
.
Ma
x
i
m
u
m
w
a
v
ele
n
g
th
i
n
ter
v
a
l
w
a
s
o
b
tain
ed
w
h
e
n
th
e
l
e
n
g
t
h
o
f
P
MF1
is
m
ad
e
l
o
n
g
er
th
a
n
t
h
e
le
n
g
t
h
o
f
P
MF
2
.
I
n
ad
d
itio
n
,
th
e
t
w
o
-
s
tag
e
S
L
F
ac
h
ie
v
ed
its
f
lat
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
6
,
Dec
em
b
er
2
0
1
7
:
2
9
5
0
–
2
9
5
7
2956
m
u
lti
-
w
a
v
elen
g
t
h
w
h
en
t
h
e
P
MFs
(
L
1
=
1
0
m
an
d
L
2
=
5
m
)
an
d
P
C
s
(
θ
11
=
0
.
8
2
π
,
θ
12
=
0
.
0
1
π,
θ
13
=
0
.
7
π,
θ
21
=
0
.
1
5
π
,
θ
22
=
0
.
0
5
π,
an
d
θ
23
=
0
.
6
π)
a
r
e
ap
p
li
ed
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
is
w
o
r
k
w
as
s
u
p
p
o
r
ted
in
p
ar
t
by
t
h
e
Mi
n
i
s
tr
y
o
f
Hi
g
h
er
E
d
u
ca
tio
n
Ma
la
y
s
ia
(
MO
HE
)
u
n
d
er
Fu
n
d
a
m
e
n
tal
R
esear
c
h
Gr
an
t
Sch
e
m
e
(
F
R
GS)
Vo
t
1
6
2
2
an
d
R
esear
c
h
A
cc
u
lt
u
r
atio
n
C
o
llab
o
r
ativ
e
E
f
f
o
r
t
(
R
A
C
E
)
Vo
t 1
5
0
9
.
RE
F
E
R
E
NC
E
S
[1
]
W.
He
,
L
.
Zh
u
,
M
.
Do
n
g
,
a
n
d
F
.
L
u
o
,
“
T
u
n
e
a
b
le
a
n
d
sta
b
le
m
u
lt
i
-
w
a
v
e
len
g
th
th
u
li
u
m
-
d
o
p
e
d
rin
g
-
c
a
v
it
y
f
ib
re
l
a
se
r
b
a
se
d
o
n
S
a
g
n
a
c
lo
o
p
a
n
d
M
a
c
h
-
Zeh
n
d
e
r
f
il
ter u
ti
li
z
in
g
t
h
in
-
c
o
re
f
ib
re
,
”
L
a
se
r P
h
y
sic
s
,
v
o
l.
26
,
p
.
1
2
5
1
0
2
,
2
0
1
6
.
[2
]
B.
W
u
,
M
.
W
a
n
g
,
Y.
Tan
g
,
J.
S
u
n
,
J.
Zh
a
n
g
,
F
.
Ya
n
,
a
n
d
S
.
Jia
n
,
“
Op
ti
c
a
l
sin
g
le
sid
e
b
a
n
d
m
o
d
u
lat
io
n
w
it
h
tu
n
a
b
le
o
p
ti
c
a
l
c
a
rrier
-
to
-
si
d
e
b
a
n
d
ra
ti
o
u
sin
g
a
m
o
d
u
lat
o
r
i
n
a
S
a
g
n
a
c
lo
o
p
,”
Op
ti
c
s
a
n
d
L
a
se
r
T
e
c
h
n
o
lo
g
y
,
v
o
l.
9
1
,
pp.
98
-
1
0
2
,
2
0
1
7
.
[3
]
X.
W
a
n
g
,
Y.
Zh
u
,
P
.
Z
h
o
u
,
X
.
W
a
n
g
,
H.
X
ia
o
,
a
n
d
L
.
S
i,
“
T
u
n
a
b
le,
m
u
lt
iw
a
v
e
len
g
th
Tm
-
d
o
p
e
d
f
ib
e
r
las
e
r
b
a
se
d
o
n
p
o
lariz
a
ti
o
n
r
o
tat
io
n
a
n
d
f
o
u
r
-
w
a
v
e
m
ix
in
g
e
ff
e
c
t,
”
Op
ti
c
s E
x
p
re
ss
,
v
o
l.
21
,
p
p
.
2
5
9
7
7
-
2
5
9
8
4
,
2
0
1
3
.
[4
]
H.
L
in
,
Y.
F
.
Hu
a
n
g
,
a
n
d
Y.
S
.
Hu
a
n
g
,
“
F
u
ll
L
-
b
a
n
d
c
o
v
e
ra
g
e
o
f
m
u
lt
iw
a
v
e
len
g
th
e
rb
iu
m
-
d
o
p
e
d
f
ib
e
r
las
er
,”
Op
ti
c
s Co
mm
u
n
ica
ti
o
n
s
,
v
o
l.
2
8
4
,
p
p
.
5
3
5
7
–
5
3
6
0
,
2
0
1
1
.
[5
]
Y.
L
i,
J.
T
ian
,
M
.
Qu
a
n
,
a
n
d
Y.
Ya
o
,
“
T
u
n
a
b
le
m
u
lt
iw
a
v
e
l
e
n
g
th
Er
-
d
o
p
e
d
f
ib
e
r
las
e
r
w
it
h
a
tw
o
-
sta
g
e
Ly
o
t
f
il
ter
,”
IEE
E
P
h
o
t
o
n
ics
T
e
c
h
n
o
l
o
g
y
L
e
tt
e
r
,
v
o
l.
29
,
p
p
.
2
8
7
-
2
9
0
,
2
0
1
7
.
[6
]
H.
Xie
,
J.
S
u
n
,
D.
F
e
n
g
,
a
n
d
L
.
Q
ian
,
“
Co
m
p
a
c
t
M
u
l
ti
w
a
v
e
l
e
n
g
th
Bril
lo
u
in
F
i
b
e
r
L
a
se
r
b
y
Util
izin
g
EDF
a
s
Hy
b
rid
G
a
in
M
e
d
ia
,”
IEE
E
P
h
o
t
o
n
ics
J
o
u
rn
a
l
,
v
o
l.
7
,
p
.
1
5
0
4
1
1
0
,
2
0
1
5
.
[7
]
X.
L
iu
,
L
.
Zh
a
n
,
S
.
L
u
o
,
Z.
G
u
,
J.
L
iu
,
Y.
W
a
n
g
,
a
n
d
Q.
S
h
e
n
,
“
M
u
lt
iw
a
v
e
len
g
th
e
rb
iu
m
-
d
o
p
e
d
f
ib
e
r
las
e
r
b
a
s
e
d
o
n
a
n
o
n
li
n
e
a
r
a
m
p
li
fy
in
g
lo
o
p
m
irro
r
a
ss
isted
b
y
u
n
-
p
u
m
p
e
d
EDF
,”
Op
ti
c
s E
x
p
re
ss
,
v
o
l.
20
,
p
p
.
7
0
8
8
-
7
0
9
4
,
2
0
1
2
.
[8
]
H.
A
h
m
a
d
,
M
.
Z.
Zu
lk
if
li
,
M
.
H.
Je
m
a
n
g
in
,
a
n
d
S
.
W
.
Ha
ru
n
,
“
D
istri
b
u
te
d
f
e
e
d
b
a
c
k
m
u
lt
im
o
d
e
Bril
lo
u
in
-
Ra
m
a
n
ra
n
d
o
m
f
ib
e
r
las
e
r
in
th
e
S
-
b
a
n
d
,”
L
a
se
r P
h
y
sic
s L
e
tt
e
rs
,
v
o
l.
10
,
p
.
0
5
5
1
0
2
,
2
0
1
3
.
[9
]
G.
S
u
n
,
Y.
Zh
o
u
,
L
.
Cu
i,
a
n
d
Y
.
Ch
u
n
g
,
“
T
u
n
a
b
le
m
u
lt
iw
a
v
e
l
e
n
g
th
S
OA
-
f
ib
e
r
rin
g
las
e
r
b
a
se
d
o
n
sa
g
n
a
c
lo
o
p
m
irro
r
in
c
o
rp
o
ra
ti
n
g
f
e
w
-
m
o
d
e
h
i
g
h
b
iref
rin
g
e
n
c
e
f
ib
e
r
”
,
L
a
se
r P
h
y
sic
s
,
v
o
l.
21
,
p
p
.
1
8
9
9
-
1
9
0
2
,
2
0
1
1
.
[1
0
]
N.
A
.
B.
A
h
m
a
d
,
S
.
H.
D
a
h
lan
,
a
n
d
N.
A
.
Ch
o
lan
,
"
Exp
e
rime
n
ta
l
in
v
e
stig
a
ti
o
n
o
f
t
h
e
re
sid
u
a
l
wa
v
e
s
in
a
mu
lt
iwa
v
e
len
g
th
Bril
lo
u
i
n
-
e
rb
iu
m
fi
b
e
r
la
se
r,”
I
EE
E
6
th
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
P
h
o
t
o
n
ics
,
IC
P
2
0
1
6
,
p
.
7
5
1
0
0
2
1
,
2
0
1
6
.
[1
1
]
Z.
X
.
Z
h
a
n
g
,
Z
.
Q.
Ye
,
M
.
H.
S
a
n
g
,
a
n
d
Y.
Y.
Nie
,
“
No
n
li
n
e
a
r
-
p
o
lariz
a
ti
o
n
-
r
o
tatio
n
b
a
se
d
m
u
lt
i
w
a
v
e
len
g
th
e
rb
iu
m
-
d
o
p
e
d
f
ib
e
r
las
e
rs
w
it
h
h
i
g
h
ly
n
o
n
li
n
e
a
r
f
ib
e
r
,”
L
a
se
r P
h
y
sic
s
,
v
o
l.
21
,
p
p
.
1
8
2
0
-
1
8
2
4
,
2
0
1
1
.
[1
2
]
Y.
W
a
n
g
,
L
.
P
e
i,
J.
L
i,
a
n
d
Y.
L
i
,
“
A
ll
o
p
ti
c
a
l
m
u
lt
i
-
w
a
v
e
len
g
th
sin
g
le
-
sid
e
b
a
n
d
m
o
d
u
late
d
W
DM
ra
d
io
-
o
v
e
r
-
f
ib
e
r
s
y
ste
m
s b
y
in
tro
d
u
c
i
n
g
a
S
a
g
n
a
c
lo
o
p
f
il
ter
,”
Op
ti
c
a
l
Fi
b
e
r T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
32
,
p
p
.
36
-
42
,
2
0
1
6
.
[1
3
]
L.
Ho
u
,
M
.
L
i,
X
.
He
,
Q.
L
in
,
H.
G
u
o
,
B.
L
u
,
X
.
Qi,
H.
Ch
e
n
,
a
n
d
J.
Ba
i
,
“
Wav
e
len
g
th
-
tu
n
a
b
le
d
i
ss
ip
a
ti
v
e
p
u
lse
s
f
ro
m
Yb
-
d
o
p
e
d
f
ib
e
r
las
e
r
w
it
h
S
a
g
n
a
c
f
il
ter
,”
L
a
se
r P
h
y
sic
s L
e
tt
e
r
,
v
o
l.
13
,
p
.
1
2
5
3
0
2
,
2
0
1
6
.
[1
4
]
T.
W
a
n
g
,
X
.
M
iao
,
X
.
Zh
o
u
,
a
n
d
S
.
Qia
n
,
“
T
u
n
a
b
le
m
u
lt
iw
a
v
e
le
n
g
th
f
ib
e
r
las
e
r
b
a
se
d
o
n
a
d
o
u
b
le
S
a
g
n
a
c
HiBi
f
ib
e
r
lo
o
p
,”
Ap
p
li
e
d
O
p
t
ics
,
v
o
l
.
51
,
p
p
.
C
1
1
1
-
C1
1
6
,
2
0
1
2
.
[1
5
]
J.
Ju
n
g
,
a
n
d
Y.
W
.
L
e
e
,
“
T
u
n
a
b
le
f
ib
e
r
c
o
m
b
f
il
ter
b
a
se
d
o
n
s
im
p
le
w
a
v
e
p
late
c
o
m
b
in
a
ti
o
n
a
n
d
p
o
lariz
a
ti
o
n
-
d
iv
e
rsif
ied
lo
o
p
,”
O
p
ti
c
s a
n
d
L
a
s
e
r T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
91
,
p
p
.
63
-
70
,
2
0
1
7
.
[1
6
]
L
.
K.
L
e
e
,
M
.
P
.
F
o
k
,
S
.
M
.
W
a
n
,
a
n
d
C.
S
hu
,
“
Op
ti
c
a
ll
y
c
o
n
tro
ll
e
d
S
a
g
n
a
c
lo
o
p
c
o
m
b
f
il
ter
,”
Op
ti
c
s
Exp
re
ss
,
v
o
l.
12
,
p
p
.
6
3
3
5
-
6
3
4
0
,
2
0
0
4
.
[1
7
]
J.
W
a
n
g
,
K.
Zh
e
n
g
,
J.
P
e
n
g
,
L
.
Li
u
,
J.
L
i,
a
n
d
S
.
Jia
n
,
“
T
h
e
o
ry
a
n
d
e
x
p
e
rime
n
t
o
f
a
f
ib
e
r
lo
o
p
m
irro
r
f
il
ter
o
f
t
w
o
-
sta
g
e
p
o
lariz
a
ti
o
n
-
m
a
in
tain
in
g
f
i
b
e
rs
a
n
d
p
o
lariz
a
ti
o
n
c
o
n
tro
l
lers
f
o
r
m
u
lt
iwa
v
e
len
g
th
f
ib
e
r
rin
g
las
e
r
,”
Op
ti
c
s
Exp
re
ss
,
v
o
l.
17
,
p
p
.
1
0
5
7
3
-
1
0
5
8
3
,
nm
2
0
0
9
.
[1
8
]
S.
F
e
n
g
,
Q.
M
a
o
,
L
.
S
h
a
n
g
,
a
n
d
J.
W
.
Y.
L
it
,
“
Re
f
l
e
c
ti
v
it
y
c
h
a
ra
c
teristics
o
f
th
e
f
ib
e
r
lo
o
p
m
irro
r
w
it
h
a
p
o
lariz
a
ti
o
n
c
o
n
tro
ll
e
r,
”
Op
ti
c
s C
o
mm
u
n
ic
a
ti
o
n
s
,
v
o
l
.
2
7
7
,
p
p
.
3
2
2
-
3
2
8
,
2
0
0
7
.
[1
9
]
F.
He
ism
a
n
n
,
“
A
n
a
l
y
sis
o
f
a
Re
se
t
-
F
re
e
P
o
lariz
a
ti
o
n
Co
n
tro
ll
e
r
f
o
r
F
a
st
A
u
to
m
a
ti
c
P
o
lariz
a
ti
o
n
S
tab
il
iza
ti
o
n
i
n
F
ib
e
r
-
o
p
ti
c
T
ra
n
sm
issio
n
S
y
ste
m
s,”
J
o
u
rn
a
l
o
f
L
i
g
h
tw
a
v
e
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
12
,
p
p
.
6
9
0
-
6
9
9
,
1
9
9
4
.
[2
0
]
M.
Zh
o
u
,
Z.
L
u
o
,
Z.
Ca
i,
C.
Ye
,
H.
Xu
,
a
n
d
J.
W
a
n
g
,
“
S
w
it
c
h
a
b
le
a
n
d
t
u
n
a
b
le
m
u
lt
ip
le
-
c
h
a
n
n
e
l
e
rb
i
u
m
d
o
p
e
d
f
ib
e
r
las
e
r
u
sin
g
g
ra
p
h
e
n
e
-
p
o
ly
m
e
r
n
a
n
o
c
o
m
p
o
site
a
n
d
a
sy
m
m
e
tri
c
t
wo
sta
g
e
f
ib
e
r
S
a
g
n
a
c
lo
o
p
f
il
ter
,”
Ap
p
li
e
d
Op
ti
c
s
,
v
o
l.
50
,
p
p
.
2
9
4
0
-
2
9
4
8
,
2
0
1
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Th
eo
r
etica
l A
n
a
lysi
s
o
f a
tw
o
-
s
ta
g
e
S
a
g
n
a
c
lo
o
p
filt
er u
s
in
g
Jo
n
es Ma
tr
ices (
N
.
A
.
B
.
A
h
ma
d
)
2957
BI
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
Nu
r
u
l
Ati
q
a
h
B
t
Ahm
a
d
re
c
e
iv
e
d
th
e
Ba
c
h
e
lo
r
a
n
d
M
a
ste
r
d
e
g
re
e
in
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ic
En
g
in
e
e
rin
g
f
ro
m
th
e
Un
iv
e
rsit
y
T
u
n
Hu
ss
e
in
On
n
M
a
lay
sia
(U
THM
)
,
in
2
0
1
3
a
n
d
2
0
1
5
.
Sh
e
is
a
G
r
a
d
u
a
te
Re
se
sa
r
c
h
As
sista
n
t
.
Cu
rre
n
tl
y
s
h
e
is
p
u
rsu
in
g
t
h
e
P
h
D
d
e
g
re
e
w
it
h
th
e
Re
se
a
rc
h
Ce
n
ter
f
o
r
A
p
p
li
e
d
El
e
c
tro
m
a
g
n
e
ti
c
s
(EM
Ce
n
ter,
UT
HM)
.
He
r
re
se
a
r
c
h
in
tere
sts
in
c
lu
d
e
m
u
lt
i
w
a
v
e
len
g
th
f
ib
e
r
las
e
r
a
n
d
m
icro
w
a
v
e
p
h
o
to
n
ics
.
S
a
m
s
u
l
H
a
i
m
i
D
a
h
l
a
n
re
c
e
iv
e
d
h
is
P
h
D
d
e
g
re
e
in
S
ig
n
a
l
P
r
o
c
e
ss
in
g
a
n
d
T
e
lec
o
m
m
u
n
ica
ti
o
n
s
f
ro
m
th
e
Un
iv
e
rsite
d
e
Re
n
n
e
s
1
,
F
ra
n
c
e
,
in
2
0
1
2
.
He
is
a
S
e
n
io
r
L
e
c
tu
re
r
w
it
h
th
e
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
n
d
El
e
c
tro
n
ic
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
T
u
n
Hu
ss
e
in
O
n
n
M
a
lay
sia
(U
T
HM)
sin
c
e
M
a
rc
h
2
0
1
2
.
C
u
rre
n
tl
y
h
e
is
w
it
h
th
e
Re
se
a
rc
h
Ce
n
ter
f
o
r
A
p
p
li
e
d
El
e
c
tro
m
a
g
n
e
ti
c
s
(EM
Ce
n
ter,
UT
HM)
a
s
th
e
p
rin
c
ip
a
l
re
se
a
rc
h
e
r
a
n
d
a
p
p
o
i
n
ted
a
s
th
e
He
a
d
o
f
t
h
e
c
e
n
ter
sin
c
e
A
p
ril
2
0
1
5
.
He
h
a
s
a
u
th
o
re
d
a
n
d
c
o
-
a
u
t
h
o
re
d
n
u
m
b
e
rs
o
f
jo
u
rn
a
ls
in
c
lu
d
in
g
th
e
IEE
E
T
R
A
NS
A
C
T
IO
N
o
n
EL
ECT
ROM
AG
NET
IC
COMP
AT
IBI
L
I
T
Y
a
n
d
IEE
E
A
W
P
L
.
His
re
se
a
rc
h
in
tere
st
in
c
lu
d
e
s
Op
ti
c
a
l
-
M
icro
w
a
v
e
g
e
n
e
ra
to
r,
f
o
c
u
sin
g
s
y
ste
m
(d
iele
c
tri
c
l
e
n
s
a
n
d
tran
sm
it
a
rra
y
’s
s
y
n
th
e
sis),
c
o
m
p
u
tatio
n
a
l
e
lec
tro
m
a
g
n
e
ti
c
te
c
h
n
iq
u
e
n
a
m
e
l
y
th
e
BOR
-
F
DT
D
a
n
d
m
a
teria
l
c
h
a
ra
c
teriz
a
ti
o
n
s.
He
is
su
p
e
rv
isin
g
a
n
u
m
b
e
rs
o
f
P
h
D
’s
,
m
a
ste
r’s,
a
n
d
b
a
c
h
e
lo
r’s
stu
d
e
n
ts
a
n
d
in
v
o
lv
e
d
i
n
se
v
e
ra
l
re
se
a
rc
h
p
ro
jec
ts
sp
o
n
so
re
d
b
y
th
e
in
d
u
stry
a
n
d
g
o
v
e
rn
m
e
n
t
a
g
e
n
c
ies
.
No
r
a
n
Az
iz
a
n
C
h
o
l
a
n
w
a
s
b
o
rn
o
n
3
1
st
A
u
g
u
st
1
9
7
9
in
S
e
g
a
m
a
t,
Jo
h
o
r,
M
a
lay
sia
.
He
r
e
c
e
iv
e
d
h
is
b
a
c
h
e
lo
r
d
e
g
re
e
in
El
e
c
tro
n
i
c
s
En
g
in
e
e
rin
g
f
ro
m
Un
iv
e
rsiti
T
e
n
a
g
a
Na
sio
n
a
l
(UN
IT
EN),
M
a
la
y
sia
in
2
0
0
2
.
Af
ter
w
a
rd
s
in
2
0
0
4
,
h
e
o
b
tai
n
e
d
h
is
m
a
ste
r
d
e
g
r
e
e
in
El
e
c
tro
n
ics
-
T
e
le
c
o
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rin
g
f
o
rm
Un
iv
e
rsiti
Tek
n
o
lo
g
i
M
a
la
y
sia
(
UT
M
),
M
a
la
y
sia
.
In
2
0
1
0
,
h
e
e
n
r
o
ll
e
d
a
s
a
P
h
D
stu
d
e
n
t
in
Un
iv
e
rsiti
P
u
tra
M
a
lay
sia
u
n
d
e
r
t
h
e
su
p
e
rv
isio
n
o
f
P
r
o
f
.
Dr.
M
o
h
d
A
d
z
ir
M
a
h
d
i
.
Du
r
in
g
h
is
P
h
D
st
u
d
y
in
2
0
1
2
,
h
e
w
e
n
t
t
o
S
w
a
n
se
a
Un
iv
e
r
sit
y
,
UK
f
o
r
a
3
m
o
n
th
s
a
tt
a
c
h
m
e
n
t
u
n
d
e
r
th
e
g
u
id
a
n
c
e
o
f
P
r
o
f
.
Em
iri
tu
s
M
ich
e
l
E.
M
a
rh
ic
f
o
r
a
c
o
ll
a
b
o
ra
ted
p
ro
jec
t
o
f
Bril
lo
u
in
a
m
p
li
f
iers
.
Late
r
in
th
e
sa
m
e
y
e
a
r,
h
e
we
n
t
to
T
h
e
Ho
n
g
Ko
n
g
P
o
ly
tec
h
n
ic
Un
iv
e
rsit
y
,
Ho
n
g
Ko
n
g
f
o
r
a
m
o
n
t
h
to
c
o
ll
a
b
o
ra
te
w
it
h
P
ro
f
L
u
Ch
a
o
f
o
r
a
p
ro
jec
t
o
f
o
p
ti
c
a
l
c
o
m
m
u
n
ica
ti
o
n
sy
ste
m
s.
S
in
c
e
th
e
n
,
h
e
h
a
s
se
rv
e
d
a
s
a
se
n
io
r
lec
tu
re
r
in
Un
iv
e
rsiti
T
u
n
Hu
ss
e
i
n
On
n
M
a
lay
sia
(UTHM
)
.
A
s
o
f
n
o
w
,
h
e
h
a
s
b
e
e
n
a
u
t
h
o
rs/c
o
-
a
u
th
o
rs
f
o
r
8
j
o
u
r
n
a
ls
a
n
d
1
4
c
o
n
f
e
re
n
c
e
p
ro
c
e
e
d
in
g
p
a
p
e
rs
.
Evaluation Warning : The document was created with Spire.PDF for Python.